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Summary

Scheduling and resource allocation in clouds is used to harness the power of the
underlying resource pool. Service providers can meet QoS requirements of ten-
ants specified in SLAs. Improving resource allocation ensures that all tenants will
receive fairer access to system resources, which improves overall utilisation and
throughput. Real-time applications and services require critical deadlines in order to
guarantee QoS. A growing number of data-intensive applications drive the optimi-
sation of scheduling through utilising data locality in which the scheduler locates a
task and ensures the task’s relevant data to be on the same server. Choosing suit-
able scheduling mechanisms for running applications that support multi-tenancy has
consistently been a major challenge. This work proposes a new adaptive Deadline
constrained and Data locality aware Dynamic Scheduling Framework – 3DSF – that
orchestrates different schedulers based on varied requirements. This framework con-
siders tenants’ deadline-based QoS requirements, cloud system’s performance and
a method of resource allocation to improve resource utilisation, system throughput
and reduce jobs’ completion time. 3DSF contains: (1) a real-time, preemptive, dead-
line constrained job scheduler, (2) an optimised data locality aware scheduler, (3) an
improved Dominant Resource Fairness greedy resource allocation approach and (4)
an adaptive suite to integrate above-mentioned schedulers together.
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1 INTRODUCTION

Cloud computing enables resources to be shared among different customers, provides computation, storage, and communications
resources and also provides a variety of QoS sensitive services to different tenants. Multi-tenancy is a vital characteristic in
cloud computing, as it supports scalability and birngs economic benefits to the users and service providers by sharing the
same instance, cloud platform and underlying infrastructure with the isolation of shared network and computing resources.
Diverse cloud computing frameworks have been developed to support scheduling in multi-tenancy clouds. Prominent
examples include YARN1, Mesos2, MapReduce3, Spark4, Quincy5 and Omega6. A cluster typically hosts a number of data-
intensive and computation-intensive applications, such as data mining, web crawling, and network traffic analysis. These
applications generate widely varied workloads, share resources, and are executed on machines with different hardware
parameters. A number of frameworks, such as Hadoop7 and Dryad8, employ a fine-grained resource sharing model, where
nodes are composed of
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“slots” and jobs are divided into tasks that can be matched to slots. However, the slots with fixed resources are fixed on the 
nodes, which result in the mismatching of tasks’ resource requirements. This reduces the ability of dynamic resource 
allocation. Another drawback is that the mismatch between allocated fixed resources and other related jobs, and preventing the 
system from achieving high resource utilisation. As each job will hardly have any chance to obtain the approximate resources 
required for the application to run, with the required resources running on nodes that store input data. A better approach could 
use Linux containers, instead of slots in order to achieve dynamic resource allocation.
Multi-tenancy allows different users to customise the currently running instances on a given machine, allowing for the cus-

tomisation of instances within the same application. The shortcomings of multi-tenancy lie in its inability to effectively utilise 
the resources of a given system9,10. A tenant may have one user or multiple users, and submit their jobs with several QoS 
requirements. However, the demands of users are often varied, making it difficult to comply with all the users’ expectations. 
Multi-tenancy makes scheduling issues on clouds more complicated. For real-time applications and services, compliance with 
deadlines is a major criterion in judging the QoS. Precisely predicting service performance according to statistics analysis of 
the system and user information helps us to guarantee system’s QoS, reduce the Service Level Agreement (SLA) violations 
and avoid the over/under provision of system resources11,12. The primary challenge for applications is to meet SLAs on the 
comple-tion of their jobs and before their deadlines13. For example, financial applications often have strict job deadlines and 
are often more willing to pay more for compliance with the deadlines, but some scientific jobs prefer to trading a bounded 
delay for lower costs. Similarly, completion time is critical for web searches, as only a small fraction of delayed results can 
result in an impor-tant loss in revenue through missed purchases, reductions in search queries or reductions in advertisement 
click-through rates13. As a result, scheduling mechanisms should differentiate jobs according to their importance or priority13. 
Deadline constrained jobs are thus generally more important than regular jobs.
Multi-tenancy scheduling enables multiple instances of an application to occupy and share resources from a large pool, 

allow-ing different users to have their own version of the same application running and coexisting on the same hardware. 
Moreover, to support the proposed traditional multi-tenancy frameworks, researchers have also proposed some algorithms to 
meet a frame-work’s functional requirements14,15. For instance, a framework proposed in14 periodically re-allocates resources 
to tenants, aiming to maximise the resource utilisation while tolerating a low risk of SLA violations, especially for highly 
dynamic work-load. In this framework14, a dynamic resource allocation algorithm for DBaaS is proposed if there is a higher 
variance intensity. Additionally, an extensible dynamic provisioning framework presented in15 begins with a Tenancy 
Requirements Model (TRM). The model in15 is based on the mapping of functional and non-functional tenancy requirements 
with appropriate resources, their parameters, and the health monitoring policy, which allows dynamically re-provisioning for 
existing tenants based on either changing tenancy requirements or health grading predictions. Many other multi-tenancy cloud 
computing frameworks have been proposed to support job/task scheduling or resource allocation, such as YARN1, AWS cloud 
adoption framework (AWS CAF)16, Patent17, Omega6, Quincy5, Canary18, QRSF19, ERA20, and works21,22. However, none 
of these frameworks focus on job scheduling, task scheduling and resource allocation concurrently, while also ensuring that 
they are complying with QoS regulations and implementing efficient data locality. Most of these multi-tenancy scheduling 
frameworks6,5,1 do not consider the importance of deadline constraints to the users. Moreover, even if some frameworks do 
consider the deadline issue, they use very simple prediction models in order to predict their service time and requirements. 
However, imprecise prediction models would degrade the performance of deadline constrained schedulers. Data locality is one 
of the most important considerations for multi-tenancy scheduling in order to improve the response time and throughput. 
Enhancing data locality is very important to minimise data shuffling across nodes and to reduce a job’s sojourn time. Some 
works23,2 focus on data locality issue. To our best knowledge, these works only emphasise data locality without considering 
other parameters.
Network bandwidth is a precious resource in a cloud cluster and maintaining high bandwidth between arbitrary pairs of com-

puters becomes increasingly expensive with the growth of cloud cluster size, particularly since hierarchical networks are the 
norm for current distributed computing clusters3,8. The communication between machines in the same rack is “cheaper” than 
communication between racks5. If computations are not located close to their input data, the network has the potential to be a bot-
tleneck. Decreasing network traffic can simplify capacity planning. If parallel jobs are within high cross-cluster network traffic, 
they will compete for bandwidth, and modeling this dynamic network congestion strongly will complicate performance predic-
tion5. Because of these reasons, optimising the placement of computations to minimise network traffic is one of preliminary 
goals in a data-intensive computing platform, especially when the applications require big data5.
As for the time-variance of workloads21, it is desired to implement cloud resource allocation in a dynamic and adaptive 

manner. This implementation of cloud resources can reduce the amount of hardware required for a workload6,24. A scheduling 
framework requires an efficient resource allocation strategy to exhibit high dimensions in resource utility, which can improve the
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efficiency of resource utilisation, reduce tradeoffs and job completion time21. A core feature of cloud systems is that resources 
such as CPU, memory and I/O can be provisioned to the applications based on their requirements. The jobs are classified into 
CPU-intensive, memory-intensive and I/O-intensive based on their dominant resources requirements and consumptions9. In 
particular, when CPU-intensive, memory-intensive and I/O-intensive jobs are running simultaneously, the main problems then 
become how to properly schedule deadline-oriented jobs with precedence over other jobs and how to assign different jobs to 
different resources by balancing the tradeoff between data locality and run time blocking.
The challenge for scheduling strategies is that the fairness of resource allocation often collides with data locality and high 

deadline-based QoS. Dispatching jobs to the machines which have required data is “cheaper” than allocating jobs to other 
machines. To optimise data locality, the scheduling strategy can delay a job until there are enough available resources that the 
job requires. However, fairness benefits from allocating the best available resources to a job as soon as possible after they are 
requested, even if they are not the resources closest to the data5. Meanwhile, the jobs should also be guaranteed to finish 
before their deadlines. The goal of cloud providers is to try to finish and satisfy all the tenants’ requests and facilitate the cloud 
system’s resource utilisation, while the goal of tenants is to gain high quality service and finish their jobs as soon as possible 
for as little money as possible. In order to meet tenants’ deadline-based QoS requirements, while also enhancing data locality 
and fairer allocation of provisioning resources, we propose a highly efficient deadline constrained and data locality aware 
dynamic scheduling framework, named 3DSF.
Our proposed scheduling framework – 3DSF that integrates different schedulers together is essential to realise all these 

goals, simultaneously. The framework is motivated by real-world applications, especially for data-intensive applications, 
which process and generate a large volume of data. Our novel research, from both cloud providers’ and tenants’ perspectives, 
investigates key issues on how to provide efficient scheduling policies while also meeting QoS requirements, improving 
system’s throughput and resource utilisation, achieving better data locality, and reducing job completion time and network 
costs. We use a mechanism to determine when moving computation (putting jobs to the nodes with sufficient resources) is 
optimal and when moving data (putting jobs to the nodes with required data) is optimal and when to reasonably schedule jobs 
based on their deadlines in order to achieve a balance between resource fairness, data locality and the maintenance of a higher 
QoS, simultaneously.

Our 3DSF uses an adaptive suite to choose the corresponding scheduling strategy that satisfies the differing profiles of jobs 
that are submitted with factors such as the specific resource requirements, customised data locality and other special QoS. This
3DSF focuses on job, task and bottom hardware levels and does not consider the interference of multi-tenants. Our work does 
not consider the privacy and security of multi-tenants and assume that jobs from multi-tenants are independent. In addition, 
our work also does not concern the relevance of data, which are the possible shortcomings of our work. We develop and 
implement 3DSF scheduling framework in the open source Hadoop YARN implementation and perform comprehensive 
evaluations with various MapReduce workloads. Currently, our 3DSF mainly works on MapReduce workloads regardless of 
application types. The probability of missing deadline in Hadoop workloads can be minimised by exploiting the dynamics in 
resource availability and the flexibility in job scheduling. We lay the foundation for achieving these objectives with the key 
contributions of:

1. To satisfy each tenant’s QoS and reduce SLA violations, a real-time, preemptive, deadline constrained scheduler using 
queuing theory – PDSonQueue – is proposed, which enables jobs to better meet their QoS and also shortens a job’s 
completion time and improves the system’s throughput and performance;

2. To facilitate task scheduling and find the relationships between tasks and data easier, an optimised data locality aware 
scheduler for balancing time consumption and network bandwidth traffic – DLAforBT – is proposed, which improves 
data locality for tasks, with the optimal placement policy exhibiting a threshold-based structure, maximises resource 
utilisation, improves throughput and shortens completion time of jobs;

3. To dynamically provision resources and enhance fairer resource sharing, a fairer Dominant Resource Fairness (DRF) 
resource allocation mechanism with a 3-dimensional demand vector <CPU, memory, disk I/O> is presented to support 
disk I/O resources as the third dominant shared resource while maximising the number of jobs being allocated in the 
cluster to assist dynamic resource allocation; and

4. To efficiently run different applications for tenants, a scheduling framework is proposed, which comprises each of the 
above individual plug-in schedulers used in tandem. Regarding to the diversity of tenants’ resources and QoS 
requirements and heterogeneity of cloud nodes, our scheduling framework uses an auto-adaptive suite to choose the 
correspond-ing scheduler or appropriate combinations according to different scenarios and handle all the 
aforementioned issues simultaneously.
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The rest of the paper is organised as follows. Section 2 introduces the motivation of this work. Section 3 discusses the related 
work. Section 4 presents the overall design of our deadline constrained and data locality aware dynamic scheduling framework 
– 3DSF. Section 5 presents our improved resource allocation strategy. Section 6 describes our novel data locality aware task 
scheduler. Section 7 discusses our efficient deadline constrained job scheduler. Section 8 describes the integration of individual 
schedulers and the detailed architecture of our scheduling framework – 3DSF. Section 9 evaluates our scheduling 
framework by conducting a series of experiments and presents observations and results with threats to validity addressed in 
Section 10. Section 11 concludes the work and outlines future work.

2 MOTIVATION

Driven by large Internet services and a growing number of data-intensive scientific applications, researchers and practitioners 
have been developing diverse cloud computing frameworks to support scheduling in the cluster. Unfortunately, these 
frameworks do not resolve scheduling and resource allocation issues directly and cannot achieve high utilisation, efficient 
resource sharing, impactful data locality or satisfy users QoS at the same time. The main obstacle to this is the mismatch 
between the allocation granularities of these solutions for existing frameworks. There are studies on dynamic resource 
allocation and the impact that performance isolation has between applications and tenants in a shared computing environment 
possibly highlighting a new challenge for cloud computing21,22,23. Both over- and under-allocation of resources are 
undesirable and will adversely impact the tenant itself and others in the shared cloud environment. Furthermore, data locality 
is essential for reducing total job execution time, improving cross-rack communication and improving total throughput25. The 
other challenge for scheduling strategies is that the fairness of resource allocation often collides with data locality and 
deadline-based QoS. Finding a way to determine when moving computation (putting jobs to the nodes with sufficient 
resources) is optimal and when moving data (putting jobs to the nodes with required data) is optimal and when to reasonably 
schedule jobs based on their deadlines in order to achieve a balance between resource fairness, data locality and the 
maintenance of a higher QoS. Solving the conflict between satisfying deadline-based QoS requirement, fairer resource 
allocation and data locality simultaneously is a crucial issue. It is a better way using individual approach to solve each of the 
challenging issues and integrate all the approaches together as an entity. Therefore, proposing a highly efficient deadline 
constrained and data locality aware dynamic scheduling framework is essential.
We take a motivating example of our work as a scenario for problem analysis and point out the key challenges that need to 

be tackled. Assume that tenant A submits a CPU-intensive application (job) a with a deadline, tenant B submits a data-
intensive application (job) b which consumes more memory resource and has a deadline, and tenant C submits a data-intensive 
application (job) c which requires more I/O resource. To improve the system’s utilisation, it is better to dynamically allocate 
resources to tenants A, B and C according to the current system’s remaining available resources. When greater amounts of 
CPU-resources are available in the system, the job of tenant A should be prioritised to gain higher system’s utilisation, as 
job a is a CPU-intensive application. How many jobs of a, b, c should be allocated with resources to run in the system is 
one consideration. Meanwhile, both applications a and b have deadline requirements. To guarantee that tenant A’s and 
tenant B’s jobs complete before their deadlines, applications a and b should have higher priorities than application c. 
However, applications b and c are data-intensive, meaning that these applications will read and write large amounts of data 
during execution. Scheduling jobs on a server which has sufficient resources and relevant data can reduce completion time and 
network bandwidth I/O consumption.
If job b’s execution time can be shortened, job b has higher probability to be accomplished by its deadline. To achieve all 
these goals, one single scheduler is hard to realise all the functions. Thus, a scheduling framework that integrates different 
schedulers together is essential to realise all these goals. This framework needs to consider the cloud system with various node 
performance and running jobs with different resources requirements. Intuitively, the proposed scheduling framework should 
schedule jobs and dynamically allocate resources with regard to users’ QoS, data locality and network bandwidth utilisation, 
concurrently, while improving the system’s throughput, reducing deadline-based SLA violation and completion time, 
minimising the system’s overhead, and maximising resource utilisation.
3 RELATEDWORK

Multi-tenancy, as a new software architectural pattern, enables multiple instances of an application to occupy and share com-
puting resources9,10. Tenants need a scheduling framework that can efficiently run their applications in the cloud. Suitable
scheduling mechanisms for running such applications for multi-tenants in the cloud have been a major challenge, due to the
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problem of finding the best match of resource-workload pair and meeting QoS requirements simultaneously. The size of cloud
data is expanding at an impressive speed, and a large amount of data is generated and executed by cloud applications with data-
intensive characteristics. This brings to researchers a new challenge of deploying computation and data intensive applications
without any infrastructure investment.

