CHAPTER

Quality concerns in
large-scale and complex
software-intensive systems

Bedir Tekinerdogan', Nour Ali%, John Grundy®, Ivan Mistrik* and Richard Soley®
'Wageningen University, Wageningen, The Netherlands *University of Brighton, Brighton, UK
3Swinburne University of Technology, Hawthorn, VIC, Australia *Heidelberg, Germany
5Objecl Management Group, Needham, MA, USA

INTRODUCTION

Since the days of ENIAC (the first computer), computer system developers and
their end users have been concerned with quality issues of the resultant systems.
Quality comes in many guises and it manifests in many ways. To some, quality
relates to the system itself, for example, can it be understood, maintained,
extended, scaled, or enhanced? For others, the process of producing the system is
their focus, for example, can it be delivered on time, to budget, does it follow best
practices and/or relevant standards, and is the process used to develop the system
itself of a suitable quality and appropriate for required software quality achieve-
ment? Finally, customers, stakeholders, end users and the development team them-
selves are all concerned, in different ways, whether the system meets its
requirements, whether it has been sufficiently verified and/or validated, and does—
and can keep on doing—what it was intended to do. A lack of software quality is
almost always seen to be highly problematic, again from diverse perspectives.
Nowadays, systems have become very software-intensive, heterogeneous, and
very dynamic, in terms of their components, deployment, users, and ultimately
their requirements and architectures. Many systems require a variety of mobile
interfaces. Many leverage diverse, third-party components or services.
Increasingly, systems are deployed on distributed, cloud-based platforms, some
diversely situated and interconnected. Multi-tenant systems require supporting
diverse users whose requirements may vary, and even change, during use.
Adaptive systems need to incorporate various deployment environment changes,
potentially including changes in diverse third-party systems. Development pro-
cesses such as agile methods, outsourcing, and global software development add
further complexity and change to software-intensive systems engineering practices.

Software Quality Assurance. DOI: http://dx.doi.org/10.1016/B978-0-12-802301-3.00001-6
© 2016 Elsevier Inc. All rights reserved.




2

CHAPTER 1 Quality concerns in large-scale

Increasingly, software applications are now “systems of systems” incorporating
diverse hardware, networks, software services, and users.

In order to achieve these demanding levels of software quality, organizations
and teams need to define and implement a rigorous software quality process. A
key to this is defining, for the project at hand, what are the software quality attri-
butes that allow the team, organization, and stakeholders to define quality and
required quality levels that must be achieved and maintained. From these
attributes, a set of quality requirements for the target system can be defined.
Some relate to the functional and non-functional characteristics of the system.
Some relate to its static properties, for example, its code, design. Other its run-
time properties, for example, behavior, performance, security. Overall system
quality must be achieved not only at delivery, but during operation and as the
system—and its environment—evolve over time. Quality must be assessed to
determine proactively when system quality attributes may fall under a desired
threshold and thus quality requirements fail to be met. Mitigations must be
applied to ensure these quality requirements are maintained.

Many different kinds of quality challenges present when engineering such sys-
tems. Development processes need to incorporate appropriate quality assurance
techniques and tools. This includes quality assessment of requirements, architec-
ture, design and target technologies, code bases, and deployment and run-time
environments. Software testing has traditionally been a mainstay of such quality
assurance, though many other quality management practices are also needed.
Testing has become much more challenging with newer development processes,
including agile methods, and more complicated, inter-woven service architectures.
Because today’s complex software-intensive systems are almost invariably
composed of many parts, many being third-party applications running on
third-party platforms, testing is much more difficult. Adaptive systems that enable
run-time change to the software (and sometimes platform) are even more chal-
lenging to test, measure quality attributes, and ensure appropriate quality attri-
butes continue to be met. Multiple tenants of cloud applications may each have
different requirements—and different views of what “quality” is and how it
should be measured and evaluated. Different development teams collaborating
explicitly on global software engineering projects—and implicitly on mash-up
based, run-time composed systems—may each have differing quality assurance
practices, development processes, architectures, technologies, testing tools, and
maintenance practices.

A very challenging area of software quality assurance (SQA) is security and pri-
vacy. Software-intensive, cloud-hosted, large-scale distributed systems are inher-
ently more vulnerable to attack, data loss, and other problems. Security breaches
are one area where—even if all other quality concerns with a software system are
met—massively damaging issues can result from a single, severe security problem.

Some software-intensive systems are manifestly requiring of very high levels
of quality assurance in software, process, verification and validation, and ongoing
maintenance and evolution. Safety-critical systems such as transport (air, rail,



1.2 Software Quality Management 3

in-vehicle), health, utility (power, gas, water), and financial systems all require
very high degrees of holistic SQA practices. These must work in cohesion to
ensure a suitable level of quality is able to be achieved at all times.

In this chapter we provide an overview of the SQA domain, with a view to
how the advent of software-intensive, large-scale, distributed, complex, and
ultimately adaptive and multi-tenant systems have impacted these concepts and
practices. Many quality concerns of course remain the same as ever. In many
cases, however, achieving them—measuring, assessing, and even defining them—
have become much more challenging to software engineers.

