
A Comparative Study between Android Phone

and TV Apps

Yonghui Liu1, Xiao Chen2, Yue Liu1, Pingfan Kong3, Tegawendé
F. Bissyandé3, Jacques Klein3, Xiaoyu Sun4, Li Li5, Chunyang

Chen6, John Grundy1

1Department of Software Systems and Cybersecurity, Monash
University, Australia.

2School of Information and Physical Sciences, University of Newcastle,
Australia.

3SnT, University of Luxembourg, Luxembourg.
4The School of Computing, Australian National University, Australia.

5School of Software, Beihang University, China.
6Department of Computer Science, Technical University of Munich,

Germany.

Abstract

Despite the growing popularity of Smart TVs and TV versions of mobile apps,
research on TV apps and their relation to phone counterparts has been limited,
primarily due to the absence of a suitable dataset. Our study addresses this gap
by compiling an extensive collection of 3,445 Android phone/TV app pairs from
the Google Play Store, launching the first comparative analysis of its kind. We
examined these pairs across multiple dimensions, including non-code elements,
code structure, security, and privacy aspects. Our findings reveal that while these
app pairs could get identified with the same package names, they deploy dif-
ferent artifacts with varying functionality across platforms. TV apps generally
exhibit less complexity in terms of hardware-dependent features and code vol-
ume but maintain significant shared resource files and components with their
phone versions. Interestingly, some categories of TV apps show similar or even
severe security and privacy concerns compared to their mobile counterparts. This
research aims to assist developers and researchers in understanding phone-TV
app relationships, highlight domain-specific concerns necessitating TV-specific
tools, and provide insights for migrating apps from mobile to TV platforms.

Keywords: Android, Apps, Phone, TV

1



1 Introduction

Smart TVs have become the dominant TV type. As reported by Laricchia (2022a),
more and more users are switching from traditional TVs to Smart TVs, which offer
additional features and conveniences such as allowing users to watch Netflix and
YouTube directly on TVs through internet connectivity. According to Group (2021),
the global smart TV market is expected to reach a value of USD 253 billion by 2023.
Among various types of Smart TVs on the market, Android TV, with a lot of benefits
extended from the popular Android ecosystem, has undoubtedly become one of the
most popular ones (Tileria and Blasco, 2022). Similar to Android phones, Android
TVs enable users to connect to the Google Play store to download and update apps,
as well as utilize Google Assistant to accomplish hands-free tasks.

Despite the growing popularity of the smart TV industry and the increasing num-
ber of TV devices in the Android ecosystem, the number of available TV apps (around
7,000) is significantly lower than the number of smartphone apps (over 2.6 million on
Google Play) Laricchia (2022b). As Android TVs expand the features of the Android
ecosystem, they also inherit potential security vulnerabilities present in other Android
devices. Moreover, customizations made for Android TVs may introduce additional
security risks for users. Aafer et al. (2021a) discovered 37 unique high-impact vul-
nerabilities in 11 Android TV boxes using log-guided fuzzing, while Liu et al. (2021)
and Tileria and Blasco (2022) analyzed the security and privacy of TV apps.

Previous studies have primarily focused on mobile apps, leaving the differences
between mobile and TV apps poorly understood. The gap between smartphones and
smart TV apps is often overlooked, resulting in a limited understanding of TV apps
compared to smartphones. Our lightweight literature search, conducted on Google
Scholar using various combinations of keywords such as ”Android TV app,” ”Smart
TV app,” ”similarity,” and ”app pairs,” reveals that the connection between smart-
phone and TV apps has not been thoroughly explored. Only one related work, by
Hu et al. (2023), exists to help understand the relationship between Android TV and
Android mobile apps. However, this study was limited by a small dataset of only 298
app pairs.

TV apps have distinct design requirements that set them apart from smartphone
apps. These differences arise from unique features such as specific hardware access,
sandboxing mechanisms, touch gesture recognition, a strong focus on accessibility,
the use of large screens viewed from a distance, and varied power supply needs. To
deliver more practical insights and foster a more robust Android TV ecosystem, a
more systematic understanding of the differences and similarities between phone and
TV app pairings is necessary. Further research in this area would provide valuable
knowledge to bridge the gap between smartphone and TV app development, ultimately
benefiting both developers and users in the Android ecosystem.

Currently, no publicly available dataset primarily focuses on Android phone/TV
app pairs, as existing datasets like AndroZoo (Allix et al., 2016) consist mainly of
Android mobile apps. Collecting a comprehensive dataset for Android TV and phone
app pairs is challenging, and to the best of our knowledge, the largest dataset only
contains 298 phone/TV app pairs (Hu et al., 2023). To gain a comprehensive under-
standing of phone/TV app pairs, we aim to deliver a market-scale collection of these

2



pairs. We further analyze them quantitatively and qualitatively from various perspec-
tives, including non-code aspects (metadata, resources, permissions), code elements
(components, methods, user interactions), and security and privacy analysis. Based
on our findings, we provide insightful discussions and recommendations for future
research directions in this domain.

The key contributions of our work are the following:

• We gathered a substantial dataset consisting of 3,445 Android phone/TV app pairs
from the Google Play Store, representing a comprehensive sample of the market. To
encourage further research in this field, we have made the dataset publicly available
online through the Zenodo 1.

• We experimentally examined Android phone and TV app pairs from multiple angles,
including code/non-code similarities, security, and privacy concerns.

• We provided insight based on our empirical results and presented a set of practical
recommendations and future research directions.

The remainder of the paper is organized as follows. Section 2 discusses the study’s
rationale and motivation. Section 3 details the data collection procedure, and data
characteristics. Section 4 offers the results and conclusions of our empirical investiga-
tion, followed by a discussion of the study’s implications and potential risks to validity
in Section . Section 6 presents the future research direction. Section 7 discusses relevant
literature, and section 8 concludes the article.

2 Motivation

Smartphones and smart TVs serve distinct purposes in daily life, leading to significant
differences in app usage and design. While smartphones are portable devices used for
various tasks like communication and financial transactions, smart TVs are better
suited for immersive entertainment on large screens. To understand these usage
scenario differences, we analyzed the top 100 apps on both platforms from
the Google Play Store. Our analysis revealed stark contrasts in app categories:
entertainment dominates TV apps, accounting for 46% of top apps, compared to just
12.5% on smartphones. Moreover, the Google Play Store offers 39 unique categories
for smartphones but only 12 for TV devices, reflecting more focused use cases on TVs.
These findings highlight the distinct roles these devices play in users’ daily lives and
the need for platform-specific app development strategies.