3.1 Resource Provisioning
Resource allocation is a crucial issue in cloud computing, especially for on-demand resource offering. Multiples studies have
been conducted. Dynamic Resource Allocation (DRA) strategies can be categorised with amounts of taxonomies, in terms of
optimisation criteria (performance or energy), target architecture (homogeneous or heterogeneous), or criticality (hard or soft
real-time)26,27. The works in27,28,29,30 all focus on dynamic resource allocation without considering the disk I/O resources.
However, disk I/O is an extremely important factor when seen through its impact on traffic. The work in28 proposes the Dynamic
Priority (DP) parallel task scheduler for Hadoop. It makes users to control their allocated capacity through adjusting their
spending over time. The work in30 proposes a two-tiered on-demand resource allocation mechanism consisting of both a local
and global resource allocation to provide on-demand capacities to the concurrent applications based on control theory. The max-
min fairness algorithm31 is one of the most popular resource allocation mechanisms currently being used. This was originally
proposed for computer networks to facilitate better scheduling capability. Currently, it is being widely used in cloud computing,
with different versions of implementations such as Fair Scheduler32, Capacity Scheduler33, Choosy31, Quincy5, Carbyne34 and
DRF35. These schedulers attempt to optimise the minimum resource allocation needed received by each prospective tenant35.

3.2 Deadline Constraint
The predictability of jobs’ service time helps deadline constrained jobs to be finished within deadlines and to guarantee jobs’
QoS. A precise performance prediction model for services including job’s execution time and waiting time is needed, based on
systematic statistical analysis and history results by using existing performance estimation techniques, e.g. analytical modelling,
queuing modelling, task modelling, and empirical and historical data36,37,38. Queuing theory is a collection of mathematical
models of distinct queuing systems to systematically study waiting time and queues. Queuing models are widely used to model
service performance in cloud computing, aiming to optimise energy consumption, resource allocation, performance prediction,
resource management, load sharing, etc.39,40,11. For instance, work in11 uses an M/M/C/C queuing system with different priority
classes to model cloud datacenters, in order to support decision making with respect to resource allocation when different
clients negotiate different SLAs. Earliest Deadline First (EDF) is a dynamic priority real-time scheduling algorithm which pay
regard to time constraints of a task in scheduling them for execution41. Work in42 proposes a queuing theory based performance
model for a multi-priority preemptive M/G/1./EDF system. Their presented model estimates the mean waiting time for a given
class according to the higher and lower priority tasks receiving service prior to the target and the mean residual service time
experienced. Additional time caused by preemptions is estimated as part of mean request completion time.Works in43,44 propose
RDS, a Resource and Deadline-aware Hadoop job Scheduler that takes future resource availability into consideration when
minimising job deadline misses. They formulate the job scheduling problem as an online optimisation problem and solve it
using an efficient receding horizon control algorithm. Work in45 proposes and develops BIG-C, a container-based resource
management framework for Big Data cluster computing. Work in46 proposes a preemptive deadline job scheduling algorithm
based on the current status of the system and the job execution cost model to obtain the sub-optimal minimal completion time
within jobs’ deadlines. The key design is to leverage lightweight virtualisation, a.k.a, containers to make tasks preemptable
in cluster scheduling. Stratus47 proposes a cost-aware container scheduler, which orchestrates batch job execution on virtual
clusters, dynamically allocated collections of virtual machine instances. To our best knowledge, the preemption performance in
current preemptive schedulers such as42,46,48,49 is limited and most cloud deadline schedulers rarely consider preemption.

3.3 Data Locality Awareness
Data locality is one of critical factors affecting a cloud system’s performance. A large number of researches5,50 have been car-
ried out to address this challenge. BGMRS - a bipartite graph based MapReduce Scheduler36 takes data locality into account, in
terms of computing resource allocation for shortening the data access time of a job. BGMRS transforms deadline-constrained
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scheduling problem into a graph problem by minimum weighted bipartite matching. However the prediction model of Map/Re-
duce execution time is very simple and inaccuracy. However, some works in51,52,53 use directed acyclic graph (DAG) to model
parallel jobs, where each node of the DAG is a sequential sequence of instructions and each edge is a dependence between
nodes. BAR, a data locality task scheduler54 schedules tasks by taking a global view and adjusts task data locality dynamically
based on network state and workload in the cloud cluster. However, this work uses flow network, rather than more popular topol-
ogy network to model data placement. Work in55 proposes BOLAS, a task scheduling algorithm, which models the scheduling
process as a bipartite-graph matching problem to assign data block to the nearest task. BOLAS solves the model using Kuhn-
Munkres optimal matching algorithm. However, the weakness of BOLAS is to assume all the nodes are homogeneous, which
is unrealistic. Work in56 proposes a Hadoop Constraint Programming based Resource Management algorithm (HCP-RM) that
incorporates a technique for handling data locality. However, this work solves the scheduling problem on a closed system with
a fixed number of MapReduce jobs. Work in57 studies the data locality problem by utilising data migration and hotspot file pre-
diction for lowering task execution waiting delay, in which hot files are transferred periodically to multiple data centers during
information interaction. A key question is how to schedule tasks in the vicinity of their inputs so as to diminish shuffled data,
reduce unnecessary data transfer and network traffic, and improve system’s performance58. To make scheduling decisions, con-
structing a performance estimation model that predicts the execution time and waiting time of jobs in a cloud system is essential.
Work in59 proposes a novel data distribution model which distributes data based on the node’s capacity level respectively, in
which the node classification algorithm can improve data locality. Work in60 introduces a novel one-to-one sampling method to
calculate average execution time of map/reduce tasks respectively. However this kind of simple sampling method would reduce
the accuracy of execution time estimation.

3.4 Scheduling Framework
Many cloud computing frameworks61,62,23 have been proposed to support job/task scheduling or resource allocation. YARN
takes the cluster resource management capabilities from the MapReduce3 system, and then uses these new engines to utilise
the generic cluster resource management capabilities. YARN introduces a container concept to realise dynamic resource alloca-
tion. Omega6 attempts to lean more heavily towards distributed, multi-level scheduling. This system reflects a greater focus on
scalability but makes it harder to enforce global properties such as capacity/fairness/deadlines. The work in63 proposes a novel
predictive scheduling framework to enable fast and distributed stream data processing, which features topology aware perfor-
mance prediction and predictive scheduling. However, none of these frameworks focus on job scheduling, task scheduling and
resource allocation while also ensuring that they are complying with QoS regulations and implementing efficient data locality.
Most scheduling frameworks1,5,6 do not consider the importance of deadline constraints to the users. However, some deadline
constrained frameworks60,23 only use very simple prediction models to predict their service times and requirements. Imprecise
prediction models would reduce the performance of deadline constrained schedulers. Data locality is one of the most important
considerations for task scheduling in order to improve the response time and throughput. However, for reasons like data skew and
slots constraints, the goal of trying to place the computation task closest to the data location is not easy to achieve. To our best
knowledge, none of these cloud scheduling frameworks consider “job” level and “task” level scheduling problems concurrently.

4 A DEADLINE-CONSTRAINED AND DATA LOCALITY-AWARE DYNAMIC
SCHEDULING FRAMEWORK

Resource management and scheduling in multi-tenancy cloud computing becomes one of the most sophisticated missions due to
the inherent heterogeneity and resource isolation22. The purpose of our proposed scheduling framework is to maximise resource
utilisation, reduce the deadline-based SLA violation, improve system’s throughput, data locality, and network bandwidth utili-
sation, reduce completion time of jobs and to minimise a system’s overhead. As shown in Figure 1, this scheduling framework
operates through layers, ranging from the software layer to the infrastructure layer, which comprises some components: a dead-
line constrained preemptive job scheduler on the top layer, an optional data locality aware task scheduler on the middle layer,
a resource allocation strategy on the bottom layer and an adaptive suite to integrate mentioned above schedulers together. On
the top layer, users or tenants submit jobs (application instances) to the cloud with different QoS requirements. Considering the
diversity of QoS, “deadline” and “priority” are our selected QoS factors. Regarding the features of our scheduling framework’s
QoS, there are deadline jobs and non-deadline jobs. Additionally, the scheduling framework assigns the priority to jobs. From
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FIGURE 1 Design of our scheduling framework

the applications’ (users’) perspective, some jobs have higher priority than others, and the jobs with deadline are more impor-
tant than others. Higher priority jobs can preempt resources from lower priority jobs. When there are insufficient resources, the
scheduling framework could suspend low priority jobs and allow deadline jobs to continue to run by preempting resources in
order to ensure that they complete prior to their deadline.On themiddle layer, according to popular cloud data processingmodel,
the submitted jobs (application instances) are divided into tasks first, and the tasks are assigned to different cloud nodes, since
cloud computing processes data in parallel. If jobs are data or computation-intensive and require a large amount of data to pro-
cess the tasks, a data locality aware task scheduler is invoked. Intuitively, putting a task near its required data block will reduce
network traffic and cost. Otherwise, extra costs will incur to transfer the data. Finding the relationship between data blocks and
tasks and putting tasks on the “right” nodes is an effective way to solve data locality issue. On the other hand, when the jobs
are smaller, after jobs partition, the tasks can skip this optional data locality aware task scheduler and directly go to the bottom
layer to gain the resource allocation. On the bottom layer, the allocation strategy determines which job (user) should run next
according to current system’s resource utilisation. It is worth noting that resource allocation strategies typically do not consider
how they will deploy the related sub tasks to the cloud nodes and also do not consider jobs’ QoS. Our resource allocation policy
considers the whole system’s utilisation and determines how many jobs and what kinds of jobs are to be processed.
The overall resource allocation strategy used in our scheduling framework was proposed in our earlier work24, and the

described deadline constrained scheduler and data locality aware scheduler in 3DSF have been extended from our earlier
work64,65. A major new contribution of this work was to integrate all these three schedulers together, with highly efficient
performance. We have also set up an adaptive suite to automatically invoke schedulers according to different tenant’s requests.

5 OUR ENHANCED FAIRER RESOURCE ALLOCATION STRATEGY

Cloud computing enables resources to be shared between different tenants. The inherent challenge of resource allocation comes
when different tenants may have diverse resource requirements (CPU, memory and I/O). In order to provide better resource
allocation, the Dominant Resource Fairness (DRF) approach35 has been developed to address the “fair resource allocation
problem” that occurs at the application layer for multi-tenant cloud applications. Nevertheless, conventional DRF only considers
the interplay of CPU and memory, regardless of disk I/O resources and network bandwidth, which may imbalance disk I/O
utilisation, even allow some tenants to occupy an unbalanced proportion of disk I/O resources and result in over allocation of
resources to one tenant’s application to the detriment of others. We propose an improved Dominant Resource Fairness (DRF)
algorithm with a 3-dimensional demand vector <CPU, memory, disk I/O> to support disk I/O resources as the third dominant
shared resource24. Our technique is integrated with Linux Cgroup to control resource utilisation and incorporates data isolation
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to avoid undesirable interactions between co-located tasks. Our algorithm ensures all tenants receive system resources fairly,
which improves the overall utilisation and throughput of a system †.

5.1 Dominant Resource Fairness (DRF)
DRF35 is a method to provide fair allocation for heterogeneous resources. DRF attempts to maximise the “minimum dom-
inant share” of resources for all users. DRF attempts to fairly distribute memory and CPU resources among these different
types of jobs in a mixed-workload cluster66. But it does not consider disk I/O resources and network bandwidth, which is its
main weakness. Tasks consume different resources simultaneously, which may be bottlenecked and blocked on these different
resources. Without controlling the disk I/O, some tasks will exhaust disk I/O, which would incur disk blocking of other tasks
and increase their completion time. Improved job completion time after implementing a disk optimisation approach represents
a best-case scenario67. DRF uses the concept of a “dominant resource” to compare multi-dimensional resources. In a multi-
resource environment, resource allocation should be determined by the dominant share of an entity (user or queue), which is
the maximum share that the entity has been allocated of any resource (memory or CPU). In a nutshell, DRF tries to maximise
the minimum dominant share across all tasks using shared resources66. For instance, when user a runs CPU-intensive jobs (e.g.
Storm-on-YARN1) and user b runs memory-intensive jobs (e.g. MapReduce3), DRF seeks to equalise the CPU share of a with
the memory share of b. Eventually, DRF will allocate more CPU and less memory to a, and allocate less CPU and more memory
to b. In a homogeneous resource environment, all the tasks require the same type of resources and hence DRF reduces to max-
min fairness for the resource35,66. DRF algorithm35 identifies some significant allocation properties, such as sharing incentive,
strategy-proofness, envy-freeness and more importantly Pareto efficiency. The strength of DRF lies in these properties which
are satisfied, especially when these properties are trivially satisfied by max-min fairness for a single resource, but are important
in multiple resources. DRF provides incentives for users to share resources by guaranteeing that no user is better off in a system
in which resources are statically and equally partitioned among users. DRF ensures that users do not gain a better allocation by
lying about their resource demands. Moreover, DRF allocates all available resources subject to satisfying the other properties,
and without preempting existing allocations. DRF ensures that no user prefers the allocation of another user35.

5.2 Mathematics Principles of Our Approach
Assume a cloud system with 24 virtual CPUs (vCPUs), 36 GB RAM, 54 virtual disk I/O (disk I/O), a resource sharing degree
of Lev = 1, and 3 tenants (users). Our algorithm introduces a “resource sharing degree” concept, in which the lower the degree,
the more dominant the resource for a task. Tenant a runs tasks with resource requirement 3-dimensional demand vector <2
vCPU, 4 GB, 3 disk I/O>, Tenant b runs tasks with requirement <3 vCPU, 2 GB, 6 disk I/O>, and Tenant c runs tasks with
requirement <1 vCPU, 3 GB, 6 disk I/O>.
Naïve DRF algorithm only considers CPU and memory. In our enhanced fairer DRF allocation algorithm, CPU, memory

and disk resources are all considered. The restriction of I/O speed and amount of shared storage I/O can be set for each task,
job, tenant or group of tenants. Lev = 1 indicates the most dominant resource value. Therefore, after calculating the fraction
of required resources to the total resource, the largest one is selected as the dominant share. Tenant a requires { 1

12
vCPU, 1

9
memory, 1

18
disk I/O}, and its dominant share is memory. Tenant b needs { 1

8
vCPU, 1

18
memory, 1

9
disk I/O}, and its dominant

share is CPU. Tenant c requires { 1
24

vCPU, 1
12

memory, 1
9
disk I/O}, and its dominant share is disk.