The chapter is organized as follows. In Section 1.2 we provide a general discus-
sion on software quality management (SQM) and define the context for SQA.
Section 1.3 presents the basic concepts related to software quality models and pro-
vides a conceptual model that defines the relation among the different concepts.
Section 1.4 discusses the approaches for addressing software quality. Section 1.5
elaborates on assessing system qualities. Section 1.6 presents the current challenges
and future directions regarding SQA. Finally, Section 1.7 concludes the chapter.

SOFTWARE QUALITY MANAGEMENT

Early after the introduction of the first computers and programming languages
software became a critical for many organizations. The term “software crisis” was
coined at the first NATO Software Engineering Conference in 1968 at Garmisch,
Germany. Typically the crisis manifests in different ways including projects
exceeding the estimated costs for development, the late delivery of software, and
the low quality of the delivered software. Currently, software continues to be a
critical element in most large-scale systems and many companies have to cope
with a software crisis. To manage the challenges of software development and to
ensure the delivery of high quality software, considerable emphasis in the
research community has been directed to provide SQM.

SQM is the collection of all processes that ensure that software products, ser-
vices, and life cycle process implementations meet organizational software quality
objectives and achieve stakeholder satisfaction (Galin, 2004; Schulmeyer, 2007;
Tian, 2005). SQM comprises three basic subcategories (Figure 1.1): software
quality planning (SQP), software quality assurance (SQA), and software quality
control (SQC). Very often, like in the Software Engineering Body of Knowledge
(Guide to the Software Engineering Body of Knowledge, 2015), software process
improvement (SPI) is also described as a separate sub-category of SQM, although
it could be included in any of the first three categories.

SQA is an organizational quality guide independent of a particular project. It
includes the set of standards, regulations, best practices and software tools to pro-
duce, verify, evaluate and confirm work products during the software develop-
ment life cycle. SQA is needed for both internal and external purposes



|
4

CHAPTER 1 Quality concerns in large-scale

Software quality management (SQM)

Software quality control
(SQC)
Software quality planning Software process improvement
(SQP) (SPI)

FIGURE 1.1
Context of SQA within the overall SQM process.

(Std. 24765) (ISO/IEC/IEEE 24765:2010(E), 2010). Internal purposes refer to the
need for quality assurance within an organization to provide confidence for the
management. External purposes of SQA include providing confidence to the cus-
tomers and other external stakeholders. The IEEE standard (IEEE Std 610.12-
1990, 1991) provides the following definitions for SQA:

1. a planned and systematic pattern of all actions necessary to provide adequate
confidence that an item or product conforms to established technical
requirements

2. a set of activities designed to evaluate the process by which products are
developed or manufactured

3. the planned and systematic activities implemented within the quality system,
and demonstrated as needed, to provide adequate confidence that an entity
will fulfill requirements for quality

4. part of quality management focused on providing confidence that quality
requirements will be fulfilled.

A SQP is defined at the project level that is aligned with the SQA. It specifies
the project commitment to follow the applicable and selected set of standards,
regulations, procedures, and tools during the development life cycle. In addition,
the SQP defines the quality goals to be achieved, expected risks and risk manage-
ment, and the estimation of the effort and schedule of software quality activities. A
SQP usually includes SQA components as is or customized to the project’s needs.
Any deviation of an SQP from SQA needs to be justified by the project manager
and be confirmed by the company management who is responsible for the SQA.

SQC activities examine project artifacts (e.g., code, design, and documentation) to
determine whether they comply with standards established for the project, including
functional and non-functional requirements and constraints. SQC ensures thus that
artefacts are checked for quality before these are delivered. Example activities of SQC
include code inspection, technical reviews, and testing.



1.3 Software Quality Models

SPI activities aim to improve process quality including effectiveness and effi-
ciency with the ultimate goal of improving the overall software quality. In prac-
tice, an SPI project typically starts by mapping the organizations’ existing
processes to a process model that is then used for assessing the existing processes.
Based on the results of the assessment an SPI aims to achieve process improve-
ment. In general, the basic assumption for SPI is that a well-defined process will
on its turn have a positive impact on the overall quality of the software.

SOFTWARE QUALITY MODELS

The last decades have shown a growing interest and understanding of the notion
of SQA and software quality in general. In this context, a large number of defini-
tions of software quality have emerged. Many of these definitions tend to define
quality as conformance to a specification or meeting customer needs. The IEEE
ISO/IEC/IEEE 24765 “Systems and software engineering vocabulary” provides
the following definition for quality (ISO/IEC/IEEE, 2010):

1. the degree to which a system, component, or process meets specified
requirements

2. ability of a product, service, system, component, or process to meet customer
or user needs, expectations, or requirements

3. the totality of characteristics of an entity that bear on its ability to satisfy
stated and implied needs

4. conformity to user expectations, conformity to user requirements, customer

satisfaction, reliability, and level of defects present (ISO/IEC 20926:2003)

the degree to which a set of inherent characteristics fulfills requirements

the degree to which a system, component, or process meets customer or user

needs or expectations.

oo

To structure the ideas and provide a comprehensive framework several soft-
ware quality models have been introduced. A software quality model is a defined
set of characteristics, and of relationships between them, which provides a frame-
work for specifying quality requirements and evaluating quality (ISO/IEC
25000:2005) (ISO/IEC, 2011). Usually, software quality models aim to support
the specification of quality requirements, to assess existing systems or to predict
the quality of a system.

