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Abstract—Humans are a key part of software development,
including customers, designers, coders, testers and end users.
In this keynote talk I explain why incorporating human-centric
issues into software engineering for next-generation applications
is critical. I use several examples from our recent and current
work on handling human-centric issues when engineering various
‘smart living’ cloud- and edge-based software systems. This
includes using human-centric, domain-specific visual models for
non-technical experts to specify and generate data analysis
applications; personality impact on aspects of software activites;
incorporating end user emotions into software requirements en-
gineering for smart homes; incorporating human usage patterns
into emerging edge computing applications; visualising smart
city-related data; reporting diverse software usability defects; and
human-centric security and privacy requirements for smart living
systems. I assess the usefulness of these approaches, highlight
some outstanding research challenges, and briefly discuss our
current work on new human-centric approaches to software
engineering for smart living applications.

Keywords-smart homes; smart cities; internet of things; edge
computing; human factors; diversity and inclusion; software
development

I. INTRODUCTION

Smart living applications are increasingly in demand. These
range from smart homes – for general-purpose use or specific
tasks e.g. supporting aged care, disability or rehabilitation;
smart transport systems; smart grid and other utility-oriented
systems; autonomous vehicles; ‘smart living’ robotics; indus-
try 4.0-supporting applications; smart hospitals and schools;
and smart buildings in general [1]–[3]. All of these applica-
tions require heavy use of Internet of Things-type sensors,
interactors, controllers, etc [4]. All of them capture and use
diverse types and amounts of data [5]. All of them increasingly
require some hybrid form of cloud- and edge-computing [6].
Designing, building, deploying and maintaining such smart
living solutions is technically very challenging and many
research and practice issues remain to be solved. For example,
Figure 1 shows two exemplar smart living solutions, a smart
home to support ageing people living in their homes, and a
smart urban environment. I describe these in detail below.

What often gets lost in the development of such systems
are the critical human factors – what I in this keynote
describe as ”human-centric issues” – relating to different
aspects of the system development and usage [3], [7]. Human

Fig. 1. Two smart living solution examples

factors impact developing and deploying future smart living
solutions in several ways: by definition, such smart living
solutions often have complex end user needs. For example,
end users who are aged, have a wide range of physical and
mental challenges, have differing emotional reactions to new
technologies, and have diverse language, cultural and socio-
economic backgrounds. Development teams are often very
diverse, increasingly distributed, and have differing person-
alities, work culture, engagement, commitment, gender and
age. Organisations deploying and maintaining smart living
technologies are increasingly complex, including multiple or-
ganisations with differing values having to co-operate, differ-
ent members of organisations having different priorities and
agendas, concerns over privacy of individuals and groups, and
increasing concerns over biased ‘intelligent’ solutions.

In this keynote I outline some of these human-centric
issues, the importance of fully taking them into account during
systems development, and some of the serious implications of
failing to properly accomodate them. I discuss a number of
works of my team in trying to address some of these issues.
These range from: use of human-centric, domain specific
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visual languages to support diverse stakeholder modelling
and production of software; emotion-oriented requirements
engineering, to incorporate positive and negative emotional
reactions to emerging technologies into their design and evalu-
ation; impact of personality on software developers, teams and
organisations; the need for more human-centric usability defect
reporting for smart living solutions; approaches to modelling
complex fog- and edge-computing solutions and the need
to better accomodate diverse human usage of edge devices;
human-centric visualisation of smart city-related data; and the
need for greatly improved security engineering and privacy
models for smart technologies.

I use a few exemplar smart living solutions as motivating
scenarios and in illustrating some of our work to date. These
include smart homes and apps to support better ageing; smart
traffic analysis and visualisation; smart city applications; and
smart buildings. I discuss some outstanding issues relating
to these different areas of smart living system development
and deployment. Finally I outline our current approaches to
improving the development of such systems. This includes
use of the co-creational living lab concept, improved human-
centric requirements engineering, augmenting model-driven
development with human-centric issues, and deployment and
evaluation with real-world smart living technology developers.

II. MOTIVATION

A. Human-centric Issues

A wide variety of human-centric issues impact both the
development of software and its usage, particularly in the
smart living systems domain. Below I summarise some, but
by no means all of, some of the key issues we are interested
in, have worked on, or are working on currently.