This allocation can be calculated and simplified mathematically as follows. Given x, y and z respectively stand for the number
of tasks allocated by enhanced fairer DRF to Tenants a, b and c. Tenant a is allocated <2x vCPU, 4x GB, 3x disk I/O >, Tenant
b is allocated <3y vCPU, 2y GB, 6y disk I/O >, and Tenant c is allocated <1z vCPU, 3z GB, 6z disk I/O >. The total amount
of resources assigned to these 3 tenants are (2x + 3y + 1z) CPUs, (4x + 2y + 3z) GB, and (3x + 6y + 6z) disk I/Os.
Our enhanced fairer DRF algorithm attempts to equalise the dominant share of Tenants a, b, and c: 4x

36
= 3y

24
= 6z

54
. We should

point out that DRF does not always equalise tenants’ dominant share, since as one tenant’s resource requirement is satisfied,
the extra resources will be split to other tenants. If one type of resource is exhausted, the tenants that do not need that type of
resource will still continue receiving higher shares of other types of resources35.

†More details of this allocation strategy is described in our previous work 24
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Equation 1 provides an answer to this problem:
max(x, y, z) (maximise allocations)
constraint to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

2x + 3y + z ≤ 24 (CPU constraint)
4x + 2y + 3z ≤ 36 (memory constraint)
3x + 6y + 6z ≤ 54 (disk I∕O constraint)
4x
36
= 3y

24
= 6z

54
(equalise dominant sℎare)

(1)

Solving this equation, we get x = 4, y = 3, and z = 4 (note that one task must be processed as an entity, so the values of x,
y and z must be integers). Consequentially, Tenant a receives <8 vCPU, 16 GB, 12 disk I/O>, Tenant b receives <9 vCPU, 6
GB, 18 disk I/O>, and Tenant c receives <4 vCPU, 12 GB, 24 disk I/O>. Table 1 outlines how this could be achieved. Tenant
a receives 44.44% of the memory resource; Tenant b receives 37.50% CPU resource; and Tenant c receives 44.44% of the disk
resource. The system resource utilisation is considered as very high <87.50% CPU, 94.44% memory, 100.00% disk>.
In this scenario, the naïve DRF algorithm does not consider the disk I/O utilisation. Tenant a’s dominant share is memory

( 1
9
), b’s share is CPU ( 1

8
), and c share is memory ( 1

12
). Based on the max-min principle, c’s task is being executed first, and then

a’s task will be processed secondly. b’s dominant share ratio is the largest and runs next. After several iterations, all the disk
I/O resource is exhausted. Finally, a b and c have 3, 3, 4 tasks executed, respectively. The system utilisation is <79% CPU, 83%
memory, 100% disk>, which is 10% lower than our modified DRF method. Use of the naïve DRF algorithm easily results in
I/O exhaustion, which unfortunately, blocks other resource usage. Our method solves this issue and can also control each kind
of resource’s usage to avoid some tenants occupying too many resources, which leads to reducing others’ performance.

<1/12,1/9,1/18>						<1/8,1/18,1/9>										<1/24,1/12,1/9>	

<2/24,4/36,3/54>				<3/24,2/36,6/54>				<1/24,3/36,6/54>	

Table:	Using	our	resource	allocation	policy	in	a	cluster	of	24	CPUs,	36	GB	RAM,	54	disks	with	3	users	running	tasks	that	require	<2	CPU,	4	GB,	3	disk>,	
<3	CPU,	2	GB,	6	disk>,	and	<1	CPU,	3	GB,	6	disk>	respectively	under	 the	resource	sharing	degree	 is	1.	Each	row	corresponds	 to	our	DRF	making	a	
scheduling	 decision.	 A	 row	 shows	 the	 shares	 of	 each	 user	 for	 each	 kind	 of	 resource,	 the	 user’s	 dominant	 share,	 and	 the	 fraction	 of	 each	 resource	
allocated	so	far.	Our	DRF	repeatedly	selects	the	user	with	the	lowest	dominant	share	(indicated	in	bold	and	red)	to	launch	a	task,	until	no	more	tasks	
can	be	allocated.	(P.S.	allo.:	allocation		dom.:dominant	res.:resources).	

In	this	example,	we	consider	a	special	scenario	that	User	A	and	User	C’s	dominant	share	fraction	are	the	same.	Compared	to	those	scenarios	that	all	the	
users’	dominant	share	fraction	are	different,	this	case	will	indicate	the	generality	of	our	algorithm	more	accurately,	since	the	realization	of	this	policy	
depends	on	the	bottom	component.	Even	if	the	dominant	share	fraction	of	different	users	is	same,	it	will	not	influence	our	algorithm.	In	the	beginning,	
User	A	and	User	C’s	dominant	share	fraction	are	smallest	and	same	(1/9),	and	User	A	is	chose	first.	Next	iteration,	User	C’s	dominant	share	fraction	is	

Schedule Tenant a Tenant b Tenant c CPU 
total 

allocation 

Memory 
total 

allocation 

Disk I/O 
total 

allocation 
resource shares dominant 

share 
resource shares dominant 

share 
resource shares dominant 

share 
Tenant a <2/24,4/36,3/54> 4/36 <0,0,0> 0 <0,0,0> 0 2/24 4/36 3/54 
Tenant c <2/24,4/36,3/54> 4/36 <0,0,0> 0 <1/24,3/36,6/54> 6/54 3/24 7/36 9/54 
Tenant b <2/24,4/36,3/54> 4/36 <3/24,2/36,6/54> 3/24 <1/24,3/36,6/54> 6/54 6/24 9/36 15/54 
Tenant a <4/24,8/36,6/54> 8/36 <3/24,2/36,6/54> 3/24 <1/24,3/36,6/54> 6/54 8/24 13/36 18/54 
Tenant c <4/24,8/36,6/54> 8/36 <3/24,2/36,6/54> 3/24 <2/24,6/36,12/54> 12/54 9/24 16/36 24/54 
Tenant b <4/24,8/36,6/54> 8/36 <6/24,4/36,12/54> 6/24 <2/24,6/36,12/54> 12/54 12/24 18/36 30/54 
Tenant a <6/24,12/36,9/54> 12/36 <6/24,4/36,12/54> 6/24 <2/24,6/36,12/54> 12/54 14/24 22/36 33/54 
Tenant c <6/24,12/36,9/54> 12/36 <6/24,4/36,12/54> 6/24 <3/24,9/36,18/54> 18/54 15/24 25/36 39/54 
Tenant b <6/24,12/36,9/54> 12/36 <9/24,6/36,18/54> 9/24 <3/24,9/36,18/54> 18/54 18/24 27/36 45/54 
Tenant a <8/24,16/36,12/54> 16/36 <9/24,6/36,18/54> 9/24 <3/24,9/36,18/54> 18/54 20/24 31/36 48/54 
Tenant c <8/24,16/36,12/54> 16/36 <9/24,6/36,18/54> 9/24 <4/24,12/36,24/54> 24/54 21/24 34/36 54/54 

TABLE 1 Resource allocation example using our approach: Each row represents our DRF to make a scheduling decision. Each
row shows the share of each tenant for each kind of resource, the tenant’s dominant share, and the fraction of each resource
allocated so far. Our DRF repeatedly selects the tenant with the lowest dominant share (indicated in bold and red) to launch a
task, until no more tasks can be allocated. In the beginning, Tenant a and Tenant c’s dominant share fraction are smallest and
the same (1/9), and Tenant a is chosen first. Next iteration, Tenant c’s dominant share fraction is the smallest, so Tenant c is
selected. In the third iteration, Tenant b’s dominant share fraction is 0 so far and only Tenant b has not been given resources, so
b is selected. We repeat the iteration until the cluster is saturated. Even if at the first iteration, when Tenant c is being selected,
we could also get the same results.

5.3 Overview of Our Enhanced Fairer DRF Allocation Algorithm
Our enhanced fairer DRF allocation algorithm is added to the YARN Capacity Scheduler to consider CPU, memory and disk
I/O resources, as shown in Figure 2. The queue from YARN’s scheduling unit is a logical collection of applications submitted by
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Tenant 1Each application has its own 
property, maximum and 

minimum computing resource 
quotas, submitted tasks with 

different requirements <CPU, 
Memory, disk I/O> 

Capacity Scheduler Modified DRF algorithm

Queue 1

        Cgroup

Monitor

Root

Hadoop Policy 
1

Hadoop Policy 
3

Hadoop Policy 
2

Blkio 

...

...

Cgroup limits up various 
types of resources utilsation 

and monitors each container's 
resource status periodically; 

Blkio restricts disk I/O; 
configures corresponding 
Hadoop  resource scripts 

based on diverse requirements 

Queue 2 Queue 3 ...

...

Create

Put

Tenant 2 Tenant 3 ...

CPU 
control

Disk I/O 
control

Memory 
control

MemoryCPU

Application 1 Application 2 Application 3 ...

Hadoop Policy 
n

Queue n

Application q

Tenant p

Synchronously 
update the 

utilisation of 
resources for 

each task

Disk I/O
control

Container 
ID 1

Container 
ID 2

Container 
ID 3

Container 
ID m

FIGURE 2 Our enhanced fairer DRF allocation algorithm

diverse tenants and can also be regarded as a logical view of the resources on physical nodes. The capacity of each queue specifies
the percentage of cluster resources that is available for applications submitted to the queue. Tenants use YARN to orchestrate
applications with differing resource requirements and to arbitrate all kinds of resources. Capacity Scheduler is enabled to allocate
resources using the Dominant Resource Calculator based on our improved DRF model, where our algorithm is invoked.
Capacity scheduling represents one aspect of YARN resource management capabilities that includes Cgroup, node labels,

archival storage, and memory as storage. In our allocation algorithm, Cgroup is used with capacity scheduling to constrain
and manage CPU processes and ‘blkio’ configures different resource provision for jobs based on diverse tenants’ requests. A
container is a logical bundle of resources bound to a particular cluster node24. Containers with different resource configurations
grant rights to corresponding tasks and provide specific amount of resources to process them. Cgroup also monitors the running
status and allocates resources for each tenant and dynamically controls and tunes I/O and other resource allocations to isolate
data. With Cgroup strict enforcement turned on, each task gets the only resources it asks for. Without Cgroup turned on, the
DRF scheduler will do its best to balance allocations out, but unpredictable behaviour may occur. Our algorithm can force some
allocation to specified disks via I/O matching. For example, high I/O tasks are assigned to a disk partition with a high I/O
capability24.

5.4 Pseudo Code of Our Enhanced Fairer DRF Allocation Algorithm
Algorithm 1 shows the pseudo code of our modified DRF algorithm. A task is submitted with different resource demands, which 
is depicted by a 3-dimensional demand vector. In the naïve DRF algorithm, only CPU and memory can be regarded as a dominant
share. However, our algorithm adds disk I/O to this resource demand vector. Dosm is used to denote the demand vector of the 
next task that tenant m wants to launch (Line:3). The notations used in this work are listed in the Appendix. At each iteration, 
the scheduler selects the task with the lowest dominant share ready to run. If that tenant’s next ready task requirement (Demm) 
can
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Algorithm 1 Our Enhanced Fairer DRF Algorithm
1: Res = (r1,r2,..., rp)→ total resources capacities
2: Com = (c1,c2,..., cp)→ consumed resources, initial value = 0
3: Dosm (m = 1, 2, ...q)→ tenant m’s dominant shares, initial value = 0
4: Allm = (am,1, am,2, ..., am,p)(m = 1, 2, ..., q)→ the resources allocated to tenant m, initial value = 0
5: Lev = i (i = 1, 2, 3)→ receive amount of resources based on the level. The lower level is, the more dominant resource is.
6: Select tenant m with the lowest dominant share Dosm
7: Demm → the demand of the next task that tenant m wants to launch
8: if Com +Demm ≤ Res then
9: Com = Com +Demm → update consumed resources

10: Allm = Allm +Demm → update m’s resource allocation
11: Dos[] = sortpn=1(am,n∕rn)
12: Dosm = Dos[Dos.lengtℎ − Lev]→ determine dominant share degree
13: else

return→ the cloud cluster is full
14: end if

be satisfied, then the task will be executed. Next, the scheduler updates the tenant’s resource utilisation and adds the requirement
of last running task (Demm) to tenant m’s total allocated resources (Allm). When some tasks are finished, the tenants release
their corresponding resources and recalculate the tenants’ total allocated resources. Our algorithm uses Lev = i (i = 1, 2, 3) to
determine the degree of resource sharing: high, medium, and low (Line:5). The tenant’s task with lowest dominant shareDemm
is ready to run (Lines:6-7). If the inequality in line:8 is satisfied, the task is executed and then resource usage is updated for
Allm (Lines:9-10). When tasks finish, related allocated resources are released. Our algorithm can determine different degrees
of dominant share. If Lev = 3, the smallest amount of needed resource for a tenant is set as its dominant share, which realises
the lowest dominant resource share (Lines:11-12). If Lev = 2, we choose the middle amount of needed resource as dominant
resource share for a tenant. If Lev = 1, the most amount of required resource is chosen as dominant resource share. Our method
uses a binary heap to store each tenant’s dominant share and then uses an array sort to store and determine the degree of the
dominant share. Each scheduling decision takes O(n log n) time for n tenants.

6 A DATA LOCALITY AWARE TASK SCHEDULER

Scheduling optimisation is an important approach to improve data locality by attempting to locate a task and its related data on
the same node. We describe a novel optimised data locality aware task scheduler for balancing time consumption and network
bandwidth traffic – DLAforBT – to improve data locality for tasks, with the optimal placement policy exhibiting a threshold-
based structure, improving resource utilisation and throughput and shortening completion time64. DLAforBT64 transforms the
data locality scheduling problem into the well-known maximum weighted bipartite matching (MWBM) graph problem; uses
a judgment mechanism to dynamically adjust task allocation and an embedded precise prediction model to determine moving
computation or moving data, which demonstrates the benefits it offers to cloud systems; and ranks a list of idle computation
capacity nodes based on descending order and gives different priorities to nodes, to maximise resource usage ‡. This scheduler
focuses on fine-grained task scheduling for high-latency applications. DLAforBT also makes approximations when schedul-
ing and trading off many of the complex features supported by sophisticated schedulers in order to provide higher scheduling
throughput. Our DLAforBT mainly pays attention to data or computation intensive jobs. When new jobs come, DLAforBT can
allocate them to appropriate nodes. This scheduler can process both batch jobs and interactive jobs.

‡More details of this scheduler is described in our previous work 64
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6.1 Data Placement Modelling
Our task scheduling is a bipartite graph matching which maps the knowledge of data block distribution and relevant performance
of computing nodes. In this work, the cloud storage system is based on Hadoop distributed file system (HDFS)7. HDFS is based
on the Google file system, which is designed with the master-slave architecture and can run on a cluster of computers that spread
across many racks7. Each input file in HDFS is split into several fixed-size data blocks. Data blocks are distributed across nodes,
and each of them is generally replicated as 3 times for data coverage and fault tolerance, in which placing one replica of the data
block on a node in the same rack and the other replica on a node in another rack. We consider to schedule a set of tasks in a
cloud system. As shown in Figure 3, there are p (p = 6) tasks and q (q = 3) nodes (servers), where each task should be processed
on one node. A job will not be completed until all the sub tasks are finished. We rank nodes based on idleness utilisation of
computation capacity in a descending order. Usually, we choose the node on the top of the ranking list with a required replica.
The node with the highest available resource utilisation will be the first option to process tasks. This problem has been stated as
NP-complete in strict cases54.