Beyond these quantitative differences, TV apps exhibit qualitative dif-
ferences due to hardware limitations and usage scenarios. TVs tend to serve
a distinct role from other devices, and they lack the hardware features that other
Android-powered devices generally offer. Some hardware features on other Android
devices, such as touch displays, cameras, and GPS receivers, are not common on TVs.
As introduced in Google Developer Doc (Google, 2022e), TVs are fully reliant on
third-party hardware components, and users must utilize a remote control or a gaming

1https://zenodo.org/records/7675881

3



(a) Smartphone (b) Smart TV

Fig. 1 app, Facebook, with different SHA256 for base.apk installed on Smartphone and Smart TV.

pad to engage with TV apps. Due to the hardware capabilities and screen size differ-
ences between smartphones and TVs, the appearance and functionality of the same
app (i.e., same package name) can vary across phone/TV devices.

A case study of the Facebook app illustrates these differences. As seen
in Figure 1, the screenshots of the home page of the app, ”Facebook”, in phone and
TV devices, respectively, are completely different. However, both the phone and TV
versions share the same package name, com.facebook.katana2, but distribute different
App Package File (APK) for different platforms. The phone’s version of Facebook
is known as an app for social with the size of 61.5 Mb. However, one live video
streaming app with the size of 1.6 Mb is provided for the TV version of Facebook that
is not collected by the well-known Android mobile app dataset, AndroZoo (Allix et al.,
2016; Allix, 2021). This particular APK can only be distributed to the TV devices
as the introduction of Android App Bundles (AAB) and Multiple APK support on
Google Play. An Android App Bundle is a publishing format with which Google Play
uses app bundle to generate and serve optimized APKs for each device configuration
Google (2022a). Multiple APK support is a Google Play feature that enables you to
publish several APKs for your app, each of which is optimised for a certain device
configuration Google (2022b). For instance, Facebook3 distribute the different APKs
on different platforms (i.e., TV and Phone). In addition, apps may distribute the same
APK file to several platforms, indicating the multiple-platform artifacts are packaged
into a single APK.

The introduction of Android App Bundles and Multiple APK support
affects the dataset in previous work. The work from both Tileria Tileria and
Blasco (2022) and Liu Liu et al. (2021) neglect the effect of Android App Bundles
and Multiple APK support on TV-specific app analysis. Consequently, the TV APKs

2https://play.google.com/store/apps/details?id=com.facebook.katana
3com.facebook.katana

4



Fig. 2 Working Process to Collect Android phone/TV app pairs from AndroZoo dataset.

that are distributed independently from the mobile version are not thoroughly ana-
lyzed in the present study. Additionally, APKs containning components for multiple
platforms, would lead to misinterpretations of TV-specific app characteristics. Our
research aims to clarify the differences between TV and mobile apps, especially for
those with platform-specific distributions.

3 Dataset Collection and Dataset Evaluation

In this section, we describe the methodology we used to gather real-world phone/TV
app pairs (cf. Section 3.1). Subsequently, we evaluate the proportion of app pairs with
the identical or a different App Package Name (cf. Section 3.2). Next, we categorize
app pairs as having the identical or a distinct App Package (cf. Section 3.3).

3.1 Dataset collection

To the best of our knowledge, there is no publicly accessible dataset of phone/TV app
pairs; thus, we create one from scratch. Figure 2 depicts the whole strategy. Detailed
explanations of each step are provided below.

5



App Package Name Collection. Too few apps are shown on the listing page
of the official Google Play store for TV devices (2024). The information available on
the official Google Play store is not sufficient to compile a comprehensive dataset of
phone/TV app pairs. Our approach involves initially gathering the package names of
all apps available from the Google Play Store and then verifying whether they offer
versions for both Android phones and TVs. However, obtaining a complete list of app
package names from the Google Play Store is a complex task. To address this issue,
we have opted to source the list of package names from AndroZoo (Allix et al., 2016;
Allix, 2021) instead of attempting to scan the entire Google Play Store. AndroZoo is
an Android app repository that contains more than 18 million Android smartphone
apps (and is still growing) collected from various app markets. We keep the apps
sourced from official Google Play store and further remove the duplicated versions
(i.e., historical versions of the same app), we obtain 6,400,075 unique package names.

Phone/TV App Pairs Collection. With the gathered package names, we next
determine if they are searchable on Android phones and TVs. According to the official
Android documentation (, 2021), app developers may opt to show their apps from
the Google Play store on just certain devices (e.g., TV, watch, automobile, etc.) and
will not be searchable or loaded on other devices. Our idea is to simulate the desired
devices (i.e., Android phone and TV, both with Android API level 30 and x86-based
architecture) when querying the Google Play API (2021) with the package name. We
also exclude the paid apps and only keep the free ones. Later, using the searchable
package names of free apps, we query Google Play API with the identical device
settings to download these apps for both platforms. In consideration of app version
compatibility, we simultaneously download phone/TV apps for each pair. Finally, we
gathered a total of 3,445 phone/TV app pairs.

3.2 Pairs with Identical/Different App Package Name

It is worth mentioning that our above approach can only collect app pairs that have
identical package names on both platforms. While it is possible that a developer have
separate apps for mobile devices and TV devices, Google recommends having a single
app that supports both mobile devices and TV devices (2023). It is non-trivial to
determine if two apps with different package names just contain the same app content
optimized for different platforms. Therefore, our dataset exclude app pairs that have
different package names on phone and TVs. Nevertheless, to give readers an implica-
tion of how many app pairs our approach may miss, we further conducted an additional
app pairs collection to show the proportion of phone/TV app pairs that have the dif-
ferent package name. To this end, we retrieve the package names of all TV apps on
an alternative Android app store APKMirror (2021), which keeps the information of
an app’s compatible platforms (e.g., TV, watch, car, etc.). We have collected in total
819 unique TV apps from APKMirror, within which 667 apps are available on Google
Play. Within the 667 TV apps, approx. 75% (i.e., 502) of them have a smartphone
version with an identical package name. We further confirmed manually (by search-
ing the other apps from the same developers, comparing the descriptions and running
the apps on the TV and phone emulators) that approx. 11% (i.e., 72) of them have a
smartphone version with different package names, while approx. 14% (i.e., 93) of them

6



Fig. 3 Distribution of App size

do not have a smartphone version. The results suggest that only a small percentage of
apps (i.e., 11%) use different package names on different platforms that we may miss
in our dataset.

3.3 Pairs with Identical/Different App Package Artifacts

To enable developers publishing one app on different platforms, Goolge allow develop-
ers to develop multiple APKs for the same app or package multiple-platforms artifact
into one APK. The feature, multiple APK support, on Google play enables different
APKs to be published for the same app depending on the device’s characteristics. The
rationale for multiple APK support on Google Play is that even though your app is
represented by a single listing, various devices may be distributed with various APKs.
All APKs published for the same app must have the same app package name and be
signed with the same certificate key Google (2022b). By comparing the SHA256 of the
apps in each pair, we find that there are total 2, 472 pairs that have identical APKs on
phones and TVs. In contrast, 973 pairs were distributed with the different APKs for
the same app, which is a clear signature that these apps are published with the Multi-
ple APK suport. For apps in particular categories (e.g., Music & Audio, Sports, News
& Magazines, etc.), more developers tend to publish multiple APKs for the same App.

