
HumaniSE: Approaches to Achieve More
Human-Centric Software Engineering

John Grundy[0000−0003−4928−7076], Hourieh Khalajzadeh[0000−0001−9958−0102],
Jennifer McIntosh[0000−0002−6655−0940], Tanjila Kanij[0000−0002−5293−1718], and

Ingo Mueller[0000−0003−2240−712X]

HumaniSE Lab, Faculty of IT, Monash University
Clayton VIC 3800, Australia

{John.Grundy, Hourieh.Khalajzadeh,

Jenny.McIntosh,Tanjila.Kanij,Ingo.Mueller}@monash.edu
https://www.monash.edu/it/humanise-lab

Abstract. A common problem with many existing software systems and
the approaches to engineering them is their lack of the human aspects of
their target end users. People are different - with diverse characteristics
including age, gender, ethnicity, physical and mental challenges, per-
sonality, technical proficiency, emotional reactions to software systems,
socio-economic status, educational attainment, language, and so on. In
this paper we describe our work at looking to better consider these char-
acteristics by incorporation of human aspects throughout the software
engineering lifecycle. We are developing a co-creational living lab ap-
proach to better collect human aspects in the software requirements. We
are using domain-specific visual languages, themselves a more human-
centric modelling approach, to capture these diverse human aspects of
target software systems. We are working on incorporating these human
aspects into design models to support improved model-driven engineer-
ing, and thereby to better support both code generation and run-time
adaptation to different end user human characteristics. Finally we are
working on better ways to support continuous evaluation of human as-
pects in the produced software, and to provide improved feedback of user
reported defects to developers.

Keywords: Model-driven engineering · Human-centric software engi-
neering · human factors.

1 INTRODUCTION

Modern software systems are extremely complex, currently hand-crafted arte-
facts, which leads them to be extremely brittle and error prone in practice. We
continually hear about issues with security and data breaches (due to poorly
captured and implemented policies and enforcement); massive cost over-runs
and project slippage (due to poor estimation and badly captured software re-
quirements); hard-to-deploy, hard-to-maintain, slow, clunky and even dangerous

John Grundy
In: Ali R., Kaindl H., Maciaszek L.A. (eds) Evaluation of Novel Approaches to Software Engineering. ENASE 2020. Communications in Computer and Information Science, vol 1375. Springer 



solutions (due to incorrect technology choice, usage or deployment); and hard-
to-use software that does not meet the users’ needs and causing frustration (due
to poor understanding of user needs and poor design) [7, 47, 62]. This leads to
huge economic cost, inefficiencies, not fit-for-purpose solutions, and dangerous
and potentially even life-threatening situations. Software is designed and built
primarily to solve human needs. Many of these problems can be traced to a
lack of understanding and incorporation of these human aspects during the soft-
ware engineering process [23, 41, 58, 60, 54]. This includes aspects such as age,
gender, language, culture, emotions, personality, education, physical and mental
challenges, and so on.

Current software engineering approaches ignore many of these human as-
pects, or address them in piece-meal, ad-hoc ways [47, 7, 23, 60, 4]. For example,
in Model-driven Software Engineering (MDSE), user requirements for the soft-
ware are captured and represented by a variety of abstract requirements models.
These are then refined to detailed design models to describe the software so-
lution. These design models are then transformed by a set of generators into
software code to implement the target system [52]. However, currently almost
no human aspects are captured, reasoned about, designed in or used when gen-
erating or testing the software produced in this way [41, 62]. We need to more
fully integrate these human aspects into model-driven software development.

This paper is an extended version of an earlier one that appeared at ENASE
2020 [19]. In this paper we describe in more detail, by using a number of ex-
ample projects, how we are addressing these issues using several complementary
approaches, as outlined below:

Use a co-creational, agile Living Lab-based approach: our idea here is
to better enable software teams to provide better ways for software engineers to
work with stakeholders to capture and reason about under-represented, under-
used, under-supported yet critical human-centric requirements of target soft-
ware. Our Living Lab is designed to provide a co-creational space for investi-
gating socio-technological aspects of software engineering activities. Our focus
is on enabling software development teams to capture and reason about critical
human-centric aspects of software.

Develop a new set of human-centric requirements modelling languages:
Understanding software stakeholder needs is essential for a successful software
development project. However, software developers tend to focus much more on
technological aspects and therefore often do not sufficiently capture the com-
plete human context concerning, for example, software user age, accessibility
challenges, ethnicity, language or gender. We want to enable software engineers
to more effectively elicit and model diverse human aspects. Along with this we
need new approaches for obtaining and extracting such human-centric software
requirements from a wide variety of sources e.g. Word, PDF, natural language,
videos, sketches, and so on.

Augment conventional model-driven engineering design models with
human-centric requirements: we want to be able to use human-centric as-
pects during MDSE, along with techniques to verify the completeness, cor-



rectness and consistency of these models, and proactively check them against
best practice models and principles. We believe that incorporating more human-
centric aspects into software design will lead to more useful, usable and desirable
software. We work towards this goal by creating new notations, techniques and
tools to augment software design models with human-centric aspects. We also
need to develop new techniques to incorporate these human aspects in design
models into MDSE-based software code generators, enabling target software to
dynamically adapt to differing user needs at run-time.
Use of these human-centric requirements during software testing: Soft-
ware testing and evaluation is an essential software development activity which
is aimed at ensuring that requirements have been implemented correctly and
completely and that user needs are met. We focus on the testing of human-
centric aspects and techniques for receiving better user feedback on human-
centric defects in their software solutions. We need to better support human-
centric requirements-based testing of software systems, along with techniques
that give developers better feedback from users on the human aspects-related
defects in their software solutions.

The rest of this paper is organised as follows. Section 2 presents a motivat-
ing example for this work, along with a review of key related work. Section 3
provides an overview of our approach. Section 4 discusses our development of a
co-creational living lab approach, and Section 5 the use of human aspects during
requirements engineering. Section 6 presents some projects we are undertaking
enhancing design and model-driven software engineering to incorporate human
aspects of end users. Section 7 discusses approaches to evaluating software as to
how well (or poorly) it supports human aspcts, and some key exemplar applica-
tion domains for our work. Finally, Section 8 concludes this paper.

2 MOTIVATION AND RELATED WORK

2.1 Motivating Example: A Smart Home for Ageing

Consider a “smart home” aimed at providing ageing people with technology-
based support for physical and mental challenges so they are able to stay in
their own home longer and feel safe and secure [7, 20, 17]. To develop such a
solution, the software team must deeply understand technologies like sensors,
data capture and analysis, communication with hospital systems, and software
development methods and tools. However, they must also deeply understand and
appreciate the human aspects of their stakeholders: ageing people, their families
and friends, and clinicians/community workers. These include the Technology
Proficiency and Acceptance of ageing people – likely to be much older than
the software designers. The development of “Smart homes” technology should
factor in the Emotional – both positive and negative – reactions to the smart
home e.g. daily interaction is potentially positive but being monitored potentially
negative. The Accessibility of the solutions for people with e.g. physical tremors,
poor eyesight, wheel-chair bound, and cognitive decline. Within this, personality
differences may be very important e.g. those wanting flexible dialogue compared



Fig. 1. Simple example of a smart home to support ageing people.

to those needing directive dialogue with the system. The Usability of the software
for a group of people with varied needs e.g. incorporating the use of voice or
gestures or modified smart phone interface. Figure 1 shows an example of such
a smart home.

