
Technical Section

Using data mining for digital ink recognition: Dividing text and shapes
in sketched diagrams

Rachel Blagojevic a,n, Beryl Plimmer a, John Grundy b, Yong Wang a

a University of Auckland, Private bag 92019, Auckland, New Zealand
b Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia

a r t i c l e i n f o

Article history:
Received 3 April 2011
Received in revised form
20 June 2011
Accepted 12 July 2011
Available online 26 July 2011

Keywords:
Sketch tools
Recognition algorithms
Sketch recognition
Pen-based interfaces

a b s t r a c t

The low accuracy rates of text–shape dividers for digital ink diagrams are hindering their use in real
world applications. While recognition of handwriting is well advanced and there have been many
recognition approaches proposed for hand drawn sketches, there has been less attention on the division
of text and drawing ink. Feature based recognition is a common approach for text–shape division.
However, the choice of features and algorithms are critical to the success of the recognition. We
propose the use of data mining techniques to build more accurate text–shape dividers. A comparative
study is used to systematically identify the algorithms best suited for the specific problem. We have
generated dividers using data mining with diagrams from three domains and a comprehensive ink
feature library. The extensive evaluation on diagrams from six different domains has shown that our
resulting dividers, using LADTree and LogitBoost, are significantly more accurate than three existing
dividers.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Hand drawn pen and paper sketches are commonplace for
capturing early phase designs and diagrams. Pen and paper offers
an unconstrained space suitable for quick construction and allows
for ambiguity. With recent advances in hardware such as Tablet
PC’s, computer based sketch tools offer a similar pen-based
interaction experience. In addition, these computer based tools
can benefit from the ease of digital storage, transmission and
archiving. Recognition of sketches can add even greater value to
these tools: the ability to automatically identify elements in a
sketch allows us to support tasks such as intelligent editing,
execution, conversion and animation of the sketches.

Although a number of sketch tools have been developed, they
are yet to achieve general acceptance. One of the outstanding
challenges is considerably more accurate recognition. Recognition
rates from laboratory experiments are typically in the range of
98–99% and above [1–3]. However, rates achieved in less con-
trolled conditions, where data is not limited to produce optimal
performance, are usually much lower, for example with the same
algorithms, accuracy rates between 84% and 93% are reported in
[3–6]. Furthermore, many of these tools are limited as they are

not able to distinguish between drawing elements (shapes) and
text strokes in a sketch [1–3]. However, most natural diagrams
consist of both writing and drawing as shown in Fig. 1.

While recognition of handwriting is well advanced and there
have been many recognition approaches proposed for hand
drawn sketches, there has been less attention on the division of
text and drawing. People can comprehend writing and drawing
seamlessly, yet there is a clear semantic divide that suggests, from
a computational perspective, it is sensible to deal with them
separately. Text–shape division is a difficult problem as there is a
large within-class variation compared with other recognition
problems. Several recognisers [7–9], commonly referred to as
dividers, have been proposed for this purpose, but recognition
rates in realistic situations are still unacceptable. Past research in
this area has employed a number of features and algorithms,
although most have concentrated on one or two algorithms and
use very limited feature sets. This work draws on a more
comprehensive set of ink features and employs a range of data
mining techniques that have been systematically selected and
tuned in a comparative study to select the most accurate model
for text–shape division of sketched diagrams.

The remainder of this paper is organised as follows. Related work
in sketched diagram recognition, focusing on text–shape division is
presented in the next section. The methodology used for this
investigation is outlined in Section 3, followed by a description of
our ink feature library and the training data used for our analysis.
Section 6 presents our analysis using data mining techniques and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cag

Computers & Graphics

0097-8493/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cag.2011.07.002

n Corresponding author. Tel.: þ64 9 836 2636.
E-mail addresses: rpat088@aucklanduni.ac.nz (R. Blagojevic),

beryl@cs.auckland.ac.nz (B. Plimmer), jgrundy@swin.edu.au (J. Grundy),
yongwang@auckland.ac.nz (Y. Wang).

Computers & Graphics 35 (2011) 976–991

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2011.07.002
mailto:rpat088@aucklanduni.ac.nz
dx.doi.org/10.1016/j.cag.2011.07.002

the results of the analysis. A comparative evaluation of our best
dividers against three existing ones is given in Section 7. We discuss
our findings in Section 8 followed by our conclusions and direction
for future work.

2. Related work

Two particular applications of dividers are freehand note-
taking and hand drawn diagrams. The research on sketched
diagram recognition includes dividers but has also addressed
recognition of basic shapes and spatial relationships between
diagram components. This project has drawn on the work from
both applications of dividers.

There are several approaches to sketch recognition. Johnson
et al. [10] categorise existing approaches into hard coded algo-
rithms, visual matching, which includes template matching and
feature-based recognition, and use of textual descriptions. Due to
the large within-class variation in the classes of text and shapes,
we believe that feature-based recognition is the most flexible
approach and has the most potential for the text–shape divider
problem. Feature-based recognition involves the measurement of
various ink features and the use of an algorithm to combine these
features to produce classifications. Previous text–shape dividers
[7–9] have also used a feature-based approach to recognition.

In the area of sketch diagram recognition, many systems focus
only on shapes [1–3,11–15]. Character recognition is also a
mature area of research. However, less attention has been given
to the division of text and shapes, although they are both present
in diagrams. There have been some attempts at incorporating
text–shape division in domain specific recognisers [16,17] and
domain independent diagramming tools [18,19]. These systems
are predominantly rule-based, using stroke features chosen heur-
istically to distinguish between text and shapes.

Research in the area of digital ink document analysis for
freehand note-taking has explored text and shape division
[20–23]. However, as the content of documents is mainly text,
these methods hold some bias, which may make them unsuitable
for sketched diagrams. In addition, as Bhat and Hammond [7]
point out, some of these methods would have difficulty with text

interspersed within a diagram. There has also been some work
separating Japanese characters from shapes in documents [23,24].

Three reports specifically on domain independent dividers are
[7–9]. Although they use a feature-based approach, they have
focused their development on one or two algorithms and rely on
very limited feature sets.

Bishop et al. [8] developed a feature-based divider that uses
local stroke features and spatial and temporal contexts within a
Multilayer Perceptron model (this is a type of neural network)
and a Hidden Markov Model (HMM) to distinguish between text
and shape strokes. They found that using local features and
temporal context were successful. They report classification rates
from 86.4% to 97.0% for three classifier model variations.

In our previous work [9] we developed a domain independent
divider for shapes and text based on statistical analysis of 46
stroke features. A decision tree was built identifying eight
features as significant for distinguishing between shapes and text
as shown in Fig. 2. The results on a test set showed an accuracy of
78.6% for text and 57.9% for shapes. Part of the test set was
composed of musical notes, which had a significant effect on this
low classification rate. However, when evaluated against the
Microsoft [25] and InkKit [5,18] dividers, it was able to correctly
classify more strokes overall for the test set.

A more recent development in this field has been the use of a
feature called Entropy [7] to distinguish between shapes and text.
Strokes are first grouped into shapes and words/letters using
spatial and temporal proximities. Strokes are then re-sampled to
smooth their curvature and ensure stroke points are at equal
intervals. The angles between every point and its adjacent points
in the stroke group are calculated. Each angle from the stroke
group is matched to a dictionary containing a different alphabet
symbol to represent a range of angles. This results in a text string
representation of each stroke group. Using Shannon’s Entropy
formula (as cited by Bhat and Hammond [7]) they sum up the
probabilities of each letter in the string to find the Entropy of that
symbol. The value is normalised by dividing that result by the
bounding box diagonal length. This value of Entropy is higher for
text than shapes as text is more ‘‘information dense’’ than shapes.

They report that 92.06% of test data for which it had training
examples were correctly classified. For data on which the divider
had not been trained, they report a classification rate of 96.42%,
where 99.21% and 69.23% of text and shapes, respectively, were
correctly classified. However, only 71.06% of data was able to be
classified, the remaining strokes had values of Entropy that did
not fall into the expected ranges for text or shapes.

Both Bhat and Hammond [7] and Bishop et al.’s [8] work rely
heavily on the temporal ordering of strokes. This can be a severe
limitation if strokes are interspersed, where strokes belonging to
the same object are not always drawn in succession, as commonly

Fig. 1. Training data examples.

Fig. 2. Divider 2007 decision tree produced by Patel et al. [9].

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991 977

observed in sketches [26]. We have re-implemented Bhat and
Hammond [7] algorithm for our evaluation. However, we do not
group strokes as there are many cases where their proposal would
fail. For example, in Fig. 3 the left hand stroke of the rectangle
would be grouped with the word even with the use of temporal
context if the strokes in the symbols were interspersed. Section 7.1
describes our implementation of this algorithm and our training
method as no thresholds are given in [7]. As our evaluation will
show, this divider has been trained and tested on limited data and
constrained conditions and does not perform at the reported rate
of 92.06% on realistic diagrams.

Microsoft has developed recognisers for ink analysis that are
now built into its operating systems (from Windows Vista
onwards) [27]. Part of the ink analysis is able to separate writing
from drawing. It is not known what kinds of techniques are used
to perform classification for this divider. In our previous work [9]
we ran a comparative evaluation of an older version of Microsoft’s
divider [25] against our own. We found that the Microsoft divider
was heavily biased towards text. On a test set of hand-drawn
diagrams, it misclassified 93.1% of shape strokes and only 1.4% of
text strokes, indicating that almost all strokes were classified as
text. Although this might be suitable for documents where there
is a higher proportion of text to shapes, this bias makes it
unsuitable for diagrams. A similar bias towards text is present
in several dividers [7,8,28] although, judging from the results
presented, not to the same extent as the Microsoft divider.

Other recent work in this area [29] has involved using
AdaBoost and an extension of our previous feature set [9] to
build a text–shape divider as well as grouping strokes after
division. Their evaluation shows that it is more accurate than
the Microsoft divider but has mixed results against Bhat and
Hammond [7] divider.

While others have used various features and algorithms for
text–shape division, to our knowledge no systematic analysis of
algorithms has been carried out for text–shape division to
determine the most suitable algorithm for this problem. We
present a comprehensive comparative study of features and
algorithms using data mining to select the most accurate model.
In particular we are looking at the problem of distinguishing
between text and shapes as a first step for recognising sketched
diagrams; a fundamental problem required to preserve a non-
modal user interface similar to pen and paper.

3. Methodology

This section describes the approach we have used to improve
the text–shape dividers for hand-drawn diagrams. We employ
data mining techniques to build text–shape dividers. Data mining
requires computable features, data and algorithms. First, the
feature search to develop a library of digital ink features as a
foundation for the analysis is discussed. Following this is a
description of the method of data collection including the tools
used to assist in this process. The next section outlines the
systematic approach taken to analyse the data and find patterns
distinguishing writing from drawing using data mining techni-
ques. Finally, the implementation and evaluation methods for the
resulting text–shape dividers are described.