Additionally, we further investigated the size of the APKs in phone/TV app pairs.
As shown in Figure 3, for the apps with the identical APK for both platforms, the
average APK size is 31.1 Mb. On the other hand, the size of the apps with different
APKs on the phone and TV is significantly smaller (i.e., 12.6 Mb and 17.1 Mb for
TV and phone apps, respectively). It is noteworthy that the size of the APK, which
remains the same across both platforms, is slightly larger (31.1 Mb) than the combined
size (29.7 Mb) of the phone and TV versions with separate APKs. This implies that
apps that utilize the identical APK for both TVs and phones tend to include code
and resources for both platforms within the one APK.

4 Empirical Results

In our empirical study, we analyze phone/TV app pairs from two perspectives: artifact
composition and security/privacy. We specifically exclude app pairs that use identi-
cal APKs, as these merge artifacts from multiple platforms (phone and TV) into a
single APK, making it challenging to isolate the artifact for each platform. Addition-
ally, existing research does not provide platform-specific information in their analysis
results. Therefore, we focus our comparative analysis on 973 pairs of apps that have

7



distinct APKs for different device platforms. We begin by examining the composition
of the apps, including their code, non-code elements, and permissions, and then delve
into analyzing their underlying behavior, focusing on privacy and security aspects. The
composition and behavior of these apps are integral to the software development lifecy-
cle, requiring developer attention during the design, coding, and maintenance phases.
This analysis is intended to inform practitioners about the current state of phone/TV
app pairs. The sub-sections of this section will outline our findings in response to two
following research questions.

• RQ1: [Code and Non-Code] To what extent are phone apps similar to
their TV counterparts? In this RQ, we analyze the non-code, code elements, and
permission declared of phone/TV pairs and want to find out to what extent phone
apps are similar to their TV counterparts.

• RQ2: [Security and Privacy ] To what extent are the security/privacy
issues different between phone/TV app pairs? In this RQ, we compared the
security and privacy analysis results, aiming to determine to what extent the security
and privacy risks differ between phone and TV apps

4.1 RQ1: APK Artefact

Similarity Analysis. In this RQ, we examine the similarity of the non-code (e.g.,
resources) and the code (e.g., Activities, Permissions) artifacts of phone/TV app pairs.
Resources are non-code assets that the app code could access, such as images, textual
data, and User Interface (UI) layouts. In terms of the app code, both components
and methods are inspected. An Android app has four primary components, including
Activities, Services, Broadcast Receivers, and Content Providers. Each component
has a well-defined lifecycle and they are the essential building blocks of an Android
app. Apart from the components and the methods, we also compare the permissions
declared. Comparing the permissions can help us understand the feature between app
pairs.

We leverage SimiDroid (Li et al., 2017) to compare the pairwise similarities and
differences across apps in each phone/TV pair in terms of two comparison levels
(i.e., resource, and component). Key/value mapping pairs (map1 and map2) are con-
structed for each app based on the comparison level. For resource level comparison,
hash values of the files’ content are calculated for the key/value pairs. SimiDroid’s
component-based comparison extracts the component name as the key and other
package information corresponding to component capabilities, such as action, which
describes the type of behaviour matched by the component (e.g., Main component),
and category, which specifies what the component represents (e.g., LAUNCHER) as
value. The following metrics are then used to compare them: (1) identical, when com-
pared key/value pairs are exactly matched; (2) similar, where the key is the same but
values differ; (3) new, where the key exists only in map2 (i.e., the block only exists
in the TV version); and (4) deleted, where the key only exists in map1(i.e., the block
only exists in the smartphone version). Finally, the similarity score is calculated as:

similarity = max{ identical
total−new , identical

total−deleted}
where:

8



total = identical + similar + new + deleted

Table 1 Distribution of the number of Top 10 Interaction Event for Pairs with
Different APKs

Interaction Method TV Phone
CLICK onClick, onClick attr in XML file 103 220
TOUCH onTouch, onTouchEvent 54 75

KEY
onKeyDown, onKeyUp, onKeyLongPress
onKeyShortcut, onKeyMultiple, onKey

48 43

SCROLL
onScroll, onNestedScroll
onScrollChanged, onScrollChange

31 42

FLING onFling, onNestedFling 11 12
HOVER onHoverEvent, onHover 10 11

LONG CLICK onLongClick 4 5
LONG PRESS onLongPress 3 3

DOWN onDown 3 3
TRACK BALL onTrackballEvent 2 1

Similarity Comparision Results. 44.6% of resource files and 50.4% of com-
ponent blocks are reused on average when building multi-platform apps for mobile
and television devices. Services, Broadcast Receivers, and Content Providers are the
most commonly reused component types, where the most frequently reused package
in phone/TV app pairs is com.google.android.gms, which is a background service and
API package that provides access to a variety of Google services. During the con-
version from a phone app to a TV app, Activity is the component type most often
discarded. An Android Activity is a single, focused task with which a user may engage.
It shows a single screen that may include widgets like buttons, text fields, and pic-
tures. The lower the number of Activities, the less User Interface(UI) will be shown
in Android TV apps. In general, the resources are the most altered part of the apps
throughout most categories, compared with the components. Additionally, the simi-
larity score at the code level for the Music & Audio category is quite concentrated,
which indicates that the variance for each phone/TV pair is close. This observation
implies that, despite the hardware and functionality differences, a certain amount of
code is migrated from the phone to the TV version without modification in the apps
in Music & Audio category.

A closer inspection of the same file types indicates that PNG files are the most
often reused, accounting for 70.8% of all reused files. Android devices most favor
PNG files as one of the available file formats for displaying App icons, logos, and other
images (Google, 2022d). The high incidence of reuse of PNG files suggests that the
element of User Interface is quite similar. A well-designed UI may make it simpler for
users to traverse the system and perform their intended tasks (Johnson, 2020). While
they share a similar User Interface, the TV and mobile user experiences may vary
greatly due to the devices’ distinct input modalities and use scenarios. To understand
how input mechanisms of user interaction between Android TV and Android phone,
we then further analyze the callback events inside the app pairs. We identify the user

9



interaction events from the following three places. (1) Event Handler When the
requested action is performed on the object, the Android framework executes these
methods. For example, when a View (such as a Button) is touched, the onTouchEvent()
function on that object is invoked. To intercept this, the class has to be extended to
override this method, which is referred to as Event Handlers. (2) Event Listener For
easier managing interaction, Android introduces the Event Listener which is an inter-
face where methods can be registered so that it can be triggered by the user interaction
(e.g., onTouch method in the android.view.View.OnTouchListener interface can be
registered by setOnTouchListener method in View class). (3) Event in XML For
the CLICK interaction, it also can be implemented by declaring the corresponding
method in XML layout (Google, 2022f).