Node 
1

Node 
2

Node 
3

Task 
1

Task 
2

Task 
3

Task 
4

Task 
5

Task 
6T

S

E

weight

FIGURE 3 A data placement model G(T ∪ S,E)

The data placement is modeled by a weighted bipartite graph G = (T ∪S,E), let p = |T | and q = |S|, where, T is the set of
tasks, S is the set of cluster nodes, and E ⊆ T × S is the set of edges between T and S §. weii is the set of edges’ weights and
indicates remaining available resource utilisation of nodes. Resource utilisation of Node i is uires. Thus the available resource
utilisation of Node i is uiava_res = 1− u

i
res, which is denoted as weightwei(∗, i) of connected node i. Edge e(t, s) denotes that the

input data blocks of task t ∈ T is placed on the node s ∈ S. SGpre(t) is the set of task t’s preferred nodes in G. Assuming that
SGpre(t) ⩾ 1, it means all of the nodes in T have at least 1 degree. When the degree is larger than 1, task t selects node s which
has maximum weight weis, s ∈ SGpre(t), under the same circumstance that several nodes all have the same required data blocks.
The task allocation can be transformed to the maximum weighted bipartite matching problem. Resource allocation is simply

described as a function f ∶ T → S that allocates task t to node f (t). Defining � is the allocation for task t. Under current total
allocation

∑

t∈T
�(t) in the cloud, some nodes are assigned for some tasks. Assuming the tasks are performed sequentially on one

node54. To avoid overload of some nodes and hotspots, and balance loads among the nodes, there exist multiple edges e(t, s),
between task t and nodes. Choose the node which has the maximum weightwei(t, s) and then mark s as �(t). Task t is allocated
to Node �(t). Node �(t)’s resource utilisation is u�(t)res , and the available resource utilisation of Node �(t) is u�(t)ava_res = 1 − u

�(t)
res .

Under �, task t is local iff �(t) is defined and there is an edge e(t, �(t)) in data placement graph G. Otherwise, task t is remote.
Let loc be the number of local tasks and rem be the number of remote tasks, respectively.

6.2 Transfer Time
Each job j is associated with a data retrieval limit, which is represented as the maximum number of hops ℎj allowed to access a
data set. The data retrieval cost restricts the distance between the processing node with task t and the storage node with the data
set of the task36. When node s runs task t, the transfer capability of node s is defined as follows36. In36, it dedicates the data

§The notations are listed in the Appendix.



Jia Ru ET AL 13

to the task is over TCP protocol. In TCP, the transfer throughput is dependent on TCP window size, the size of transferred data
set, and the round trip delay time (RTT). Task t’s transfer capacity capt can be estimated as follows:36

capt =
twt

rttt(ni, nj)
(2)

where twt is TCP window size of an initiated TCP connection in task t which specifies the maximum number of data bytes to
be received, rttt(ni, nj) is the round-trip delay time for TCP connection between node ni and node nj . With Equation (2), if task
t receives data block dt with size ||dt||, data transfer time T trant (dt) can be estimated as36:

T trant (dt) =
|

|

dt||
capt

= |

|

dt|| × (
rttt(ni, nj)

twt
) (3)

6.3 Remaining Execution Time Estimation
We design a model to estimate the remaining time of running jobs. To judge moving computation or data, we must estimate the
resource releasing time (or the remaining execution time of tasks). Machine learning (ML) has been explored for performance
prediction in individual compute nodes and distributed systems. The work in68 presents a grey-box approach based on ML
regression techniques for performance prediction in cloud environment. The use of ML techniques opens up the possibility to
include a large number of node-specific factors that affect performance, thereby facilitating the capture of resource heterogeneity
and contention68. The results in68 have shown that supervised learning regression techniques, such as Multilayer Perceptron
(MLP), have good prediction accuracy and prediction computation time for the conditions studied. MLP model as a back-
propagation method based on neural networks is precise enough to estimate the remaining execution time of tasks. We chose
MLP in our implementation, which proved to be satisfactory in our experiments. In this work, Keras69 MLP API is invoked to
realise execution time prediction. We use ReLu (Rectified Linear Units) as our activation function.The ReLu activation function
f (x) is improved as:

f (x) =

{

x+|x|
2
, � = 0

1+�
2
x + 1−�

2
|x| , � ≠ 0

(4)

where x is symbolic tensor to compute the activation function, and � is scalar of tensor, which is optional, aiming to slope for
negative input, usually between 0 and 1. The default value of 0 will lead to the standard rectifier, 1 will lead to a linear activation
function, and any value in between will give a leaky rectifier.

6.4 Cost of tasks
To capture locality, we define a cost function for a task that measures the sum of the execution time and the input data transfer
time. C(t, �(t)) denotes the cost of task t which is processed on Node �(t). It is defined as follows:

C(t, �) =

{

Cloc , if t is local in α
Crem, otherwise

(5)

Cloc is local cost and Crem is remote cost. If all the required data blocks are in the same node, the time of reading input data
from the local disk is negligible. Thus, Cloc indicates the execution time of task t, while Crem is the sum of execution time and
data transfer time. Remote tasks compete for network resources, so remote cost Crem grows with the increment of the number
of remote tasks. Assuming that

C�
rem = Crem(rem), C�

loc = Cloc(loc) (6)
where, Crem(∙) and Cloc(∙) are monotone increasing functions, rem is the number of remote tasks and loc is the number of local
tasks. Jobs are submitted and are divided into small tasks which are processed in parallel. Consequently, the total completion
time of jobs T comtotal is:

∑

t∈T
C(t, �). The task allocation problem can be transformed to the maximum weighted bipartite matching

problem. This problem finds a complete allocation that minimises the total completion time, reduces the number of remote
tasks rem, and improves system’s throughput and locality rate. Edge e(t, �(t)) indicates that Node �(t) has task t’s data. Putting
t on Node �(t) or another node depends on available resource utilisation of Node �(t): u�(t)ava_res, and the judgment mechanism
which works by evaluating data transfer time T trant (dt) and resource releasing timeW rel

�(t).
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6.5 Overview of DLAforBT

Cloud Cluster
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FIGURE 4 DLAforBT scheduler architecture: moving computation or moving data?

DLAforBT finds an efficient solution in time O(n3). On investigating a feasible solution, one crucial obstacle is to gain a
weighted perfect matching when nodes’ resource utilisation varies frequently. Figure 4 presents our DLAforBT’s architecture,
including a task allocation policy, a ranking list of idle resource usage for cluster nodes, a judgment mechanism and an inside
prediction model. Users submit jobs to the cloud and the jobs are divided into n tasks (1). NameNode manages the file system
metadata (2). DataNodes spread across multiple racks and store data (3). These n tasks need data blocks that are mostly stored
in DataNode 1 and DataNode 2 on Rack 1, so most of these tasks should be run on Rack 1 and the corresponding containers
should also be created and put on Rack 1. Task 1 is deployed on DataNode 1 which has 3 data blocks (4). It ranks DatasNodes
based on a descending order of idle resource utilisation (5). Task 1 occupies some resources of DataNode 1. So DataNode 2’s
idle resource utilisation is higher than that of DataNode 1, and DataNode 2 has higher priority. Thus even if DataNodes 1 and
2 both have same data blocks, task 2 should be allocated to DataNode 2 (6). DataNodes 1 and 2 are busy in processing tasks
and the nodes are nearly full, so the new coming task 3 cannot gain sufficient resource from these 2 DataNodes, even if they
have the most relevant data blocks. At this stage, the system should consider waiting for resources to be released to allocate task
3 on DataNode 1 or 2, or putting task 3 to another node. DLAforBT estimates enough resource releasing time of DataNode 1
or 2 and calculates data transfer time to DataNode 3 which has the second most corresponding data of task 3. If our judgment
mechanism finds resource releasing time is larger than data transfer time, then task 3 will be allocated to DataNode 3 (7). If all
nodes on Rack 1 are busy, then task n cannot get enough resource from Rack 1. DataNode 5 on Rack 2 is idle, but it only contains
2 required data blocks (8). Thus, to process task n, the scheduler would need to transfer 1 data block (orange) from Rack 1 and
1 data block (yellow) from DataNode 4 to 5 (9). Our judgment mechanism finds that the data transfer time to DataNode 5 is
smaller than the waiting time for releasing resource from DataNodes 1 and 2 (10). Thus task n is put on DataNode 5.
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Algorithm 2 DLAforBT Scheduler
Input: A set J of jobs with different resource requirements and a set S of nodes with heterogeneous performance
Output: Data locality aware scheduling for the tasks of J
1: while (jobs run their sub tasks) do
2: Resnrem → remaining available resources of node n; Demt → the resource demand of taskt
3: for (each job j of J in the queue) do
4: Partition job j into sub tasks T
5: end for
6: // Bipartite graph modelling
7: Invoke Algorithm 3 to model the connections between T and S
8: T ← collect the running tasks of such jobs
9: for (each task t of T ) do
10: f (t)← find the feasible nodes of t
11: Collect f (t) in S
12: end for
13: Form a weight bipartite graph based on T and S sets
14: // Scheduling problem transformation
15: Apply the maximum weighted bipartite matching (MWBM) to obtain the optional task scheduling of T
16: // Judgment mechanism
17: Invoke Algorithm 4 to determine moving data or computation
18: After MWBM, t→ node f (t)
19: if (Resf (t)rem < Demt) then
20: Apply judgment mechanism to decide t’s placement: put t on f (t) or move t to another node
21: else
22: Put t on f (t)
23: end if
24: Create a container cont for t, and cont has Demt resources
25: end while

6.6 Pseudo Code of DLAforBT
Algorithm 2 describes the approach of DLAforBT. When a job is submitted, the job is associated with data retrieval and placed
in a queue. After partition, the job is divided into tasks (Lines:1-4). Whenever one or more jobs in the ready queue run their
tasks simultaneously, these running tasks are collected in task set T . Next, DLAforBT finds the feasible nodes of each running
task (Lines:7-8). If node s is a feasible node of task t, node s will provide the appropriate execution performance to meet task t’s
requirements and data retrieval of the original job. Work in36 declared that job characteristics can be obtained by job profiling.
This characteristic provides inference information between input data blocks and tasks. Using the inference information, we can
precisely know that the locations of data blocks linked to tasks. For all running tasks, the feasible nodes found are kept in set S
(Lines:9-12). Based on sets T andS, we construct a weighted bipartite graph to represent the scheduling (allocation) relationship
between T and S (Line:13). Yet, even if finding appropriate node f (t) for task t, f (t) may not provide enough resources for t
(Lines:14-15). We use our judgment mechanism to decide whether moving t to other nodes, or waiting on f (t) until f (t) has
enough resources to run t (Lines:17-23). A corresponding container cont with a timestamp is created for task t (Line:24).

6.6.1 Weighted Bipartite Graph Formation
The data volume is increasing vastly. Today’s data analytics clusters are running ever long and high-fanout jobs. These jobs
arise not only due to frameworks targeting the latency, but also as a result of breaking long-running batch jobs into a large
number of short tasks which tries to improve fairness and mitigate stragglers70. Multiple submitted jobs from multiple tenants
are divided into tasks, which present a difficult scheduling challenge. To run tasks efficiently in parallel, these tasks must be
allocated to appropriate nodes and scheduling decisions must be made at very high throughput. These tasks are going to be
immensely distributed in volume. To improve the efficiency of task scheduling, we also allocate individual tasks to different
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intensive queues according to their different dominant resource consumptions. Such task allocation is a significant issue of the
scheduling problem71.
To efficiently solve this task allocation problem, we use a weighted bipartite graph to model all feasible allocation cases

between tasks and nodes. Given a weighted bipartite graph, the maximum weighted bipartite matching problem is to select a
maximum number of adjacent weighted edges, so that the total weight of the selected edges is maximised. Kuhn-Munkres (KM)
algorithm is a combinatorial optimisation algorithm that solves the assignment problem in polynomial time which anticipates
latest primal-dual methods72. KM algorithm is widely used in weighted bipartite graph model to realise task scheduling, such
as54,55,73. The KM algorithm72 is an efficient way to find the maximum weight perfect matching in a weighted bipartite graph
and find a good feasible labeling that remains enough edges in graph. If an edge e(t, s) is selected, it represents that task t will
be assigned to node s to run. Non-adjacent edge selection makes that the selected edges do not have required data blocks or
enough resources to process the tasks. By minimising the number of non-adjacent edges, the tasks should be allocated to the
nodes which have relevant data blocks as much as possible. By maximising the weights of adjacent edges, the nodes which
have relevant data to process corresponding tasks having maximum resource utilisation should be the first option. The time
complexity of KM algorithm in our work achieves O(n3) running time.

Algorithm 3 MaximumWeighted Bipartite Graph Formation
Input: A set T of tasks, a set S of heterogeneous nodes
Output: A weighted bipartite graph BG = (T ∪ S,E)
1: for (each task t of T ) do
2: for (data locality nodes of t) do
3: Locality nodes are with the h-hop characteristic, which are determined by Equation (7)
4: if (node s meets task t’s data requirements) then
5: S ← S ∪ s
6: wei(t, s)← The edge weight is associated with idleness utilisation for computation capacity of s
7: E ← E ∪ (t, s), (t, s) is the edge between t and s
8: end if
9: end for
10: end for
11: for (each task t of T ) do
12: max_wei(t, s)← Find the maximum edge weight from all the edges between s and t
13: end for

Algorithm 3 shows maximum weighted bipartite graph modelling. Assuming that nodes ns and nd with resources to run task
t and with the input data blocks of t, respectively. The following equation restricts the data retrieval limit between nodes ns and
nd based on a hop limit ℎ36.

Dist(ns, nd) ⩽ ℎ (7)
whereDist(ns, nd) is the number of hops between nodes ns and nd (Line:3). The number of hops denotes the number of switches
involved in the data transfer path between ns and nd . T and S are the two disjoint node sets of BG. If node s of S is a feasible
node of task t of T , there is a corresponding edge e(t, s) in BG (Lines:4-5). An edge is associated with an edge weight. We label
the weightwei(t, s) as the available resource utilisation of node s: uiava_res = 1− u

i
res (Lines:6-7). In BG, it is possible that some

nodes act as the feasible nodes of task t. We only choose the node with the maximum weighted edge (Lines:11-13).