Personality: Personality impact on software developers has
been researched for many years in software engineering and
computer science [8]. Researchers have studied personality
impact on programming, testing, design, requirements engi-
neering and maintenance. Research has shown how differing
personalities of developers and team members can significantly
impact software development. Much less researched to date
has been on impact of personality of different end users on
e.g. smart homes and building applications.

Gender: It has been long recognised that software engineer-
ing and computer science have been highly unbalanced in gen-
der in terms of development teams, students, and researchers.
Recently work has investigated how software, and other sys-
tems, are gender biased in various ways. The GenderMag
toolkit provides a way to evaluate and re-design interfaces to
address gender bias [9]. Several prominent mainstream articles
and books have highlighted the gender bias in vehicles e.g. seat
belt design, apps, and smart technologies [10].

Emotions: Different people react differently to technology
solutions from an emotional perspective. Some react positively,
while others negatively, to the exact same solution, which can
dramatically impact the acceptance and usage of the software
[11]. Software engineering researchers have become interested

in emotional reactions of developers and teams under stressful
situations, and how these differ between people [12].

Engagement: People engage with the same technology
solutions to different levels and in different ways. This can
be seen in eHealth apps and smart homes in particular. How
to design such solutions to achieve high levels of engagement
and usage is still very much an open research challenge [13].

Entertainment: People are highly driven by enjoyment,
entertainment and ‘fun’ aspects of using software - computer
games and gamification being key examples. How to better
design smart living solutions to appeal to this sense of enjoy-
ment, to better engage, attract, encourage positive emotions,
and ensure take-up, are also continuing research efforts [14].

Ethnicity and Culture: Software that fails to take into
account or is biased in terms ethnicity of people is highly
problematic, especially for many emerging smart city appli-
cations e.g. policing and surveillance [15]. Culture is a term
that incorporates a wide variety of beliefs and behaviours that
need to be carefully understood and designed into smart living
solutions [16]. Cultural differences also significantly impact
how software development is undertaken [17].

Age: Many smart living systems focus on supporting age-
ing people, but some are also targeted to supporting young
children [3]. People of differing ages may have quite different
expectations, challenges and reactions to smart living environ-
ments, which need to be carefully designed into solutions.

Values: Human values include concepts such as inclusive-
ness, transparency, privacy, openness, equality and so on [18].
Many software systems conflict with one or more human
values, causing expectation mis-matches and reducing usage,
take-up and acceptance [19].

Physical and Mental Challenges: Many humans live with
challenges including mental health, cognitive impairment and
a wide variety of physical challenges, including to mobility,
sight, speech, health and so on [3]. Many smart living solutions
have been developed to assist with these challenges. However,
all smart living systems must take into account diverse phys-
ical and mental challenges of end users in their design [20].

B. Need for IoT, Cloud and Edge Computing

All smart living applications make extensive use of Internet
of Things (IoT) devices, edge computing concepts and tech-
nologies, and cloud-based compute and data services [21].
IoT devices provide an ever-growing range of technologies
for sensors, interactors and controllers, heavily leveraged by
smart living systems. These include, but are no means limited
to: cameras, lidar, motion and movement sensors, proximity
sensors, RFIDs, temperature, humidity, light, weight sensors;
tablet, mobile, wearable, touch, voice, gesture, haptic, aug-
mented and virtual reality displays and interactors; and door,
light, power, water, window, network, appliance, machine,
vehicle, and building controllers. The ever-growing number,
data size and desire for end point computation means edge
computing concepts need to be employed to achieve scala-
bility, throughput, reliability and evolution [22], [23]. There
is still a need for large-scale, multi-tenant cloud computing



applications to provide compute and data services, provide
building, organisation and city-wide data storage and analysis,
and to off-load complex computation.