Event Handler and Event Listeners are used to handle the users’ interaction when
users trigger specific widgets. By analyzing the Event Listeners and Event Handlers
in the apps, we want to discover how the logic of users’ interaction differs between
phone/TV apps. To this end, we decompile the bytecode to Java source code using
AndroGuard (Desnos, 2021), and search for the presence of Event Listeners and Event
Handlers of user input provided in official Android documentation (Google, 2022c).
In addition, for the CLICK interaction, we further count the occurrence of onClick
attribute that appeared in the layout (.xml) files in each app.

The top ten user interactions in phone/TV app pairs are shown in Table 1. As
indicated, the top 10 user interaction types are the same in TV and phone
apps. The most involved user interaction event on both phones and TVs is CLICK. On
average, each phone app has 220 CLICK-related inputs, more than twice the number
seen in a TV app (i.e., 103). In general, phone apps get equipped with more user
interaction event than TV apps. The exceptions are the KEY-related event, which is
declared on average 43 times in phone apps and 48 times in TV apps.

As mentioned before, a View is a widget generally used to display something like
Buttons, ListViews, etc. To make these Views look well-organized, Android introduces
the Activity class, where the View component can be placed in the UI by using set-
ContentView(View). Activities are primarily shown to the user as full-screen windows;
however, they may alternatively be displayed as floating windows (through a theme
with the R.attr.windowIsFloating property set) in the Multi-Window mode, or embed-
ded inside other windows. As a result, the number of Activities in an Android app may
reflect the complexity of the UI layout to some extent. We also compare the number
of Activities in phone/TV pairs for each category. The average number of Activities
(i.e., 24) in smartphone apps is more than twice the number (i.e., 10) in TV apps. One
possible reason may be that the larger screen size on TV could contain more content,
so fewer UI screens (i.e., activities) are needed.

Instead of utilizing touch screens, TV users must rely on peripherals, such as a
remote controller, to engage with TVs, which is distinct from how users interact with
their phones. TOUCH-related events can be triggered on TV devices despite the lack of
touch screens. The TOUCH-related events contain one parameter of typeMotionEvent
that, depending on the type of device, can report movement events (e.g., mouse,
pen, finger, trackball, etc.)(Google, 2023). Using the type of object, MotionEvent, as
a parameter, TOUCH-related events could handle various interactions and are the

10



second most common kind of event in TV apps. Our empirical results show that the
type of interaction events in the apps on both devices are comparable. The evidence
above demonstrated the possibility of reuse of code for user interaction on the elements
of user interface in the phone apps and their TV versions.

Table 2 Top 15 permissions in phone and TV apps for Pairs with Different APKs

Permissions in TV Apps Count Protection Level Permissions in Phone Apps Count Protection Level
INTERNET 952 (92.0%) Normal INTERNET 962 (92.9%) Normal

ACCESS NETWORK STATE 941 (90.9%) Normal ACCESS NETWORK STATE 961 (92.9%) Normal
WAKE LOCK 781 (75.5%) Normal WAKE LOCK 941 (90.9%) Normal

FOREGROUND SERVICE 517 (50.0%) Normal RECEIVE2 874 (84.4%) Signature
BIND GET INSTALL REFERRER SERVICE1 383 (37.0%) Normal FOREGROUND SERVICE 833 (80.5%) Normal

ACCESS WIFI STATE 312 (30.1%) Normal VIBRATE 586 (56.6%) Normal
RECEIVE BOOT COMPLETED 274 (26.5%) Normal ACCESS COARSE LOCATION 550 (53.1%) Dangerous

RECEIVE2 255 (24.6%) Signature ACCESS FINE LOCATION 544 (52.6%) Dangerous
BILLING3 232 (22.4%) Normal GET ACCOUNTS 514 (49.7%) Normal

READ EXTERNAL STORAGE 189 (18.3%) Dangerous READ PHONE STATE 495 (47.8%) Dangerous
WRITE EXTERNAL STORAGE 175 (16.9%) Dangerous BIND GET INSTALL REFERRER SERVICE1 488 (47.1%) Normal

RECORD AUDIO 117 (11.3%) Dangerous WRITE EXTERNAL STORAGE 451 (43.6%) Dangerous
ACCESS FINE LOCATION 116 (11.2%) Dangerous RECORD AUDIO 433 (41.8%) Dangerous

ACCESS COARSE LOCATION 106 (10.2%) Dangerous ACCESS WIFI STATE 422 (40.8%) Normal
CHANGE WIFI STATE 102 (9.9%) Normal RECEIVE BOOT COMPLETED 401 (38.7%) Normal

1 com.google.android.finsky.permission.BIND GET INSTALL REFERRER SERVICE
2 com.google.android.c2dm.permission.RECEIVE
3 com.android.vending.BILLING
All other pemissions are defined by Android, starting with android.permission.

Permission Analysis. The app permission framework is a critical component of
the Android ecosystem since it ensures the security of Android users’ privacy. Accord-
ing to the Android Developer Guide, permissions can be classified as normal, signature,
or dangerous according to their riskiness (Google, 2021a). Normal permission is lower-
risk permission that would be granted at installation without approval. It provides
requesting apps with access to isolated application-level features with minimal risk to
other apps, the system, or the user. Dangerous permissions are higher-risk permis-
sions that would give the requesting app access to private user data or control over
the device, which can negatively impact the user. Due to the inherent danger associ-
ated with this type of permission, the system does not automatically grant it to the
requesting app. Instead, such permissions need to be granted at run-time. Signature
permission will only be automatically granted if the requesting app is signed with the
same certificate as the app that declared the permission. In this study, we compare
the differences in the declared permissions for each phone/TV app pair to understand
the kind of functionalities and resources the app may access. To this end, we utilize
the Android Asset Packaging Tool (AAPT), a well-known android static analysis tool,
to extract the declared permissions in the app pairs.

Table 2 lists the most frequently declared permissions in phone and TV apps.
The number of apps requesting network-related permissions in phone and TV apps
are comparable. This makes sense as apps on both devices require Internet access.
The number of apps containing other permissions, on the other hand, significantly
decreases in the TV versions. For example, 550 mobile phone apps declare the permis-
sion ACCESS COARSE LOCATION, while only 106 TV apps include this permission.
Figure 4 shows a category-wise breakdown of the count of permissions in each app.
Overall, TV apps declare significantly fewer permissions than phone apps.
On average, TV apps declare nearly half the number of permissions as their phone
counterparts (i.e., each phone app declares 13.9 permissions while the corresponding

11



Fig. 4 Distribution of the count of the type of permissions in phone and TV apps for Pairs with
Different APKs

TV version declares 7.3 permissions). Interestingly, in some categories (e.g., Game and
Tools), the number of permissions declared in the TV apps is close to that in their
phone versions, while some (e.g., Music & Audio and Books & References) show dra-
matic differences. This observation demonstrates that TV/phone app pairs in specific
categories demonstrate similar functionalities and features, while in some categories,
many features are removed from the TV versions.