6.6.2 Judgment Mechanism
The network is shared between nodes, which is also a well-known bottleneck. Sometimes, required data blocks are quite large.
Transferring these data blocks to another node via network may occupy too much bandwidth and introduce network bottleneck.
To reduce the influence of network bandwidth limitation, we build a judgment mechanism to decide whether moving data blocks
from one node to another node or moving tasks (code) from one node to another node.
Algorithm 4 presents the pseudo code of our judgment mechanism. When there are not enough resources in the appropriate

node f (t) for processing task t, we calculate the required data transfer time for task t, T trant (dt), and estimate the required amount
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of resource releasing time of f (t),W rel
f (t) (Lines:1-4). That means we need to predict the remaining execution time for running

tasks,W soj−rem. We use a multilayer perceptron prediction model to train historical data, and gain an estimated execution time
of tasks,W soj . We can capture previous running time of tasks,W soj−alr, to get

W rel
f (t) = W

soj−rem = W soj −W soj−alr (8)

When resource releasing timeW rel
f (t) is less than data transfer time T trant (dt), task t costs less tradeoff on f (t), so we put t on f (t)

(Lines:5-7). Otherwise, task t spends more time on waiting for resources on f (t), so we move data to another node (Lines:8-
9). Network bandwidth also has an impact on node selection. Sinbad has adapted network resource utilisation to navigate the
data replica location selection74. When moving tasks to other nodes, considering the network bandwidth consumption, firstly,
we select the node from the same rack according to the ranking list of idleness utilisation for computation capacity. If all these
nodes on the same rack do not have enough resource to process task t, then we select the nodes on different racks based on the
ranking list.

Algorithm 4 Judgment Mechanism
Input: A set S of nodes linked to a set T of tasks
Output: Putt t on their relevant nodes f (t) or move t to other nodes
1: while (Demt < Res

f (t)
rem ) do

2: Calculate t’s data transfer time T trant (dt)
3: Call Keras API to train tasks → get the execution time of tasks running on f (t)
4: Calculate f (t)’s resource releasing timeW rel

f (t) = remaining execution time of task on f (t)
5: if (W rel

f (t) < T
tran
t (dt)) then

6: Put t on f (t) to wait for resources
7: else
8: find a neighbouring node nnei ← (Resnneirem > Demt)
9: Move t to nnei
10: end if
11: end while

7 A MULTI-TENANT DEADLINE CONSTRAINED JOB SCHEDULER

For real-time applications, deadline is a major criterion in judging QoS.We present a real-time, preemptive, deadline constrained
scheduler using queuing theory – PDSonQueue – which enables better QoS, such as reducing deadline-based SLA violation,
shortening jobs’ completion time and improving system’s throughput and performance65. PDSonQueue, as a dynamic priority
real-time greedy job scheduler builds an M/M/n mathematical queuing model to accurately predict jobs’ execution time and
waiting time, where jobs arrive by following a stochastic process and request resources. This scheduler introduces a novel concept
– “Earliest Maximal Waiting Time First (EMWTF)” to fine tune job scheduling to guarantee the job being accomplished within
the deadline. The deadline constrained jobs are scheduled preemptively from low priority jobs with the intent of maximising
the number of jobs completed within the deadlines, while allowing system’s resources to be shared by other regular jobs ¶.

7.1 Earliest Maximal Waiting Time First (EMWTF)
In cloud computing, deadline is one of the most significant QoS features and sorting jobs based on deadlines is critical. Indeed,
the long jobs may not be affected if they are delayed in order of seconds, while short jobs which can also be latency sensitive have
tighter SLO bounds. However, no matter long jobs or short jobs, they both need to be finished before their deadlines, regardless
of the delay effect. We use deadline to determine the jobs’ importance.

¶More details of this scheduler is described in our previous work 64



18 Jia Ru ET AL

Although EDF algorithms are popular in guaranteeing job deadlines in real-time systems, they are not effective in dynamic 
cloud environments, especially a Hadoop cluster with dynamic resources43. Physical resources and workloads are 
heterogeneous in cloud cluster. Each application(job)’s execution time is also different. Even if for the same application, the 
jobs may need various data blocks, so the execution time is diverse. Some jobs may be long jobs and others may be short ones. 
A long job has a longer deadline than that of short job, but the long job’s execution time is also longer than that of the short 
job. Thus, long jobs’ maximal waiting time (the difference between deadline and execution) may be shorter than the waiting 
time of short jobs. That means the long job may have less time in the queue to wait to run. For instance, job a is PI estimation 
with 180 seconds (secs) deadline requirement, and job b is data migration application with 600 secs deadline requirement and 
its data size is 10 GB. Job a may need 100 secs to execute, and its maximal waiting time is about 80 secs, while job b may 
need 550 secs to complete this data migration, and its maximal waiting time is only about 50 secs. Compared with 
conversional deadline scheduling algorithm
such as EDF, job a with smaller deadline, so it should be ahead of job b in the deadline queue and be performed first. 
However, in our scheduler, we put job b first, since its waiting time is smaller than job a. As long as we begin to run both of 
these 2 jobs during their maximal waiting time, both of them will be finished before their deadlines. Given job b has 50 secs 
buffer and job a has 80 secs buffer, it is necessary to schedule job b first.
Therefore, even if with a longer deadline, the long job still needs to be processed earlier than that of short job. Within 

maximal waiting time, a job gets the necessary resources to run, which will guarantee this job will be finished before its QoS 
specified deadline. Since execution time varies based on different job types and input data sizes, we introduce a new concept 
“Earliest Maximal Waiting Time First” (EMWTF) instead of EDF. If using EDF, short job should be put ahead of long job to 
be completed. This may result in that long job fails to get resources during the waiting time and cannot be executed on time. If 
using EMWTF, long job which has less waiting time should be put ahead to be processed before short job, while short job has 
more waiting time to gain resources, so it also can be finished before its deadline. Therefore, by sorting jobs based on 
EMWTF, more jobs would be completed before their deadlines.
As a cloud centre can obtain many server nodes, we use an M/M/n mathematic queuing model to model job scheduling to 

estimate service time, waiting time, assuming an exponential density function for the inter-arrival and service times. Assuming 
that we have had some historical data, such as jobs’ execution log, including finished jobs’ service time and waiting time, as in 
practice, many jobs were run in the past. So we can predict a job’s maximal waiting time before a deadline job is executed. 
Within the maximal waiting time, a job will obtain the necessary resources, which will guarantee this job finishes before its 
QoS specified deadline.

7.2 Mathematical Analysis of Job Scheduling
A cloud system contains n heterogeneous computing nodes, donated as Node1, Node2,..., Noden. The submitted jobs are 
served by n nodes operating independently75. We assume the arrival of the jobs conforms to a Poisson process �i. The service 
rate is also assumed to be independent and exponentially with parameter �k 

75, where #:

�k = min(k�, n�) =
{

k�, f or 0 ≤ k ≤ n, n�, 
f or k > n

The mean service rate of computing node j is �, and thus mean service rate of entire cloud system is n�. When � 
n� < 1, the

theory75 has proven that the cloud system being stable, marking �1 = � 
�, � = �n� . The service is the same as the job arrival rate

that follows the Poisson process. Fig. 5 shows the M/M/n queuing model in cloud computing.
The itℎ job jobi is defined as jobi = {Demi, ti

arr, ti
dea } or jobi = {Demi, ti

arr, pi}, where Demi indicates required resource,
ti
arr presents arrival time, ti

dea indicates deadline of the job, and specially, pi indicates the job is regular and there is no deadline 
constraint. A regular job has priority: low and high. p0 means low priority and p1 means high priority.

7.2.1 Steady State Equation
The state set of the cloud system is Φ = {0, 1, 2, ...}, so these balance equations can be derived by the state transition flow 
diagram of M/M/n queuing model depicted in Figure 6. It shows the probability of different system’s status and servers’ status.
When the state is k (0 < k ≤ n), k servers are busy and the remaining n − k servers are idle. When the state is k > n, all the n 
servers are busy, and k−n jobs are waiting for the service. Assume there are 2 waiting queues: deadline queue and regular 
queue.

#The notations are listed in the Appendix.
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FIGURE 6 State transition flow diagram of M/M/n queuing model

When the system is stable, let � = �
n�

and the stability condition � < 1. The stationary probability pk for state k can be
determined by solving the set of balance equations, which state that the flux into a state should be equal to the flux out of this
state when the system is stationary11:

When state k = 0, �p0 = �p1, p1 = �1p0 = n�p0;
When state k = 1, �p1 = 2�p2, p2 =

�21
2!
p0 =

n2

2!
�2p0;

When state k = 2, �p2 = 3�p3, p3 =
�31
3!
p0 =

n3

3!
�3p0;

...
When state k = n − 1, �pn−1 = n�pn, pn =

�n1
n!
p0 =

nn

n!
�np0;

When state k = n, �pn = n�pn+1, pn+1 =
�n+11

n!n
p0 =

nn

n!
�n+1p0;

...
When state k = n + r − 1, �pn+r−1 = n�pn+r, pn+r =

�n+r1

n!nr
p0 =

nn

n!
�n+rp0.

(9)

In general,

pk =

{ �k1
k!
p0 =

nk

k!
�kp0, 0 ≤ k < n

�k1
n!nk−n

p0 =
nn

n!
�kp0; k ≥ n

(10)

According to regularity condition
∞
∑

k=0
pk = 1, when � < 1, we can get p0 = (

n−1
∑

k=0

�k1
k!
+ �n1

n!
1
1−�
)−1.

7.2.2 Mean Queue Length, Sojourn Time and Waiting Time
For estimation of mean queue length, sojourn time and waiting time, we declare some parameters and some notations (shown
in TABLE 2).
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TABLE 2 Summary of Notations

Notations Description
Lsys total number of jobs in cloud, including the ones waiting in the queue and being serviced. L̄sys is the mean of Lsys
Lwai total number of jobs waiting in the queue, excluding the ones being serviced. L̄wai is the mean of Lwai
Lser total number of jobs being serviced. L̄ser is the mean of Lser
L average number of jobs in the queue at any time

W wai
i the time that jobi waits in the queue, excluding the time that jobi spends on service. W̄wai is the mean waiting time

W soj
i jobi’s sojourn time, including the time that jobi waits in the queue and are in service. W̄soj is the mean sojourn time
Tser average service time of a job, denoted as 1

�

The mean number of jobs in the system is given as follows:

L̄sys = L̄wai + L̄ser = L̄wai + �1 =
��n1p0

n!(1 − �)2
+ �1 (11)

The mean number of jobs waiting in the queue is below:

L̄wai =
∞
∑

k=n
(k − n)pk =

∞
∑

ℎ=0
ℎpℎ+n =

�(n�)n

n!
p0

∞
∑

ℎ=1
ℎ�ℎ−1 = ��n1

n!(1−�)2
p0 =

�n+11

(n−1)!(n−�1)
2 p0 (12)

The following equation shows the mean number of jobs that are being serviced in the system:

L̄ser = k̄ =
n
∑

k=0
kpk + n

∞
∑

k=n+1
pk =

n
∑

k=0
k ∙ n

k

k!
�kp0 +

∞
∑

k=n+1
n ∙ n

n

n!
�kp0 = n�(

n−1
∑

k=0
pk +

∞
∑

k=n
pk) = n� = �1 (13)

The variance of mean number of jobs waiting in the queue shows as follows. Since,

E(L̄2wai) =
∞
∑

k=n
(k − n)2pk =

∞
∑

ℎ=1
ℎ2pℎ+n =

∞
∑

ℎ=1

ℎ2

n!nℎ
(n�)ℎ+np0 =

(n�)n�2p0
n!

∞
∑

ℎ=2
ℎ(ℎ − 1)�ℎ−2 + (n�)n�p0

n!

∞
∑

ℎ=1
ℎ�ℎ−1

= 2�2�n1p0
n!(1−�)3

+ L̄wai =
1+�
1−�
L̄wai

(14)

Thus,
�2(L̄wai) = E(L̄2wai) − [E(L̄wai)]

2 = L̄wai(
1 + �
1 − �

− L̄wai) (15)
In addition,

E(Lsys) = E(Lwai) + E(Lser) , E(Wsoj) = E(Wwai) + E(Tser) (16)
we can easily get

E(Tser) =
1
�

(17)
If we only consider servers of the system, without regard of the waiting queues outside the servers, it is easy to observe

that there are no losses. Therefore the arrival rate in this cloud system is �, and the mean waiting time of each customer is
E(Tser) =

1
�
75. When a queuing system reaches statistical equilibrium and L = �W̄soj , L̄wai = �W̄wai, our queuing system

obeys Little’s Law75. We can get the following equation:

W̄wai =
L̄wai
�

=
�n1p0

�n ∙ n!(1 − �)2
, W̄soj =

L̄sys
�

= W̄wai + Tser = W̄wai +
1
�

(18)

The probability of that a job must wait in the queue to gain service from the cloud P (waiting) is shown as follows:

P (W aiting) =
∞
∑

k=n
pk =

∞
∑

k=n

nn

n!
�kp0 (19)

whereas, P (W aiting) = C(n, �), which is also referred as Erlang’s C formula75:

C(n, �1) =
∞
∑

k=n
pn ∙ �k−n =

pn
1 − �

=
npn
n − �1

(20)

To calculate E(Lser) for the M/M/n queue, through Little’s Law, the mean number of busy servers is given below:

E(Lser) =
�
�
= � (21)
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To calculate E(Lwai), we assume two mutually exclusive and exhaustive events: {q ≥ n} and {q < n}, and then we get

E(Lwai) = E(Lwai|q ≥ n)P (q ≥ n) + E(Lwai|q < n)P (q < n) (22)

To obtain E(Lwai|q ≥ n), noted that the evolution of the M/M/n queue during the time when q ≥ n is equal to that of M/M/1
queue with the arrival rate � and the service rate n�. Therefore, the mean queue length of this kind of M/M/1 queue is equivalent
to 1

1−�
, where � = �

n�
. Therefore,

E(Lwai|q ≥ n) =
�∕n

1 − �∕n
=

�
n − �

(23)

Due to E(Lwai|q < n) = 0, P (q ≥ n) = C(n, �), we get

E(Lwai) = C(n, �)
�

n − �
(24)

The following formulas calculate the distribution of waiting time and sojourn time. An arriving job has to wait if the number
of arrival jobs in the system is at least n. The time when a customer is serviced is exponentially distributed with parameter n�.
Consequently, if there are n+j jobs in the system, the waiting time is Erlang distributed with parameters (j+1, n�). By applying
the theorem of total probability to the density function of waiting time, we get75

fw(x) =
∞
∑

j=0
pn+j(n�)

j+1 xj

j!
e−n�x (25)

Substitute the distribution for the density function of the waiting time, we get

fw(x) =
p0(

�
�
)
n

n!
n�e−n�x

∞
∑

j=0

(�n�x)j

j!
=

( �
�
)
n

n!
p0n�e−(n�−�)x =

( �
�
)
n

n!
p0n�e−n�(1−�)x =

( �
�
)
n

n!
p0

1
1−�
n�(1 − �)e−n�(1−�)x

= P (W aiting)n�(1 − �)e−n�(1−�)x
(26)

Thus, for the complement of the the distribution function, we have

P (W > x) =
∞
∫
x
fw(u)du = P (W aiting)e−n�(1−�)x = C(n, �) ∙ e−�(n−

�
n
)x (27)

The distribution function of waiting time can be written as:

Fw(x) = 1 − P (W aiting) + P (W aiting)(1 − e−n�(1−�)x) = 1 − P (W aiting)e−n�(1−�)x = 1 − C(n, �) ∙ e−�(n−
�
n
)x (28)

If the number of arriving jobs in the system is smaller than n, then the jobs will immediately get serviced. Otherwise, the
jobs have to wait and their sojourn times include waiting time and service time. By applying the law of total probability to the
density function of sojourn time, fs(x) is given as follows:

fs(x) = P (No waiting)�e−�x + fw+ser(x) (29)