One of the first published quality models is that of McCall (McCall et al.,
1977). McCall’s model was developed for the US Air Force and is primarily
focused on the system developers and the system development process. This
model aims to reduce the gap between users and developers by focusing on
software quality factors that are important for both users and developers.
McCall’s quality model adopts three major perspectives for defining software
quality: product revision, product transition, and product operations.
Product revision relates to the ability to undergo changes, product transition to

5



6

CHAPTER 1 Quality concerns in large-scale

the ability to adapt to new environments, and product operations to the operation
characteristics of the software. These three types of major perspectives are
further decomposed and refined in a hierarchy of 11 quality factors, 23 quality
criteria and quality metrics. The main idea of this model is the hierarchical
decomposition of quality down to a level at which we can measure and, as
such, evaluate quality. In McCall’s model, quality factors are defined which
describe the external view of the software as defined by the users. Quality factors
in turn include quality criteria that describe the internal view of the software as
seen by the developer. Finally, for the identified quality criteria the relevant
quality metrics are defined to support their measurement and evaluate software
quality.

A similar hierarchical model has been presented by Barry W. Boehm (Boehm,
1978) who focuses on the general utility of software that is further decomposed
into three high-level characteristics including as-is utility, maintainability, and
portability. These high-level quality characteristics have in turn seven quality
factors that are further decomposed into the metrics hierarchy. Several variations
of these models have appeared over time, among which the FURPS that
decomposes quality into functionality, usability, reliability, performance and
supportability.

The International Organization for Standardization’s ISO 9126: Software
Product Evaluation: Quality Characteristics and Guidelines for their Use-standard,
was inspired by McCall and Boehm models, and also classifies software quality
in a structured set of characteristics and sub-characteristics. ISO 9126 has later
been revised by ISO/IEC 25010, which now includes ISO25010, and has 8 prod-
uct quality characteristics and 31 sub-characteristics. The ISO/IEC Standard 9126
and its successor ISO/IEC Standard 25000 (ISO/IEC, 2011) decompose software
quality into process quality, product quality, and quality in use.

In the IEEE 24765 Systems and Software Vocabulary the terms software qual-
ity factor and software quality attribute are defined as follows:

Software quality factor:

—

. A management-oriented attribute of software that contributes to its quality.
2. Higher-level quality attribute.

Software quality attribute:

1. Characteristic of software, or a generic term applying to quality factors,
quality sub-factors, or metric values.

Feature or characteristic that affects an item’s quality.

Requirement that specifies the degree of an attribute that affects the quality
that the system or software must possess.

W N

To provide a quantitative measure for quality the notion of metric is defined:

1. A quantitative measure of the degree to which an item possesses a given
quality attribute.



1.3 Software Quality Models

Software quality Software
framework quality factor
Includes
A4
Software

quality criteria

Includes

A4

Measures
Software

quality metric

; :

v

Measurement

Direct Indirect Product Process Project
measurement measurement metric metric metric
FIGURE 1.2

Conceptual model for SQA.

2. A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which the software
possesses a given quality attribute.

A distinction is made between direct metrics and indirect metrics. A direct
metric is “a metric that does not depend upon a measure of any other attribute”
(Fenton and Pfleger, 1998). Software metrics are usually classified into three cate-
gories: product metrics, process metrics, and project metrics. Product metrics
describe the characteristics of the product such as size and complexity. Process
metrics describe the characteristics of the software development process. Finally,
project metrics describe the project characteristics and execution.

Related to metric is the concept of measurement which is defined as follows:

1. “Measurement is the process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way as to characterize them
according to clearly defined rules” (Fenton and Pfleger, 1998).

2. “Formally, we define measurement as a mapping from the empirical world to
the formal, relational world. Consequently, a measure is the number or
symbol assigned to an entity by this mapping in order to characterize an
attribute” (Fenton and Pfleger, 1998).

Figure 1.2 shows a conceptual overview of the relations of the above concepts.

7



8

CHAPTER 1 Quality concerns in large-scale

ADDRESSING SYSTEM QUALITIES

SQA can be addressed in several different ways and cover the entire software
development process.

Different software development lifecycles have been introduced including
waterfall, prototyping, iterative and incremental development, spiral development,
rapid application development, and agile development. The traditional waterfall
model is a sequential design process in which progress is seen as flowing
steadily downwards (like a waterfall) through the phases of Analysis, Design,
Implementation, Testing, and Maintenance. The waterfall model implies the
transition to a phase only when its preceding phase is reviewed and verified.
Typically, the waterfall model places emphasis on proper documentation of arte-
facts in the life cycle activities. Advocates of agile software development
paradigm argue that for any non-trivial project finishing a phase of a software
product’s life cycle perfectly before moving to the next phases is practically
impossible. A related argument is that clients may not know exactly what require-
ments they need and as such requirements need to be changed constantly.

It is generally acknowledged that a well-defined mature process will support the
development of quality products with a substantially reduced number of defects.
Some popular examples of process improvement models include the Software
Engineering Institute’s Capability Maturity Model Integration (CMMI), ISO/IEC
12207, and SPICE (Software Process Improvement and Capability Determination).