C. Scenario 1: Smart Home for Ageing

Consider the example from Figure 1 of a ‘smart home’ to as-
sist ageing people. Such a smart living solution aims to provide
ageing people with support for physical and mental challenges
as they age, but want to stay in their own home longer and
be safe and secure [7]. To develop a solution the software
team must deeply understand technologies like sensors, data
capture and analysis, communication with hospital systems,
and software development methods and tools. However, they
must also understand and appreciate the human aspects of
their stakeholders: ageing people, family, and clinicians. These
include the technology proficiency and acceptance of ageing
people, who are likely to be much older than the software
designers. The usability of the software for the very broad
user base e.g. need to provide voice or gesture or smart
phone interface. The emotional, both positive and negative,
reactions to such a smart home e.g. they may like daily
interaction with the smart home, but dislike the sense of always
being monitored. The accessibility of the solutions for people
with e.g. physical tremors, poor eyesight, wheel-chair bound,
and cognitive decline are all highly important. Developers
of the smart home must accommodate human-centric issues
including diverse age, gender, culture and language of users
e.g. appropriate use of language, colours, symbols. Personality
differences may be very important e.g. those wanting flexible
dialogue with the smart home, compared to those needing
much more directive interaction with the system. Finally,
the software team has many human-centric issues relating
to understanding users themselves – age, language, culture,
personality – e.g. over one quarter of the elderly in Australia
are non-native English speakers and the majority women, but
by far the majority of software developers are 20 or 30-
something year old English-speaking men.

D. Scenario 2: Urban Usage Analysis

Smart cities have become a greatly increasing area of
research but also of practice [13], [16], [20]. Consider the
example from Figure 1 of a smart city solution which in-
cludes diverse data feeds to assist urban precinct operation
and strategic planning. A local government instruments a
wide variety of its artefacts to assist in providing services
and in overall planning and management of services. These
might include smart parking, lighting, rubbish bins, space
usage, traffic flow, pedestrian activity, building usage, park
management, utility management, and so on. Citizens are
impacted by these technologies in many human-centric ways.
Some citizen’s values may be compromised e.g. their desire for
privacy conflicts with the local government desire for openess
and transparency. Some citizens may react positively to the
idea of improved services via smart technologies, while others
feel negatively about intrusiveness, lack of personal touch, and
concern about data sharing. Some council employees find the

new systems more engaging and appealing than traditional
ERP systems, while others find the attempt at gamification
of services annoying and distracting. While some interfaces
have been carefully designed, they suffer from aspects of
gender, cultural and language bias and deficiency. Surveillance
mechanisms are not sufficiently broadly trained resulting in
racial, age and gender biases. Finally, many citizens lack full-
time access to internet services and lack sufficient educational
attainment to understand complex language used in interfaces,
resulting in socio-economic and educational biases.

E. Scenario 3: Software Development Team

To realise the previous two scenarios, a suitable software
team must be formed to capture and analyse requirements,
design and build systems, evaluate solutions, and deploy and
evolve the smart living environments. The team has a number
of human-centric challenges itself. How do team members
interact and work effectively together, taking into account their
disparate age, culture, language, gender, emotions, personali-
ties, etc, especially if its a global software engineering team
[24]? Given the software team is likely to be very different to
target end users, how do they effectively interact with these
users to capture, design and evaluation solutions? As users of
these smart living systems are very diverse, how can either
multiple solutions for different user groups be produced, or
run-time adaptive systems be produced that can learn and adapt
[25]? Ultimately, how do we move from a ‘us-vs-them’ model
of software development to a truely co-creational smart living
solution development approach [26]?

III. EXAMPLES

I describe some research projects where we have attempted
to address human-centric issues highlighted in the previous
section. I highlight key as yet unanswered challenges in each.

A. Domain Specific Visual Languages

We developed the Visual Care Plan Modelling Language
(VCPML) to provide a Domain-Specific Visual Language
(VCPML) approach to designing and generating mobile apps
for ”care plan” implementation for diverse e-health application
domains [27]. VCPML allows clinicians to model abstract,
complex ‘care plans’ for their patients, instantiate a care plan
for a specific patient and tailor it to the patient’s needs,
and generate a fully-functioning app from the model using
model-driven engineering. Figure 2 shows an example of using
VCPML to build an app for diabetes management support.
(1) the clinician models the abstract care plan including
exercise, pharmacology, diet, monitoring protocols, etc. (2)
After specialising a generic care plan to a particular client, the
clinician models desired app features using a second DSVL.
(3) An app specialised to the patient care plan is generated.