The ageing population is diverse and therefore smart home technology must
accommodate for the different Ages, Genders, Cultures and Languages of users
including appropriate use of text, colours, symbols. This is particularly impor-
tant as one quarter of the elderly in Australia are non-native English speakers
and the majority women, but by far the majority of software developers are
20-something years old English-speaking men [32]. Failure to incorporate hu-
man aspects into the development of Smart Home software has the potential to
result in a home that is unsuitable for who it is designed to help, by introduc-
ing confusing, possibly unsettling and invasive, and even potentially dangerous
technology.

2.2 Model-driven Software Engineering

Key aspects of Model-Driven Software Engineering (MDSE) are outlined in
Fig. 2. MDSE captures high-level models about software requirements i.e. what
users need their software to do (a). MDSE then refines these models to detailed
designs about how the software solution is organised, composed and its appear-
ance (b). Model transformation then turns these models into software code (c).
This is in contrast with most current software development methods which use
informal and imprecise models, hand-translation into code via error-prone, and
time-consuming low-level hand-coding. Advantages of MDSE-based approaches
include capture of formal models of a software system at high levels of ab-
straction, being able to formally reason about these high-level models and more
quickly locate errors, and being able to generate lower-level software artefacts,
such as code, without overheads and errors of traditional hand-translating in-



formal models. However, most MDSE approaches use generic requirements and
design languages e.g. the Unified Modelling Language (UML) and extensions [11,
33]. These have the disadvantages of being overly complex and are very difficult
to use by non-software engineering domain experts [25]. Further MDSE limita-
tions include the often very high level of abstraction of incorporated DSVLs.
Necessary customisations or configurations to suit concrete requirements result
in the need to implement code-level extensions of the underlying model trans-
formation approach and the code generator.

Fig. 2. Incorporating “Human-centric” software issues into Model-Driven Software En-
gineering (from [19]).

2.3 Domain-specific Visual Languages

Domain-specific Visual Languages (DSVLs) provide a more accessible approach
to presenting complex models for domain experts [56]. DSVLs use one or more
visual metaphors, typically derived from the domain experts, to represent the
model(s). They enable domain experts to understand and even create and use the
models directly, rather than rely on software engineers. These DSVLs are then
used to generate software code and configuration artefacts to realise a software
solution via MDSE approaches. This approach provides higher abstractions and
productivity, improves target software quality, provides for repeatability, and
supports systematic reuse of best practices [56, 25, 33, 52].

There are many DSVLs for MDSE tools [56, 39, 2]. A representative example
is shown in Fig. 3: (a) a custom DSVL designed for clinicians is being used
to model a new patient care plan for diabetes and obesity management. Then
(b) a model transformer takes the care plan and generates a mobile app to
assist the patient to implement their plan [36]. This is a major improvement
on developing software using conventional techniques. However, the approach
fails to model or incorporate into the mobile app a range of critical human



Fig. 3. A clinician-oriented Domain-specific Visual Language for care plan modelling
and using Model-driven Engineering to generate an eHealth app ((c) IEEE, from [36]).

aspects, resulting in its failure in practice. Patient-specific, human-centric needs
are not captured e.g. technology acceptance and emotional reactions e.g. some
patients react negatively to the remote monitoring approach used. Some users
are not proficient in English and hence need labels and inputs in their preferred
language. Our evaluation found that some of the colours and care plan model
language used in the app are confusing for many older users. Users with eye-
sight limitations find the app too hard to see and too fiddly to interact with.
The app can not adapt to different contexts of use or preferences of the users e.g.
it can not use their smart home sensors or each patient’s particular mobile app
dialogue preferences. The app displays a euro-centric terminology about well-
being, which may put off some users who prefer e.g. a Buddhist, Confucius or
Pacifika view of health concepts from following their care plan [29]. We need to
incorporate these human aspects into MDE [4].

2.4 Human Aspects of Software

There has been increasing interest in the human aspects of complex software
and how to better incorporate and support these during software development.
Agile methods, design thinking and living lab approaches [24, 18, 26, 12] all try
and incorporate a human element both in eliciting software requirements and in
involving end users of software in the development process [9, 26, 45]. However,
none capture human aspects in any systematic way and therefore the software
fails to address several critical aspects of the human users. Some new approaches
have tried to capture limited human-centric software issues. Emotional aspects
of software usage include identifying the emotional reactions of users e.g. when
engaging with health and fitness apps or for gaming. Work has been done mod-



elling these Emotional Requirements and applying them to challenging eHealth
domains [41, 7].

Fig. 4. A Human-centric, Emotion-oriented Domain-specific Visual Language (from
[19]).

Fig. 4 shows a representative example using an emotion-oriented require-
ments DSVL to design better smart homes [20]. Here a conventional goal-based
DSVL (1) has been augmented with a set of “emotional goal” elements (2) spe-
cific to different users (3). Human characteristics like age, gender, culture and
language can dramatically impact aspects of software, especially in the user in-
terface presented by the software and the dialogue had with the user [23, 58, 60].
Limited support for the capture of some of these has been developed. Another
example is a multi-lingual requirements tool providing requirements modelling in
English and Bahasa Malaysia, including supporting linguistic and some cultural
differences between users [31].

Usability testing has long been studied in Human Computer Interaction
(HCI) research and practice. However, usability defect reporting is very under-
researched in the context of software engineering [62]. Similarly, a lot of work
has been done on accessibility in HCI e.g. sight, hearing or cognitively impaired
[58, 60], and health IT e.g. mental health challenges when using mobile apps
[8]. However, little has been done to evaluate the extent to which physical and
mental challenges are properly addressed in engineering software development,
and is also poorly supported in practice. Personality, team climate and organi-
sational issues relating to people have been heavily researched in Management,
Information Systems, and the personality of programmers and testers in soft-
ware development [46, 55]. However, little attention has been paid to how to



go about supporting differing personality, team climate or organisational or user
culture in software, nor to capture requirements relating to these human aspects.
Traditional software requirements and design models have very limited (or no)
ability to capture these sorts of human-centric software issues, and approaches
are ad-hoc, inconsistent, and incomplete.

Software is fundamentally produced by people, for people. People - and the
organisations they work for or that provide them with services - inherently have a
set of “values”, which differ from person to person and organisation to organisa-
tion. Values represent the guiding principles that influence our decision-making
processes as individuals, groups and organisations; and they describe what an
individual or a group thinks is valuable or important [13]. Such values include
but are not limited to openness, transparency, competitiveness, privacy, accessi-
bility, inclusivity, independence, politeness, ambition, respect for authority, and
so on. Some approaches have been developed to specify some human values and
their relationship to software engineering methods and teams [10].