Software design patterns are generic solutions to recurring problems. Software
quality can be supported by reuse of design patterns that have been proven in the
past. Related to design patterns is the concept of anti-patterns, which are a
common response to a recurring problem that is usually ineffective and counter-
productive. Code smell is any symptom in the source code of a program that pos-
sibly indicates a deeper problem. Usually code smells relate to certain structures
in the design that indicate violation of fundamental design principles and likewise
negatively impact design quality.

An important aspect of SQA is software architecture. Software architecture is
a coordination tool among the different phases of software development. It
bridges requirements to implementation and allows reasoning about satisfaction
of systems’ critical requirements (Albert and Tullis, 2013). Quality attributes
(Babar et al., 2004) are one kind of non-functional requirement that are critical to
systems. The Software Engineering Institute (SEI) defines a quality attribute as “a
property of a work product or goods by which its quality will be judged by some
stakeholder or stakeholders” (Koschke and Simon, 2003). They are important
properties that a system must exhibit, such as scalability, modifiability, or
availability (Stoermer et al., 20006).

Architecture designs can be evaluated to ensure the satisfaction of quality
attributes. Tvedt Tesoriero et al. (2004), Stoermer et al. (2006) divide architectural
evaluation work into two main areas: pre-implementation architecture evaluation,



1.4 Addressing System Qualities

and implementation-oriented architecture conformance. In their classification,
pre-implementation architectural approaches are used by architects during initial
design and provisioning stages, before the actual implementation starts. In contrast
implementation-oriented architecture conformance approaches assess whether the
implemented architecture of the system matches the intended architecture of
the system. Architectural conformance assesses whether the implemented architec-
ture is consistent with the proposed architecture’s specification, and the goals of
the proposed architecture.

To evaluate or design a software architecture at the pre-implementation stage,
tactics or architectural styles are used in the architecting or evaluation process.
Tactics are design decisions that influence the control of a quality attribute
response. Architectural Styles or Patterns describe the structure and interaction
between collections of components affecting positively to a set of quality attri-
butes but also negatively to others. Software architecture methods are encountered
in the literature to design systems based on their quality attributes such as the
Attribute Driven Design (ADD) or to evaluate the satisfaction of quality attributes
in a software architectural design such as the Architecture Tradeoff Analysis
Method (ATAM). For example, ADD and ATAM follow a recursive process
based on quality attributes that a system needs to fulfill. At each stage, tactics and
architectural patterns (or styles) are chosen to satisfy some qualities.

Empirical studies have demonstrated that one of the most difficult tasks in
software architecture design and evaluation is finding out what architectural
patterns/styles satisfy quality attributes because the language used in patterns
does not directly indicate the quality attributes. This problem has also been indi-
cated in the literature (Gross and Yu, 2001 and Huang et al., 2006).

Also, guidelines for choosing or finding tactics that satisfy quality attributes
have been reported to be an issue in as well as defining, evaluating, and assessing
which architectural patterns are suitable to implement the tactics and quality attri-
butes (Albert and Tullis, 2013). Towards solving this issue Bachmann et al.
(2003), Babar et al. (2004) describe steps for deriving architectural tactics. These
steps include identifying candidate reasoning frameworks which include the
mechanisms needed to use sound analytic theories to analyze the behavior of a
system with respect to some quality attributes (Bachmann et al., 2005). However,
this requires that architects need to be familiar with formal specifications that are
specific to quality models. Research tools are being developed to aid architects
integrate their reasoning frameworks (Christensen and Hansen, 2010), but still
reasoning frameworks have to be implemented, and tactics description and how
they are applied has to be indicated by the architect. It has also been reported by
Koschke and Simon (2003) that some quality attributes do not have a reasoning
framework.

Harrison and Avgeriou have analyzed the impact of architectural patterns on
quality attributes, and how patterns interact with tactics (Harrison and Avgeriou,
2007; Harrison and Avgeriou). The documentation of this kind of analysis can aid
in creating repositories for tactics and patterns based on quality attributes.

I
9



10

CHAPTER 1 Quality concerns in large-scale

Architecture prototyping is an approach to experiment whether architecture tac-
tics provide desired quality attributes or not, and to observe conflicting qualities
(Bardram et al., 2005). This technique can be complementary to traditional archi-
tectural design and evaluation methods such as ADD or ATAM (Bardram et al.,
2005). However, it has been noted to be quite expensive and that “substantial”
effort must be invested to adopt architecture prototyping (Bardram et al., 2005).

Several architectural conformance approaches exist in the literature (Murphy
et al., 2001; Ali et al.; Koschke and Simon, 2003). These check whether software
conform to the architectural specifications (or models). These approaches can be
classified either by using static (source code of system) (Murphy et al., 2001;
Ali et al.) or dynamic analysis (running system) (Eixelsberger et al., 1998), or
both. Architectural conformance approaches have been explicit in being able to
check quality attributes (Stoermer et al., 2006; FEixelsberger et al., 1998) and
specifically run-time properties such as performance or security (Huang et al.,
2006). Also, several have provided feedback on quality metrics (Koschke, 2000).