While this approach is theoretically powerful, it turned out
to have several severe limitations around human-centric issues
of tool users and generated app users. The app interface visual
notations were too complex for the clinical tool users and used
terms beyond their experience and expertise.The generated



Fig. 2. VCPML app design and generation example (from [27])

Fig. 3. BiDaML Example (from [28])

apps could not be tailored to meet the needs of diverse end
users. The language used in the generated apps assumed too
great an education level and English language competence;
the apps used fiddly icons and interactors not suitable for
many of the ageing users; the apps assumed a Euro-centric
view of health and suffered from gender-biased choices; the
apps provided open dialogue with clinical staff but with the
information sharing violating many patients’ values around
privacy, openness and informed consent.

Many smart living applications require complex data cap-
ture, processing and visualisation. Most teams working on
such applications are diverse: data scientists, end users, busi-
ness sponsors, domain experts, software engineers and cloud
platform specialists. Unfortunately there does not exist a set of
high level visual modelling languages to support these diverse

Fig. 4. Emotion-oriented RE for smart home design example

data analytics application teams to be able to effectively work
together [28]. To address this gap we developed the Big
Data Analytics Modelling Languages (BiDaML) to provide
a set of DSVLs to support diverse teams working on complex
data analytics applications. BiDaML provides several diagram
types for this purpose: Brainstorming diagrams provide an
overview of a data analytics project and all the tasks and
sub-tasks involved in designing the solution; Process diagrams
specify the analytics processes/steps including key details
related to the participants, operations, and data items, capturing
details from a high-level to a lower-level; Technique diagrams
show the step by step procedures and processes for each sub-
task at a low level of abstraction; Data diagrams document
the data and artefacts that are produced in each of the above
diagrams; and Output diagrams define the outputs associated
with different tasks e.g. output information, reports, results,
visualisations, etc. Figure 3 shows a Process Diagram from
BiDaML. This shows an example from a real-world property
price analysis problem where several datasets need to be
collected, aggregated, analysed and property price predictions
visualised for real estate analysts. The team developing this
solution includes banking and real estate experts, data scien-
tists, software engineers and cloud platform host engineers.

While our BiDaML approach has proved very effective as
a human-centric set of DSVLs for this domain, it still lacks
support for many human-centric end user issues. We can not
capture different human-centric needs of end users including
age, language, culture, educational level, socio-economic sta-
tus, gender etc which may impact appropriateness and usability
of the produced solution. When used in smart living systems,
we may wish to model and leverage different user engagement,
enjoyment, motivation, personality and values differences. We
may wish to produce a variety of solutions based on some of
these diverse end user characteristics, or a single solution that
can adapt or be adapted to these user needs.



B. Emotion-oriented Requirements Engineering

We have applied an augmented DSVL [11] to support the
modelling of emotions in a variety of smart living systems
[3]. The idea is to capture goal models representing key
requirements of the target systems but augmented with ‘pos-
itive’ and ‘negative’ emotions that the systems may elicit
in end users. Developers and stakeholders can the reason
about ways to mitigate the negative emotions some users
may face, while strengthening positive reactions for all users.
Figure 4 shows an example of part of an emotion-oriented
requirements goal model. In this model, a conventional goal-
directed requirements modelling language has been augmented
to allow requirements engineers to capture and relate possi-
ble emotional goals (typically positive emotions to try and
achieve) and threats (typically negative emotional reactions).
In this example we see the target system functional goal
of supporting independent living in the smart home may be
threatened by negative senses of over-dependency, monitoring
and control. The goal is however supported by positive senses
of maintaining independence and self-control. The require-
ments engineers want developers to try and mitigate the former
while achieving/strengthening the later in their smart home
design. An associated evaluation framework enables the team
to test the implementation against these emotional goals.

While this model has proved useful for aged care-oriented
smart living solutions, it still has numerous challenges. We
need a way of ensuring these emotions are linked to design
and implementation decisions and features. We need to link
emotional goals to other human-centric goals e.g. personality,
gender, culture, values etc. We need to provide developers
with tools to test and report emotion-oriented goal failures
in the system. Finally, we need to be able to model many
other human-centric requirements issues that may be impacted
in the development of the smart living solution, without
overwhelming models with complexity. We investigated age,
gender and physical challenges implicitly in this work, as the
personas representing stakeholders needed to capture these.
But this was not done and evaluated systematically, nor was
support for modelling these human-centric characteristics in a
similar way to emotions undertaken.