Current software engineering processes lack consistent, coherent ways to ad-
dress this range of increasingly important human-centric software issues and thus
they are often very incompletely supported or in fact are usually ignored [59, 19].
To date only isolated human aspects have been addressed and often confined to
one phase of software development. There are no modelling principles, DSVL-
based model design principles, nor widely applicable, practical modelling tools
to capture human-centric software issues at requirements or design levels. While
a DSVL provides a more human-centric engineering approach, it fails to capture
and support the key human aspects in the target software itself. Current MDSE
tools, while providing significant software engineering benefits do not support
modelling and using these critical human aspects.

3 OUR APPROACH

Fig. 5 illustrates the new human-centric, model-driven software engineering ap-
proach we are working to produce. We have identified a set of key approaches that
are needed to achieve this vision. We aim to employ several innovative approaches
to (i) systematically capture and model a wide range of human-centric software
requirements and develop a novel integrated taxonomy and formal model for
these; (ii) promote a wide range of human-centric requirements for first-class
consideration during software engineering by applying principles for modelling
and reasoning about these human-centric requirements using DSVLs; (iii) sup-
port a wide range of human-centric requirements in model-driven engineering
during software generation and run-time reconfiguration via MDSE techniques;
and (iv) systematically use human-centric requirements for requirements-based
software testing and reporting human-centric software defects. This approach
improves model-driven software engineering by placing crucially important, but
to date often forgotten, human-centric aspects of software as first-class consid-
erations in model-driven software engineering. The critical importance of this is
really only just becoming recognised, due to the increasing breadth of uses of IT



Fig. 5. Our overall HumaniSE approach.

in society and the increasing recognition that understanding and incorporating
the very diverse needs of our very diverse software end users is essential. Key
features of this approach include:

(1) An Agile, Living Lab approach is being used to co-locate the soft-
ware team and target end users [20]. This provides a co-creational environment
to elicit human-centric requirements, model and capture with human-centric
DSVLs, and receive continuous feedback from users. The Living Lab concept’s
design thinking, agile, co-creation and continuous feedback mechanisms are crit-
ical. These are then used to provide an MDSE approach in which human-centric
requirements can be effectively and efficiently captured, treated as priorities by
the software team, users can quickly report defective software violating these
human-centric requirements, and the software team can work effectively with
these end users to co-design changes.

(2) A new set of DSVL tools are being developed to capture and model
the human-centric requirements, validate them against design principles and best
practice modelling patterns, and translate them to extended design-level models.
A set of principles for domain-specific visual modelling languages is being devel-
oped that enables software engineers to better capture a wide range of human-
centric aspects of software: including user’s age, gender, cultural preferences,



language needs, emotional needs, personality and cognitive characteristics, and
accessibility constraints, both physical and mental. These and other human end
user characteristics are essential to prioritise during both software development
and software deployment to ensure a useful and usable end product results for
a broad range of end users. These principles are used to design a range of novel
DSVLs that fully support the capture of many of the important human-centric
aspects and model them as the critical requirements issues that they are.

(3) A set of MDSE-based code generators are used to generate software
applications – code, configurations, etc. Augmented design models are used to
ensure modelled human-centric requirements are preserved for use at design-time
to ensure that MDSE-based solutions take them into account appropriately when
generating software applications. Unlike existing generators, our extended MDSE
generators take into account variations of end-users as specified in the human-
centric requirements, producing either multiple versions of the target software
applications and/or reconfigurable applications that adapt to each end user’s
differing human-centric needs.

(4) A combination of human-centric requirements testing and con-
tinuous defect feedback are fed to the development team. We are developing
a new framework for human-centric, requirements-based testing of software that
can verify whether the constructed software systems meet these critical human-
centric requirements. By leveraging the Living Lab concept, this enables both
faster feedback and defect correction, but also better evolution and modelling of
the human-centric requirements over time. Lessons are fed into the improvement
of the DSVL tools, best practice patterns and MDSE generators.

Ultimately we want to translate our learning into industry practices and
Software Engineering education. To do this we are working with several industry
partners, our students, and colleagues teaching Software Engineering courses.

In the following sections, we are explaining these four key features in the
format of different projects we are working on across human-centric agile Living
Lab, human aspects in requirements engineering, using human aspects in de-
sign and implementing software, and evaluating and applying human aspects in
software engineering.

4 A HUMAN-CENTRIC AGILE LIVING LAB

Human-centric requirements have to be elicited from target end users (or stake-
holders), captured (or modelled) using our DSVL-based tools, used by extended
MDSE solutions to generate software, and then the software tested and user feed-
back accepted and actioned to correct requirements and design model problems.
A new approach is needed to effectively support the software team in achieving
this. We are investigating the Living Lab co-creation concept that has become
popular in digital health software development [26, 20].

We are establishing this lab with a domain-specific focus with partner compa-
nies and target end users and the software team co-located as in Agile customer-
in-team approaches [9, 46]. Target end users and developers closely collaborate to



elicit, capture, test, use and refine the human-centric software requirements. The
DSVL modelling tools, MDSE generators and testing tools all need to support
collaborative capture, discussion and refinement of the human-centric require-
ments for this to be most effective. We plan to do this by extending our current
work on developing digital health technologies [20], human-centric software en-
gineering processes in software teams, including personality and team climate
[49], and collaborative DSVL-based modelling tools [16].

In the following subsections we describe some of our projects that aim to
make this living lab for Human-centric Software Engineering a reality.

4.1 Review of Human Aspects in Other Disciplines

We are conducting reviews of the notion of “human aspects” and how they are
studied in other disciplines outside software engineering. This includes HCI/UX,
information systems, business, design, engineering, psychology, sociology, an-
thropology, etc. Our objective is to learn from existing bodies of knowledge and
to apply relevant theories, notions and findings to build a more complete un-
derstanding of human aspects and their implications on software engineering
practices. The expected outcome of this project is a more complete, useful and
practical taxonomy and ontology of human aspects for use in software engineer-
ing.

4.2 Review of how Human Aspects impact Developers

We are conducting reviews of software engineering research literature to better
understand - (i) what human aspects have been studied in software engineering to
date (ii) how these issues inter-relate and impact software engineer performance;
and (iii) where there are key gaps, limitations and need for further studies of
human aspects impact on software engineers. From this we aim to determine the
range of ways explored to date of how human aspects impact software engineering
teams. We then plan to conduct our own studies of under-researched human
aspects on software engineers.

4.3 Survey of how Developers Currently Handle End User Human
Aspects

To complement the review of works done to understand human aspects impact-
ing software engineers, we are conducting a survey of developers and follow-up
interviews to better understand: (i) what are the key human aspects that they
encounter when developing software, especially for “challenged” end users (ii)
what are the more common, challenging to elicit, challenging to address human
aspects for their end-users (iii) how do they currently meet these challenges (iv)
are their current best practices we can learn from and disseminate to the wider
software engineering community; and (v) what are key practice gaps and chal-
lenges that need further R&D to address. From the outcome of this survey and



interview study we plan to focus the work described in the following sections on
the particularly important and difficult under-supported end user human aspects
for software development.