ASSESSING SYSTEM QUALITIES

Sections 1.2—1.4 defined concepts and a plan of how we can realize system qual-
ity. In this section, we define some of the metrics relating to system quality and
how these are monitored and tracked throughout the software development life
cycle. The purpose of using metrics is to reduce subjectivity during monitoring
activities and provide quantitative data for analysis, helping to achieve desired
software quality levels. In this section we focus on approaches for assessing dif-
ferent quality attributes and suitable metrics relevant to the assessment of these
quality attributes.

As discussed above, a huge range of software quality attributes have been iden-
tified, ranging from low-level code quality issues to overarching software procure-
ment, development, and deployment processes. Each class of quality attribute has a
set of metrics that can be used to assess differing quality dimensions of the soft-
ware system. Metrics need to be assessed to determine whether the software is
meeting—or likely to meet—the required quality thresholds set by stakeholders.
The thresholds may vary considerably depending on software size, cost, nature of
team, software process being used, software quality framework being used, and so
on. With modern, complex software-intensive systems, quality requirements may
even vary depending on changes to deployment scenario and end users.

ASSESSMENT PROCESSES

The IEEE Software Quality Metrics Methodology (Huang et al., 2006) is a well-
known framework for defining and monitoring system-quality metrics and analy-
sis of measurements gathered through the implementation of metrics. Key goals



1.5 Assessing System Qualities

of the framework are to provide organizations a standard methodology to assess
achievement of quality goals, establish quality requirements for a system, estab-
lish acceptance criteria, detect anomalies, predict future quality levels, monitor
changes in quality as software is modified, and to help validate a metrics set. A
software quality metrics framework is provided to assist achieving these goals.

The first step of the methodology is to establish a set of software quality
requirements. This includes identifying possible requirements, determining the
requirements to use, and determining a set of metrics to use to measure quality.
A set of metrics—an approved metrics set—is then established, including a
cost—benefit analysis of implementing and monitoring the metrics and a process of
commitment to the established metrics set. The metrics are then implemented on the
software project. This includes data collection procedures, a measurement process
established, and metric computation from measures. An analysis phase is used to
interpret the results from the metrics capture, identifying the levels of software
quality being achieved against the requirements targets. Predictions can be made to
assist project management and a quality requirements compliance process is imple-
mented to ensure the project is on target. A final step is validating the quality
metrics to ensure they provide a suitable set of product and process metrics to pre-
dict desired quality levels. A set of validity criteria are used in the assessment of
the metrics set and the results are documented and periodically re-validated.

A range of complementary and alternative approaches have been developed to
support the software quality assessment process. CMMI (Bardram et al., 2005)
includes several components relating to SQM that incorporate aspects of the
assessment of quality attributes. In particular, PPQA (product and process quality
assurance) and related PMC (project monitoring and control) and MA (measure-
ment and analysis). Higher levels of quality assurance organization include QPM
(quantitative project management) and CAR (causal analysis and resolution).
Various agile development processes incorporate quality assessment processes.
These include several efforts to develop an agile maturity model (AMM) (Patel
and Ramachandran, 2009), complementary in many ways to CMMI but incorpo-
rating agile concepts of rapid iteration, on-site customer, pair programming and
other agile practices, and minimal investment as in spikes and refactoring as and
when needed. The move to many cloud-based applications has increased interest
in suitable quality assessment processes and techniques for such nontraditional
applications where systems are composed from disparate services, many from dif-
ferent providers.

Key issues with any quality assessment processes include:

¢ Cost vs. benefit of carrying out the assessment—this includes cost to capture
suitable measurements, cost to implement, cost to analyze vs. benefit gained
in terms of monitoring quality compliance, and predictive quality assessment

e Team adoption and training—including integrating assessment into the
development process, ensuring data can be suitably collected and analyzed,
and the team can act on problematic quality assessments

I
11



12

CHAPTER 1 Quality concerns in large-scale

* Evolution of both requirements and system—particularly challenging in the
context of cloud-based systems and autonomic systems, where new
stakeholders and/or deployment environment conditions can dramatically
impact overall system quality metrics

* Lack of mitigations if quality requirements are not being met—if the project is
failing to meet one or more quality targets, or likely will fail to meet these,
suitable actions must be available to address the issue or the project is at risk
of failure.

METRICS AND MEASUREMENTS

A set of metrics are required by which quality attributes can be assessed, and
metrics have a set of measurements that need to be periodically taken in order to
make judgements about the state of product and process quality. Quality assess-
ment requires the following:

* Definition of appropriate metrics/measures to use—how quality attributes will
be assessed

* Definition of a set of expected measurement targets—these can be simple
thresholds or very complicated calculations based on a number of
measurements taken

* A data collection process put in place to periodically take required
measurements, including suitable data collection tools identified and deployed
on the project

* Data analysis conducted at suitable times and judgements made on quality

* Data storage, reuse and comparison to determine current quality levels,
compliance, trends and future predictions

* Data needs to be suitably protected, including data relating to people,
financials, and sensitive requirements and/or measurements.

A wide range of models have been developed to specify and capture software
quality metrics. We briefly review several here, with a view to newer metrics for
cloud-based platforms, agile methods and large-scale software-intensive systems.