C. Personality and Software Teams

Personality and software development has long been studied
[8]. We have been interested in several aspects of this problem:
personality and its impact on different phases of development,
specifically software testing [29]; personality and its impact
on learning pair-programming [30]; personality and its impact
on requirements engineering [31]; and personality and its
impact on teams and organisations [32]. These have shown
that different aspects of software activity can be significantly
impacted by different developer, pair, and team personalities.

Less studied is personality impact on the resulting smart
living solutions themselves, and the personality interactions of
developers and stakeholders. Both of these need to be further
investigated to better understand how, like different emotional
reactions to technology solutions, they impact on smart living

Fig. 5. Usability Defect Reporting (from [34])

system take-up and usage. It is likely that people with different
personalities will find different solutions better – or worse – for
supporting their interactions than others. It is likely that some
interactions between requirements engineers and stakeholders
will be significantly impacted by personality differences [33].

D. Usability Defects and Reporting

Software systems released to end users often have severe
usability defects [35]. While much work has been done in HCI
to investigate usability engineering approaches, much less has
been done in software engineering research or translated to
software engineering practice. Most defects are reported via
general-purpose issue tracking tools like JIRA and Bugzilla.
We have been working on improving usability defect reporting
via an improved defect taxonomy and structured reporting
form [34]. Figure 5 shows a prototype of such a form in use to
report a defect. The approach uses a wizard-based metaphor,
stepping the reporter through a set of question answering steps
to represent the usability defect in detail.

While this approach is more effective than using traditional
defect reporting tools, many outstanding issues remain. We
have focused on web and mobile applications, but reporting
IoT-based sensor, interactor and controller defects will be
important for most smart living systems. Existing usability
defect taxonomies do not incorporate even smart phone/tablet-
based interfaces, let alone such IoT-based interfaces [35].
Almost no work yet seems to exist on ways to effectively
report usability – or other human-centric defects – in smart
home/smart city type applications [36].

E. Deploying Large Edge-based Applications

Most smart living solutions need to be deployed on edge
or fog computing systems. These turn out to have a number
of significant differences to deploying them on cloud-based
systems [22]. This includes the use of a very large number
of edge end points, the heterogeneity of the edge devices and
edge servers; the need to distribute large amounts of compute
and data; the need to achieve high levels of reliability and ro-
bustness, due to the critical application domain nature of many
smart living systems; and the need to accomodate new edge



Fig. 6. Fog Workflow Simulator (from [37])

devices and services during system operation. Understanding
how to effectively deploy applications to edge computing
platforms is not well understood.

We have been investigating several aspects to this edge
deployment challenge. We developed a toolkit, FogWork-
flowSim, to provide developers and deployers a way to
experiment with performance of complex workflow systems
deployed to an edge computing domain [37]. Figure 6 shows
the architecture of this toolkit. The engineer can define
available fog (edge) computing resources, including storage
and compute, for different devices and servers. They can
choose different offloading strategies, scheduling algorithms
and choose different performance metrics of the solution of
interest e.g. throughput, number of users, cost. The workflow
system defined will be spread across the defined fog platform
including edge devices, edge services, cloud compute and
cloud data. We have also been investigating the impact of
caching and compute distribution strategies for edge comput-
ing applications [38], [39]. We want improved algorithms to
deploy applications to large scale edge systems, and includes
optimising compute and data caching for different users, edge
devices and servers, cloud services, and applications.

To date in this work we have taken little account of different
edge device user human-centric requirements. For example, in
a smart building domain we may have greatly varied end users
in terms of data privacy, security, transparency and openness
requirements. We may have greatly varied application edge
device usage characteristics, based on user age, emotions,
values, or physical or mental challenges. User mobility and
context change of devices may be greatly influenced by these
and other human characteristics of smart living system users.

F. Visualising Smart City Application Data

Once we have deployed a smart living solution to an edge
platform, we need to capture diverse data, aggregate the data,
analyse it, and visualise various resultant information. In our
PedaViz work [40], we developed a tool based on urban
precinct usage data, captured from a variety of pedestrian
tracking devices, to better understand short term and longer
term precinct activities. Figure 7 shows an example of this
tool in use on Melbourne City Council pedestrian data. Here
we visualise activity over a 24 hour period using a novel map
+ clock overlap visualisation technique. Council managers
can better understand how pedestrian usage changes during

Fig. 7. PedaViz Example (from [40])

Fig. 8. Collaborative Security Example (from [42])

the day, due to weather impacts, due to cultural or sporting
events, or due to other activities occurring nearby. We similarly
combined a variety of social media data and geographic data to
produce a better understanding and recommendation of visits
to tourist points of interest [41].