4.4 Analysis of how Human Aspects of Software are Currently
Discussed by Software Engineers

Software development and issue tracking systems such as GitHub, Stack-overflow,
Atlassian Jira, Bugzilla, etc provide tools for developers to discuss bugs and de-
velopment related issues with each other. However, whether human aspects are
getting discussed among hundreds of issues developers discuss together, is ques-
tionable. On the other hand, software users leave reviews for the apps to share
their issues and experiences in using the apps with the other users and devel-
opers. Issue tracking and reporting software has many uses for customer service
teams, one of which is bug reporting and fix tracking. This software is meant for
internal bug tracking, so when team members find bugs and issues while testing
products, they can report it to product development.

We are working on mining software repositories and app reviews to better
understand whether human aspects are discussed in these platforms. We are
also interested to explore what issues developers currently discuss or do not
discuss about human aspects in software engineering and how they are currently
talked about. At the same time, we are interested in what human aspects do
users discuss in app reviews, and how they discuss them. These would enable
us to analyse the differences in the discussions across human aspects in software
engineering, how the discussions vary between different platforms, e.g. Stack
Overflow, GitHub, how discussions vary based on human factor, project, person,
etc, and how discussions vary in different fields and applications.

Analysis from this data collection will give us better insights into how dis-
cussions vary between developers and users, whether developers address human
aspects discussed by the users, and finally, whether developers address what they
discuss about the human aspects in software development.

4.5 A Taxonomy of Human-centric Software Requirements

To the best of our knowledge, no taxonomy of human-centric software require-
ments or even informal definition exists at this time. We are working on devel-
oping a new, rich taxonomy of human-centric requirements for software systems.
The taxonomy includes different human-centric concepts relating to computer
software, and draws on other disciplines including HCI, usability, psychology,
sociology, and others to build the conceptual model, and provide detailed rela-
tionships and trade-offs between different human-centric requirements.

We are applying this to a number of representative requirements examples
to test and refine it, and use the outcomes to inform the development of DSVLs,
DSVL tools and MDSE solutions in other activities. This is critical research as
it provides software engineers with a lexicon, a set of principles and conceptual
model to model and reason about these kinds of requirements. We are conducting



a detailed analysis of several representative real-world software applications from
eHealth apps [18], smart homes [20], community service apps [21], educational
apps [1], and other heavily human-centric requirements critical domains.

From these we are developing a framework and model for prioritising human-
centric software issues. This characterises complex trade-offs and other relation-
ships between different human aspects that make supporting one issue prob-
lematic for other issues, similar to the Cognitive Dimensions framework [15].
We plan to use a set of focus groups comprising end users and developers to
refine and validate our taxonomy. The taxonomy is being tested on real-world
example requirements to gain feedback from both developers and end users to
demonstrate its effectiveness. We are drawing on our extensive previous work
developing taxonomies for design critics [2], emotion-oriented requirements [7],
usability defects [62], and team climate [55].

5 HUMAN ASPECTS IN REQUIREMENTS
ENGINEERING

5.1 Extracting Human Aspects from Requirements

Software requirements need to be elicited from end users and these are typically
held in a variety of documents and can be obtained in a variety of ways. In the
context of the Living Lab we are developing new tools to enable extraction of
diverse human-centric requirements from diverse sources, including Powerpoint,
Word, Excel, PDF, audio transcripts, images and video. A number of works
have addressed different parts of this problem, including extracting requirements
using light weight and heavy weight natural language processing [3, 38]. However,
none have specifically addressed the extraction of a wide range of human-centric
requirements. We are developing, trialing and will then refine a set of extraction
tools leveraging existing approaches but focused on human-centric requirements
capture and representation using our DSVLs, within our living lab approach, and
leveraging our human-centric requirements taxonomy. These tools will also be
refined as these other related activities are refined and extended, and applying
these tools to representative real-world requirements artefacts will help us to
test and extend the outputs of these other tasks. We are focusing on developing
leading-edge tools for extracting requirements for goal-directed and multi-lingual
models [38, 31], and requirements checking and improvement [3].

5.2 Human Aspects Impacting Requirements Engineers in Agile
Teams

We are interested in a range of human aspects in the requirements engineer-
ing (RE) domain, particularly those impacting agile requirements engineering
teams. These include but are not limited to: (i) how do requirements engineers
handle requirements changes during agile software development, from both tech-
nical and behavioural/emotional reaction perspectives; (ii) how are agile require-
ments defined, talked about, is there a taxonomy of “agile” requirements changes;



(iii) how do human aspects impact requirements engineering team members and
stakeholders; and (iv) how can we improve RE practices and outcomes by better
understanding and taking into account human aspects of team members and
stakeholders. To this end we are carrying our studies with RE teams to better
understand these issues, design techniques and tools to better evaluate human
aspects impacting on RE processes and outcomes, and trial these with partner
organisations.

5.3 How are Human Aspects Discussed in Requirements
Engineering Documents

Requirements elicitation and specification play an important role in the software
development life cycle. Human aspects are often neglected in the early stages of
development, i.e., requirements engineering. If human aspects are not taken into
account from the early stages of the software development, these issues can
impact the final product and make it not tailored toward the diverse range of
end-users. Not taking human-centric requirements of users into account can lead
to serious impacts to the software under development.

We are working on initially analysing existing requirement engineering doc-
uments to explore whether human aspects are discussed/noted, including epics,
user stories, use cases, discussion transcripts, feature outlines, and so on. Using
the taxonomy of human aspects discussed earlier, we aim to develop guidelines
and tools using Natural-Language Processing and Machine Learning techniques
to identify relevant human aspects in requirements specifications. This will lead
to an improved human aspects-driven requirement engineering process, and an
automated tool for identifying human aspects in system artefacts and guiding
analysts in deliberately considering these issues during the requirements engi-
neering phase.

5.4 New DSVLs to model Human-Centric Requirements

While DSVLs have been an active research area for at least 20 years, remark-
ably few principles exist for design and evaluation of effective DSVLs [43]. We
are developing a set of new design principles and associated DSVL evaluation
approaches to provide more rigorous principles and design steps for specifically
human-centric DSVL development. This will require us to identify a range of
human-centric software requirements and design issues identified in the taxon-
omy built. We need to determine how we can best model these, use appropriate
visual metaphors to represent the models, how we can support interaction with
the visual models, and how we can reason about the suitability of these visual
models in terms of usability and effectiveness. We are drawing upon the work
on DSVL design tools to achieve this [16, 39, 2], as well as work on ‘Physics’
of Notations [43] and Cognitive Dimensions [15] to develop these DSVL design
principles for modelling human-centric software issues.