Whereas, the density function of sojourn time for the job that needs to wait first, fw+ser(x):

fw+ser(z) =
z
∫
0
fw(x)�e−�(z−x)dx = P (W aiting)n�(1 − �)�

z
∫
0
e−n�(1−�)xe−�(z−x)dx

= (n�)n

n!
p0

1
(1−�)

n�(1 − �)�e−z�
z
∫
0
e−�(n−1−

�
�
)xdx = (n�)n

n!
p0n�

1
(n−1− �

�
)
e−z�(1 − e−�(n−1−

�
�
)z)

(30)

Therefore,

fs(x) = (1 − (
�
�
)n p0
n!(1−�)

)�e−�x +
( �
�
)
n

n!
n�p0

1
(n−1− �

�
)
e−�x(1 − e−�(n−1−

�
�
)x)

= �e−�x(1 −
( �
�
)
n
p0

n!(1−�)
+

( �
�
)
n

n!
np0

1
(n−1− �

�
)
(1 − e−�(n−1−

�
�
)x)) = �e−�x(1 +

( �
�
)
n
p0

n!(1−�)

1−(n− �
�
)e−�(n−1−

�
� )x

(n−1− �
�
)

)
(31)

For the complement of the distribution function of the response time, we get

P (S > x) =
∞
∫
x
fs(y)dy =

∞
∫
x
�e−�y +

( �
�
)
n
p0

n!(1−�)
1

(n−1− �
�
)
(�e−�y − �(n − �

�
)e−�(n−

�
�
)y)dy

= e−�x + ( �
�
)np0

1
n!(1−�)(n−1− �

�
)
(e−�x − e−�(n−

�
�
)x) = e−�x(1 +

( �
�
)
n
p0

n!(1−�)
1−e−�(n−1−

�
� )x

(n−1− �
�
)
)

(32)
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Therefore the distribution function can be presented as

Fs(x) = 1 − P (S > x) (33)

7.3 Overview of the PDSonQueue approach
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FIGURE 7 Deadline constrained scheduling model based on M/M/n queuing model

Preemptive scheduling heuristics are intended to judiciously accept, schedule and cancel the real-time services when necessary
to maximise a system’s QoS performance. Complimenting the previous non-preemptive algorithm, real-time jobs are scheduled
preemptively with the objective of maximising the number of jobs accomplished before their deadlines and improving the
efficiency of jobs. Traditionally, job killing is a simple way to release preemption. However, killed jobs cannot be resumed and
have to be relaunched. Most cluster schedulers use this approach due to its simplicity45. Compared with this kind of kill-based
preemption such as default Capacity Scheduler, our PDSonQueue uses advanced container-based preemption mechanism.
A container provides isolated namespaces for applications running inside and forms a resource accounting and allocation unit.

Linux uses control groups (Cgroups) to precisely control the resource allocation to a container. Not only priorities can be set to
reflect the relative importance of containers, but also hard resource limits guarantee that containers consume resources no more
than a predefined upper bound even there are available resources in the system45. Containers can be created directly without
the standardised templates and the containers that each job needs are customised by job owners on the scheduling level76. Each
job is composed of a sequence of sub tasks, which would require the creation and utilisation of containers in order to interface
efficiently between systems. Containers will apply for multidimensional resource (CPU, memory, disks, network bandwidth,
etc.) from computing nodes.
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The original YARN supports kill-based preemption only. However, in real system implementation, we modify our scheduler
to support a suspend-based preemption. In our preemption mechanism, when there are not enough available resources, we
suspend regular, low priority jobs to preempt resources, kill the corresponding containers, and release resources to the system.
We introduce a “suspending queue” in our scheduling framework, which is used to put our suspended jobs. When these jobs are
suspended, we put them in the suspending queue and change the state of these jobs from active to sleep. When there are more
available resources, these “sleep” jobs can be resumed again.
Our PDSonQueue includes a preemption mechanism to preempt resources for deadline constrained jobs when available

resources are insufficient, and a queuing model to estimate jobs’ service time and waiting time, as shown in Figure 7. Users sub-
mit jobs to the cloud cluster (1). Jobs specify their key resource requirements: <CPU, memory, disk I/O> and QoS. There are 2
types of jobs: deadline jobs and regular jobs. Regular jobs do not have deadline requirements and are divided into low priority
and high priority jobs. Correspondingly, 2 queues are built in PDSonQueue: deadline queue (2) sorts deadline jobs and regu-
lar queue (3) sorts regular jobs. According to different dominant resource consumption, PDSonQueue divides each queue into
three sub-queues (4): CPU-intensive, memory-intensive and I/O-intensive sub-queues. Noted that, calculating the fraction of the
job’s required resources to the total resource, the largest one is selected as the dominant share in order to determine this job’s
type24. If a job’s dominant resource share is both CPU and memory, so the job is both CPU and memory-intensive. According
to the dominant resource share principle proposed in24, putting the job in either CPU-intensive sub-queue or memory-intensive
sub-queue can get the same results and does not influence scheduling efforts. For example, a CPU-intensive deadline job should
be put into the CPU-intensive deadline sub-queue. We use EMWTF to sort deadline jobs. The deadline jobs with earliest wait-
ing time should be run first. The regular jobs are sorted according to “First Come First Serve (FCFS)”. When a job applies for
resources successfully, a container is created with a timestamp (5). If deadline jobs cannot wait to get enough resources during
their waiting time, they will preempt resources from regular, low priority jobs (6). Low priority jobs will be suspended, the cor-
responding containers will be killed and the resources will be released until there are enough resources to support the deadline
jobs (7). When all low priority jobs are suspended but there are still insufficient resources, high priority regular jobs will be pre-
empted (8). Our preemptive strategy chooses the latest served jobs to preempt and kills the containers based on timestamps and
dominant share resource profile. Latest created containers with the same dominant share as a deadline job will be killed first.

7.4 Pseudo Code of PDSonQueue
Algorithm 5 shows the pseudo code of PDSonQueue. When new jobm enters a queue (Lines:2-3), we estimate Jobm’s waiting
time W wai

m and sojourn time W soj
m based on M/M/n probability statistical model (Line:4). If jobm is deadline constrained, it

is put in the deadline queue (Lines:6-7), otherwise it is put in the regular queue. We sort the deadline queue and the deadline
constrained jobi which has the smallest waiting timeW wai

i should be processed first (Line:8). Through calculating the dominant
share of each job Domjobm (Line:5), we classify deadline queue into sub-queues: CPU-, memory- and I/O-intensive and put
the job to the corresponding sub queue (Line:10). Within its waiting timeW wai

i , it needs to successfully apply for the required
resource Demi from the cloud system. If jobm is a regular job, it will be put in a regular queue based FIFO. Then the regular
queue will also be classified into sub-queues as the deadline queue (Lines:10-15)
When the system’s available resource Resrem is smaller than job’s required resource Demi (Line:18) and job’s waiting time

W wai
i is smaller than resource released time, which is the remaining service time of next job being finished (Line:19), the system

will preempt resources from regular, low priority jobs until Resrem is larger thanDemi (Line:20). We first preempt the resource
from the jobs which have the same kind of dominant share as that of jobi. The running jobs in the regular sub-queue queueinten[∗]reg
are sorted in an ascending order of their current running time. The newest, running job jobnewlo from queueinten[∗]reg , should be
suspended and its resourcesDemnewlo are released to the system. After addingDemnewlo, ifResrem is still smaller than the jobi’s
required resourceDemi, we will suspend the second newest, jobnew2lo to be run from queueinten[∗]reg . We add the released resource
Demnew2lo to the cloud, and updateResrem again. The preemption process iterates untilResrem is larger thanDemi. If all the low
priority jobs from queueinten[∗]reg are suspended, but the updatingResrem is still smaller thanDemi, then the latest low priority jobs
being run from other regular queues will be suspended to satisfy jobi’s required resourceDemi. If all the low priority jobs from
different sub queues are suspended and Resrem is still smaller than Demi, high priority jobs from queueinten[∗]reg are suspended
first and then the latest high priority jobs from other queues are suspended secondly. When Resrem being run is not smaller
than Demi, the system allocates Demi amount resource to jobi (Line:20). The iteration of preempting resource and resource
allocation should be accomplished inW wai

i . Otherwise, the preemption process fails and jobi is unsuccessful to process.
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Algorithm 5 PDSonQueue Scheduler
1: // Scheduling phase
2: while (jobs ∉ �) do
3: record job parameter jobi = {Demi, tarri , tdeai } or jobi = {Demi, tarri , pi}
4: estimate job waiting timeW wai

i and sojourn timeW soj
i

5: calculate the dominant share of each job: Domjobi
6: if (tdeai ) then /***deadline job***/
7: put jobi into the deadline queue queuedea
8: sort(queuedea, into an ascending order ofW wai)
9: extract jobi from queuedea into queue

inten[∗]
dea based on Domjobi, inten[] = {cpu, ram, io}

10: else
11: put jobi into the regular queue queuereg
12: sort queuereg in FIFO principle
13: divide jobi from queuereg into queueinten[∗]reg based on Domjobi, inten[] = {cpu, ram, io}
14: end if
15: end while
16: // Preemption phase
17: if (jobi is a deadline job) then
18: if (Demi > Resrem) then
19: if (W wai

i < Resource released time) then
20: suspend the newest running low priority regular jobs jobnewlo in the queueinten[∗]reg (∗ is calculated based on

Domjobi) until the system has Demi resource available, and allocate required resource Demi to jobi
21: else
22: if (Demi > (Resrem +Demnexfin)) then
23: suspend the newest running low priority regular jobs jobnewlo in queueinten[∗]reg until the system has Demi

resource available, and allocate required resource Demi to jobi
24: else
25: jobi waits until next job being finished jobnexfin is done and jobnexfin’s resource is released; after releasing

resource, allocate required resource Demi to jobi
26: end if
27: end if
28: else
29: allocate required resource Demi to jobi
30: end if
31: else /***jobi is a regular job***/
32: if (Demi > Resrem) then
33: jobi waits until other resource released; after releasing enough resource, allocate required resource Demi to jobi
34: else
35: allocate required resource Demi to jobi
36: end if
37: end if
38: preempt resource and allocate required resource Demi to jobi
39: return jobi begins to run

WhenResrem is smaller thanDemi andW wai
i is smaller than resource released time, if requried resources,Demi is larger than

next be finished job’s (jobnexfin’s) resource amount, Demnexfin, plus current system’s available resources, Resrem, preemption
will start and the preemption process used is the same as stated above (Lines:22-23). IfDemi is smaller than next being finished
job’s (jobnexfin’s) resource amount, Demnexfin, plus current system’s available resources, Rese, jobi waits until jobnextf in is
accomplished and then gains enough resources (Lines:24-26). IfDemi is smaller than Resrem, the system does not preempt jobs
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for their resources (Lines:28-29). If jobi is a regular job, the system still does not need to preempt for resources. If there is not
enough available resources, they simply wait (Lines:31-35). Preemption process for n jobs has the time complexity of O(n).

8 INTEGRATION OF INDIVIDUAL SCHEDULERS

From the perspective of tenants, our scheduling framework – 3DSF satisfies their deadline based QoS requirements and puts 
their tasks near required data, and from the perspective of service providers, it completes more jobs with higher resource 
utilisation and reduces their total operation costs. Our 3DSF addresses the issues on how to satisfy different tenants’ QoS 
requirements, without sacrificing performance and other important elements such as SLA accordance and the data locality 
issue.
Our 3DSF is a generic framework, without platform limitations. Our 3DSF uses an adaptive suite to choose the corresponding 
scheduling strategy that satisfies the differing profiles of jobs that are submitted with factors such as the resource requirements,
the specific resource allocation, customised data locality and other special QoS. The purpose of our 3DSF is to: 1) maximise 
resource utilisation, and reduce the deadline-based SLA violations; 2) improve system throughput, data locality and network
bandwidth utilisation; and 3) reduce the completion time of jobs and minimise system’s overhead. In 3DSF, there are 5 
primary modules. Module 1 focuses on dynamic resource allocation to improve system’s throughput. Note that deadline jobs 
usually have higher priority with a subsequently higher capacity to preempt resources from other jobs, so module 2 and 
module 3 are merged together to realise a better QoS-based scheduler, including a performance prediction model. Module 4 
answers the problem how to determine when to move computation vs when to move data and enhance data locality, while 
accelerating the system’s throughput and performance. Module 5 is an adaptive suite to realise the comprehensive scheduling 
framework, which can invoke corresponding scheduling modules according to different scenarios, aiming at adapting to 
different scheduling requirements and environments. A scheduling framework that can handle all the aforementioned issues 
simultaneously would
have immense usability. Our 3DSF works for multi-tenants in clouds, especially for big data and large applications. As when the 
data size is too small, the overhead of our 3DSF could be high. In addition, our work does not consider the privacy and security 
issue and the relevance of data of multi-tenants and assume that jobs from multi-tenants are independent, which are the possible 
shortcomings of our work.
8.1 Architecture of our scheduling framework – 3DSF
Figure 8 shows the architecture of 3DSF, which is the detailed implementation of Figure 1. On the top layer, tenants sub-
mit different application requests with varying QoS requirements (1). Our framework automatically analyses jobs (application
requests)’s information to get the jobs’ priority, deadline, preemption possibility and resources requirements (2). Subsequently,
we are then able to build prediction training models for this framework (3). The prediction models include a neural network and
an M/M/n queuing model (4). The neural network uses a two hidden layers Multilayer Perceptron (MLP) and is employed at
the task scheduling level as a part of the data locality aware scheduler. It predicts tasks’ remaining execution time and resource
releasing time (5). The queuing model is employed at the job scheduling level and is a part of the deadline constrained scheduler.
It uses probability theory and statistical analysis to predict the execution time and waiting time of the jobs (6). To improve the
accuracy of the prediction models, we use historical data to train the prediction models in order to obtain more accurate predic-
tions. Our framework uses an adaptive suite (Module 5), to determine the submitted jobs going through the deadline constrained
scheduler (Modules 2&3) and/or the data locality aware scheduler (Module 4) (7). If jobs have deadline requirements, the jobs
will go through the deadline constrained scheduler. Deadline jobs have a higher priority and can preempt resources from regular
(non-deadline) jobs, with the aim of guaranteeing that deadline jobs are completed within their deadlines (8). At the middle layer
of a distributed environment, jobs are divided into tasks and these tasks are processed with their required data in parallel. If the
jobs are data-intensive, and the required data is large in magnitude, we need to use the data locality aware scheduler (Module 4)
to enhance data locality performance (9). If there is no need to employ the data locality aware scheduler, we will subsequently
skipModule 4 and directly place tasks into corresponding queues in order to wait for resource allocation.Module 4 uses a judg-
ment mechanism to determine when it is best to move data and when it is best to move computation, in order to improve data
locality performance. After going throughModules 2&3 andModule 4, tasks are put into corresponding intensive queues where
they wait to get their relevant resources from the cloud system. At the bottom layer, our scheduling framework considers < CPU,
memory, disk I/O> to fairly allocate resources to the tasks of Module 1 (10). Module 1 uses Linux containers to bundle the
required resources and flexibly provides containers to the tasks. InModule 1, Cgroup compulsively controls resource utilsation.
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8.2 Pseudo Code of 3DSF

Algorithm 6 3DSF Scheduling Framework
Input: A set J of jobs with different resource requirements and a set S of nodes with heterogeneous performance
Output: 3DSF scheduling for the tasks of J
1: while (jobs are submitted to the cloud) do
2: if (jobs J are deadline jobs) then
3: // Deadline constrained scheduler
4: Invoke Algorithm 5 to schedule jobs J
5: end if
6: end while
7: // Job partition
8: while (jobs J are divided into tasks T ) do
9: if (tasks T require large amount of data to process) then

10: // Data locality aware scheduler
11: for (each task t of T ) do
12: Invoke Algorithm 2 to determine moving data or moving computation for task t, and then locate task t to

appropriate node s based on the judgment mechanism
13: end for
14: end if
15: Create a container cont for task t, and cont has task t’s required resources
16: // Resource allocation strategy
17: Invoke Algorithm 1 to decide which job should be run next
18: end while

Algorithm 6 describes the basic approach of 3DSF. When jobs are submitted, the profiles of the jobs and the cloud system are
initialised (Line:1). If the jobs that have been submitted to process have deadlines, 3DSF invokes deadline constrained scheduler
– PDSonQueue65 to schedule the jobs according to their deadlines (Lines:2-4). After partition, the job j is divided into tasks
(Lines:7-8). If tasks T require large amount of data, with the aim of enhancing tasks’ data locality (Line:9), the data locality
aware scheduler – DLAforBT64 is invoked to locate tasks to their corresponding nodes to improve data locality (Lines:10-12).
Otherwise, if tasks T are small, the optional data locality aware scheduler – DLAforBT64 will be skipped and tasks T directly
wait for resource allocation. A corresponding container cont with a timestamp is created for task t (Line:15). For resource
allocation, we use a greedy strategy – improved DRF algorithm24 to enhance fairer resource sharing and to decide which tenant’s
job should be run (Lines:16-17).
Although the complexity reachesO(n3), compared to jobs execution, the overhead of our scheduling framework is negligible.