3.1. Feature search

We built a comprehensive library of digital ink features to use
as a foundation for developing more accurate recognisers, and
particularly to enable us to distinguish between writing and
drawing ink. To build this library, we conducted a feature search.
Firstly, features were sought from previous work in sketch recog-
nition. We were also interested in identifying new features, that
could be used to improve text–shape division. Once we had a first
prototype of a general divider we looked at common misclassifica-
tions and formulated new features to address those occurrences.

As we compiled this comprehensive feature library, each
feature was implemented within our data collection tool, Data-
Manager [30]. This enables feature measurements to be taken on
any diagrams collected with the tool (and other datasets that are
converted to DataManager’s data format) and datasets to be
generated automatically for later data analysis.

With such a comprehensive library, it is useful to organise the
features into categories. A taxonomy was developed to complement
the library—organising things into categories and naming the groups
can help us to think about these features in new ways. Using an
approach derived from grounded theory [31], the features were first
grouped into those sharing similar characteristics of ink. Once groups
are formed, category names are assigned to each group according to
the types of features that belong to that group. By categorising
features in this way we try not to fit features into a particular group
but to form the group around the features that share similarities.

3.2. Data collection

Large amounts of data are needed in order to improve the
accuracy of sketch recognition algorithms. There is a small
amount of digital ink data publicly available [32–34]. However,
most of this data does not include text or holds some biases
related to the method of data collection, so a new corpus was
constructed. Our tool, DataManager [31] was used to collect, label
and generate training and testing datasets for our analysis.

From previous experience [29] we knew that the type of data
that is collected must be carefully planned so that a wide variety
of drawing and writing combinations and forms are represented
in the dataset. It is also very important to ensure that the data is
realistic and reflects true drawing styles so as to form an accurate
basis for the analysis. Several data collection exercises were
carried out where datasets were collected for the purpose of
training and testing recognition algorithms: the training and test
data must be different to provide a fair test of the algorithms.
Further information on the training and testing datasets can be
found in Sections 5 and 7.2.

3.3. Data analysis

Once sketches were collected and labelled, they were con-
verted into a dataset of feature vectors using the compiled feature
library for subsequent data analysis. DataManager’s dataset gen-
erator [31] was used here.

Data mining techniques were employed to perform the ana-
lysis. Data mining uses machine learning algorithms to search
data for patterns [35]; in this case, we are searching for patterns
to predict which class a stroke belongs to—text or shape.

Weka [35], an open source data mining tool, was chosen to
perform the analysis. Weka has a large number of machine
learning algorithms that are used to perform our data analysis
and to build, tune and test classifier models for recognisers.

Our analysis was not an exhaustive search of all algorithms and
variants of algorithms. Weka has over 100 classification algo-
rithms available, and each algorithm has numerous parameters

Fig. 3. This diagram shows an example of where stroke grouping could fail.

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991978

that can be tested. An exhaustive search would be impossible,
given the size of the search space, the computational requirements
of such a task and the time available. We began with a large
number of algorithms and systematically reduced this list until the
best performing classifiers were found for text–shape division.
Taking a standard approach, we used several steps for the analysis
process, as shown in Fig. 4.

A preliminary investigation formed the first stage of the
analysis. This involved running initial experiments on a large
range of data mining algorithms, including algorithms that have
been used in previous work for sketch recognition. After running
these tests, the list of potential data mining algorithms was
narrowed down to those which were most promising and were
worthy of further investigation.

With this set of promising algorithms stage two of the analysis
began. For this stage, each algorithm was tuned to determine the
optimal parameters for the text–shape division problem using our
dataset. Important parameters were identified so that a range of
values could be tested in order to tune each algorithm.

The next stages of analysis involved experimenting with
feature selection algorithms and ensembles. Feature selection
can reduce the feature library, where non-contributing features
are identified and eliminated. The general goal of feature selection
is to reduce recognition time, as fewer features are required to be
calculated, and to improve accuracy by eliminating bad features.
Ensembles combine two or more algorithms into a voting
mechanism for classification. Ensembles can result in a higher
accuracy than individual algorithms using combinations of
strengths and weaknesses that complement each other.

Finally we conducted a second round of analysis. We evaluated
the performance of the divider models built to identify common
misclassifications and searched for additional features to correct
these problem areas. For example, if small rectangles were
commonly classified as text rather than shapes then we would
search for new features to help correctly classify these rectangle
strokes as ‘‘shapes’’. With the extended feature library, the models
were re-trained and tested.

3.4. Evaluation

A comparative evaluation was performed to determine whether
the new dividers are more accurate than existing dividers. The best
algorithms resulting from the analysis were implemented into
DataManager’s Evaluator [6]. Existing dividers, Entropy [7], Divider
2007 (our divider from previous work) [9] and the Microsoft Ink
Analysis Divider [28] were implemented alongside the new divi-
ders to provide a comparison of performance.

A new dataset of sketches was collected as a test set for the
evaluation. Data from other research groups was also used.

By following the process described here, beginning with a
feature search, then data collection and analysis and finally an
evaluation, our goal was to improve the accuracy of text–shape
dividers as a first step to improve sketched diagram recognition.

4. Ink features

For recognition to be successful, the features fed into the
algorithms must provide good distinguishing characteristics

between classes of interest. Without valuable input such as this
any classification algorithm would suffer.

Our previous feature set [9] of 46 features has been extended
to a more comprehensive library of 114 features for sketch
recognition. It has been assembled from previous work in sketch
recognition, includes some of our own additions, Entropy [7], and
our previous divider [9]. Our previous divider is used for several
features: pre-classification of the current stroke, pre-classification
of strokes close by (for spatial context), and pre-classification of
successive strokes (for temporal context).

In order to better understand the type of things that the
features are measuring we have developed the taxonomy shown
in Table 1. In some cases a feature reflects more than one entry in
the taxonomy, for example the entropy feature is considered to be
a measure of density, however it can also be a part of the divider
results as it was developed as a one feature divider by Bhat and
Hammond [7]. For a more full description of the feature library
and taxonomy see [36]. This feature library is also available with
full implementation within DataManager [31] from /www.cs.
auckland.ac.nz/research/hci/downloadsS.

5. Data

For the training set we collected and labelled sketched dia-
grams from 20 participants using DataManager [31]. Each parti-
cipant drew three diagrams; a directed graph, organisation chart
and a user interface; examples are shown in Fig. 1. We ensured
that the data we collected was in the form of full diagrams rather
than isolated components, as a previous study [37] showed that
this has a significant influence on recognition accuracy. There are
a total of 7248 strokes in the training set, with 5616 text strokes
and 1632 shape strokes.

Using this collection of diagrams we generated a dataset of
feature vectors for each stroke using DataManager [31]. DataMa-
nager’s dataset generator function is able to take the diagrams
collected and calculate feature vectors based on the implementa-
tion of our feature library. DataManager then writes these feature
vectors to files compatible with data mining tools for ease of
analysis.

6. Data mining analysis

We used several steps to build our text–shape dividers as
illustrated in Fig. 4. First we carried out a preliminary analysis of
data mining algorithms. We were able to narrow down our study
to a small group of algorithms and proceeded to tune these to
their optimal parameters. Following this we investigated the use
of feature selection and ensembles to improve on our results.
Finally we completed a second round of analysis to identify and
correct common misclassifications found. This section describes
each step of the analysis in more detail.

As mentioned in Section 3.3, Weka (developer version 3.7) [35],
an open source data mining tool was used to perform our data
analysis, and build, tune and test classifier models for dividers. Weka
has a large number of machine learning algorithms, ranging from
naı̈ve Bayes, decision trees and rules, to support vector machines and
neural nets. These algorithms can be used to perform data mining on

Fig. 4. Process diagram of analysis.

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991 979

www.cs.auckland.ac.nz/research/hci/downloads
www.cs.auckland.ac.nz/research/hci/downloads

supplied training data and consequently build classifiers based on
this analysis.

Due to Weka’s enormous number of variables in terms of
training parameters and algorithms, we sought advice from Frank
[38] in order to optimise our search for effective algorithms.
In particular, he provided advice on algorithm selection, tuning
of parameters, methods of feature selection and the use of
ensembles.

The computational requirements of this analysis proved to be
demanding due to the complexity of some algorithms used and
the large number of features and instances included in the
training dataset. Several servers were employed for the prelimin-
ary investigation and tuning steps. With these resources, in some
cases one fold of a ten-fold cross validation experiment took
several days to complete. Finally, the experiments became so
computationally expensive that the Auckland Cluster was set up
to run the analysis.

The Auckland Cluster has 20 nodes, where 10 nodes have
16 GB RAM and 10 nodes have 64 GB RAM; all nodes have two
quad core CPUs. The number of cores in use depends on the
number of jobs submitted and, as there are many users of this
cluster, jobs are queued until resources become available. In order
to use the resources of the cluster, the experiments were
distributed using the advanced functions of Weka Experimenter
[35]. Experiments were distributed by fold. For example for a ten-

fold cross validation trial, each fold was run in parallel by separate
hosts on the cluster. Parallelising the folds of each experiment
using the resources of the cluster greatly decreased the time
required for the analysis and allowed us to run more complex
algorithm configurations than before. Computation time using
the cluster took several days for one run rather than one fold as
before.

6.1. Preliminary analysis

The goal of the preliminary phase was to explore a large range
of data mining algorithms and narrow them down based on their
performance and suitability to the divider problem. From the
many algorithms within Weka [35], 39 were considered as
possible candidates. Selection of these candidates was based on
their ability to classify data as nominal classes, in this case text
and shape, rather than numeric output, although some are able to
work well by translating nominal values to numeric. The analysis
began with a preliminary investigation of all these algorithms.
This involved building classifier models for each algorithm using
the training data described in Section 5.

The results of the preliminary analysis showed that several
classifiers clearly performed well on the training dataset. Others
needed tuning of their specific parameters to improve their results.
We were able to narrow the search down to seven algorithms that

Table 1
Taxonomy of digital ink stroke features.

Category Number of
Features

Description

Curvature 23 These features measure various aspects of a stroke’s curvature commonly by calculating angles
within the stroke. For example they can show that the line above has a greater curvature than the
line below. The curvature of text is often greater than shapes.

Density 8 Density features measure the concentration of points in a stroke. For example the writing has a
higher density of points than the rectangle when compared with their bounding box. The density of
text is often greater than shapes.

Direction 4 These features are related to the overall slope of a stroke. This is related to curvature but we have
chosen to categorise these separately. Curvature features measure local curvature points on the
stroke whereas direction features give a more global perspective of measurement.

Divider
results

2 These features provide the results of text–shape divider algorithms for the current stroke.

Intersections 3 Various types of intersections can be measured such as the intersections at stroke endpoints, in the
middle of a stroke and self-intersections. The diagram shows intersections at the end and middle of
strokes. Text strokes often have more intersections than shapes.