We are developing a range of new and augmented DSVLs to model a wide
variety of human aspects at the requirements level for software systems. Some of



these DSVLs extend existing requirements modelling languages – in successively
more principled ways than currently – e.g. goal-directed requirements languages
such as i*, use cases and essential use cases, target user personas, user stories, etc.
However, others may provide wholly novel requirements modelling techniques
and diagrams that are then linked to other requirements models. We envisage
novel requirements capture for things like identifying cultural, age, accessibility
and personality aspects of target end users. Where multiple target end users
for the same software application have differing human-centric requirements,
multiple or composite models may be necessary. Even partial progress here will
be very useful for both researchers and practitioners well beyond the scope of
our research.

We are building on a wide range of DSVLs, including for design tools, require-
ments, reporting, business processes, surveys, performance testing, and many
others [2, 16, 31] as well as digital health software [20] and work on modelling
usability defects and emotional and multi-lingual requirements [7].

5.5 Capturing Human Aspects with Personas

We are investigating the use of personas in requirements engineering with a view
to working out ways to better use these during software engineering. To this end
we are looking into (i) how personas are currently used in RE and SE; (ii)
how to build personas that represent effectively a wide range of human aspects;
(iii) how to validate these personas; and (iv) how to use these personas during
design and evaluation of software systems. This may include improved ways of
defining personas, incorporating specific human aspects into personas, generating
personas, and using persona models to support RE, design and evaluation.

6 USING HUMAN ASPECTS IN DESIGN AND
IMPLEMENTING SOFTWARE

6.1 Software Design Decision Support

The objective of this project is to develop a decision-support system that sys-
tematically guides software developers through capturing selected human aspect
needs and requirements. It aims to give developers better support for incor-
porating these aspects into the design of a software system. Design decisions,
contextual information and other tacit information such as design rationales
are planned to be formalised using techniques such as decision trees, Markov
chains and Bayesian networks. The expected outcome is a demonstrable pro-
totype implementation that can be used and evaluated by software developers.
Software developers are humans, and they, therefore, might be subject to cog-
nitive biases and other human challenges. We are studying and evaluating how
such a decision-support system may assist developers to use more of System 2
or rational thinking in design [57].



6.2 Collaborative Human-Centric Domain-Specific Visual
Languages

We aim to develop a collaborative browser-based domain specific visual lan-
guages platform for designing a variety of software tools and systems including
data analytics applications, eHealth apps, etc. Multidisciplinary teams of users
can design their applications based on their specific characteristics, such as age,
gender, culture, personality, etc. Different users can work collaboratively at the
same time through a browser-based drag-and-drop based tool in a visualised and
programming-free way. Users will be able to store data in, for example, graph
databases to enable them to get more specialised views based on their needs and
preferences. Domain specific visual languages can be built on top of the existing
model-driven approaches such as BiDaML [34], big data analytics modelling lan-
guages, and can be further extended by incorporating human-centric issue into
the development of the notations. We are adding to our tool code and report
generators to automatically generate source code, reports and documents from
the visualised models.

6.3 Extending Design Models to include Human Aspects

Model-driven software engineering tools typically use the Unified Modelling Lan-
guage (UML) or similar design models. Even those using their own design models
need to refine higher-level abstract requirements models into lower-level archi-
tectural, software design, interface, database and other models. We are working
on different ways to effectively extend design-level models to capture necessary
design-level human-centric properties, derived from higher level human-centric
requirements-level properties [4]. For example, we want to capture design al-
ternatives to achieve an application user interface for a target end user who
has sight-impairment, prefers a gesture-based sensor interface to using a Smart
phone, has limited mobility, and is quite “neurotic” about device feedback.

We are going to evaluate these different modelling solutions via our living
lab with both software engineers and end users, in terms of needed design infor-
mation and preserving critical human-centred end user needs respectively. Even
partial successful outcomes here will be immediately of interest and applicable
for software teams. We are extending design models with aspects [44], goal-use
case model integration [38], and goal-models extended with emotions [7, 20].

6.4 Human-Centric Design Critics and Modelling Patterns

Just because we add human aspects to our requirements and design models
does not mean they may be correct or even appropriate. We are developing a
set of proactive tool support systems to advise software engineers of errors or
potentially incorrect/unintended issues with their models [2, 48]. This will enable
the DSVL toolsets for human-centric requirements and design models to provide
proactive feedback to modellers. To enable these design critics are identifying a
range of “human-centric requirements and design patterns”. These will provide



best-practice approaches to modelling complex requirements and design models
mixed with human aspects. These features will be added to successive iterations
of our prototype tools from above. This work is building on our approaches
to develop DSVL design critics [2] and DSVL-based requirements and design
pattern modelling tools [30].

6.5 Using Human Aspects in Model Driven Engineering

Once we have some quality design-level human aspects in models – incremental
outcomes from the above activities – we can use these in model-driven engineer-
ing code and configuration generators. This research involves adding generators
that consume design level models augmented with human-centric properties and
synthesizing software applications that use these appropriately. For example, we
might generate a gesture-based, passive-voice feedback solution for the target
user from the smart home example described in Section 2. However, we might
instead generate several interfaces for the same software feature,and at run-time
configure the software either with pre-deployment knowledge,end user input, or
even modify it while in use based on end user feedback. Thus for example a part
of the software for our smart home example could adapt to different end users’
current and changing needs (e.g. age, culture, emerging physical and mental
challenges, personality etc).

This work is being done incrementally, focusing on single issues first then
looking at successively more complex combinations, adding support to the pro-
totype tools and repeatedly trialling the tools. We are adding human aspects
to MDSE code generators [4], generating adaptive user interfaces [37], adaptive
run-time software [42], and DSVL-based MDSE solutions [56].

7 EVALUATING AND APPLYING HUMAN ASPECTS
IN SOFTWARE ENGINEERING

We are addressing critically important issues of (i) testing whether the resul-
tant software generated from our augmented MDSE approach actually meets
the requirements specified; (ii) providing a feedback mechanism for end users
to report defects in the software specifically relating to human aspects; and (iii)
providing a feedback mechanism from software developers to users about changes
made relating to their personal human aspects. We are developing human-centric
requirements-based testing framework, techniques and tools. These enable hu-
man aspects to be used in acceptance tests to improve validation of software
against these requirements. We are also developing new human-centric defect
reporting mechanisms and developer review and notification mechanisms. These
support continuous defect reporting, correction, and feedback via the living lab
and remotely. Even partial outcomes would be of immediate benefit to the soft-
ware engineering research and practice communities. This work is extending
research on software tester practices and usability defect reporting [62, 14] and
requirements-based testing [31].



7.1 How Can We Provide Better Fixes for Human Aspect-Related
Defects

We are working on characterising a mobile app model with the desired human
values for its target end-users. We are then using these values to assist us in
detecting what we term “values-violating defects” [59] in the target mobile apps.
We then provide app developers with a set of recommendations for suggested
fixes for these values-violating app defects.