In our empirical experiments, we can clearly see that the overhead of scheduling process is very small, comparing with running
jobs. Thus, the scheduling overhead is not an issue.

9 EXPERIMENTS

To demonstrate our 3DSF’s high efficiency performance, we have implemented a version of our 3DSF for YARN. YARN1 is 
an open source implementation to provide resource management and a central platform to deliver consistent operations, 
security, and data governance tools across Hadoop clusters. YARN is also a resource management system which is in charge 
of resource management and scheduling. It supports dynamic resource allocation according to the actual demands of tenants, 
with fine-grained allocation being based on different types of resource consumption, and resource isolation. YARN has gained 
significant popularity as a platform for large scale data processing applications. YARN as next generation of Hadoop is a 
successful, comprehensive and widely used commercial product in IT industry, which is one of the most popular cloud 
platforms. Due to technology’s development and increasing requirements of customers, YARN is continually updated. We 
choose the recent
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version of YARN. Our experiments focus on different performance metrics under different types of workloads. To evaluate the 
superiority of our scheduling framework, we choose the recent version of YARN’s scheduler as a benchmark to compare with 
our
3DSF. Some other scheduling frameworks such as23, Mesos2, and63 also use Hadoop as a benchmark to make a comparison. 
To evaluate our scheduling framework’s performance, we employ 5 metrics: resource utilisation, deadline-based QoS, data 
locality, throughput, and completion time to evaluate different types of MapReduce-based workloads. Our experiments 
compare our new scheduling framework’s performance for both single type of workload and mixed workloads to YARN 
Capacity Scheduler7. Our experiments contain 2 groups of applications: four exemplar benchmark applications and four real 
applications, each with either a single type of workload or with mixed workloads. This validates our framework’s performance 
for practical applications. For each real application, a corresponding 40GB data file is selected as input, respectively. We have 
4 real applications. Thus, we process about 200GB data at the same time in our cloud.
Capacity Scheduler is proposed by Yahoo. It supports parallel operations of multi tasks and dynamically allocates resources 

to increase the efficiency of tasks’ execution7. The fundamental basics of Capacity Scheduler are around how queues are laid 
out and resources are allocated to them. When a task is submitted, it is put into a queue. Each queue gets some resources based 
on configuration to process operations. Tasks can be operated according to their different priorities. A high-level priority task 
will be executed first, but Capacity Scheduler does not support preempting priority. A comprehensive set of limits is provided 
to prevent a single job, user or queue from monopolising the resources of the queue or the cluster as a whole to ensure that the 
system is not overwhelmed by too many tasks or jobs.
Our experiments aim to evaluating the entire scheduling framework’s performance when different types of workloads come. 

For each individual scheduling component (Sections 5, 6 and 7), we have also conducted a large number of experiments to 
evaluate each scheduler’s superiority in our previous works. For instance, our improved DRF algorithm presented in Section 5 
is described in our work24 for details. In work24, we did a large number of experiments to compare our improved DRF with 
the naïve DRF. The experimental results indicated that our algorithm’s performance is better than the naïve DRF. We also 
tested I/O usage restriction control. On the contrary, the naïve DRF was proposed in work35 and was only compared with slot-
based and CPU-based fair scheduling algorithm. Similarly, more experiments about DLAforBT presented in Section 6 were 
described in our work64 and more experiments about PDSonQueue showed in Section 7 were described in our work65.

Deadline is our major consideration, so the key QoS constraint means the proportion of completed deadline jobs in all deadline 
jobs. The deadlines of jobs are followed by normal distribution. Before experiments, we run all kinds of applications on our
cloud, to gain average execution time for each type of application, marked as �. According to Pauta Criterion (3� Criterion), 
we
set each type of application’s deadline ∈ (� − 3�, � + 3�) and the probability of deadline ∈ (� − 3�, � + 3�) is 0.997377.
Locality rate means the ratio of local data read over all data read, which is one of our major considerations.
Our experimental applications include long-term jobs and short-term jobs. Only using the number of jobs to measure the

throughput metric would reduce the accuracy. Hence, we use “job unit” to generalise different jobs and the normalised job unit

is 100ms, so Tℎrougℎput =
∑

jobi∈completed jobs
W soj
i ∕job unit

Completion time
, whereW soj

i is job i’s sojourn time.
Our cloud cluster contains 5 machines each with 16GB of RAM, 2.9 GHz 8 cores Intel Xeon Processors, 3 1TB disk drives,

running Hadoop YARN 2.6.0 on an Ubuntu server. The results from the experiments have been evaluated for 30 times and the 
figures show the average results based on the evaluation.
Before we performed the experiments in this work, we conducted a number of pilot experiments. In the pilot experiments, 

we set up different job parameters and job sizes to determine the final experiment design. We found that when the cloud 
computing capacity is fixed, the job size increases and thus the total completion time also increases but the throughout is 
almost the same. For example, in the pilot experiments, even if the job size was set up as 60,000 or 90,000, we still can get the 
similar conclusions. A scheduling framework’s performance is not related to the job size, but related to the cloud computing 
capacity and inherent scheduling algorithms. It is very important to choose the suitable job size to conduct the experiments, 
which could avoid the cloud system being over- or under-loaded. An over- or under-loaded cloud system will have a negative 
effect on the experiment effort and effectiveness to evaluate our scheduling framework’s performance. Therefore, according to 
our cloud cluster’s capacity and cloud’s scalability and elasticity, we finally choose 3 groups of jobs (6,000, 18,000, and 
30,000) to conduct our final experiments.

9.1 Exemplar Benchmark Applications and Evaluation Results
We selected four of Hadoop’s classical benchmarks as follows: (1) TeraSort samples the input data and uses map/reduce to sort
the data into a total order, which is implemented as a standard MapReduce sort with a custom partitioner that uses a sorted list
of (n − 1) sampled keys that define the key reduce. (2) Pi estimator is a pure CPU-intensive application that employs a Monte
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Carlo method to estimate the value of Pi. All map tasks are independent and a single reduce task gathers very little data from
map tasks. (3)Malloc is a classicalmemory-intensive task to allocate unused space for an object whose size in bytes is specified
by size and whose value is unspecified. (4) Read/Write file is a simple I/O-intensive task that reads and writes files repeatedly
and continuously. Reading frequency equals to writing frequency.

(1) Deadline-based QoS, throughput, locality rate, completion time and resource utilisation when running TeraSort
jobs:
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FIGURE 9 Deadline-based QoS rate on TeraSort() jobs workload

The job sizes are 6,000, 18,000 and 30,000, respectively, with deadline jobs occupying 33.33%, 50% and 75% of the total
jobs. In Figure 9, our 3DSF’s QoS achievement is 94.17% on average. Whatever the fraction of deadline jobs in total jobs and
the total number of jobs are changed, our 3DSF QoS rate is quite flat and steady. However, compared with our 3DSF, Capacity
Scheduler’s QoS is 77.53% on average, which is lower by approximately 17%. With deadline jobs occupying 75% of the total
jobs, we can observe that Capacity Scheduler’s QoS is much lower than when deadline jobs occupying 33.33% and 50% in total
jobs. For example, in the first 3 columns of Figure 9 (the total number of jobs is 6,000), when the fraction of deadline jobs in
total jobs is 33.33%, Capacity Scheduler’s QoS is 81.98%, which is 8.4% higher than that of when the fraction of deadline jobs
in total jobs is 75%. As the amount of deadline jobs increases, the QoS rate of Capacity Scheduler suffers as a result.
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FIGURE 10 Throughput on TeraSort() jobs workload
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Figure 10 shows the throughput results of running TeraSort() jobs.When the number of deadline jobs increases, the throughput
decreases. When more deadline jobs enter the system, to meet these deadline jobs being finished on time, more regular jobs
will be suspended, subsequently decreasing the throughput. The average throughput on a TeraSort() workload using Capacity
Scheduler is only 440.87 job units/s. However, the average throughput of running TeraSort() workload using 3DSF is 547.28 job
units/s, which is an improvement of 24.14%. When the total number of jobs increases, the mean throughout increases slightly.
For instance, when the total number of jobs is 18,000, the throughput of our 3DSF is 543.34 job units/s and the throughput of
Capacity Scheduler is 432.46 job units/s. When the total number of jobs is 30,000, the throughput of our 3DSF is 557.39 job
units/s and the throughput of Capacity Scheduler is 456.28 job units/s, improved by about 20 job units/s.
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FIGURE 11 Locality rate on TeraSort() jobs workload

Figure 11 presents the locality rate. Our 3DSF’s average locality rate achieves 49.45% while the YARN Capacity Scheduler’s
mean locality rate is only 36.21%. We can see that our scheduling framework has improved upon the locality rate by 13.24%.
Our 3DSF not only emphasises the data locality issue, but also considers the tradeoff of jobs.
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FIGURE 12 Completion time on TeraSort() jobs workload

Figure 12 presents the completion time on TeraSort() jobs workload. We clearly see that when the total number of jobs is
6,000, the completion time is smaller than the completion time when the total number of jobs is 18,000 and 30,000, respectively.
The average completion time of our 3DSF is 53,591 ms, which is 10.99% faster compared with Capacity Scheduler which had
an average completion time of 60,209 ms. When the total number of jobs is 18,000 and 30,000, we can get similar results. On
average, 3DSF can reduce jobs’ completion time by over 11.60%.
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FIGURE 13 Resource utilisation on TeraSort() jobs workload

Figure 13 presents the average resource utilisation when running TeraSort() jobs. Using our 3DSF, the CPU usage rate reaches
85.93%, memory utilisation is 80.64% and I/O utilisation reaches 79.55% on average. Using YARN Capacity Scheduler, CPU
usage rate only reaches 74.45%, memory utilisation reaches 65.26% and I/O utilisation gets to 65.43% on average. Compared
with Capacity Scheduler, our 3DSF can improve the CPU utilisation by 11.49%, the memory utilisation by 15.38% and the I/O
utilisation by 14%. TeraSort() is a small application, so the CPU utilisation improves less than the other 2 resources.

(2) Deadline-based QoS, throughput, locality rate, completion time and resource utilisation when running mixed
workload (Pi estimator, Malloc and Read/Write file):
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FIGURE 14 Deadline-based QoS rate on a mixed workload

We define a series of different job combinations, the first combination based on setting deadline jobs to occupy 33.33% and
50% of the total jobs and changing the number of deadline Pi estimation jobs, Malloc jobs and read/write jobs. Figure 14 shows
the QoS achievements with these different job combinations. When the fraction of deadline jobs is 33.33%, the average QoS rate
of 3DSF is 91.85% without regarding proportion of the total workload that is composed of deadline jobs. The YARN Capacity
Scheduler’s QoS rate is 78.32%. Meanwhile, when deadline jobs occupy 50% of the total jobs, our framework’s average QoS
rate is 91.14% and the Capacity Scheduler’s QoS rate is 71.26%. Our 3DSF’s performance continually fluctuates and averages
91.50%whenever the number of deadline jobs changes, which is higher by 16.70% than Capacity Scheduler. TheYARNCapacity
Scheduler’s QoS rate decreases by 7.06% when the number of deadline jobs changed from 6,000 to 9,000.
Figure 15 presents the throughput of runningmixed types of jobs. Our 3DSF’s average throughput is higher (591.95 job units/s)

than that of the YARNCapacity Scheduler (492.29 job units/s), which gains 20.24% improvement. When the number of deadline
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FIGURE 15 Throughput on a mixed workload

jobs are 9,000 and the number of Pi estimation jobs, Malloc jobs and read/write jobs are 1,000, 4,000, and 4,000 respectively
(the last group in Figure 15), the throughput is slightly lower than other groups, for both 3SDF and Capacity Scheduler.
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FIGURE 16 Locality rate on a mixed workload

Figure 16 presents the locality rate achieved with these different job combinations. The average locality rate for 3DSF is
49.78%. However, whenever the number of jobs or the combinations of jobs are changed, the YARN scheduler’s mean locality
rate is only 38.60%, which is 11.18% lower than 3DSF.
Figure 17 shows the completion times achieved by the running of mixed types of jobs. Since the total number of jobs is fixed

as 18,000, the completion time does not fluctuate significantly. Using YARN Capacity Scheduler, the mean completion time is
212,331 ms. The average completion time of 3DSF is 177,040 ms, which can deteriorate by 16.61%.
Figure 18 shows the resource utilisation obtained when running mixed types of jobs. Using our 3DSF, average CPU utilisation

achieves 91.17%. When the number of deadline jobs is 9,000 and the number of Pi estimation jobs, Malloc jobs and read/write
jobs are 1,000, 4,000, and 4,000 respectively, the CPU utlisation of 3DSF is 89.21%, which is slightly lower than other groups.
The reason for this phenomenon is that the throughput is lower as shown in Figure 15. The 3DSF’s average memory utilisation
is 80.45% with the I/O utilisation being 79.88%. Compared with our 3DSF, the default YARN Capacity Scheduler’s average
CPU utilisation is 77.03%, lower than 3DSF by 14.13%, with an average memory utilisation of 63.90%, lower than 3DSF by
16.55%, and an average I/O utilisation of 64.84%, lower than 3DSF by 15.04%, respectively.
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FIGURE 17 Completion time on a mixed workload
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FIGURE 18 Resource utilisation on a mixed workload