The Software Assurance Technology Center (SATC) at NASA introduced a
wide range of software quality metrics applicable to most software processes,
architectures, programming languages, and testing strategies. These are grouped
into several areas. Requirements-level metrics are used to assess the quality of
software requirements. This is fundamental as it doesn’t really matter how well a
team “does the thing right” (i.e., use best practice design, coding, testing, etc.), if
they are not “doing the right thing” (i.e., building the right systems to meet stake-
holders needs). Requirements-level quality metrics include completeness, correct-
ness, and consistency of the requirements, commonly called the 3Cs (Pohl, 2010).
Additional metrics include traceability—the ability to link requirements to design,
code, test artefacts, and volatility—how changeable the requirements are and
hence impact on system architecture, design, code, deployment, etc.



1.6 Current Challenges and Future Directions of Software Quality

A great many code-level metrics have been developed. Classic ones include
lines of code (often a poor productivity measure), cyclometric complexity, func-
tion point analysis, cohesion, coupling, and various kinds of complexity and
size analysis. While historically applied to source code, many can also be
applied to design-level models, especially when used for model-driven engineer-
ing activities, and even potentially to configuration models. A variety of metrics
for user interface of systems have also been developed, many derived from HCI
and usability research and practice. These have been applied to web interfaces,
more recently to mobile interfaces, and are increasingly being applied to ubiqui-
tous, haptic, virtual reality, touch, gesture, speech and other more human-centric
interfaces (Albert and Tullis, 2013). Such metrics include simple completion
rates (can or can’t complete task), task time, user satisfaction, error rates, vari-
ous interaction measures, and marketing-style metrics like return rates and con-
version rates.

Software testing has historically been used as a major quality assurance
achievement mechanism in software development. Many metrics have been devel-
oped to support quality assurance via testing. These include defects/bugs per lines
of code, code coverage of testing (predominantly for unit testing approaches),
fault localization, and identification of criticality of located defects (Kan, 2002).

Process-level metrics are used to qualify and quantify quality aspects associ-
ated with the software development process employed by a team. Examples
include burn-down charts commonly used in agile methods to track progress, task
completion rates, critical paths, and hours (and other resources) spent on develop-
ment and assurance activities (Kitchenham, 1996).

Service-oriented and cloud-based systems have brought new demands to the
evaluation of run-time performance of software systems with a view to meeting
quality attributes in this area. Such metrics include traditional ones such as ser-
vice availability, outage duration, mean-time between failures, completion time,
and response time for requests (Papazoglou and van den Heuvel, 2003). More
recent measures are needed to assess the quality of service and cloud application
delivery, including network and storage device capacity, server capacity (in terms
of compute power), web server capacity (number of concurrent requests, users
supportable, etc.), instance start up/shut down for cloud elasticity measurement,
mean-time to switch-over, and mean-time to system recovery after failure
(Li et al., 2012).

CURRENT CHALLENGES AND FUTURE DIRECTIONS OF
SOFTWARE QUALITY

A number of major challenges face software teams—and organizations and indi-
vidual developers and operators—in maintaining software quality for today’s, and
tomorrow’s, software-intensive systems.

I
13



14

CHAPTER 1 Quality concerns in large-scale

Systems seem to grow ever more interdependent, meaning there are few sys-
tems that don’t depend heavily on other, usually third-party systems, for major
aspects of their components and operation and therefore quality. A failure or sim-
ply lower-than-acceptable level of quality in any one of these components or con-
nected services may lead to unacceptable quality degradation in the system as a
whole. This quality attribute problem may be to do with incorporating unmaintain-
able or unportable code; insufficient testing of a used service or the service integra-
tion; lower than required run-time performance, reliability, or excessive resource
utilization; poor usability of integrated interfaces especially on mobile devices;
inefficient or ineffective software process used for all or part of the system’s devel-
opment; or a failure in deployment environment or the user community, for exam-
ple, comprising security of a component and thus the system as a whole. A number
of trends increase these problems, some dramatically. The trend to DevOps, or
Development-Operations, where the division between developing vs. maintaining a
system disappears. The trend to service-oriented architectures and cloud computing
platforms where there is huge dependence on others for necessary system infra-
structure and indeed critical software components. The use of agile and global soft-
ware engineering practices puts greater delivery demands and expectations on
teams while greatly increasing challenges around team coordination and software
management. The adoption of the “internet of things” (IoT) where many system
components are software-intensive but rely on very heterogeneous hardware and
networking components, themselves prone to various quality challenges.

Future SQA approaches and supporting techniques, tools, and processes will
need to address these challenges. Quality processes, measurements, and manage-
ment must be applied to diverse non-software components of systems, software
components, and the system as whole. Run-time evolution of systems including
deployment environment, networking, hardware, and integrated services will
mean more run-time quality management is necessary. This will need to be paired
with software quality meta-practices, that is, software being engineered with
greater range of quality attributes measured and managed at run-time as well as
development-time. High turn-around of changes in the DevOps paradigm, con-
tracted platform provisioning in the cloud computing paradigm, and diverse inte-
grated data sources in the IoT paradigm, will all need higher degrees and
frequency of quality attention than traditional enterprise systems development.
Distributed, agile teams and incorporation of large numbers of third-party services
all require more precise definition of quality attributes and thresholds, agreement
on quality maintaining processes, and more accurate predictive analytics associ-
ated with SQA practices.