This involves studying a large number of apps, their reviews, and how users
feel various “human values” – such as transparency, integrity, privacy, trust,
and other human values – may be violated by the apps. We are then identifying
ways to (i) detect these “values violations”, or values defects, in apps; (ii) identify
possible fixes for these defects so that the human values are supported; and (iii)
providing tools to developers to help them find and fix these values-related app
defects. We hope to generalise this approach to other end user human aspects
that need to be supported in apps, including accessibility, age and gender bias,
and different end user language and culture.

7.2 Gender Bias in IT Job Ads

We are investigating whether gender is a crucial factor to be an IT professional.
As a starting point, we are reviewing if IT job advertisements are more appealing
to male candidates. We are using an automated word based gender bias checker
to examine if there is any bias in IT job advertisements. We are also conducting
a survey of IT hiring managers and IT professionals and/or IT candidates to
collect their perception about gender bias in IT job advertisements. Finally,
we are applying a cognitive walkthrough approach with gender based persona,
proposed by GenderMag [6] tool, to find if male and female candidates react
differently to IT job advertisements. The overall finding from this study will
help us to identify if IT job advertisements are gender biased, and if yes, what
areas need improvement to make those gender inclusive. This will address a
critical human aspect where the software engineering profession lacks diversity.

7.3 How Age Affects Users’ Interaction with Software

We are looking to generalise the GenderMag [6] approach to supporting other
human aspects during evaluation. In this project we are designing new persona
templates that include “facets” for different ages that have been shown to influ-
ence differently-aged users’ interaction with technology. These templates will be
customisable using different descriptions of the facets and will generate different
persona representing users of different age groups. These enhanced age-related
personas can then be used by software engineers to enhance requirements engi-
neering, design and evaluation of software for ageing people [51], in a similar way
to GenderMag. Again, we aim to generalise this work to other human aspects of
end users.



7.4 eHealth Applications

We are trialing our approaches with real industry practitioners and organisa-
tions for whom human aspects are critical. Our approach is particularly suitable
for eHealth applications with end users with challenging human aspects, such
as physical or mental disability, English as second language, cognitive decline,
very young or old, and needing software to adapt to their changing personal
or contextual usage needs. Planned target application domains include digital
health apps for community members, community educational apps, government
service and transport apps and websites, and smart home and smart building
management software.

7.5 How Developers Address Accessibility Issues in Mobile Apps

We are studying how developers address one common class of human aspects
– accessibility – in mobile apps, by large-scale analysis of app reviews, change
histories, and other associated app development and release information. We
hope to identify areas where accessibility issues are well-supported and can be
more widely adopted. We also hope to identify problematic accessibility issues
for developers and use this to carry out targeted studies to improve its support.
With mobile apps becoming increasingly widely used for an increasing number of
tasks, those not supporting diverse end user accessibility challenges run a great
risk of reducing access of many in our communities to critical services [21].

7.6 Developing better apps with personas

We are exploring human-centric smart city development approaches. One of our
case studies is the development of better “smart parking” apps. We are using
personas to identify a range of parking app users, informed by review mining
and other techniques. We are then using these personas to help evaluate existing
apps and to then develop and refine requirements and to evaluate designs and
prototypes from a range of human-centric perspectives. The idea is to generalise
this approach to other smart living systems that by definition have a wide range
of diverse end users. We aim to employ the results of adding human aspects to
design models and MDE, as discussed above, to improve development of these
apps in the future.

We are also exploring the how personas might be used in eHealth. We will
use personas to inform the development of a website and eHealth resources for
people who have experienced miscarriage. The personas will be developed from
inductive qualitative analyses from extensive interviews with women who have
had a miscarriage, partners of women who have had a miscarriage, and health
practitioners who support women who have had a miscarriage [5, 28, 40] and will
include relevant human aspects including users’ personalities, age, background,
culture, language, physical and mental challenges, comfort with technology and
so on. The personas will inform the look and feel of the website and resources,
and will be used to test the website during the development and design phases.



The website and resources will be evaluated through surveys and where possible,
interviews with people who access the website, and this will be used to validate
the personas.

7.7 COVID-19 Apps

In response to the COVID-19 pandemic, there has been an exponential growth
in contact tracing apps worldwide [50]. The apps were created very quickly and
and are designed to be used across often disparate groups within a population.
We are interviewing COVID-19 app developers and conducting focus groups
to explore if human-centric aspects suitably taken into account and if so how,
or if not how might they be included in the development. This is particularly
important for contact tracing apps given their effectiveness is dependent on a
critical mass of people engaged with the app.

7.8 Environmental and Sustainability Software Applications

Coastal communities around the world feel the impact of climate change in the
form of rising sea levels. Current observations and future projections indicate
that sea levels will be significantly higher in the second half of this century [61]
causing more frequent and prolonged flooding that pose “unique challenges to
risk management decision processes” [22].

We are planning to create a DSVL and decision-support system in collabora-
tion with bay-side communities of Melbourne, Australia, to enable the modelling
and simulation of the impact of flooding events and to support automated risk
assessments. The DSVL will support the modelling of the needs of the various af-
fected stakeholder groups, e.g. people who live and work in affected areas while
also providing means to model localised contextual information about infras-
tructure, topology as well as local knowledge. We will be following an iterative
human-centred design (HCD) approach to devise and evaluate our human-centric
decision support system.

7.9 Human Aspects in SE Education and Practice

As argued throughout this paper, we propose to put humans into the focus of
SE. Software should adapt to user needs - not the other way round. To build
software to do so, a culture change in the SE industry and the way SE is taught
is required. Besides improving concepts and methods, we aim to change some
terminology in order to explicitly support a new way of thinking, e.g. through
redefining or replacing terms such as ‘user’, ‘stakeholder’ and ‘requirement’.

The term ‘user’ does not fully convey the human nature and individual dif-
ferences between people. The term ‘stakeholder’ is often too narrowly applied.
Indirect stakeholders - those who are affected by software systems used by others
- are too often overlooked, e.g. self-driving cars may put the safety of other road
users at risk [53], facial recognition systems may misidentify innocent people



as criminals [35]. We believe the term ‘people’ is better suited to express such
socio-technical aspects and to break up traditional technology-centred thinking.

Similarly, the term ‘need’ may be used to overcome the strict separation
between functional and non-functional requirements. This differentiation is not
only detrimental as the latter are often treated as less important afterthoughts;
it is also incomplete. For example, human aspects beyond usability are typically
not covered [27].

Moreover, we aim to change the way SE is taught to better prepare future
generations of software engineers for the development of successful human-centric
software systems. Social sciences need to play a more prominent role in SE
curricula. Students and practitioners need the soft skills required for the work
in diverse teams and to more effectively elicit and model diverse requirements
and perspectives. Various of the above mentioned research activities will inform
our revision of SE education.