Pressure 4 These features measure the pressure applied to the screen for each point when drawing a stroke,
including the average, maximum and minimum pressure in a stroke. Pressure is dependent on the
capabilities of the hardware.

Size 19 Many measures of size exist ranging from the use of the strokes bounding box, to stroke lengths and
the size of convex hulls. The size of text is usually smaller than shapes.

Spatial
context

23 Features measuring spatial context are within the following subcategories: curvature, density,
divider results, intersections, location and size. Each subcategory contains measurements for strokes
in close proximity to the current stroke. Strokes with similar feature measurements to those that are
close by are more likely to be from the same class.

Temporal
context

22 Features measuring temporal context are within the following subcategories: curvature, density,
divider results, length, location/distance and time/speed. Each subcategory contains measurements
for strokes that come before or after the current stroke. Strokes drawn in succession are more likely
to be from the same class except when objects are interspersed.

Time/speed 6 These dynamic features include the total, average, maximum and minimum times or speed for a
stroke.

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991980

are likely to gain the best classification accuracy for a divider.
When choosing these algorithms we looked at their performance in
our preliminary tests; we tried to include a good range of machine
learning algorithms; and also consulted with a machine learning
expert [38] to help us to identify those that may improve with
further tuning.

The chosen classifiers are listed below:

(1) Bagging (with an REPTree base learner) [39];
(2) RandomForest (forest of random trees) [40];
(3) LogitBoost (additive logistic regression) [41];
(4) LADTree (alternating decision tree using the LogitBoost

strategy) [42];
(5) LMT (logistic model tree) [43,44];
(6) Multilayer Perceptron (neural network) [45,46];
(7) SMO (support vector machine) [47–49].

The AdaBoost algorithm, used recently by [30] to build a text–
shape divider, was included in our preliminary investigation.
However, it was found to have a very low accuracy compared
with other algorithms tested; it ranked 34th of the 39 algorithms
tested.

6.2. Tuning

Using the training dataset of feature vectors generated from
the diagrams collected we built dividers by training each classi-
fier. While Weka provides sensible default parameters for most
algorithms, some classifiers required tuning to optimise their
results for our dataset.

Algorithms are compared here using corrected paired t-tests.
When using cross validation, samples are not independent. This
can cause significant differences to be found by a simple paired
t-test that do not really exist [35]. Weka’s Experimenter interface
includes a corrected paired t-test that solves this problem by
modifying the t-statistic used [35] so that significant differences
are not over estimated when making comparisons.

6.2.1. Bagging
For our experiments, the Bagging algorithm [39] was tuned by

varying the number of iterations that are performed. This para-
meter is indicative of the number of trees that can be produced.
The default value for this in Weka is 10 iterations. An experiment
was run using ten-fold cross validation for Bagging with a
REPTree base classifier (a fast decision tree learner) at 10, 100,
500, 1000 and 5000 iterations. Corrected paired t-tests (a¼0.05)
showed no significant difference in the results at each level of
iterations, so no further tuning was applied. The highest results
are produced at 500 and 1000 iterations, where on average (over
ten folds of cross validation), 95.67% of the training dataset is
correctly classified into text and shape (with a standard deviation
for 500 and 1000 iterations of 0.58 and 0.62, respectively).

6.2.2. RandomForest
RandomForest [40] was tuned by varying the number of

iterations of the algorithm to 10, 100, 500 and 1000 iterations.
This parameter dictates the number of trees that are produced. It
was observed that a higher number of iterations produced higher
accuracies; therefore additional tests were added with 1500,
2000, 2500, and 3000 iterations. Corrected paired t-tests
(a¼0.05) show that there is no significant difference between
any of the models. The highest result is produced at 500 iterations
where, on average (over ten folds of cross validation), 96.45%
(sd: 0.57) of the training dataset is correctly classified into text
and shape.

6.2.3. LogitBoost
Two base learners were investigated for LogitBoost [41]:

the Decision Stump (an one node decision tree) and the REPTree
(a fast decision tree learner). To begin, a preliminary ten-fold
cross validation experiment was run to see if there were any
significant differences between these base learners for LogitBoost.
A corrected paired t-test (a¼0.05) showed no significant differ-
ence between the two at 120 iterations of the algorithm. Based
on these results, both trees were further investigated as base
classifiers.

To further tune LogitBoost, various values for the number of
iterations the algorithm performs and the shrinkage parameter
were tested. The number of iterations determines the number of
trees that are produced. Unlike other algorithms, LogitBoost can
use the shrinkage parameter to avoid over-fitting the model to
the training dataset. When a classifier is over-fitted, it reduces the
likelihood of the model retaining the same level of accuracy on a
new test dataset that had been originally achieved with training
data. Small values for shrinkage reduce over-fitting.

The first run of experiments used LogitBoost with ten-fold
cross validation and the following options:

Base learner: Decision Stump or REPTree;
Number of iterations: 10, 100, 500, 1000, and 5000;
Shrinkage: 1.0 (Weka default value) and 0.1.

It was observed from the results of corrected paired t-tests
that classifiers with a shrinkage value of 0.1 performed better
than 1.0, particularly when using REPTree as the base learner.
A higher number of iterations also resulted in more accurate
models in general. Based on these observations, a second round of
experiments was run with the following additional options:

Number of iterations: 5500, 6000, and 7000
Shrinkage: 0.01

Using all combinations of the above options (for rounds one
and two) resulted in 48 models for LogitBoost, 24 for each base
classifier. The model with the highest level of accuracy uses a
Decision Stump base learner, 5000 iterations, and a shrinkage
value of 0.1. On average (over ten folds of cross validation), 96.7%
(sd: 0.84) of the training dataset is correctly classified into text
and shape. Corrected paired t-tests (a¼0.05) show that it is
significantly better than all other Decision Stump models, except
that the models with shrinkage of 0.1 at 5500 and 6000 iterations
are not significantly different.

Comparing this model to the REPTree classifiers shows that
there is no significant difference found for 13 of the REPTree
models. Further, smaller values of shrinkage produce good results,
whereas those models with a shrinkage value of 1.0 are all
significantly worse than the other LogitBoost models. In terms
of the number of iterations, models with 10 iterations are not
optimal. One issue with this algorithm is a long training time. The
fastest configuration that still produces significantly good results
is LogitBoost using REPTree as the base learner, shrinkage of 0.1,
and 100 iterations. Due to its advantage of fast training time
while retaining high accuracy, this model was used for later
stages of analysis.

6.2.4. LADTree
We tuned the LADTree [42] by varying the number of itera-

tions of the algorithm to 10, 100, 500, 1000 and 1500 iterations.
This parameter determines the size of the LADTree. The number
of iterations could not be increased any further due to computa-
tional time and memory constraints. Corrected paired t-tests

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991 981

(a¼0.05) show that the LADTree with 1500 and 1000 iterations is
significantly more accurate than the others, except for the model
with 500 iterations, which has no significant difference to 1000
iterations, but is significantly different to the 1500 iteration
model. The highest result is produced at 1500 iterations where
on average 97.48% (standard deviation, sd: 0.52) of the training
dataset (using ten-fold cross validation) is correctly divided into
text and shapes.

6.2.5. LMT
The result of 10-fold cross validation using our training dataset

on LMT [43,44] with default parameters is 94.85% (sd: 0.68).

6.2.6. Multilayer perceptron
The result of 10-fold cross validation using the training dataset

on MultilayerPerceptron [45,46] with default parameters is
95.02% (sd: 0.78).

6.2.7. SMO
SMO [47–49] is a more complicated classifier to tune. There

are two parameters that can be tuned: the complexity value, C, of
SMO and the gamma value of the RBF kernel used by SMO. The
complexity parameter allows a trade-off between misclassifying
some instances by allowing for a wider distance between classes.
The gamma parameter of the RBF kernel can be tuned to control
the linearity of the mapping done by the RBFKernel. High values
of gamma result in almost linear mappings.

To find the best model, the GridSearch function [35] in Weka
was used. This allows two parameters of an algorithm to be
optimised by setting a maximum, minimum, base value, and step
value for how much a parameter can increase by for each test.
One of the main advantages of GridSearch is that the parameters
of interest do not have to be first level parameters. For example,
gamma is not a first level parameter as it is a value used by the
RBF kernel, where the RBF kernel is a parameter of SMO.

The optimal value found for complexity is 100, with a gamma
value of 0.1. The result of ten-fold cross validation using this
model on the training data is 96.41% (sd: 0.73).

6.2.8. Comparison of tuned classifiers
The best results of ten-fold cross validation for each classifier on

the training dataset are shown in Table 2. Corrected paired t-tests
show that LogitBoost and LADTree are significantly better than the
other classifiers. There is no significant difference between LogitBoost
and LADTree. This is not surprising as LADTree uses the LogitBoost
strategy.

6.3. Feature selection

The use of feature selection was investigated to refine the
feature set to those that contribute the most to building an

accurate divider model. With a large feature library, it is possible
that many features do not add any value to the recogniser or may
indeed be detrimental to the recognition accuracy. Filtering these
features may result in higher accuracy and faster recognition
time, as a smaller number of feature calculations have to be made.
Three methods of feature selection were used: an Attribute
Selected Classifier with Wrapper, Attribute Selected Classifier
with Relief F and a hybrid method.

6.3.1. Attribute selected classifier with wrapper
We chose to use the Attribute Selected Classifier in Weka [35]

as this allows feature selection and classifier training to be
completed in one process, which simplifies the process of apply-
ing feature selection to classifiers. It works by finding a subset of
features using the chosen feature selection method. It then uses
this feature subset to train the specified classifier and output a
classifier model.

In addition, a Wrapper [50] can be used within the Attribute
Selected Classifier as the feature selection method. The feature
selection method is used to evaluate the accuracy of any feature
subset. The wrapper can take any classifier and use it to perform
feature selection. The advantage of using the wrapper is that the
same machine learning algorithm can be used to evaluate the
feature subset and also train the final classifier, therefore we
expect good results. For example within the Attribute Selected
Classifier we can use the LADTree via the wrapper to find the best
feature subset and then we can use this chosen feature subset to
train LADTree for our final classifier model. A disadvantage of this
method is that it has a very long training time.

The Attribute Selected Classifier with Wrapper was used for all
seven classifiers with ten-fold cross validation. The classifier used
within the Wrapper always matched the base classifier. The
parameters used for each classifier are shown in Table 3. The
parameters were chosen as optimal from the tests described in
Section 6.2.

Table 2
Ranking of best results obtained from the tuned classifiers. Those with n are significantly more accurate than the others
according to corrected paired t-test.