We perform a further detailed analysis of the permissions declared in the Music
& Audio category. The top four permissions of TV apps in this category are declared
by at least 80% of these apps, and the remaining permissions are each declared in
less than 10% of these apps. These top four permissions are exactly the same as the
top four TV permissions listed in Table 2. In comparison, there are 11 permissions
declared by at least 88% of smartphone apps in this category. The permissions that
have been most frequently removed from the smart TV apps in Music & Audio cat-
egory are registering and receiving messages from Google Cloud Messaging, reading
phone states, vibrating, recording audio, accessing location, and accessing accounts.
This analysis demonstrates that in most categories, many features are removed
from the TV versions, such as pushing notifications, accessing locations, recording
audio, etc. A possible explanation for this result might be the lack of hardware fea-
tures on TVs (e.g., GPS, microphone). As mentioned in Google (2022e), some of the
hardware is usually not available on Android TV devices (e.g., camera, microphone,
touch screen, etc.), and the developers should avoid using the related features in TV
apps. However, the associated permissions are still found to be declared in some TV
apps, which may result in hindering the user experience. This finding suggests that
tools are needed before an app is released on the Google Play Store to avoid these
kinds of issues.

Declaration of Duplicated Permissions. We then investigate how the
phone/TV apps were implicated in the duplicated permission issues (i.e., the same
permission is declared more than once in the manifest). According to our analy-
sis, 366 phone apps and 31 TV apps declare the same permissions multiple times
in their manifest file. Most of the TV apps with duplicated permissions (22 apps,
66.7%) are developed by the same developer, iNmyStream, spanning three categories,
including Entertainment, Music & Audio, and News & Magazines. In the phone apps,
package name of 91% apps with duplicated-permission begins with com.icreo., but
they are built by different developers. We observed that apps involve more than one
type of duplicated permission. The average number of duplicated permissions in TV

12



apps (3.4 duplicated permissions) is more than in phone apps (1 duplicated permis-
sion). There are 26 TV apps having dangerous permissions duplicated, but 6 phone
apps get dangerous permissions duplicated. Among the 26 TV apps, 2 apps and
24 apps duplicated the dangerous permission, WRITE EXTERNAL STORAGE, and
READ PHONE STATE, respectively. Developer iNmyStream provides 22 apps that
duplicate the dangerous permission READ PHONE STATE. As revealed by Li et al.
(2017, 2019), there is also a chance for app repackaging, especially for the apps with
a high occurrence of duplicated permissions. The above findings suggest the necessity
for developers to improve their development practices.

Table 3 Distribution of Critical Vulnerabilities Found by AndroBugs for Pairs with Different APKs

Type Detailed Vulnerability Descriptions
Music
&

Audio
Entertainment Sports

Health
&

Fitness

News
&

Magazines

Food
&

Drink
Others Total

TV

SSL Security
SSL Connection 403 203 67 53 50 21 120 917

Verifying Host Name in Custom Classes 344 9 1 0 2 15 9 380
SSL Certificate Verification 20 23 0 0 2 2 4 51

Implicit Intent Implicit Service 337 43 10 30 7 2 30 459
WebView WebView RCE Vulnerability 14 102 11 20 22 4 72 245

AndroidManifest ContentProvider Exported 6 72 7 4 9 3 31 132
Command Runtime Command 48 22 0 1 4 1 9 85
Permission App Sandbox Permission 6 6 39 0 4 1 9 65
KeyStore KeyStore Protection 0 25 1 2 2 13 10 53
Encryption Base64 String Encryption 3 5 2 0 1 14 7 32
Fragment Fragment Vulnerability 2 10 2 3 1 2 9 29

Others 1 12 0 1 0 1 4 19
Total 1184 532 140 114 104 79 314 2467

Phone

SSL Security
SSL Connection 385 207 68 54 53 21 128 916

Verifying Host Name in Custom Classes 53 12 1 1 2 0 15 84
SSL Certificate Verification 4 15 1 1 2 2 13 38

WebView WebView RCE Vulnerability 393 146 17 22 49 19 100 746
Implicit Intent Implicit Service 390 122 20 47 24 18 82 703

Fragment Fragment Vulnerability 2 41 5 6 7 1 19 81
AndroidManifest ContentProvider Exported 14 26 5 0 6 1 20 72

Permission App Sandbox Permission 16 6 39 0 3 0 5 69
Command Runtime Command 17 17 1 2 3 0 11 51
KeyStore KeyStore Protection 0 24 2 2 3 2 12 45
Hacker Base64 String Encryption 5 9 1 0 12 3 12 42

Others 1 14 1 1 1 3 9 30
Total 1280 639 161 136 165 70 426 2877

Answer to RQ1:

• On average, 44.6% of resource files and 50.4% of component blocks are reused,
with PNG files accounting for 70.8% of reused resource files.

• TV apps encounter fewer user interfaces than their phone counterparts, but the
types of user interaction events are comparable.

• Phone apps tend to contain more code and utilize more permissions than their TV
counterparts.

• Duplicated permissions exist in both phone and TV apps, and there are more TV
apps involving dangerous permission duplication.

4.2 RQ2: Security & Privacy Analysis

AndroBugs Analysis. We analyze the security and privacy risks in phone/TV pairs.
We resort to AndroBugs (Lin, 2015) and FlowDroid (Arzt et al., 2014) to understand

13



the potential security vulnerabilities and privacy breaches (i.e., data leaks), respec-
tively. We use AndroBugs to report the details of vulnerabilities discovered in each
app, categorizing them as Critical, Warning, Notice, or Info, according to the harm
they may bring.

Our analysis with AndroBugs reports that each app in phone/TV app pairs has
at least 52 vulnerabilities. Among all the 973 phone/TV pairs, 961 phone apps, and
935 TV apps are flagged to contain critical security vulnerabilities. Over half of the
apps contain at least three critical issues. The average number of critical issues
is 3 and 2.5 for phone and TV apps, respectively. The majority of TV apps have fewer
security vulnerabilities than phone apps, but in certain categories (Music & Audio,
Entertainment, and Food & Drink), TV apps (approx. 11% of pairs) would suffer
more vulnerabilities than their phone counterparts. It is interesting to observe that in
more than 60% of pairs in the Food & Drink category, TV apps contain more critical
vulnerabilities than phone apps. Considering the fact that TV apps contain fewer
codes, the significance of critical issues in Android TV apps should not be overlooked.

Table 3 outlines the categories of critical vulnerabilities and their detailed descrip-
tions in descending order of prevalence. Vulnerability types with fewer occurrences are
classified as ”Others”. Now, we elaborate on three of the most common vulnerability
categories in phone/TV app pairs:

• SSL Security: This kind of vulnerability accounts for 1, 348 (55%, 917+380+51)
and 1, 038 (36%, 916 + 84 + 38) of all critical vulnerabilities found in the TV and
phone apps, respectively. These flaws are inextricably linked to the apps’ internet
access mechanism. Malicious substances may be able to capture an app’s information
across the network if the app uses SSL incorrectly (Google, 2021b). Android apps, for
example, maybe vulnerable toman-in-the-middle (MITM) attacks if they connect to
the internet without employing strong encryption (e.g., when using HTTP instead
of HTTPS).