8 CONCLUSION

Human aspects that are necessary to incorporate into the development of com-
plex software systems include different end user age, language, gender, ethnicity,
physical and mental challenges, personality, socio-economic status, educational
attainment, emotional reactions, technology proficiency and so on. We described
a motivating example - a smart home to support ageing in place - showing how
many of these human aspects of software systems need to be fully understood
and incorporated by software engineers. To realise this, we described our cur-
rent work to advance HumaniSE - Human-Centric Software Engineering. This
includes the use of a co-creational living lab to better identify diverse end user
requirements. The use of domain-specific visual models to improve capture and
reasoning about these characteristics. The use of design thinking, extended de-
sign models and augmented model-driven engineering. Improving defect report-
ing to help developers better understand and fix these human aspect-related
issues in their software. We are applying these approaches to a range of domains
requiring full support of the diverse human aspects of end users. This includes
a range of eHealth applications, smart city applications, education-related soft-
ware, support for vulnerable community members to access and use government
and employment services, and sustainability solutions. We very much welcome
approaches to discuss collaboration on some of these directions and projects.

Acknowledgements

Support for this work from ARC Discovery Projects DP170101932 and DP200100020
and from ARC Laureate Program FL190100035 is gratefully acknowledged.



References

1. Abdelrazek, M., Ibrahim, A., Cain, A., Grundy, J.: Vision: mobile ehealth learning
and intervention platform. In: Proceedings of the 5th International Conference on
Mobile Software Engineering and Systems. pp. 252–256 (2018)

2. Ali, N.M., Hosking, J., Grundy, J.: A taxonomy and mapping of computer-based
critiquing tools. IEEE Transactions on Software Engineering 39(11), 1494–1520
(Nov 2013). https://doi.org/10.1109/TSE.2013.32

3. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for contextual require-
ments modeling and analysis. Requirements Engineering 15(4), 439–458 (2010)

4. Ameller, D., Franch, X., Cabot, J.: Dealing with non-functional requirements in
model-driven development. In: 2010 18th IEEE international requirements engi-
neering conference. pp. 189–198. IEEE (2010)

5. Bellhouse, C., Temple-Smith, M., Watson, S., Bilardi, J.: “the loss was traumatic. . .
some healthcare providers added to that”: Women’s experiences of miscarriage.
Women and Birth 32(2), 137–146 (2019)

6. Burnett, M., Stumpf, S., Macbeth, J., Makri, S., Beckwith, L., Kwan, I., Peters, A.,
Jernigan, W.: Gendermag: A method for evaluating software’s gender inclusiveness.
Interacting with Computers 28(6), 760–787 (2016)

7. Curumsing, M.K., Fernando, N., Abdelrazek, M., Vasa, R., Mouzakis, K., Grundy,
J.: Emotion-oriented requirements engineering: A case study in developing a smart
home system for the elderly. Journal of Systems and Software 147, 215 – 229
(2019). https://doi.org/https://doi.org/10.1016/j.jss.2018.06.077

8. Donker T, Petrie K, P.J.C.J.B.M.C.H.: Smartphones for smarter delivery of men-
tal health programs: a systematic review. J Med Internet Res 15(11) (2013).
https://doi.org/10.2196/jmir.2791

9. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software develop-
ment: A systematic review. Information and Software Technology 50(9),
833 – 859 (2008). https://doi.org/https://doi.org/10.1016/j.infsof.2008.01.006,
http://www.sciencedirect.com/science/article/pii/S0950584908000256

10. Ferrario, M.A., Simm, W., Forshaw, S., Gradinar, A., Smith, M.T., Smith, I.:
Values-first se: research principles in practice. In: 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering Companion (ICSE-C). pp. 553–562.
IEEE (2016)

11. Fontoura, M., Pree, W., Rumpe, B.: The Uml Profile for Framework Architectures.
Addison-Wesley Longman Publishing Co., Inc., USA (2000)

12. Friedland, B., Yamauchi, Y.: Reflexive design thinking: putting more human in
human-centered practices. interactions 18(2), 66–71 (2011)

13. Friedman, B., Kahn, P.H., Borning, A.: Value sensitive design and information
systems. The handbook of information and computer ethics pp. 69–101 (2008)

14. Garousi, V., Zhi, J.: A survey of software testing practices in canada. Journal of
Systems and Software 86(5), 1354–1376 (2013)

15. Green, T.R.G., Petre, M.: Usability analysis of visual programming environments:
a ‘cognitive dimensions’ framework. Journal of Visual Languages & Computing
7(2), 131–174 (1996)

16. Grundy, J.C., Hosking, J., Li, K.N., Ali, N.M., Huh, J., Li, R.L.: Gen-
erating domain-specific visual language tools from abstract visual specifica-
tions. IEEE Transactions on Software Engineering 39(4), 487–515 (April 2013).
https://doi.org/10.1109/TSE.2012.33



17. Grundy, J.: Human-centric software engineering for next generation cloud-and
edge-based smart living applications. In: 2020 20th IEEE/ACM International Sym-
posium on Cluster, Cloud and Internet Computing (CCGRID). pp. 1–10. IEEE
(2020)

18. Grundy, J., Abdelrazek, M., Curumsing, M.K.: Vision: Improved development of
mobile ehealth applications. In: 2018 IEEE/ACM 5th International Conference
on Mobile Software Engineering and Systems (MOBILESoft). pp. 219–223. IEEE
(2018)

19. Grundy, J., Khalajzadeh, H., Mcintosh, J.: Towards human-centric model-driven
software engineering. In: ENASE. pp. 229–238 (2020)

20. Grundy, J., Mouzakis, K., Vasa, R., Cain, A., Curumsing, M., Abdelrazek, M.,
Fernando, N.: Supporting diverse challenges of ageing with digital enhanced living
solutions. In: Global Telehealth Conference 2017. pp. 75–90. IOS Press (2018)

21. Grundy, J., Grundy, J.: A survey of australian human services agency software
usage. Journal of technology in human services 31(1), 84–94 (2013)

22. Hall, J., Weaver, C., Obeysekera, J., Crowell, M., Horton, R., Kopp, R., Marburger,
J., Marcy, D., Parris, A., Sweet, W., Veatch, W., White, K.: Rising sea levels:
Helping decision-makers confront the inevitable. Coastal Management 47(2), 127–
150 (2019)

23. Hartzel, K.: How self-efficacy and gender issues affect software adoption and use.
Communications of the ACM 46(9), 167–171 (2003)

24. Hoda, R., Salleh, N., Grundy, J.: The rise and evolution of agile software develop-
ment. IEEE software 35(5), 58–63 (2018)

25. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of mde in industry. In: Proceedings of the 33rd international conference on
software engineering. pp. 471–480 (2011)

26. Hyysalo, S., Hakkarainen, L.: What difference does a living lab make? comparing
two health technology innovation projects. CoDesign 10(3-4), 191–208 (2014)

27. ISO/IEC: Iso/iec 25010 system and software quality models. Tech. rep. (2010)
28. Jensen, K.L., Temple-Smith, M.J., Bilardi, J.E.: Health professionals’ roles and

practices in supporting women experiencing miscarriage: A qualitative study. Aus-
tralian and New Zealand Journal of Obstetrics and Gynaecology 59(4), 508–513
(2019)