Classifier Average % correct (sd) Configuration

(1) LADTree 97.48 (0.52)n Iterations: 1500
(2) LogitBoost 96.70 (0.84)n Base classifier: Decision Stump Shrinkage: 0.1Iterations: 5000
(3) RandomForest 96.45 (0.57) Iterations: 500
(4) SMO 96.41 (0.73) Complexity: 100

Kernel: RBF kernel
Gamma: 0.1

(5) Bagging 95.67 (0.58, 0.62) Iterations: 500 and 1000
(6) MultilayerPerceptron 95.02 (0.78) Default
(7) LMT 94.85 (0.68) Default

Table 3
Optimal parameter settings used for feature selection and
ensembles.

Classifier Parameter settings

Bagging Number of iterations¼500
LADTree Number of iterations¼500
LMT Default
LogitBoost Number of iterations¼100

Base classifier¼REPTree
Shrinkage¼0.1

Multilayerperceptron Default
RandomForest Number of iterations¼500
SMO Kernel¼RBFKernel

Complexity¼100
Gamma¼0.1

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991982

For algorithms where multiple models are not significantly
different from each other, the model with faster training time was
chosen. The exception was the LADTree; the model with 500
iterations was chosen, despite it being significantly lower in
accuracy to the 1500 iteration model. This is because the time taken
to train the 1500 iteration model is significantly longer than all
others and a trade-off between time and accuracy had to be made.

The search method used is linear forward selection as this is
known to be faster than other search methods without loss of
accuracy [51]. The parameter k, the number of top ranked
attributes that are taken into account by the search process, for
linear forward selection was set to 10. Gütlein et al. [51] report
that for problems with few classes, as in our case with two
classes, high accuracy is achieved when kr10.

We found that all of the Attribute Selected Classifiers were
significantly less accurate than the original tuned classifiers
without feature selection, according to corrected paired t-tests
(a¼0.05). The results range from 89.24% (sd: 1.13) to 93.58%
(sd: 0.45) of the training dataset correctly classified on average
(over 10 folds of cross validation). This suggests that in fact all of the
ink features captured do add some value to each classifier. There-
fore, reducing the feature set using this feature selection method
decreases the accuracy of all of these classification models.

6.3.2. Attribute selected classifier with Relief F
In previous work [36] we found Relief F [52–54] to be one of the

best of the eight ranking methods tested from Weka’s feature
selectors. We used the Attribute Selected Classifier once again on all
seven classifiers, but this time using Relief F as the feature selection
method, rather than the Wrapper. Relief F requires the Ranker search
method [35] to be used. This simply ranks features by evaluating
them individually, leaving the overall evaluations to Relief F.

Corrected paired t-tests (a¼0.05) show for all classifiers that the
original tuned models are not significantly different from the models
built with Relief F attribute selection. The results range from 94.85%
(sd: 0.68) to 97.12% (sd: 0.54). In fact for two of the seven models
the average accuracy over ten folds is exactly the same. Therefore,
the Attribute Selected Classifier with Relief F does not make any
significant improvement to the accuracy of the dividers when
compared with the classifiers without feature selection.

6.3.3. Hybrid method
A subset of features was also compiled by merging the results

of as many feature selection algorithms as possible. This method
was chosen because we believe choosing features using only one
feature selection method may run the risk of ignoring features
that may be very important. We hypothesised that this problem
might be avoided by merging the results of many feature selectors
and building a subset of features based on this merger.

Eighteen feature selection algorithms were run from Weka on
the training dataset. These algorithms were found to rank features
in one of two ways. One way to rank the features is based on how
many folds the feature is chosen for. For example, when using
ten-fold cross validation, ten subsets are chosen and an aggregate
of those subsets forms the final result. If the feature is chosen
for eight of the ten subsets then it will have a ranking of eight
(or 80%). The other method of ranking is based on average merit,
which indicates the average importance of that feature over all
ten folds of cross validation.

Due to the difference in feature ranking, two feature sets were
formed. Feature set 1 is based on the number of folds the feature is
present in while feature set 2 is based on the sum of the average
merit. Eleven of the 18 feature selectors rank according to fold
number; the results from these selectors were merged by calculat-
ing the sum of the number of folds for each feature and ranking

these. This is similar to the method of feature selection used by [55].
The remaining seven feature selection algorithms rank according to
average merit: the results from these were merged by calculating
the sum of the average merit for each feature and ranking these.

In previous work [36] we conducted a study of numerous
feature selection algorithms and found that an optimal number of
features is 20. Adding more features does not greatly change the
accuracy of an algorithm. The top 20 from both feature sets were
selected and also the top 50 features to test against the chosen
seven data mining algorithms described previously. There are
three common features in feature sets 1 and 2’s top 20. 27 of 50
features are common to both feature sets 1 and 2’s top 50 subsets.

The results of the top 20 for both feature sets 1 and 2 are
significantly worse than the tuned classifiers with no feature
selection according to corrected paired t-tests (a¼0.05). For feature
set 1’s top 50, only LogitBoost and SMO are significantly worse than
the tuned models; there are no significant differences found for the
other classifiers using this feature set. For feature set 2’s top 50, all
are significantly worse than the tuned model except for Multilayer
Perceptron (MLP) where there is no significant difference.

In summary, considering all the feature selection methods that
were investigated, none are significantly more accurate than the
original tuned classification models using the full ink feature set.
Based on these results, we believe that we need to use all features
in the library; otherwise we risk decreasing the accuracy of the
classifiers for text–shape division.

6.4. Ensembles

The use of ensembles was also investigated to enhance the
results we had already obtained. An ensemble uses more than one
classifier to predict the class of an unknown instance by aggregating
the results of each classifier in some way. One option for building
ensembles is to use the Vote function [56,57] provided by Weka.
Two or more classifiers can be specified within the Vote function;
such classifiers are trained using the training dataset and then used
to classify test data. Classification is done by taking a vote of all
classifiers’ predictions. There are numerous ways of combining the
votes. We chose to use the average of the probability estimates from
the classifiers to obtain the overall classification as this was the most
suitable setting available for this case. The higher the accuracy of the
individual classifiers, the better the voting combination will be. Also,
with some knowledge of the strengths and weaknesses of each
classifier, a more robust voting combination can be chosen.

To begin composing classifier combinations, the list of tuned
algorithms were ranked according to the results of corrected paired
t-tests on the ten-fold cross validation experiments described in
Section 6.2. That ranking is shown in Table 2. Combinations were
composed of the top 7 algorithms (all algorithms), the top 6, top 5,
top 4, top 3 and top 2. The LogisticRegression [58] model was used
as the meta classifier, due to its simplicity. Also, the parameters for
each algorithm, obtained from the tuning steps in Section 6.2, have
been used here, as described in Table 3.

To further inform the choice of classifier combinations, each
individual classifier was tested on another dataset of Entity Relation-
ship (ER) and Process diagrams, obtained from [59], with special
attention drawn to their performance on each shape class. Examples
from this dataset are shown in Fig. 5. The ER/Process diagram
dataset contains a total of 7062 strokes, with 4817 text strokes and
2245 shapes strokes. The results showed that a lower proportion of
shapes, between 80% and 89%, are correctly classified than text,
which has a correct classification rate between 97% and 99%.
Obtaining the classifiers’ performance on each shape class allows
us to identify where the strengths and weaknesses lie and try to
maximise the potential of a voting system using combinations with
strong results for each shape class. For example, we hypothesised

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991 983

that if classifier A performs well on rectangles but badly on arrows,
then it would be beneficial to pair this with classifiers that perform
well on arrows to obtain a good voting combination. The results of
these experiments are presented in Table 4.

The results show that all algorithms are able to classify
Rectangles, Diamonds, Ellipses and Text very well for the
ER/Process diagrams dataset, where correct classification rates range
from 94% to 99%. The areas of weakness are in classifying arrows
and lines. For arrows, correct classification rates range from a very
low 40–64%. LogitBoost and SMO perform the best on Arrows and
Bagging gives the worst results for this shape class. The correct
classification rates for lines range between 72% and 92%. Random-
Forest and MLP have the highest accuracy rate for this shape class
and Bagging the lowest. Bagging has the lowest correct classification
rates for every class except Ellipse and Text, and the lowest overall
percentage correct at 92%. It is possible that this algorithm is over-
fitted to the training data and therefore does not perform as well on
test data. Overall, LADTree and Logitboost still produce the most
accurate results with 95% of strokes correctly classified.

Using the above information, additional combinations were
formed for testing with the voting algorithm. A total of 19
ensemble combinations were tested.

Corrected paired t-tests were used to compare the different
voting combinations; in particular the ranking function provided
by Weka Experimenter [35]. The highest ranked combination is
LLSL{LogitBoost, LADTree, SMO, LMT}. The next highest are
LLS{LogitBoost, LADTree, SMO} and LadSR{LADTree, SMO,
RandomForest}, followed by LLSR{LogitBoost, LADTree, SMO,
RandomForest}. The correct classification rates of these combina-
tions range from 97.23% to 97.36%. These combinations all include
LADTree and SMO classifiers. A possible reason why these
classifiers perform well in combination is because SMO provides
strength in classifying arrows, which is an area of weakness for
the LADTree according to the results in Table 4. However,
corrected paired t-tests show that these results are not signifi-
cantly different from using the tuned LADTree or LogitBoost
classifiers alone.

6.5. Second round analysis

The results in Table 4 show that the greatest area of weakness
for all classifiers trialled is with arrows, where recognition rates

range from 40% to 64%. The results for lines are also very low,
ranging from 72% to 92% for the ER/Process diagrams dataset. These
observations motivated a second round of analysis, beginning with
a search for features that can specifically identify these connectors.

More recent features were found in related work and added to
the feature set. They are described in Table 5. These features were
found after the initial set had been compiled. The fourth feature,
Is Arrowhead, is unique because it acts as a second parse to the
classification process. A second parse uses information from a
classifier’s initial classification results as further contextual infor-
mation to try to correct misclassifications. The second parse can
be run after the use of any classifier model to refine the results.
This particular feature was built to identify arrowheads that were
misclassified as text by the initial classifier.

The extended feature set, with additional features 1–3
described in Table 5, were used to train the seven classifiers;
note that feature 4 is not included as this is used in a second parse
of classification. The training dataset was generated again to
include these new features. The optimal parameters shown in
Table 3 were used for each classifier. The results of ten-fold cross
validation are shown in Table 6.

In addition, an LADTree at 1500 iterations was trained, as this
produced a higher result for our original feature set. The results of
ten-fold cross validation for this LADTree are also shown in
Table 6.

Corrected paired t-tests show that the LADTree with 1500
iterations is significantly more accurate than all other models.
Corrected paired t-tests also show that there is no significant
difference among models with the same parameters when trained
with the second round feature set and the original feature set.
(The results for the original feature set are included in Table 6) For
example, LADTree with 1500 iterations correctly classifies 97.76%
of strokes on average (over ten folds of cross validation) in the
training dataset when using the extended feature set; the classi-
fication rate with the original feature set is 97.48%. The difference
between these results is not statistically significant. This is the
same for all classifiers when compared with the original feature
set results. This indicates that the additional features do not have
a significant influence on classification.