• WebView: In total, there are 245 (10%) and 746 (26%) vulnerabilities in this type
found in TV and phone apps, respectively. The WebView vulnerabilities discovered
by AndroBugs are a kind of WebView Remote Code Execution Vulnerability. It
can be exploited by attackers to execute Java code in the host applications, there-
fore gaining access to command-line tools and posing additional security risks to
users (Gao et al., 2019). For example (Thomas et al., 2015), a remote attacker may
exploit a WebView to execute dynamic HTML content (written in JavaScript) and
activate the Java Runtime.exec() API to perform commands such as id and rm.

• Implicit Intent: This kind of vulnerability accounts for 459 (19%) and 703 (24%)
of all vulnerabilities. The Android ecosystem makes use of the Intent mechanism to
facilitate the reuse of functionality (Enumeration, 2017). However, implicit Intents
may be intercepted by other components (Octeau et al., 2013). Therefore, it is a
potential security concern since attackers may leverage implicit Intents to get access
to sensitive information, posing threats to users’ privacy.

As demonstrated in Table 3, SSL Security is the most frequently detected crit-
ical vulnerability type in both phone and TV apps. The type of the second and
the third most detected vulnerabilities are similar but ranked in reverse order (i.e.,

14



Implicit Intent and WebView for TV apps, and WebView and Implicit Intent for
phone apps). Among the SSL Security issues, the apps impacted by the vulnerability,
Verifying Host Name in Custom Classes, would let attackers exploit a valid certificate
to conduct MITM attacks without the users’ awareness. As shown in Table 3, the TV
versions in the app pairs are more likely to suffer from this vulnerability, with 84 and
380 vulnerabilities occurring in the phone and TV versions, respectively. This observa-
tion indicates that certain apps’ TV versions are at significant security risk while the
phone versions are far less vulnerable. The app designed for different phone and TV
platforms can be implicated in a variety of different sorts of security vulnerabilities.

FlowDroid Analysis. To further spot potential privacy breaches in Android TV
apps, we use FlowDroid (Arzt et al., 2014) to examine the collected app pairs. Flow-
Droid identifies data flows from sensitive sources to potentially dangerous sinks, where
sources are methods through which such data flows enter the app and sinks are the
methods from which they leave the app. To detect data leaks, we used the default
sources and sinks provided by FlowDroid. For each of these apps, we set a 1.5-hour
timeout and 64 GB memory limit. Our results show that FlowDroid successfully fin-
ished scanning 785 phone apps and 910 TV apps. Approximately 39% (307 apps) of
the 785 phone apps and 56% (512 apps) of the 910 TV apps contain at least one pri-
vacy leak, revealing that TV apps are more implicated by privacy issues than their
phone counterparts.

Table 4 Distribution of Sources Detected more than 20 times by FlowDroid for 755 Pairs with
Different APKs

Sources
Music
&

Audio
Entertainment

Food
&

Drink
Sports Game Lifestyle Others Total

TV
android.content.pm.PackageManager.queryIntentServices 1197 13 0 14 0 13 22 1259

android.database.Cursor.getString 25 117 8 25 5 6 68 254
android.location.Location.getLatitude 0 84 0 29 22 24 35 194
android.location.Location.getLongitude 0 84 0 27 22 24 35 192

java.util.Locale.getCountry 5 2 115 0 9 0 2 133
java.net.HttpURLConnection.getInputStream 8 46 1 11 15 6 34 121

java.net.URLConnection.getInputStream 36 10 0 0 0 2 3 51
android.content.pm.PackageManager.queryIntentActivities 0 6 0 8 2 3 11 30

android.content.pm.PackageManager.queryBroadcastReceivers 0 5 0 7 2 4 5 23
Others 3 8 0 2 6 0 6 25
Total 1274 375 124 123 83 82 221 2282

Phone
android.database.Cursor.getString 166 234 4 31 4 17 409 865

android.location.Location.getLongitude 40 223 80 40 9 66 251 709
android.location.Location.getLatitude 41 222 79 40 9 65 251 707

android.content.pm.PackageManager.queryIntentServices 75 78 0 25 0 31 126 335
java.net.HttpURLConnection.getInputStream 13 104 11 11 20 9 59 227

java.util.Locale.getCountry 0 9 88 0 10 10 33 150
android.content.pm.PackageManager.queryIntentActivities 4 14 3 5 2 10 17 55

android.accounts.AccountManager.getAccounts 0 0 0 0 0 15 36 51
android.content.pm.PackageManager.queryBroadcastReceivers 0 18 0 7 2 4 9 40

android.view.View findViewById 0 30 0 0 0 0 0 30
Others 25 16 4 2 10 13 25 95
Total 364 948 269 161 66 240 1216 3264

Sensitive information is mostly leaked through the built-in Logcat func-
tionality that developers typically employ for debugging. Users’ data may leak
from the logs, as attackers may obtain sensitive user information by inspecting the logs
on the corresponding device. The second most frequently detected sink is the Bundle
object. It is used to transport data between activities, processes, and configuration

15



updates. A large amount of information contained in Bundle objects is exploitable by
attackers in both phone/TV apps.

The average number of sources detected in each phone app (4.3 sources)
is greater than its TV version (3 sources). Given the larger codebase of mobile
apps compared to TV apps, it comes as no surprise to find a greater number of poten-
tial leaks identified in mobile apps. In general, phone apps have more sources than
their TV counterparts, except for the pairs in the Music & Audio and Game cate-
gories. TV apps in Music & Audio category have an average of 3.2 sources, compared
to only 0.9 sources in their phone counterpart. Table 4 lists the sources detected
by FlowDroid in the phone/TV app pairs. The sources detected with fewer than 20
occurrences are grouped in the Others category. Android.content.pm.PackageManager.
queryIntentServices is the most leaked source (i.e., 1, 259 occurrence) among TV apps,
contributing to more than half of the sources of the leaks (i.e., 2, 282 occurrence). Many
apps utilize queryInterntServices to get services that may match a certain intent and
then wake these services up depending on the return values of queryIntentServices,
which are solely used for inter-app communication (Xu et al., 2017). The getString
method in the dataset package is the most leaked source in phone apps and the second
most leaked source in TV apps, which is unsurprising as the database often involves
vast amounts of data, hence having more chance to leak the data. The geographic loca-
tion of the device is also a common source of data leaks. Although most TV devices
do not have a GPS module, WiFi or network information can be used to approxi-
mate the device’s location. In contrast to phone devices, the geographical locations of
Android TVs are often fixed and expose users’ home addresses. Attackers may utilize
this information to get a wealth of additional information on users or even to pose
physical threats (Tileria and Blasco, 2022; Wijesekera et al., 2015).