Outstanding issues in this domain include the impact of
human characteristics on the use of the visualisations, the
capture of data, and their activities being tracked. Different
users may have very different information visualisation tasks
they wish to use the analysed data for. This may result in
very different interfaces needing to be provided, based on their
personality, culture, language, gender, physical challenges etc.
Different users may have very different values relating to
information disclosure, capture and usage. Different users may
have very different activity patterns around mobility, relating
to physical and mental challenges, age, socio-economic status.

G. Security Requirements for Smart Living Solutions

Smart living solutions have very diverse security and pri-
vacy requirements for their different users. In earlier work
we developed a collaborative cloud security management
framework and toolset [42]. This allowed cloud providers,
application providers, and application users to tailor a range
of security enforcement solutions to different cloud tenant



needs. Figure 8 shows an outline architecture for this approach.
A management layer provides run-time configurable security
services including metrics, categorisation, risk assessment,
configuration controls, tenant-specific plans and reporting. An
enforcement layer takes configurations and applies on a per-
tenant, per-application basis. A feedback later uses measure-
ments to monitor, analyse and – via the management reporting
– visualise security enforcement behaviours.

We want to apply a similar approach to – much more
complex – edge-based systems for smart living domains.
Besides the technical issues of developing such a solution
for far more heterogeneous devices, services and applications
than on a cloud platform, human-centric issues impact many
aspects. A much wider group of users will need to be
supported, most without any technical knowledge of security
and privacy concepts. Different values, emotions, personalties
and cultures will undoubtedly make the security configuration
and monitoring needed far more complex [43], [44]. Diverse
human-centric privacy requirements will need to be supported.

IV. OUTSTANDING SMART LIVING HUMAN-CENTRIC
ENGINEERING CHALLENGES

I summarise some of the key outstanding challenges of
engineering next-generation smart living solutions, from the
perspective of the diverse human-centric issues that impact
both the engineering and usage of such systems.

A. Access to and Participation of Diverse Users

Effective requirements engineering for smart living solu-
tions requires access to, and deep involvement of, a diverse
range of end users throughout the development of these
systems. Actually finding and obtaining this input is more
difficult than many engineers appreciate. Our software – and
systems – engineering methodologies tend to foster a ‘them
and us’ approach – engineers being us, everyone else being
them. Even agile approaches with ‘customer in team’ practices
often fail to actually listen to users, listen to enough users,
and treat their concerns with the importance that they are
due. To engineer effective smart living solutions, we need to
completely rethink what software engineering, participatory
design, agile methods, user centred design, evaluation, and
project leadership and management mean in this context.

B. Human-centric Development

Such systems are built by and for humans. The dynamics
of humans working together to engineer such complex smart
living technologies requires much further research and practice
improvements. Linked to the previous item, teams are made up
of individuals with diverse personalities, experiences, cultures,
language, genders, age, physical and mental challenges, human
values, educational backgrounds and so on. All of these may
have a greater or lesser impact on the way they work together,
and work with smart living solution users, to engineer the
solutions. Global software engineering projects mean different
teams and organisations need to work across countries, intro-
ducing even more human-centric development complexities.

C. Capturing Human-centric Issues

Actually capturing diverse human-centric issues relating to
smart living systems requires far more work. I gave examples
of capturing emotions relating to potential end user reactions
to a smart home system, limited examples of capturing age
and language, and limited examples of capturing personality
in development teams. I gave examples of domain-specific
visual languages and human-centric visualisations. All of
these, and others’ related works in this area, only address
a small part of human-centric issues impacting smart living
systems. Currently no design principles exist for developing
such modelling techniques, nor do any mechanisms to check
correctness, completeness and consistency of many human-
centric issues in requirements.

D. Developing and Deploying Adaptive Software

We need better support for engineering smart living solu-
tions. The example of the eHealth app I used earlier illustrates
the challenges we face to do this. We need to incorporate
the human-centric requirements for diverse end users into not
only requirements capturing modelling languages, but into
architecture, design, interface, and code specifications. This
may result in us wanting to produce a great many different
implementations for the same smart living system. It may need
us to adapt the single solution in a great many – sometimes
unanticipated – ways at run-time.