To test feature 4, the second parse feature, a different approach
was required. The purpose of this feature is to correct misclassi-
fications made in the initial classification results. A pre-trained
classifier and a new dataset, independent of the training dataset,
are required here. This classifier is used to classify the new
dataset and then the results of this initial classification are used
by feature 4 to correct any misclassifications that may have
been made—thus running a second parse of classification. The
ER/Process diagram dataset was used as the test dataset and the
LADTree with 1500 iterations was chosen as the model, given that
it was found to be significantly more accurate than all other
models with the second round feature set.

Four conditions are included in the test to highlight the
effect of using the extended feature set and second parse feature.

Table 4
Summary of testing tuned models with ER/Process diagrams.

Classifier Arrow (%) Rectangle (%) Diamond (%) Ellipse (%) Lines (%) Shapes
correct (%)

Text correct (%) Total
correct (%)

LADTree 55.56 98.24 99.34 99.42 86.87 88.51 98.28 95.17
LogitBoost 64.67 97.71 99.34 99.42 82.09 88.37 98.11 95.02
SMO 64.96 97.80 98.60 98.83 84.48 89.00 97.01 94.46
RandomForest 55.16 96.12 96.26 98.60 92.08 84.28 99.17 94.37
LMT 51.57 95.70 97.70 97.95 87.01 86.86 97.34 94.01
MLP 57.10 95.59 95.33 97.47 92.82 84.50 97.66 93.41
Bagging 40.17 95.20 94.40 98.25 72.99 80.36 98.51 92.74

Fig. 5. (a) ER and (b) process diagram test set examples.

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991984

The conditions are combinations of using the original and
extended feature sets with and without feature 4. The results of
classifying the ER/Process diagram dataset under these conditions
are shown in Table 7.

Z-tests were conducted between the highest and the lowest
results in each shape class. Paired t-tests were not suitable for use
here as we were comparing single values rather than paired
groups (resulting from 10-fold cross validation) as before. Z-tests
can be used to test the difference between two proportions when
the sample size is large [64]. The tests show that there is no
significant difference between the highest and lowest results for
arrows (p-value: 0.08, sd: 0.03), rectangles (p-value: 0.50,
sd: 0.01), diamonds (p-value: 0.54, sd: 0.01), ellipses (p-value:
0.42, sd: o0.01), lines (p-value: 0.11, sd: 0.01) and shapes overall
(p-value: 0.19, sd: 0.01). As there is no significant difference
among these values, we can infer that there is no significant
difference in any of the results for each shape class. For text,
z-tests consistently show that the conditions without feature
4 are significantly more accurate than those with feature 4
(p-values ranging from 9.32$10–15 to 1.06$10–13, sd: o0.01).
In addition, the conditions without feature 4 are not significantly
different from each other (p-value: 0.74, sd: o0.01) and the
conditions with feature 4 are also not significantly different from
each other (p-value: 0.88, sd: o0.01).

A similar pattern is evident in the results for the total
percentage of strokes classified correctly, as shown by the
p-values in Table 8. This parallel may be because 68% of the total
ER/Process diagrams dataset are text strokes.

The results indicate that the extended feature set produces
results similar to the original feature set. However, the addition of

feature 4 often leads to higher rates of misclassification for text.
Feature 4 was designed to detect arrows. The results in Table 7
show that a higher proportion of arrows are correctly classified
when using feature 4, but as the z-test showed, these differences
are not statistically significant. Only 5% of the ER/Process diagram
dataset are arrows. Correct classification of arrows comes at the
high cost of text misclassification since text makes up 68% of the
dataset.

In general, these results suggest that the original feature set
covers the problem of distinguishing text and shapes well.
Additions to this set, although they do not hinder the results,
may not provide a significant difference in classification. A second
parse of results, however, can come at a cost of higher misclassi-
fications of other classes.

6.6. Analysis summary

Our results showed that the most accurate classifiers produced
from our experiments use the LADTree and LogitBoost machine
learning algorithms. The use of feature selection and ensembles
were investigated to try to improve on these results. However, the
original tuned classifiers perform on the same level or better than
those using these additional techniques. Additional features were
also implemented to identify arrows and lines, as these have the
highest rate of misclassified strokes. The results using these
features are %97% for LADTree, but these are not significantly
different from the original tuned results.

Based on this analysis, we chose to implement and evaluate
the original tuned LADTree and LogitBoost classifiers as the basis
for new text–shape dividers for sketch recognition applications.
The top two ensembles, LLSL (Vote 1) and LLS (Vote 2), were also
chosen along with the second round LADTree (1500 iterations)
with feature 4 to further evaluate their performance on indepen-
dent test sets. Models produced by feature selection techniques
are not included in the evaluation. Although some models with
feature selection were not significantly different from the original
tuned models, they did not produce high levels of accuracy
compared with the ensembles and second round models.

7. Evaluation

The goal of our research is to improve recognition of hand-
drawn diagrams through the development of more accurate text–
shape dividers using data mining. A systematic investigation of

Table 5
Second round features.

Feature Description Origin

(1) Is straight line This feature identifies straight lines. A line segment is made from the point 1/3 of the way into the stroke to the point
2/3’s into the stroke. The distance of all points in the stroke to this line segment must be smaller than a chosen
threshold for the stroke to be identified as a straight line.

[60]

(2) Number of cups This feature identifies ‘U’ shapes in strokes, known as cups. Strokes are examined using a sliding window: where if the
angle between the first and last segments of the window is above a certain threshold, the window is thought to contain
a cup. This has been included because any stroke that does not contain cups could be considered close to a straight
line; but its limitation may be with arrowheads as these may contain a cup.

[60]

(3) Bounding box
maximum

This feature calculates the maximum of the stroke’s bounding box width and height. This was found to improve the
accuracy of our previous divider [9,29] by Garcia [61]. The previous divider uses bounding box width as a measure of
stroke size where, in addition to other feature conditions, small strokes are more likely to be text than shapes. This is
fine for horizontal strokes, but vertical lines have a very small bounding box width and therefore are more likely to be
classified as text. This feature may help solve the problem of identifying vertical connectors.

[61]

(4) Is arrowhead This feature is used as a second parse of a sketch to determine if a stroke is an arrow. It assumes the arrow is drawn in
two strokes: one stroke for the arrowhead and the other for its shaft and that the arrow shaft has already been
correctly classified. Firstly, the arrowhead is found by determining if the stroke is in two fragments. Next, the arrow
shaft is found with a search for the closest shape stroke to the possible arrowhead. The shaft must satisfy a line test,
where the ratio of the distance between the first and last point of a stroke and the cumulative length of the stroke is
under a certain threshold. Lastly, the ratio of the length of arrowhead to the whole arrow length must be less than 40%.

[62,63]

Table 6
Results of using the Second Round Feature Set.

Classifier Average % correct (sd)

Extended feature set Original feature set

LADTree (1500 iterations) 97.76 (0.45) 97.48 (0.52)
LADTree 97.31 (0.67) 97.12 (0.54)
SMO 96.56 (0.54) 96.41 (0.73)
RandomForest 96.44 (0.61) 96.45 (0.57)
LogitBoost 96.39 (0.76) 96.67 (0.48)
Bagging 95.64 (0.58) 95.67 (0.58)
Multilayerperceptron 95.12 (0.80) 95.02 (0.78)
LMT 94.96 (0.35) 94.85 (0.68)

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991 985

data mining techniques, using a comprehensive ink feature library,
has resulted in the construction of several dividers. To evaluate
whether or not the new dividers are an improvement over existing
divider techniques, we have run several experiments to compare
their accuracy to three existing text–shape dividers.

In this section we describe the implementation of each of the
dividers included in the evaluation, the test datasets used for the
evaluation and present the final results.

7.1. Divider implementation

In order to run a comparative evaluation of our new models
against other dividers we integrated our models into DataMana-
ger’s Evaluator [6]. The Evaluator is a platform designed specifi-
cally for comparative evaluations of different sketch recognition
algorithms. Algorithms are easily integrated into the platform and
compared to each other by testing their performance using the
same datasets and testing parameters. Evaluating algorithms with
the same functionality under the same environment ensures that
fair comparisons are made.

Each of our new dividers (listed in Table 9) were generated and
output into .model files using Weka’s Explorer interface [35].
These model files contain all the information necessary for a
recogniser to classify a given stroke. We integrated these models
into the Evaluator by reading in the .model files and use this
information for classification.

DataManager uses the C# .NET Framework, whereas Weka
uses Java. However, Weka is open source so integrating Weka
libraries into DataManager was done with ease. The IKVM [65], an
implementation of Java for .NET, was used to connect the two and
thus allowed us to import Weka models into DataManager’s
Evaluator. An IKVM DLL and Weka DLL were added to the project
to facilitate this step.

In addition to the new divider models, three existing dividers
were integrated: Divider 2007 (from our previous work) [9], the
Microsoft Ink Analysis divider [28], and the Entropy divider [7].

Divider 2007 [29] was not re-trained; it was implemented
with the same thresholds as the original decision tree shown in
Fig. 2. The implementation is in C# .NET so the integration into
the Evaluator was straightforward.

Microsoft Ink Analysis [28] is able to distinguish between shapes
and handwriting. This divider is easily implemented using the .NET
Microsoft.Ink and Microsoft.Ink.Analysis libraries. C# .NET is used
here to ensure simple integration into DataManager’s Evaluator.

When implementing the Entropy divider, it had to be trained as
no thresholds were provided by Bhat and Hammond [7]. It was
trained on the same training dataset as the new dividers, described
in Section 5. The Decision Stump algorithm from Weka [35] using
ten-fold cross validation was chosen to find optimal thresholds.
This algorithm was chosen as it generates a decision tree with one
node, essentially producing one decision based on the Entropy
feature. The ten-fold cross validation results report that 85.76% of
the training data are correctly classified; other algorithms such as
OneR [66], a rule based method, and a J48 tree (C4.5 decision tree)
[67] gave similar results. We believe this is less than Bhat and
Hammond [7] published result because of the training data used.

7.2. Test data

Several datasets were gathered for testing the text–shape
dividers. The datasets represent diagrams from various domains.
These datasets were intentionally chosen to represent a large
range of diagram types with different characteristics and relation-
ships between text and shapes that provide a challenge to the
dividers. Datasets have also been added to stretch dividers’
capabilities beyond simple diagrams such as to-do lists (which
are documents rather than diagrams) and Euler and logic
diagrams which have unique content and layout.

We collected some datasets using DataManager and others
were collected by different research groups using their own data
collection methods. A summary of each dataset used for testing
the text–shape dividers is shown in Table 10 and examples of
each dataset are shown in Fig. 6.