29. Joseph, A.J.: The necessity of an attention to eurocentrism and colonial technolo-
gies: An addition to critical mental health literature. Disability & Society 30(7),
1021–1041 (2015)

30. Kamalrudin, M., Hosking, J., Grundy, J.: Improving requirements quality using
essential use case interaction patterns. In: 2011 33rd International Conference on
Software Engineering (ICSE). pp. 531–540. IEEE (2011)

31. Kamalrudin, M., Hosking, J., Grundy, J.: Maramaaic: tool support for consis-
tency management and validation of requirements. Automated software engineer-
ing 24(1), 1–45 (2017)

32. Kenny, E.J., Donnelly, R.: Navigating the gender structure in information tech-
nology: How does this affect the experiences and behaviours of women? Human
Relations 73(3), 326–350 (2020)

33. Kent, S.: Model driven engineering. In: International Conference on Integrated
Formal Methods. pp. 286–298. Springer (2002)

34. Khalajzadeh, H., Simmons, A., Abdelrazek, M., Grundy, J., Hosking, J., He, Q.:
An end-to-end model-based approach to support big data analytics development.
Journal of Computer Languages p. 100964 (2020)



35. Khalil, A., Ahmed, S.G., Khattak, A.M., Al-Qirim, N.: Investigating bias in facial
analysis systems: A systematic review. IEEE Access 8, 130751–130761 (2020)

36. Khambati, A., Grundy, J., Warren, J., Hosking, J.: Model-driven development of
mobile personal health care applications. In: 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering. pp. 467–470. IEEE (2008)

37. Lavie, T., Meyer, J.: Benefits and costs of adaptive user interfaces. International
Journal of Human-Computer Studies 68(8), 508–524 (2010)

38. Lee, J., Xue, N.L.: Analyzing user requirements by use cases: A goal-driven ap-
proach. IEEE software 16(4), 92–101 (1999)

39. Li, L., Grundy, J., Hosking, J.: A visual language and environment for enterprise
system modelling and automation. Journal of Visual Languages & Computing
25(4), 253–277 (2014)

40. Miller, E.J., Temple-Smith, M.J., Bilardi, J.E.: ‘there was just no-one there to
acknowledge that it happened to me as well’: A qualitative study of male partner’s
experience of miscarriage. PloS one 14(5), e0217395 (2019)

41. Miller, T., Pedell, S., Lopez-Lorca, A.A., Mendoza, A., Sterling, L., Keirnan, A.:
Emotion-led modelling for people-oriented requirements engineering: the case study
of emergency systems. Journal of Systems and Software 105, 54–71 (2015)

42. Mohamed Almorsy, John Grundy, A.S.I.: Adaptable, model-driven security engi-
neering for saas cloud-based applications. Automated software engineering 21(2),
187–224 (2014)

43. Moody, D.: The “physics” of notations: toward a scientific basis for constructing vi-
sual notations in software engineering. IEEE Transactions on software engineering
35(6), 756–779 (2009)

44. Mouheb, D., Talhi, C., Lima, V., Debbabi, M., Wang, L., Pourzandi, M.: Weaving
security aspects into uml 2.0 design models. In: Proceedings of the 13th workshop
on Aspect-oriented modeling. pp. 7–12 (2009)

45. Mummah, S.A., Robinson, T.N., King, A.C., Gardner, C.D., Sutton, S.: Ideas
(integrate, design, assess, and share): a framework and toolkit of strategies for
the development of more effective digital interventions to change health behavior.
Journal of medical Internet research 18(12), e317 (2016)

46. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact
of agile practices on communication in software development. Empirical Software
Engineering 13(3), 303–337 (2008)

47. Prikladnicki, R., Dittrich, Y., Sharp, H., De Souza, C., Cataldo, M., Hoda, R.: Co-
operative and human aspects of software engineering: Chase 2013. SIGSOFT Softw.
Eng. Notes 38(5), 34–37 (Aug 2013). https://doi.org/10.1145/2507288.2507321,
https://doi.org/10.1145/2507288.2507321

48. Robbins, J.E., Redmiles, D.F.: Software architecture critics in the argo design
environment. Knowledge-Based Systems 11(1), 47–60 (1998)

49. Salleh, N., Hoda, R., Su, M.T., Kanij, T., Grundy, J.: Recruitment, engagement
and feedback in empirical software engineering studies in industrial contexts. In-
formation and software technology 98, 161–172 (2018)

50. Samhi, J., Allix, K., Bissyandé, T.F., Klein, J.: A first look at android applications
in google play related to covid-19. arXiv preprint arXiv:2006.11002 (2020)

51. Sarcar, S., Munteanu, C., Jokinen, J.P., Oulasvirta, A., Silpasuwanchai, C., Char-
ness, N., Dunlop, M., Ren, X.: Designing mobile interactions for the ageing popula-
tions. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. pp. 506–509 (2017)

52. Schmidt, D.C.: Model-driven engineering. COMPUTER-IEEE COMPUTER
SOCIETY- 39(2), 25 (2006)



53. S.Combs, T., S.Sandt, L., P.Clamann, M., C.McDonald, N.: Automated vehicles
and pedestrian safety: Exploring the promise and limits of pedestrian detection.
American Journal of Preventive Medicine 56(1), 1–7 (2019)

54. Smith, J.: The Book. The publishing company, London, 2nd edn. (1998)
55. Soomro, A.B., Salleh, N., Mendes, E., Grundy, J., Burch, G., Nordin, A.: The

effect of software engineers’ personality traits on team climate and performance:
A systematic literature review. Information and Software Technology 73, 52–65
(2016)

56. Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evo-
lution. Journal of Visual Languages & Computing 15(3-4), 291–307 (2004)

57. Stanovich, K., West, R.: Individual differences in reasoning: Implications for the
rationality debate. The Behavioral and brain sciences 23, 645–65; discussion 665
(11 2000). https://doi.org/10.1017/S0140525X00003435

58. Stock, S.E., Davies, D.K., Wehmeyer, M.L., Palmer, S.B.: Evaluation of cognitively
accessible software to increase independent access to cellphone technology for peo-
ple with intellectual disability. Journal of Intellectual Disability Research 52(12),
1155–1164 (2008)

59. Whittle, J.: Is your software valueless? IEEE Software 36(3), 112–115 (2019)
60. Wirtz, S., Jakobs, E.M., Ziefle, M.: Age-specific usability issues of software inter-

faces. In: Proceedings of the IEA. vol. 17 (2009)
61. Wright, L., Syvitski, J., Nichols, C.: Sea level rise: Recent trends and future pro-

jections. Coastal Research Library 27, 47–57 (2019)
62. Yusop, N.S.M., Grundy, J., Vasa, R.: Reporting usability defects: A systematic lit-

erature review. IEEE Transactions on Software Engineering 43(9), 848–867 (2016)