E. Data Security, Privacy, Provenance

Smart city technologies by their very nature produce, cap-
ture, aggregate, analyse, present and share a very wide rage
of information. Given they often fulfil a number of safety
and security-critical services, they require great attention to
security and privacy aspects. However, this is further compli-
cated by the diverse human-centric issues that are critical to
the success of such systems. Different users, groups of users,
teams, organisations and ultimately societies have diverse
human values impacting on smart living system behaviour.
Different users react emotionally to the provision of such
services and their data provenance and privacy implications
in different ways. Cultural expectations may impact their
usage, adoption and acceptance of solutions. People react very
differently to cybersecurity events and privacy attacks based
on personality, age, education and other factors. Failure to ac-
count for bias around ethnicity, gender, educational attainment,
socio-economic status, age, physical and mental challenges
and other human characteristics have all been shown to have
serious implications for smart living system usage.

F. Large-scale Deployment and Evolution

Deploying smart living solutions to edge computing plat-
forms brings a large number of technical challenges, including
scalability, robustness, reliability, maintenance, evolution, and
so on. In my view, the human-centric issues that these tech-
nologies must cope with are at least as challenging. Different
users will have very different usage patterns, data collection
and informed consent requirements, human relationships to



Fig. 9. Living lab

family, friends and carers, cultural norms, language, tech-
nology competence and acceptance, and ultimately different
outcomes they want and expect from these systems. As noted
above, we still lack adequate development methods, modelling
approaches, and engineering support for the development and
deployment of these systems. Many smart living systems have
emergent requirements i.e. those not anticipated at design
time. This includes new technologies e.g. new devices, data,
usage scenarios. But it also includes unanticipated human-
centric issues e.g. support for new languages and cultural
expectations; support for a wider range of aged users; support
for mental challenges of users not understood by developers;
use of intelligent services that may be unexpectedly biased
along ethnic, gender, age, etc dimensions; and misalignment of
values between developers, deploying organisations and users.

G. Evaluating Deployed Software

Conducting real-world experiments with real users on de-
ployed smart living systems is essential. However, as identified
above, their is almost no work so far in the area of human-
centric issues defect reporting, defect analysis, defect correc-
tion and ultimately quality assurance of such systems. IoT
systems in general lack appropriate approaches for managing
human-centric usability engineering. These are fundamentally
very different from desktop, web and mobile app solutions.
Smart living systems by their very nature must cope with a
wider variety of human user challenges, many that developers
do not live, understand or are simply unaware of. Updates
made to deployed smart living solutions must be very care-
fully rolled out and how previously highlighted human-centric
defects are addressed, while not introducing new ones.

V. OUR APPROACH

We are working on a new approach to engineer smart living
solutions. This includes smart homes for ageing, rehabilitation
and physically and mentally challenged; smart technologies to
support ageing, mental health and loneliness; various smart
city solutions; and smart solutions for vulnerable community
members. Figure 9 illustrates the new human-centric, model-
driven software engineering approach we aim to produce in
our current work. (1) We are adopting an Agile Living Lab
approach that co-locates the software team and target end users
of smart living systems throughout the process [3]. This will
provide a co-creational culture and environment to better elicit
human-centric requirements, model and capture with human-
centric DSVLs, and receive continuous feedback from users.
(2) A set of customised DSVL tools will be used to capture
and model the human-centric requirements, validate them
against design principles and best practice modelling patterns,
and translate them to extended design-level models. (3) A
set of MDSE generators will generate smart living software
applications – code, configurations, etc – for devices, servers,
apps and other components. Unlike existing generators, these
will take into account wide variations of end-users as specified
in the human-centric requirements. These will produce either
multiple versions of the target software applications and/or
reconfigurable applications that adapt to each end user?s
differing human-centric needs. (4) A combination of human-
centric requirements testing and continuous defect feedback
will be fed to the development team. By leveraging the Living
Lab concept, this will enable both faster feedback and defect
correction, but also better evolution and modelling of the
human-centric requirements over time. Lessons will be fed
into the improvement of the DSVL tools, best practice patterns
and MDSE generators. We have identified a set of necessary
research activities to achieve this outcome.