7.3. Evaluation results

The goal of this evaluation is to determine whether the new
dividers are more accurate than existing dividers. Using DataMana-
ger’s Evaluator, each divider has been used to classify the datasets
described in the previous section, into text and shape strokes.

Table 8
P-values for the total % of strokes correctly classified under four conditions (sd: o0.01).

Original Extended Originalþfeature 4 Extendedþfeature 4

Original 0.94 o0.01 o0.01
Extended o0.01 o0.01
Originalþfeature 4 0.88
Extendedþfeature 4

Table 9
New dividers chosen for the evaluation.

Divider Configuration

LADTree 1 LADTree with 1500 iterations.
LogitBoost LogitBoost with Decision Stump, shrinkage¼0.1 and 5000

iterations.
Vote 1 Ensemble classifier LLSL with LogitBoost, LADTree, SMO and LMT

(see Table 3 for individual algorithm configurations).
Vote 2 Ensemble classifier LLS with LogitBoost, LADTree and SMO (see

Table 3 for individual algorithm configurations).
LADTree 2 LADTree with 1500 trained with 2nd round features including

second parse

Table 7
Results of second round features to the original feature set on er/process diagrams dataset with the LADTree (1500 Iterations).

Arrow (%) Rectangle (%) Diamond (%) Ellipse (%) Lines (%) Total shape (%) Total text (%) Total correct (%)

Extended feature set 59.26 98.59 99.02 99.71 85.82 88.86 98.42 95.38
Extended feature setþfeature 4 62.96 98.59 99.02 99.71 86.72 89.71 96.70 94.48
Original feature set 58.40 98.24 99.34 99.42 87.16 89.04 98.36 95.40
Original feature setþfeature 4 60.97 98.24 99.34 99.42 87.91 89.67 96.66 94.44

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991986

Tukey’s confidence intervals [69] are used here as a method of
performing multiple statistical comparisons. All comparisons
between methods can be performed at the same time rather than
pair-wise. Tukey’s confidence intervals are wider than for paired
t-tests, and this ensures that the significant differences found
using this method are highly accurate.

A graph displaying Tukey’s confidence intervals for each
dataset and divider is shown in Fig. 7. There is one line for each
dataset and a confidence interval (vertical line) showing the
performance of a particular divider on the dataset. The widths
of the confidence intervals are influenced by the size of the
dataset. Small datasets have wider confidence intervals than large
datasets because there is not as much information available for a
finer grained prediction of where the population mean sits. If the
confidence intervals for two dividers or datasets do not overlap,
then there is a significant difference between them.

In terms of the dividers performance on the datasets overall,
the dividers excel at classifying the UML class diagram dataset,
with the exception of Divider 2007, and have difficulty dividing
the logic diagram dataset. Tukey’s confidence intervals in Fig. 7
show that LogitBoost, Microsoft and Vote 1 dividers are signifi-
cantly more accurate on the UML dataset than all other datasets.
LADTree 1, LADTree 2 and Vote 2 are significantly more accurate
when dividing the UML and mind-map datasets. Entropy is
unique in that there is no significant difference in its accuracy
on all datasets except for the logic diagram dataset; Entropy is
significantly less accurate on the logic diagram dataset than all

other datasets. Divider 2007 is significantly more accurate at
dividing the COA symbol, to-do list, and mind-map datasets. All
dividers are significantly less accurate on the logic diagram
dataset than other datasets. LogitBoost and the Microsoft divider’s
accuracy on Euler diagrams are not significantly different to their
performance on logic diagrams.

The overall accuracy of each divider is calculated in two ways:
using a simple average and a weighted average. They are shown
in Table 11. These averages were used rather than calculating the
straight percentage of strokes in all datasets that were correctly
classified as the size of the datasets would cause a bias in the
overall results. For example, dividers performing well on the logic
diagram dataset, the largest dataset of all, would have an inflated
classification rate.

The simple average for each divider is calculated using the
formula in Eq. (1). All datasets are given the same weight using
this average, regardless of their size.

The weighted average, on the other hand, takes into account
the size of the dataset by calculating weights for each proportion
of strokes correct for each dataset. The weighted average is
calculated using the formula in Eq. (2). The weight for a dataset
should be proportional to the inverse variance of the mean [70].
The variance is s2/n: therefore the inverse variance is used as the
numerator of the weight equation shown in Eq. (2). The inverse
variance is then divided by the sum of all inverse variances of
the divider for each dataset. The weighted average for a divider
is calculated as the sum of the proportion of strokes correct

Table 10
Summary statistics for each test dataset.

Participants # Text Strokes # Shape Strokes Total # Strokes % Text : % Shape Strokes Origin

Mind-map 20 1815 364 2179 83:17 Our own
To-do list 20 1710 201 1911 89:11 Our own
UML Class diagram 20 1481 383 1864 79:21 Our own
COA 6 516 214 730 71:29 [7]
Logic 13 2296 6320 8616 27:73 [34]
Euler 10 413 334 747 55:45 [68]
Total 8230 7817 16,047 51:49

Fig. 6. Test data examples. Shape strokes are shown in red and text strokes in blue. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991 987

multiplied by the weight value for each dataset.

simple average¼
X

p=number of datasets ð1Þ

where p is the proportion of strokes correct for each dataset
Eq. (1) Simple Average Calculation for a Divider’s Accuracy

weight¼
n=s2

P
ðn=s2Þ

weighted average¼
X
ðpnweightÞ ð2Þ

where: n is number of instances in each dataset; s is within group
standard deviation; p is the proportion of strokes correct the each
dataset; and S is the sum overall values for the divider on each
dataset

Eq. (2) Weighted Average Calculation for a Divider’s
Accuracy

Using the weighted average, datasets with a large number of
instances have a smaller variance (as the variance is s2/n) and are
therefore weighted higher according to Eq. (2). The reasoning
behind this is that results obtained from datasets with smaller
variance are more valuable as they are closer to the mean.

Both averages are included here as there is no pre-defined way of
presenting the overall accuracy of each divider given the informa-
tion we have for this multiple comparison problem. Including both
averages ensures that the best information possible is presented.

Tukey’s confidence intervals for the simple and weighted
averages of each divider are shown in Fig. 7 to assist us in
analysing the overall significant differences between dividers.
Table 12 summarises the significant differences observed using
these confidence intervals. Two symbols are shown in each cell;
the first for the relationship according to the simple average and
the second for the weighted average. The relationships in the table
should be read by row. For example in the first row, Divider 2007
is significantly less accurate (symbolised by an ‘X’) than entropy

by measure of the simple mean and is not significantly different
(symbolised by a ‘-’) to entropy according to the weighted mean.

The only dividers that are always significantly more accurate
or not significantly different to all others are LogitBoost and
LADTree 1, regardless of which average is observed. LogitBoost is
significantly more accurate than all other models except for
LADTree 1, where there is no significant difference and except
for LADTree 2 where there is no significant difference according to
the simple mean. LADTree 1 is also not significantly different to
LADTree 2 (based on both averages).

In terms of the new divider models’ performance in compar-
ison to the existing dividers, all the new models are significantly
more accurate than Divider 2007 and Entropy, regardless of
which average is observed. For the Microsoft divider, LogitBoost,
LADTree 1 and LADTree 2 are significantly more accurate regard-
less of which average is observed, Vote 2 is significantly more
accurate according to the simple average and not significantly
different based on the weighted average, and Vote 1 is not
significantly different according to the simple mean but is
significantly worse based on the weighted mean.

Overall, according to the Tukey confidence intervals of simple
and weighted means, LogitBoost and LADTree 1 are the most
accurate divider models for the example datasets tested. Most
importantly, these dividers are significantly more accurate than
the three existing dividers tested. A general ranking of dividers
based on the information in Table 12 is as follows:

Ranking

(1) LogitBoost
(2) LADTree 1
(3) LADTree 2
(4) Vote 2
(5) Microsoft
(6) Vote 1
(7) Entropy
(8) Divider 2007

7.3.1. Divider classification times
The focus of this work is on improving the accuracy of

text–shape dividers rather than the time taken for classification.
The average time for each divider to classify a stroke is presented
in Table 13 for completeness. The new dividers clearly take much
longer to classify strokes than the existing dividers. Entropy and
Divider 2007 are very fast because there are only 1–8 feature

0.5

0.6

0.7

0.8

0.9
T

uk
ey

 C
on

fi
de

nc
e

In
te

rv
al

s

LogitBoost LADTree 1 LADTree 2 Vote 2 Microsoft Vote 1 Entropy Divider 2007
Dividers

Key:
_____ Mind-maps _____
_____ To-dolists _____
_____ _____
_____ _ _ _ _ Weighted Avg

Logic
COA
Euler

UML
Simple Avg

Fig. 7. All results displayed as Tukey’s confidence intervals.

Table 11
Simple and weighted averages of classification rates for each divider.

Divider Simple average Weighted average

LogitBoost 89.61 90.50
LADTree 1 89.66 89.93
LADTree 2 88.47 89.01
Vote 2 87.89 86.37
Microsoft 85.06 87.07
Vote 1 85.87 82.93
Entropy 83.19 78.16
Divider 2007 78.86 77.67

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991988

calculations required for these dividers. Microsoft does not
provide details on the implementation of its divider.

The new dividers use models generated by Weka. To use these
models in our implementation, the Weka libraries are utilised.
The design of these libraries is such that all the features that the
model is trained with must be provided regardless of whether
they are used in the final classification or not. This requires that
all 114 features in the feature library are calculated for each
stroke when making a classification; this clearly increases the
amount of time it takes to classify a stroke.

There are many ways to make the classification time faster.
Instead of using the models and Weka libraries, the classifiers
could be re-implemented. The re-implementation could ensure
that only features required for classification are calculated, rather
than using the entire feature library—as is currently required due
to the design of the Weka libraries. For classifiers that use tree
structures, this may result in very few features being calculated,
depending on the path that the instance takes down the tree. In
addition, the process of feature calculation can be greatly
improved. For example, common calculations that are used by
many features, such as finding the bounding box or length of a
stroke, only need to be calculated once for an instance rather than
re-calculating for each feature that uses such information. Features
that iterate through all strokes in the diagram, for example when
finding strokes close by for spatial context features, can be
calculated at the same time, rather than iterating through the
whole diagram multiple times. Further work on feature selection,
such as identifying and removing common aliases in the feature
library, may reduce the feature set without compromising recogni-
tion accuracy. With these modifications, we believe the time taken
to divide strokes using the new dividers would greatly improve.

8. Discussion

Dividing text and shapes in sketches is a difficult problem. This
is mainly due to the large variation present within each class of

text and shape. Previous work in developing dividers is limited as
they focused on a small number of features and algorithms.

We have completed a systematic study of a wide range of data
mining techniques and have found this to be successful in terms
of producing more accurate dividers. To our knowledge, the most
successful algorithms we found, LogitBoost and LADTree, have not
previously been used for text–shape division. The identification of
these algorithms shows the value of our systematic study of
algorithms rather than focusing on those already used in this area.