Answer to RQ2:

• Security vulnerabilities are frequently encountered in varying forms between the
TV and phone versions of the same app.

• Potential privacy leak severity differs depending on device type and app category.
• The built-in Logcat functionality is the main leaking source for both phone/TV

apps.

5 Threats To Validity

The dataset of phone/TV app pairs might not fully represent the entire
population. When searching for these app pairs in the Google Play store, we sim-
ulated specific devices, influenced by factors such as device type, OS versions, and
hardware architectures. This approach may have limited our ability to include all
relevant apps, potentially excluding some from our collection. However, we used Andro-
Zoo, one of the most comprehensive datasets available, to gather package names for
these app pairs, highlighting the extent of our dataset. We chose to focus exclusively
on free apps because they are accessible to a broader user base, whereas paid apps
would involve costs. Moreover, other widely recognized datasets for Android apps,
such as AndroZoo and F-droid, also concentrate solely on free apps.

16



Sophisticated tools involved in the comparative study could generate false
positives. Our comparative study employed a range of sophisticated tools to analyze
app similarity, security, and privacy aspects. While these tools are advanced, it’s crucial
to acknowledge their inherent limitations, including the potential for false positives.
Although a comprehensive verification of our findings would address these issues,
it falls outside the scope of this study. However, we mitigated the impact of these
limitations on our conclusions by consistently applying these tools to both TV and
phone apps. This approach ensured that any inherent limitations or inaccuracies in
the tools affected both app types equally, thereby maintaining the validity of our
comparative analysis. Future research could build upon our work by incorporating
more extensive verification processes to further refine the accuracy of these findings.

6 Discussion

Possibility of automated migration for user interface. As unveiled in our
empirical findings, 44.6% of the resource files and 50.6% of components in TV apps are
shared with their counterparts on mobile devices. Given that 70.8% of all reused files
are PNG files and that the sorts of interaction events in apps for both platforms are
comparable, the User Interface elements of phone apps and TV apps can be exploited
further to enable or assist conversion of Android phone apps to Android TV apps.
Given the disparity in market share between phone/TV apps, there is a high demand
for the TV versions of phone apps. The creation of an automated process to transfer
GUIs of phone apps to TVs would decrease the workload for developers and enrich
the Android ecosystem. Hu et al. (2023), has synthesized a list of rules for grouping
and classifying phone Graphical User Interfaces (GUIs), converting them to TV GUIs.
Those rules are based on GUIs extracted from 298 Android phone/TV app pairs where
those pairs share the identical artifact. However, our work prepares market-scale app
pairs with clear setups, rather than sample pairs, and insights were gleaned from our
quantitative and qualitative analyses, making our results generalizable to pairs within
the Android market. By leveraging our dataset, rules can be synthesized from the com-
prehensive collection of datasets or specifically from certain categories of app pairs for
automatically adapting mobile GUIs to TV GUIs.
Investigation of security/privacy issues on TV-specific apps. Liu et al. (2021)
and Tileria and Blasco (2022) investigated security risks in TV apps.However, these
studies overlooked the implications of Android App Bundles and Multiple APK sup-
port in their datasets. As a result, their research was compromised by the inclusion of
apps containing artifacts from both phone and TV versions, which led to a blurring
of platform-specific characteristics. This oversight potentially diminished the accu-
racy and specificity of their findings regarding TV app ecosystems. It is crucial to
conduct TV-specific security/privacy app analysis. Our comparison of phone/TV app
pairs revealed that TV apps have a smaller size, with an average of 4.5 Mb less than
their phone counterparts, and simpler functionality, including hardware-related fea-
tures, interaction events, and screens. Although Android mobile apps and TV apps
share some common Software Development Kit (SDK), there are differences originat-
ing from their device nature, and the analyzer is mainly designed for Android mobile

17



apps instead of TV apps, potentially neglecting the TV-specific SDK. However, in cer-
tain categories of TV apps, the number of security and privacy concerns is comparable
to, or even more pronounced than, those in phone apps, highlighting potential issues
in the TV versions of Android apps. Future work should focus on conducting TV-
specific analyses or investigating category-specific TV apps to enhance the security
of the TV ecosystem. Understanding the differences between mobile and TV SDKs is
crucial for designing TV app analyzers or adapting mobile app analyzers for TV apps.
For instance, taint analysis relies heavily on source and sink labels extracted from the
SDK of Android mobile apps, necessitating the exploration of TV-specific SDKs to
migrate current mobile app analyzers to TV apps. Additionally, future research should
investigate the causes of security and privacy issues in TV apps and develop targeted
solutions and best practices to improve their overall security and privacy framework.
Classification of artifacts for different platform. The validity of platform-
sensitive findings is undermined when performing static-analysis experiments on APKs
containing artifacts for multiple platforms. Prior studies have failed to account for the
presence of artifacts from other platforms in the apps they analyzed, which can result
in platform-sensitive conclusions drawn from static analysis that are less precise and
even misleading to researchers and prectioners. For example, static analysis outcomes
for app compatibility and security concerns on a specific platform can be influenced
by code intended for non-targeted platforms. Therefore, it is essential to develop a
solution that can automatically differentiate or identify artifacts specific to distinct
platforms within a single APK.

7 Related Work

Previous research has extensively examined various aspects of Android apps, partic-
ularly focusing on phone applications. Studies have analyzed app metadata, security,
and privacy issues on a large scale (Wang et al., 2018; Hu et al., 2020; Lin et al.,
2020; Mauthe et al., 2021; Fan et al., 2018; Liu et al., 2019). For instance, Mauthe et
al. Mauthe et al. (2021) performed a large-scale empirical study of the decompilation
success rate for Android apps and the authors discovered that code obfuscation is quite
rarely encountered, even in malicious applications. Wang et al. (2018) conducted an
extensive study on 6 million Android apps downloaded from 17 different app markets
to understand catalog similarity across app stores. Chen et al. (2021) collected 223
pairs of Android Smartphone and Smartwatch apps and examined them from both
non-code and code aspects to understand the relationship between them.

Recent research has begun to explore TV app ecosystems, expanding beyond
the traditional focus on mobile applications. Notably,Aafer et al. (2021b) employed
dynamic fuzzing to identify vulnerabilities in Android TV boxes, while Liu et al.
(2021) and Tileria and Blasco (2022) examined security risks specific to TV apps.
However, these studies have notable limitations. They typically concentrated solely
on TV apps, neglecting to consider their relationship with phone counterparts. More-
over, previous works failed to account for the impact of Android App Bundles and
Multiple APK support in their datasets. This oversight resulted in research that
inadvertently included apps with artifacts from both phone and TV versions, thus

18



conflating platform-specific characteristics. Our study addresses these shortcomings
by clearly differentiating between apps with TV and phone artifacts, providing empir-
ical evidence specifically for device-specific releases. This refined approach enables us
to more accurately identify and analyze the unique features and security challenges
inherent to each platform.