Finally, big data applications have their own quality challenges, not just
around their software systems but data quality, privacy, provenance, and scaling.
It is highly likely that future quality assurance techniques and tools themselves
need to make use of large-scale data analytics approaches to improve our ability
to manage very diverse ranges of quality metrics, size of quality measurements
and predictive analysis to proactively tackle emergent software quality problems.



References

CONCLUSION

In this chapter we have provided a general overview of software quality concerns
and SQM. SQM is the collection of all processes that ensure that software pro-
ducts, services, and life cycle process implementations meet organizational soft-
ware quality objectives and achieve stakeholder satisfaction. We have briefly
described the basic SQM approaches including SQP, SQA, SQC, and SPL
Considering the topic of the book we have focused on SQM and in this context
discussed the short history and evolution of software quality models. In addition
the current state-of-the-art approaches on assessing system quality approaches
have been discussed. Although a large body of knowledge on SQA exists, there
are still many great challenges which require attention. The subsequent chapters
in this book address some of the identified relevant issues.

REFERENCES

Albert, W., Tullis, T., 2013. Measuring the User Experience: Collecting, Analyzing, and
Presenting Usability Metrics. Morgan Kaufmann.

Ali, N., Solis, C., 2014. Exploring how the attribute driven design method is perceived, In:
Mistrik, 1., Bahsoon, R., Eeles, P., Roshandel, R., Stal, M. (Eds.), Relating System
Quality and Software Architecture. Morgan Kaufman Elsevier, United States,
pp- 23—40. ISBN 9780124170094.

Ali, N., Rosik, J., Buckley, J. Characterizing real-time reflexion-based architecture recov-
ery: an in-vivo multi-case study. In: Proceedings of the 8th International ACM
SIGSOFT Conference on Quality of Software Architectures (QoSA’12). ACM,
New York, NY, pp. 23—-32.

Babar, M.A., Zhu, L., Jeffery, R., 2004. A framework for classifying and comparing soft-
ware architecture evaluation methods. In: ASWEC, p. 309.

Bachmann, F., Bass, L., Klein, M., 2003. Deriving Architectural. Tactics: A Step Toward.
Methodical Architectural. Design. CMU/SEI-2003-TR-004. ESC-TR-2003-004.

Bachmann, F., Bass, L., Klein, M., Shelton, C., 2005. Designing software architectures to
achieve quality attribute requirements. In: Software, IEE Proceedings, vol. 152, issue 4,
pp- 153—165.

Bardram, J.E., Christensen, H.B., Corry, A.V., Hansen, K.M., Ingstrup, M., 2005.
Exploring quality attributes using architectural prototyping. In: Proceedings of First
International Conference on the Quality of Software Architectures, LNCS, vol. 3712,
pp. 155—170.

Bass, L., Clements, P., Kazman, R., 2010. Software Architecture in Practice, third ed.
Addison-Wesley Professional.

Boehm, B., 1978. Characteristics of Software Quality, Vol 1 of TRW Series on Software
Technology. North-Holland, Amsterdam, Holland.

Chrissis, M.B., Konrad, M., Shrum, S., 2003. CMMI Guidlines for Process Integration and
Product Improvement. Addison-Wesley Longman Publishing Co., Inc.

Christensen, H.B., Hansen, K.M., 2010. An empirical investigation of architectural proto-
typing. J. Syst. Softw. 83 (1), 133—142.

I
15



L
16

CHAPTER 1 Quality concerns in large-scale

Diaz-Pace, A., Kim, H., Bass, L., Bianco, P., Bachmann, F., 2008. Integrating quality-
attribute reasoning frameworks in the ArchE design assistant. In: Proceedings of the
4th International Conference on Quality of Software-Architectures: Models and
Architectures, LNCS, vol. 5281, pp. 171—188.

Dyba, T., Dingsgyr, T., 2008. Empirical studies of agile software development: a system-
atic review. Inf. Softw. Technol. 50 (9), 833—859.

Eixelsberger, W., Ogris, M., Gall,H., Bellay, B., 1998. Software architecture recovery of a
program family. In: ICSE, pp. 508—-511.

Emeakaroha, V.C., et al. 2010. Low level metrics to high level SLAs-LoM2HiS frame-
work: bridging the gap between monitored metrics and SLA parameters in cloud envir-
onments. In: 2010 International Conference on High Performance Computing and
Simulation (HPCS), IEEE.

Fenton, N.E., Pfleger, S.L., 1998. Software Metrics—A Rigorous and Practical Approach,
second ed. International Thomson Press, London.

Franke, D., Weise, C. 2011. Providing a software quality framework for testing of mobile
applications. In: 2011 IEEE Fourth International Conference on Software Testing,
Verification and Validation (ICST), IEEE.

Galin, D., 2004. Software Quality Assurance: From Theory to Implementation. Pearson
Education.

Garlan, D., Schmerl, B., 2004. Using Architectural Models at Runtime: Research
Challenges. In: First European Workshop on Software Architecture, LNCS 3047.
Springer, pp. 200—205.

Gorton, 1., 2006. Essential Software Architecture. Springer-Verlang.

Gross, D., Yu, E., 2001. From non-functional requirements to design through patterns.
Requirements Eng. 6 (1), 18—36.