We were surprised by the lack of improvement in accuracy
when using feature selection and ensembles. There are several
possible reasons for this. It is possible that all the features in the
feature library make significant contributions to recognition
accuracy. In this case, reducing the feature set can be detrimental
to classification rates.

When developing Divider 2007 [29], we found that the simple
feature of bounding box width can correctly classify approxi-
mately 85% of the training dataset used for that study. With the
addition of seven other features in a decision tree, to form Divider
2007, this divider is able to classify approximately 79% of our test
dataset (according to the simple average shown in Table 11). The
Entropy divider uses a single feature for classification, although
this feature is much more complex than the width of a strokes
bounding box. The Entropy feature is able to correctly classify
approximately 83% of our test dataset (according to the simple
average shown in Table 11). These results show that single
features, or a small group of features, are able to classify
79–85% of strokes with ease, but getting beyond this level of
classification is difficult.

The optimal number of features may be lower than the current
feature library. For example, we have observed from our feature
selection results that feature sets with 50 features produce results
that are not significantly different from using the entire feature
set, although this is algorithm dependent. Tumen et al. [71]
observed that optimal feature set size is dependent on the domain
of use. The components in some domains can be more easily
distinguished and thus require less information for recognition
than others do.

Another possible reason for the low performance of feature
selection and ensembles may be because the parameter config-
urations for the classifiers were set to those with the fast training
times rather than the highest accuracy due to long training times.
However, the accuracy of the classifiers with the chosen para-
meter configurations were not significantly different to the
classifiers with the highest classification rates based on the
training data; the one exception was for LADTree. These settings
still may have had a negative effect on the accuracy obtained by
feature selection with these classifiers.

Chang [72] observed similar results for feature selection in
basic shape recognisers where no significant improvement was
able to be made over the original classifiers. Chang stated that
classifiers that already use an inner voting strategy require

Table 12
Summary of the significant differences shown by Tukey’s confidence intervals in Fig. 7. O significantly more accurate, X significantly less accurate, – not significantly
different.

Divider 2007 Entropy LADTree 1 LADTree 2 LogitBoost Microsoft Vote 1 Vote 2

Divider 2007 X – X X X X X X X X X X X X
Entropy O – X X X X X X X X X X X X
LADTree 1 OO OO –, – –, – OO OO OO
LADTree 2 OO OO –, – – X OO OO –O
LogitBoost OO OO –, – -O OO OO OO
Microsoft OO OO X X X X X X –O X –
Vote 1 OO OO X X X X X X – X X X
Vote 2 OO OO X X – X X X O – OO

Table 13
Average time (seconds) to classify a stroke.

Existing Dividers Average time (seconds)
per stroke

Entropy 0.0004
Microsoft 0.0159
Divider 2007 0.0009
New dividers
LADTree 1 0.4561
LogitBoost 0.4652
Vote 1 0.4714
Vote 2 0.4710
LADTree 2 0.4766

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991 989

variation in data to be successful: eliminating features reduces
variation and therefore can result in poor results for feature
selection. In addition, Chang stated that classifiers with tree
structures may not benefit from feature selection as they already
use base splits in the tree on the most valuable features. Therefore
feature selection can be redundant and even detrimental if good
features are not retained. Five of the seven classifiers explored in
our analysis use inner voting strategies or tree structures. It is
possible that no significant improvements were made to these
classifiers as either the variation was lost by eliminating features
or good features were not retained.

The use inner voting mechanisms in our chosen algorithms
may have also meant that using outer ensemble combinations
had no significant effect on the accuracy level already obtained.

Others [71,72] have also used ensembles for developing shape
recognisers for sketched diagrams. Ensembles were found to
produce significantly better results than single classifiers and
existing basic shape recognisers in these studies. The main
difference between text–shape division and basic shape recogni-
tion is the number of classes. For Chang’s study [72], the number
of classes in each test dataset range from three to six basic shapes.
Schmieder’s study [59] of basic shape recognisers found that
recognisers generally performed better on data with a smaller
number of classes. In our case, it is possible that single classifiers
are able to perform just as well as ensembles because there are
only two classes. But the within class variation for the text and
shape classes is far greater than what is usual for shape classifiers.
For basic shape recognition, single classifiers may not be able to
accurately distinguish between three or more classes as well as an
ensemble of classifiers. This may explain the difference in results
when using ensembles for dividers and basic shapes.

The high accuracy of the results we have obtained by combin-
ing data mining techniques with our extensive feature library to
build dividers demonstrates the effectiveness of this approach.
We believe that other digital ink recognition problems would also
benefit from a similar study of data mining techniques.

We chose to train and test on diagrams of different domains to
create a general diagram divider. Each diagram domain has its own
syntax, semantics and mix of drawing shapes. Given the difference
between the training 10-fold validation values and the test results,
it may be worthwhile to data mine and train a divider for each
diagram domain or include a much wider range of diagrams in the
training set. In addition, we could also look specifically at dividing
documents. The Microsoft divider may perform better on docu-
ments as there is a higher proportion of text present.

Considering diagram and notes recognition from a wider
perspective there are three possible approaches to the recogni-
tion: bottom-up, top-down or a combination of both. A bottom-
up approach begins the recognition process at the primitive
stroke level. Typically this is followed by a progressive joining
of strokes into larger and more complex groups thus developing
an overall semantic understanding of the diagram. On the other
hand, a top-down system starts with a high-level analysis of the
structure and uses this information to aid recognition of the
composite parts. There can also be hybrid approaches that
combine both bottom-up and top-down methods by considering
primitives and overall layout together to try to resolve
ambiguities.

Thus far our approach has been bottom-up. We believe this
approach has better potential for eager recognition—i.e. one does
not need to wait for the diagram to be complete for recognition.
We believe accurate, eager recognition is a precursor to a better
user experience, for example intelligent editing support for
sketch tools.

We believe in order to further improve the accuracy of text–
shape dividers the next step is to focus more on the context of

strokes. Although we have incorporated features on spatial and
temporal context into our library this is restricted by the fact that
these are measured in single values, there is no provision for
adding more fuzzy conditions or to use semantic references to
surrounding strokes or objects. The use of shape contexts [73] and
Image Deformation Model (IDM) features [74] may also add
valuable information to the recognition process. These additions
provide direction for future work.

9. Conclusion

We have assembled a comprehensive library of computable
ink features; they measure features of individual strokes and
relationships between strokes that are spatially or temporally
adjacent. Using these features and diagrams from three different
domains we undertook an extensive review of data mining
algorithms. Seven of the most effective algorithms were selected
for further tuning, which improved their performance. We then
explored whether limiting the number of features by using
feature selection could produce comparable results and found
that reducing the feature set reduced performance. We also
explored combining algorithms in an ensemble with voting
strategies, this provided no significant gain. In addition, we
performed a second round of analysis to try to correct common
misclassifications.

Our two best dividers, LADTree and LogitBoost, are signifi-
cantly more accurate than all other algorithms evaluated.
A comparative evaluation of these dividers against three others
shows that the new dividers outperform the others with a clear
statistically significant difference. The success of our new dividers
demonstrates the effectiveness of considering a wide range of ink
features and using data mining techniques for sketch recognition
development.

Acknowledgements

Thanks to Associate Professor Eibe Frank for expert advice on
using data mining techniques. This research is partly funded by
Microsoft Research Asia and Royal Society of New Zealand,
Marsden Fund.

References

[1] Rubine DH. Specifying gestures by example. In: Proceedings of Siggraph ’91,
ACM; 1991.

[2] Paulson B, Hammond, T. PaleoSketch: accurate primitive sketch recognition
and beautification. In: Proceedings of Intelligent User Interfaces (IUI ’08),
ACM Press, New York, USA; 2008.

[3] Wobbrock JO, Wilson AD, Li Y. Gestures without libraries, toolkits or training:
a $1 recognizer for user interface prototypes. In: Proceedings of the User
Interface Software and Technology. ACM, Newport, Rhode Island, USA; 2007.
p. 159–68.

[4] Plimmer B. Using shared displays to support group designs; a study of the use
of informal user interface designs when learning to program, In: Computer
Science, University of Waikato; 2004.

[5] Young M. InkKit: The Back End of the Generic Design Transformation Tool,
Computer Science, University of Auckland, Auckland; 2005.

[6] Schmieder P, Plimmer B, Blagojevic R. Automatic evaluation of sketch
recognizers. In: Proceedings of the Sketch Based Interfaces and Modelling,
New Orleans, USA; 2009.

[7] Bhat A, Hammond T. Using entropy to distinguish shape versus text in hand-
drawn diagrams. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI ’09), Pasadena, California, USA; 2009.

[8] Bishop CM, Svensen M, Hinton GE. Distinguishing text from graphics in on-
line handwritten ink. In: Proceedings of the Ninth International Workshop on
Frontiers in Handwriting Recognition, IEEE Computer Society; 2004. p. 142–7.

[9] Patel R. et al. Ink features for diagram recognition. In: Proceedings of the
Fourth Eurographics Workshop on Sketch-Based Interfaces and Modeling.
Riverside, California, Eurographics; 2007.

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991990

[10] Johnson G, et al. Computational Support for Sketching In: Design: A Review.
Foundations and Trends in Human–Computer Interaction 2009;2(1):1–93.

[11] Fonseca MJ Pimentel Ce Jorge JA. CALI: an online scribble recogniser for
calligraphic interfaces. In: Proceedings of the AAAI Spring Symposium on
Sketch Understanding: IEEE; 2002.

[12] Yu B, Cai S. A domain-independent system for sketch recognition. In:
Proceedings of the First International Conference on Computer Graphics
and Interactive Techniques in Australasia and South East Asia. Melbourne,
Australia, ACM Press; 2003.

[13] Leung WH, Chen T. User-independent retrieval of free-form hand-drawn
sketches. In: Proceedings of the Acoustics, Speech, and Signal Processing,
2002 (ICASSP ’02). Orlando, Florida; 2002.

[14] Szummer M, Qi Y. Contextual recognition of hand-drawn diagrams with
conditional random fields. In: Proceedings of the Ninth International Work-
shop on Frontiers in Handwriting Recognition (IWFHR); 2004.

[15] Qi Y, Szummer M, Minka TP. Diagram structure recognition by Bayesian
conditional random fields. In: Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05). Vol. 2,
IEEE Computer Society; 2005. pp. 191–6.

[16] Lank E, Thorley JS, Chen SJ-S. An interactive system for recognizing hand
drawn UML diagrams. In: Proceedings of the Centre for Advanced Studies on
Collaborative research. IBM Press, Mississauga, Ontario, Canada; 2000. p. 7.

[17] Hammond T, Davis R. Tahuti: a geometrical sketch recognition system for
UML class diagrams. In: Proceedings of the 2002 AAAI Spring Symposium on
Sketch Understanding; 2002.