A. Co-creational Living Lab

Human-centric requirements have to be elicited from target
end users and stakeholders, captured and modelled using our
DVSL-based tools, used by our extended model-driven engi-
neering solutions to generate software, and then the software
tested and user feedback accepted and actioned to correct
requirements and design model problems. A new approach is
needed to effectively support the software team in achieving
this. We are adopting the Living Lab co-creation concept that
has become popular in digital health software development [3].
We are establishing this lab with a domain-specific focus with
smart living technology producer and user partner companies
and target end users and the software team co-located. Target
end users and developers closely collaborate to elicit, capture,
test, use and refine the human-centric software requirements.
The DSVL modelling tools, MDSE generators and testing
tools all need to support collaborative capture, discussion
and refinement of the human-centric requirements for this
to be most effective. We are extending our current work
on developing digital health technologies [3], human-centric
software engineering processes in software teams, including



personality and team climate [29], [30], and collaborative
DSVL-based modelling tools [45].

B. Human-centric Requirements Engineering

We are developing a range of new and augmented DSVLs
to model a wide variety of human-centric issues at the require-
ments level for software systems. Some of these DSVLs extend
existing requirements modelling languages in successively
more principled ways than currently e.g. goal-directed require-
ments languages such as i*, use cases and essential use cases,
target user personas, user stories, etc. However, others may
provide wholly novel requirements modelling techniques and
diagrams that are then linked to other requirements models. We
envisage novel requirements capture for things like identifying
cultural, age, accessibility and personality aspects of target end
users. Where multiple target end users for the same software
application have differing human-centric requirements, mul-
tiple or composite models will likely be necessary. We are
building on a wide range of DSVLs, including for design
tools, requirements, reporting, business processes, surveys,
performance testing, and many others, that we have previously
developed [28] as well as digital health software [3] and work
on modelling usability defects and emotional and multi-lingual
requirements [7], [31].

C. Human-centric Model-driven Engineering

Once we have some quality design-level human-centric
issues in models (incremental outcomes from activities 5.4-
5.7), we can use these in model-driven engineering code
and configuration generators. Results from this work will
be fed back to extending the our human-centric modelling
language design principles. This will involve adding generators
that consume design level models augmented with human-
centric properties and synthesizing software applications that
use these appropriately. For example, we might generate a
gesture-based, passive-voice feedback solution for a target user
who has motor challenges and anxious temperment. However,
we might generate several interfaces for the same software
feature, and at run-time configure the software either with
pre-deployment knowledge, end user input, or even modify
it while in use based on end user feedback. Thus for example
a part of the software for our smart home scenario could adapt
to different end users’ current and changing needs (e.g. age,
culture, emerging physical and mental challenges, personality
etc). This work will be done incrementally, focusing on
single issues first then looking at successively more complex
combinations, adding support to the prototype tools and re-
peatedly trialling the tools. We will work on new approaches
to human-centric adaptive user interfaces [46], adaptive run-
time software [42], and DSVL-based MDSE solutions [45].

D. Human-centric Application Evaluation

We need to address critically important issues of (i) testing
whether the resultant smart living software actually meets the
requirements specified; (ii) providing a feedback mechanism
for end users to report defects in their smart living systems,

specifically relating to human-centric issues; and (iii) provid-
ing a feedback mechanism from software developers to users
about changes made relating to their personal human-centric
issues. We are developing a human-centric requirements-based
testing framework, techniques and tools. These enable human-
centric issues to be used in acceptance tests to improve valida-
tion of software against these requirements. We will also look
to develop new human-centric defect reporting mechanisms
and developer review and notification mechanisms. These will
support continuous defect reporting, correction, and feedback
via the living lab and remotely. This work extends our research
on software tester practices and usability defect reporting [35]
and requirements-based testing [47].

VI. SUMMARY

I have highlighted the many challenges human-centric is-
sues that present when trying to engineer next-generation
‘smart living’ systems. While the technological challenges
of engineering these systems are considerable, they bring a
wealth of very challenging human-centric issues, including but
not limited to the personality, emotions, age, gender, culture,
ethnicity, physical and mental challenges, values, engagement
and desires of human engineers and stakeholders. I have shown
that we need significantly improved development methods to
address these challenges. Building on our experiences to date,
I have highlighted some of the key approaches we are using
to address – some of, but by no means all – of these very
important human-centric issues.
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