Guide to the Software Engineering Body of Knowledge, 2015. SWEBOK Guide <https://
www.computer.org/web/swebok >.

Harrison, N.B., Avgeriou, P., 2007. Leveraging architecture patterns to satisfy quality attri-
butes. In: European Conference on Software Architecture, LNCS, pp. 263—270.

Harrison, N.B., Avgeriou, P., 2010. How do architecture patterns and tactics interact? A
model and annotation. J. Syst. Softw. 83 (10), 1735—1758.

Huang, G., Hong, M., Yang, F.Q., 2006. Runtime recovery and manipulation of software
architecture of component-based systems. Autom. Softw. Eng. 13 (2), 257—281.

IEEE Std 610.12-1990—IEEE Standard Glossary of Software Engineering Terminology,
Corrected Edition, February 1991. In: IEEE Software Engineering Standards
Collection, The Institute of Electrical and Electronics Engineers, New York, 1991.

IEEE, 1061-1992—IEEE Standard for a Software Quality Metrics Methodology, IEEE
Computer Society, 1992, http://dx.doi.org/10.1109/IEEESTD.1993.115124.

ISO/IEC/IEEE 24765:2010(E)—IEEE Systems and Software Engineering Vocabulary,
2010.

ISO 9000-3:1997(E), Quality Management and Quality Assurance Standards—Part 3:
Guidelines for the Application of ISO 9001:1994 to the Development, Supply,
Installation and Maintenance of Computer Software, second ed. International
Organization for Standardization (ISO), Geneva.

ISO 9000-3:2001 Software and System Engineering—Guidelines for the Application of
ISO 9001:2000 to Software, Final draft. International Organization for Standardization
(ISO), Geneva, unpublished draft, December 2001.



References

ISO/IEC Systems and Software Engineering—Systems and Software Quality Requirements
and Evaluation (SquaRE)—System and Software Quality Models. ISO/IEC
25010:2011, 2011. Available from: <http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber =35733>.

Kan, S.H., 2002. Metrics and Models in Software Quality Engineering. Addison-Wesley
Longman Publishing Co., Inc.

Kazman, R., Bass, L., Klein, M., 2006. The essential components of software architecture
design and analysis. J. Syst. Softw. 79 (8), 1207—1216.

Kitchenham, B.A., 1996. Software Metrics: Measurement for Software Process
Improvement. Blackwell Publishers, Inc.

Koschke, R., 2000. Atomic Architectural Component Recovery for Program Understanding
and Evolution (Ph.D. thesis). Universitit Stuttgart.

Koschke, R., Simon, D., 2003. Hierarchical reflexion models. In: Proceedings of the 10th
Working Conference on Reverse Engineering, Victoria, Canada.

Li, Z. et al., 2012. On a catalogue of metrics for evaluating commercial cloud services. In:
Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid
Computing. IEEE Computer Society.

McCall, J., Richards, P., Walters, G., 1977. Factors in Software Quality, vols. 1—3, NTIS
AD-A049-014, 015, 055, November 1977.

Murphy, G., Notkin, D., Sullivan, K., 2001. Software reflexion models: bridging the gap
between design and implementation. IEEE Trans. Softw. Eng. 27 (4), 364—380.

Patel, C., Ramachandran, M., 2009. Agile maturity model (AMM): a Software Process
Improvement framework for agile software development practices. Int. J. Softw.
Eng. 2 (1), 3—28.

Papazoglou, M.P., van den Heuvel, W.J., 2003. Service-oriented computing: state-of-the-
art and open research issues. IEEE Comput. 40 (11).

Pohl, K., 2010. Requirements Engineering: Fundamentals, Principles, and Techniques.
Springer Publishing.

Remco, C., Van Vliet, H., 2009. QuOnt: an ontology for the reuse of quality criteria. In:
ICSE Workshop on Sharing and Reusing Architectural Knowledge, pp. 57—64.

Rozanski, N., Woods, E., 2011. Software Systems Architecture: Working with
Stakeholders Using Viewpoints and Perspectives. Addison-Wesley.

Schulmeyer, G., 2007. Handbook of Software Quality Assurance. Artech House Publishers.
fourth ed.

Software Engineering Institute, 2010. Software Architecture Glossary. <http://www.sei.
cmu.edu/architecture/start/glossary/>.

Stoermer, C., Rowe, A., O’Brien, L., Verhoef, C., 2006. Model-centric software architec-
ture reconstruction. Softw. Pract. Exper. 36 (4), 333—363, ISSN 0038-0644. http://dx.
doi.org/10.1002/spe.v36:4.

Tvedt, R.T., Costa, P., Lindvall, M., 2004. Evaluating software architectures. Adv.
Comput. 61, 1—43, <http://dblp.uni-trier.de/db/journals/ac/ac61.html#TvedtCL0O4>.
Tian, J., 2005. Software Quality Engineering: Testing, Quality Assurance, and Quantifiable

Improvement. John Wiley & Sons.

Wojcik, R., Bachmann, F., Bass, L., Clements, P., Merson, P., Nord, R., et al., 2006.
Attribute-Driven Design (ADD), Version 2.0. Technical Report CMU/SEI-2006-TR-
023, SEL

I
17