[18] Plimmer B, Freeman I. A toolkit approach to sketched diagram recognition.
In: Proceedings of the HCI. Lancaster, UK, eWiC; 2007.

[19] Zeleznik RC, et al. Lineogrammer: creating diagrams by drawing. In: Proceed-
ings of User interface Software and Technology. ACM, Monterey, CA, USA;
2008. pp. 161–70.

[20] Shilman M, et al. Discerning structure from freeform handwritten notes.
In: Proceedings of the Document Analysis and Recognition; 2003.

[21] Jain AK, Namboodiri AM, Subrahmonia J. Structure in on-line documents.
In: Proceedings of the Sixth International Conference on Document Analysis
and Recognition, IEEE Computer Society; 2001. pp. 844–8.

[22] Ao X, et al.. Structuralizing digital ink for efficient selection. In: Proceedings
of the 11th International Conference on Intelligent User Interfaces. ACM,
Sydney, Australia; 2006. pp. 148–54.

[23] Machii K, Fukushima H, Nakagawa M. On-line text/drawings segmentation of
handwritten patterns. In: Proceedings of the Document Analysis and Recog-
nition. Tsukuba Science City, Japan; 1993.

[24] Mochida K, Nakagawa M. Separating drawings, formula and text from free
handwriting. In: Proceedings of the International Graphonomics Society
(IGS2003). Scottsdale, Arizona; 2003.

[25] Microsoft Corporation, Microsoft Windows Tablet, XP. PC Edition Software
Development Kit; 2005.

[26] Sezgin M, Davis R. Temporal Sketch Recognition in Interspersed Drawings. In:
Proceedings of the Sketch Based Interfaces and Modeling (SBIM ’07). Riverside,
California, USA; 2007.

[27] Microsoft Corporation. Ink Analysis Overview. 2008 [cited 2008; Available
from: /http://msdn.microsoft.com/en-us/library/ms704040(VS.85).aspxS.

[28] Patel R. Exploring better techniques for diagram recognition. MSc in Com-
puter Science, University of Auckland, Auckland; 2007. p. 146.

[29] Peterson E, et al. Grouping strokes into shapes in hand-drawn diagrams. In:
Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI-10);
2010.

[30] Blagojevic R, et al. A Data Collection Tool for Sketched Diagrams. in Sketch
Based Interfaces and Modeling. Annecy, France: Eurographics; 2008.

[31] Glaser BG, Strauss AL. The Discovery of Grounded Theory: Strategies for
Qualitative Research. Chicago: Aldine Publishing Company; 1967.

[32] Oltmans M, Alvarado C, Davis R. ETCHA sketches: lessons learned from
collecting sketch data. In: Proceedings of the AAAI Fall Symposium on
Making Pen-Based Interaction Intelligent and Natural; 2004.

[33] Hse H, Newton AR. Sketched symbol recognition using Zernike moments.
In: Proceedings of the International Conference on Pattern Recognition.
Cambridge, UK; 2004.

[34] Alvarado C, Lazzareschi M. Properties of real world digital logic diagrams. In:
Proceedings of the First International Workshop on Pen-based Learning
Technologies. Catania, Italy; 2007.

[35] Witten IH, Frank E. Data Mining: Practical machine learning tools and
techniques.2nd Edition ed. San Francisco: Morgan Kaufmann; 2005.

[36] Blagojevic R, Chang SH-H, Plimmer B. The power of automatic feature
selection: rubine on steroids. In: Proceedings of the Sketch Based Interfaces
and Modeling. Annecy, France, Eurographics; 2010.

[37] Field M, et al. The effect of task on classification accuracy: Using gesture
recognition techniques In: free-sketch recognition. CAD/GRAPHICS 2009
2009;34(5):499–512.

[38] Frank E. Personal Communication. Hamilton: University of Waikato; 2009–2010.
[39] Breiman L. Bagging predictors. Machine Learning 1996;24(2):123–40.
[40] Breiman L. Random forests. Machine Learning 2001;45(1):5–32.
[41] Friedman J, Hastie T, Tibshirani R. Additive logistic regression: a statistical

view of boosting. The Annals of Statistics 2000;28(2):337–407.

[42] Holmes G, et al. Multiclass Alternating Decision Trees. In: Proceedings of the
Machine Learning, ECML 2002. Springer Berlin/Heidelberg; 2002. p. 105–22.

[43] Landwehr N, Hall M, Frank E. Logistic model trees. Machine Learning
2005;59(1–2):161–205.

[44] Sumner M, Frank E, Hall M. Speeding up Logistic Model Tree Induction. In:
Proceedings of the Ninth European Conference on Principles and Practice of
Knowledge Discovery in Databases. Porto, Portugal, Springer; 2005.

[45] Rumelhart DE, Hinton GE, Williams RJ. Learning internal representations by error
propagation. Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, ed. D.E.a.M. In: Rumelhart JL, editor. Foundations, vol. 1. Cambridge:
MIT Press; 1986.

[46] Minsky M, Papert. S. Perceptrons. Cambridge: MA.MIT Press; 1969.
[47] Hastie T, Tibshirani R. Classification by pairwise coupling. In: Proceedings of

the Advances in Neural Information Processing Systems. Denver, Colorado,
United States MIT Press; 1998.

[48] Keerthi SS, et al. Improvements to Platt’s SMO algorithm for SVM classifier
design. Neural Computation 2001;13(3):637–49.

[49] Platt J. Fast training of support vector machines using sequential minimal
optimization. In: Proceedings of the Advances in Kernel Methods—Support
Vector Learning; 1999.

[50] Kohavi R, John GH. Wrappers for feature subset selection. Artificial Intelli-
gence 1997;97(1–2):273–324.

[51] Gütlein M, et al. Large-scale attribute selection using wrappers. In: Proceed-
ings of the IEEE Symposium on Computational Intelligence and Data Mining.
IEEE; 2009.

[52] Robnik-Sikonja M, Kononenko I. An adaptation of Relief for attribute
estimation in regression. In: Proceedings of the Fourteenth International
Conference on Machine Learning; 1997. pp. 296–304.

[53] Kononenko I. Estimating attributes: analysis and extensions of RELIEF. In:
Proceedings of the European Conference on Machine Learning. Catania, Italy;
1994.

[54] Kira K, Rendell LA. A Practical Approach to Feature Selection. In: Proceedings of
the Ninth International Workshop on Machine Learning. Aberdeen, Scotland,
United Kingdom: Morgan Kaufmann Publishers, San Francisco, CA; 1992.

[55] Paulson B, et al. What!?! No Rubine features?: using geometric-based
features to produce normalized confidence values for sketch recognition In:
Proceedings of the VL/HCC Workshop: Sketch Tools for Diagramming.
Herrsching am Ammersee, Germany; 2008.

[56] Kuncheva LI. Combining Pattern Classifiers: Methods and Algorithms. John
Wiley and Sons, Inc.; 2004.

[57] Kittler J, et al. On combining classifiers. IEEE Transactions on Pattern Analysis
and Machine Intelligence 1998;20(3):226–39.

[58] Le Cessie S, Van Houwelingen JC. Ridge Estimators in Logistic Regression.
Applied Statistics 1992;41(1):191–201.

[59] Schmieder P. Comparing basic shape classifiers: a platform for evaluating
sketch recognition algorithms. In Computer Science, University of Auckland,
Auckland; 2009 p. 177.

[60] Willems D, Niels R. Definitions for Features Used in Online Pen Gesture
Recognition. NICI, Radboud University Nijmegen; 2008.

[61] Garcı́a Martı́n-Mantero Y. Editor gráfico de diagramas de clases basado en
trazos naturales. Spain: UCLM (University of Castilla La Mancha); 2010.

[62] Freeman I, Plimmer B. Connector semantics for sketched diagram recogni-
tion. In: Proceedings of the AUIC. Ballarat, Australia. ACM; 2007.

[63] Kara LB, Stahovich TF. Hierarchical parsing and recognition of handsketched
diagrams. In: Proceedings of the UIST ’04. Santa Fe, New Mexico: ACM Press;
2004.

[64] LeBlanc DC. Statistics: Concepts and Applications for Science. Jones & Bartlett
Publishers; 2004. 382.

[65] IKVM.NET. 2009 [cited 6/15/2009; Available from: /http://www.ikvm.net/S.
[66] Holte RC. Very simple classification rules perform well on most commonly

used datasets. Machine Learning 1993;11(1):63–90.
[67] Quinlan R. C4.5: programs for machine learning. Machine Learning

1993;16(3):235–40.
[68] Delaney A, et al. Recognizing sketches of Euler diagrams drawn with ellipses.

In: Proceedings Sixteenth International Conference on Distributed Multi-
media Systems. Chicago, USA; 2010.

[69] Ott RL, Longnecker MT. 5 ed.An Introduction to Statistical Methods and Data
Analysis, 1184. Duxbury Press; 2000.

[70] Snedecor GW, Cochran WG. Statistical methods. Iowa: Blackwell Publishing
Professional; 1989.

[71] Tumen RS, Acer ME, Sezgin TM. Feature extraction and classifier combination
for image-based sketch recognition, In: Joint Session of the Seventh Sketch-
Based Interfaces and Modeling Workshop and Eighth Symposium on Non-
Photorealistic Animation and Rendering, Eurographics Association. Annecy,
France; 2010. pp. 63–70.

[72] Chang SH-H. Applying data mining for the recognition of digital ink strokes.
In Computer Science, University of Auckland, Auckland; 2010. p. 176.

[73] Oltmans M. Envisioning sketch recognition: a local feature based approach to
recognizing informal sketches. Cambridge, MA, USA: Massachusetts Institute
of Technology; 2007.

[74] Ouyang TY, Davis R. A visual approach to sketched symbol recognition, In:
Proceedings of the 21st International Joint Conference on Artifical intelligence.
Morgan Kaufmann Publishers Inc. Pasadena, California, USA; 2009. pp. 1463–8.

R. Blagojevic et al. / Computers & Graphics 35 (2011) 976–991 991

http://msdn.microsoft.com/en-us/library/ms704040(VS.85).aspx
http://www.ikvm.net/

	Using data mining for digital ink recognition: Dividing text and shapes in sketched diagrams
	Introduction
	Related work
	Methodology
	Feature search
	Data collection
	Data analysis
	Evaluation

	Ink features
	Data
	Data mining analysis
	Preliminary analysis
	Tuning
	Bagging
	RandomForest
	LogitBoost
	LADTree
	LMT
	Multilayer perceptron
	SMO
	Comparison of tuned classifiers

	Feature selection
	Attribute selected classifier with wrapper
	Attribute selected classifier with Relief F
	Hybrid method

	Ensembles
	Second round analysis
	Analysis summary

	Evaluation
	Divider implementation
	Test data
	Evaluation results
	Divider classification times

	Discussion
	Conclusion
	Acknowledgements
	References