9.2 Real-world Applications and Evaluation Results
We evaluated our 3DSF vs YARN’s Capacity Scheduler performance using 4 real world applications.
Case 1: Enterprise telecommunication data analysis application: This data analysis application mines and analyses infor-

mation from customer mobile call usage history, based on classifying and ordering user groups, customer behaviour and plans.
This is a CPU-memory-I/O-intensive mixed type application. A 40G data file is split into blocks, deployed on different nodes,
duplicated data on disks and read into memory from disks. Then the application scans and indexes the data, and the classification
and analysis process consumes CPU and multi-dimensional tables consume memory and disk I/O.
Case 2: Number plate image recognition: This License Plate Recognition System (LPRS) recognises a vehicle plate license

from images with edge detection used to identify points in digital images with discontinuities. Edge detection calculates every
pixel of an image, with complexity O(n2). A 40G image data file is loaded and read once from disk. This application is
predominantly CPU-intensive.
Case 3: Hadoop log file text search: This application tracks Hadoop’s logs to search for error information using a simple

lambda expression based on the “error” string, identifying a cluster’s health status and weakness. Its complexity is low and it
consumes little CPU resource. A 40G log file is buffered in memory, read and searched. This application isMemory-intensive.
Case 4:Hadoop datamigration: In aHadoop cluster, the input file is split into one ormore blocks stored in a set of DataNodes

(running on commodity machines). When data volume is huge, tasks split from jobs are deployed on one node, and however the
needed data may be stored on different nodes and even different racks. Thus the system needs to copy other nodes’ data to this
destination node. A 40G telecommunications data file is copied and transmitted among nodes. This application is I/O-intensive.
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(1) Deadline-based QoS, throughput, locality rate, completion time and resource utilisation when running case 1
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FIGURE 19 Deadline-based QoS rate on the workload of case 1

The job sizes are 6,000, 12,000 and 24,000 respectively, and deadline jobs occupy 33.33%, 50% and 75% of the total jobs.
Figure 19 shows deadline-based QoS achievement rate when running case 1. Our 3DSF’s average QoS rate is 91.68%. Capacity
Scheduler’s QoS rate is only 75.79%. Our 3DSF attains a deadline-based QoS rate that is 15.88% higher than Capacity Scheduler.
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FIGURE 20 Throughput on the workload running case 1

Figure 20 presents the throughput results of running telecommunication application. Using Capacity Scheduler, the average
throughput is 533.11 job units/s. Using 3DSF, the average throughput is 655.30 job units/s, which is higher than the YARN sched-
uler by 122.19 job units/s, achieving a 22.92% improvement over Capacity Scheduler. For larger applications, the throughput of
both Capacity Scheduler and 3DSF are appreciably higher than the throughput of small exemplar benchmark applications.
Figure 21 shows the locality rate achieved when running case 1. 3DSF’s average locality rate is 48.87%, and Capacity

Scheduler’s average locality rate is only 33.02%. 3DSF improves upon the YARN scheduler’s locality rate by 15.85%.
Figure 22 presents the completion times under the case 1 workload. The more deadline jobs are submitted in the system, the

higher the average completion time subsequently becomes. Using 3DSF, the average completion time when the total number
of jobs is 6,000 is 1,083s. The average completion time when the total number of jobs is 12,000 is 2,221s, and the average
completion time when the total number of jobs is 24,000 is 4,489s. Compared with YARN Capacity Scheduler, our 3DSF can
reduce the completion time by 16.85% on average. Under the TeraSort() workload, 3DSF only reduces the completion time by
11.60%. As the size of the application increases, the efficiency gains caused by 3DSF will also increase.
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FIGURE 21 Locality rate on the workload running case 1
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FIGURE 22 Completion time on the workload running case 1
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FIGURE 23 Resource utilisation on the workload running case 1

This application is of a mixed type workload, with all three kinds of resources being utilised to a relatively high level as shown
in Figure 23. Using the 3DSF, CPU usage rate reaches 91.80%, memory utilisation reaches 89.31% and I/O utilisation reaches
86.32% on average. However, compared with 3DSF, the average CPU utilisation of YARN Capacity Scheduler is 73.25%, being
lower by 18.54%, the average memory utilisation of Capacity Scheduler is 77.94% and is lower by 11.36%, and the average
I/O utilisation of Capacity Scheduler is 65.52% and is lower by 20.80%. The performance of Capacity Scheduler deteriorates
appreciably as the size of the application increases.
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(2) Deadline-based QoS, throughput, locality rate, completion time and resource utilisation when running cases 2,
3 and 4 together
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FIGURE 24 Deadline-based QoS rate on a mixed cases workload

There are 12,000 jobs, including 5,700 case 2 jobs, 3,600 case 3 jobs, and 2,700 case 4 jobs. In the experimental setting,
deadline jobs occupy 33.33%, 50% of total jobs, respectively. There are 6 different group combinations. Group 1 has 4,000 dead-
line jobs including 2,000 case 2 jobs, 1,000 case 3 jobs and 1,000 case 4 jobs with other group combinations being presented
in horizontal axis of Figure 24. Figure 24 presents the QoS rate, and our 3DSF’s average QoS rate is 90.74% with Capacity
Scheduler’ averaging QoS rate of 73.03%, demonstrating that 3DSF maintains a 17.71% more consistent QoS rate. When dead-
line jobs occupy 33% of total jobs while using Capacity Scheduler, the average QoS rate is higher (77.14%) than the QoS rate
obtained when deadline jobs occupy 50% of the total jobs (68.91%). When the number of deadline jobs is higher, the percent of
deadline jobs that fail to be processed increases. However, our 3DSF’s performance remains consistent even as the percentage
of deadline jobs is varied.
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FIGURE 25 Throughput on a mixed cases workload

Figure 25 presents the throughput results of running mixed cases. Our 3DSF’s average throughput is 663.02 job units/s while
Capacity Scheduler’s is only 556.12 job units/s. 3DSF improved upon Capacity Scheduler’s throughput by 19.22%. When the
percentage of total jobs for deadline jobs is 33.33%, the average throughput of 3DSF is 667.70 job units/s while Capacity
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Scheduler’s throughput is only 560.05 job units/s. When the fraction of deadline jobs is 50%, 3DSF’s throughput reduces to
658.34 job units/s. When the proportion of deadline jobs in the total jobs is smaller, the throughput is higher.
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FIGURE 26 Locality rate on a mixed cases workload

Figure 26 presents the locality rate of running mixed cases. 3DSF’s average locality rate is 48.71% and the YARN Capacity
Scheduler’s average locality rate is 36.12%, with 3DSF improving on the YARN scheduler’s locality rate by 12.60%.
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FIGURE 27 Completion time on a mixed cases workload

Figure 27 shows the completion times of different job combinations. The average completion time of 3DSF is 2,263s and
the average completion time of Capacity Scheduler is 2,736s. 3DSF can reduce completion time by 17.26%, compared with
Capacity Scheduler.
Figure 28 presents the resource utilisation of running mixed cases. This workload is of a mixed type, and thus all 3 kinds

of resource utilisation are relatively high. Using 3DSF, the average CPU utilisation is 90.72%, the average memory utilisation
is 88.74% and the average I/O utilisation is 84.42%. Compared with our 3DSF, Capacity Scheduler’s average CPU utilisation
is 80.41% and is lower by 10.31%, Capacity Scheduler’s average memory utilisation is 77.09% and is lower by 11.65%, and
Capacity Scheduler’s average disk I/O utilisation is 71.43% and is lower by 12.99%.



38 Jia Ru ET AL

92.45 
88.33 

91.13 90.34 89.46 92.58 82.98 80.03 
78.12 80.34 79.66 

81.32 

86.79 
90.15 89.51 87.29 90.13 88.54 

75.33 78.43 
74.44 

76.43 77.54 80.34 

83.78 
87.43 

82.23 84.38 86.11 82.60 

66.43 70.44 
75.42 

67.12 
72.43 76.76 

0.00

10.00
20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

33.33% 33.33% 33.33% 50% 50% 50%

4000
(case2: 2000
case3: 1000,
case4: 1000)

4000
(case2: 3000
case3: 500,
case4: 500)

4000
(case2: 1000
case3: 2000,
case4: 1000)

6000
(case2: 3000
case3: 2000,
case4: 1000)

6000
(case2: 1000
case3: 3600,
case4: 1400)

6000
(case2: 4000
case3: 1000,
case4: 1000)

Re
so

ur
ce

 u
ti

lis
at

io
n 

(U
ni

t:
 1

00
%

)

Percentage of deadline jobs in all jobs
No. of deadline jobs

No. of different types of deadline jobs

Resource utilisation with different proportions of deadline jobs in mixed type workload
(No. of total jobs: 12000, No. of case2 jobs: 5700, No. of case3 jobs: 3600, No. of case4 jobs: 2700)

CPU utilisation with 3DSF CPU utilisation with YARN Capacity Scheduler Memory utilisation with 3DSF
Memory utilisation with YARN Capacity Scheduler Disk I/O utilisation with 3DSF Disk I/O utilisation with YARN Capacity Scheduler

FIGURE 28 Resource utilisation on a mixed cases workload

10 THREATS TO VALIDITY

Construct validity threats include the wrong choice of evaluation metrics, incorrect collection of metrics, and the incorrect
inference of performance from these metrics. We chose well-known and accepted metrics in cloud computing system perfor-
mance and scheduling evaluation. We collected data using YARN provided APIs and scheduler statistics, and ran jobs using the
different schedulers with the same experimental set-up, data collection and data analysis. We only used a cloud cluster which
had 5 nodes to employ experiments. Real experimental environments could indicate that experimental results is more reliable, in
order to prove our scheduling framework’s superiority. Furthermore, scaling out a cloud cluster will provide more resources to
the jobs, which enables more jobs to be running in parallel. According to the features of our scheduling framework, scaling will
improve our framework’s throughput and performance as well as accelerate scheduling capability. But scaling could be infinite.
Therefore, we believe our scale is sufficient.
Internal validity threats include our choice of job mixes, interaction of different resource needs in mixed-jobs, and our cloud

platform resources available. We tried to mitigate these threats by using a variety of job mixes, a representative cloud platform
and configuration, and running different sets of experiments with different workload, resource, job type and job number mixes.
The key external validity threat to our experiments of its generalisablility of the results are due to the limited number of

benchmarks and real-world applications that we have run them on. We chose a mix of benchmarks, and a mixture of quite
different real-world applications, and a mixture of job types to mitigate this.

11 CONCLUSIONS AND FUTUREWROK

The dynamic nature of cluster environments and the varying computing workloads affect the execution time and computa-
tional resources used in the scheduling process. A better resource allocation approach ensures that all tenants receive system 
resources in a fair manner, which improves overall utilisation and throughput and reduces traffic in an over-crowded system. 
Scheduling optimisation is an important approach to improving this data locality to reduce the tradeoff and completion time. 
Moreover, for real-time applications and services, deadline is also a major criterion in judging the QoS. From the perspective 
of tenants, meeting the deadline requirement can improve a system’s QoS and accelerate a system’s reputation. The challenge 
for scheduling strategies is that the fairness of resource allocation often collides with data locality and deadline-based QoS. To 
realise these objectives, our novel work proposes a deadline constrained and data locality aware dynamic scheduling frame-
work, named 3DSF. Our 3DSF is a generic framework, without platform limitations. Our scheduling framework considers 
users’ deadline-based QoS requirements, cloud system’s performance and resource allocation to improve resource utilisation,
system’s throughput, to reduce the completion time of jobs and to better meet their QoS. Our 3DSF contains (1) a real-time, 
preemptive, deadline constrained job scheduler, (2) an optimised data locality aware scheduler and (3) an improved Dominant
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Resource Fairness (DRF) greedy resource allocation approach with 3-dimensional demand vector <CPU, memory, disk I/O> 
and (4) an integration of the above-mentioned schedulers together and an auto-adaptive suite. The suite automatically chooses 
a corresponding scheduling strategy or a combination of scheduling strategies to satisfy the profiles, resource requirements, 
data locality requirements and specific QoS requirements of different jobs in heterogeneous clouds. From the resource 
management perspective, a suite of novel scheduling algorithms is proposed to deal with different types of workloads in multi-
tenancy clouds. These algorithms can maximise cloud resource usage, improve system’s throughput and also minimise the 
makespan of jobs
(the overall completion time of workload). Our experimental results indicate that 3DSF can improve upon the deadline-based 
QoS by approximately 16%, can improve the throughput by approximately 22%, the locality rate by approximately 13%, and the 
resource utilisation by at least 11%, while reducing the completion time by approximately 15%.
In future, our 3DSF will consider the privacy and security issue and the relevance of data of multi-tenants. In addition, 

we will also extend our dynamic resource allocation strategy of multi-dimensional resources to tasks, based on analysing the 
requirements of jobs and real-time system’s resource utilisation for maximisation.
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APPENDIX

A NOTATION LIST

In this work, we define some notations. Table A1 lists the notations of this work. The order of the notations is based on

TABLE A1 Notation index in this work

Notation Definition Notation Definition
Res total resources capacities Com consumed resources
Dosm tenant m’s dominant shares Allm tenant m’s total allocated resources
Demm the demand of the next task that tenant m 

wants to launch
G weighted bipartite graph

T the set of tasks S the set of cluster nodes
E the set of edges between tasks and nodes weii the set of edges’ weights
uires resource utilisation of Node i uiava_res available resource utilisation of Node i

edge e(t, s) task t ∈ T is placed on node s ∈ S SGpre(t) the set of task t’s preferred nodes in G
f T → S Allocate task t to node f (t) � the allocation for task t∶
∑

t∈T
�(t) current total allocation u�(t) 

res node �(t)’s resource utilisation

capt task t’s transmission capacity rttt(ni, nj ) the round-trip delay time for TCP connection 
between node ni and node nj

Tt
tran(dt) data transfer time dt the data block (split) which task t receives
f (x) ReLu activation function C(t, �(t)) the cost of task t which is processed on node

�(t)
Cloc the local cost Crem the remote cost
T ctotal

om the total completion time of jobs W rel�(t) the resource releasing time
Dist(ns, nd ) the number of hops between nodes ns and nd W soj−rem the remaining execution time for running 

tasks
W soj estimated execution time of tasks W soj−alr the already running time of tasks
�i arrival rate Demi required resource of jobi
ti
arr arrival time of jobi ti

dea the deadline of jobi
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pi regular job’s priority �k service rate
Lsys total number of jobs in cloud, including the 

ones waiting in the queue and being serviced.
L̄
sys is the mean of Lsys

Lwai total number of jobs waiting in the queue,
excluding the ones being serviced. L̄ wai is the 
mean of Lwai

Lser total number of jobs being serviced. L̄ ser is 
the mean of Lser

L average number of jobs in the queue at any 
time

Wi
wai the time that jobi waits in the queue, exclud-

ing the time that jobi spends on service. W̄ wai 
is the mean waiting time

W soji jobi’s sojourn time, including the time that 
jobi waits in the queue and are in service.
W̄
soj is the mean sojourn time

Tser average service time of a job, denoted as 1
�

L̄�2( wai) variance of mean number of jobs waiting in 
the queue, excluding the ones being serviced
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