8 Conclusion

In this study, we conducted the first comprehensive comparative analysis of Android
phone and TV app pairs to understand their relationship. We curated and examined
market-level Android phone/TV app pairs, analyzing their similarities from both non-
code and code perspectives. Our evaluation of interaction events revealed comparable
user engagement patterns across phone/TV pairs, suggesting potential for prioritiz-
ing app migration from phones to TVs. Furthermore, we investigated the security
and privacy implications of these app pairs. Our findings indicate that TV apps face
largely overlooked security and privacy issues. Notably, despite phone apps generally
containing more code, certain TV app categories exhibit comparable or even higher
numbers of security and privacy concerns. This research aims to assist developers and
researchers in examining domain-specific issues for TV apps and provide novel insights
for future work in this area.

References

Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: Collecting millions of
android apps for the research community. In: MSR (2016)

Allix, K.: AndroZoo. (2021). https://androzoo.uni.lu/

APKMirror (2021). https://www.apkmirror.com/

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. Acm Sigplan Notices 49(6),
259–269 (2014)

Aafer, Y., You, W., Sun, Y., Shi, Y., Zhang, X., Yin, H.: Android smarttvs
vulnerability discovery via log-guided fuzzing. In: USENIX Security (2021)

Aafer, Y., You, W., Sun, Y., Shi, Y., Zhang, X., Yin, H.: Android {SmartTVs} vulner-
ability discovery via {Log-Guided} fuzzing. In: 30th USENIX Security Symposium
(USENIX Security 21), pp. 2759–2776 (2021)

Chen, X., Chen, W., Liu, K., Chen, C., Li, L.: A comparative study of smartphone and
smartwatch apps. In: Proceedings of the 36th Annual ACM Symposium on Applied
Computing, pp. 1484–1493 (2021)

19

https://androzoo.uni.lu/
https://www.apkmirror.com/


Desnos, A.: Androguard. [Online]. Available: https://github.com/androguard/
androguard. Last checked 02 March 2022 (2021)

Enumeration, C.W.: Use of implicit intent for sensitive communication (2017)

Fan, L., Su, T., Chen, S., Meng, G., Liu, Y., Xu, L., Pu, G., Su, Z.: Large-scale
analysis of framework-specific exceptions in android apps. In: 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE), pp. 408–419 (2018).
IEEE

Gao, J., Li, L., Kong, P., Bissyandé, T.F., Klein, J.: Understanding the evolution of
android app vulnerabilities. IEEE Transactions on Reliability (2019)

Google, D.: Android Developer Guide. (2021). https://developer.android.com/
reference/android/Manifest.permission

Google, D.: Security SSL. (2021). https://developer.android.com/training/articles/
security-ssl

Google, D.: About Android App Bundles. (2022). https://developer.android.com/
guide/app-bundle

Google, D.: About Android App Bundles. (2022). https://developer.android.com/
google/play/publishing/multiple-apks

Google, D.: Android.view. (2022). https://developer.android.com/reference/android/
view/package-summary

Google, D.: Drawables Overview. (2022). https://developer.android.com/develop/ui/
views/graphics/drawables

Google, D.: Handle TV Hardware. (2022). https://developer.android.com/training/
tv/start/hardware

Google, D.: Input Events Overview. (2022). https://developer.android.com/guide/
topics/ui/ui-events

Google, D.: MotionEvent. (2023). https://developer.android.com/reference/android/
view/MotionEvent

Group, I.: Smart TV Market: Global Industry Trends, Share, Size, Growth, Opportu-
nity and Forecast (2021). https://www.researchandmarkets.com/reports/5311939/
smart-tv-market-global-industry-trends-share?w=4

Hu, H., Dong, R., Grundy, J., Nguyen, T.M., Liu, H., Chen, C.: Automated mapping
of adaptive app guis from phones to tvs. ACM Transactions on Software Engineering
and Methodology 33(2), 1–31 (2023)

20

https://github.com/androguard/androguard.
https://github.com/androguard/androguard.
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/reference/android/Manifest.permission
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/training/articles/security-ssl
https://developer.android.com/guide/app-bundle
https://developer.android.com/guide/app-bundle
https://developer.android.com/google/play/publishing/multiple-apks
https://developer.android.com/google/play/publishing/multiple-apks
https://developer.android.com/reference/android/view/package-summary
https://developer.android.com/reference/android/view/package-summary
https://developer.android.com/develop/ui/views/graphics/drawables
https://developer.android.com/develop/ui/views/graphics/drawables
https://developer.android.com/training/tv/start/hardware
https://developer.android.com/training/tv/start/hardware
https://developer.android.com/guide/topics/ui/ui-events
https://developer.android.com/guide/topics/ui/ui-events
https://developer.android.com/reference/android/view/MotionEvent
https://developer.android.com/reference/android/view/MotionEvent
https://www.researchandmarkets.com/reports/5311939/smart-tv-market-global-industry-trends-share?w=4
https://www.researchandmarkets.com/reports/5311939/smart-tv-market-global-industry-trends-share?w=4


Hu, Y., Wang, H., He, R., Li, L., Tyson, G., Castro, I., Guo, Y., Wu, L., Xu, G.: Mobile
app squatting. In: Proceedings of The Web Conference 2020, pp. 1727–1738 (2020)

Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding User
Interface Design Guidelines. Morgan Kaufmann, ??? (2020)

Laricchia, F.: Android TV Continues Its Growth W/ 7,000 Apps. (2022). https://
9to5google.com/2020/08/10/android-tv-growth-apps-users-operators/

Laricchia, F.: Number of Smart TV Users in the United States from 2016
to 2022 (in Millions)*. (2022). https://www.statista.com/statistics/718737/
number-of-smart-tv-users-in-the-us/

Li, L., Bissyandé, T.F., Klein, J.: Simidroid: Identifying and explaining similarities in
android apps. In: The 16th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications (TrustCom 2017) (2017)

Li, L., Bissyandé, T.F., Klein, J.: Rebooting research on detecting repackaged android
apps: Literature review and benchmark. IEEE Transactions on Software Engineering
(TSE) (2019)

Lin, Y.-C.: Androbugs framework: An android application security vulnerability
scanner. Blackhat Europe 2015 (2015)

Li, L., Li, D., Bissyandé, T.F., Klein, J., Le Traon, Y., Lo, D., Cavallaro, L.: Under-
standing android app piggybacking: A systematic study of malicious code grafting.
TIFS (2017)

Liu, Y., Li, L., Kong, P., Sun, X., Bissyandé, T.F.: A first look at security risks of
android tv apps. In: 2021 36th IEEE/ACM International Conference on Automated
Software Engineering Workshops (ASEW), pp. 59–64 (2021). IEEE

Lin, J.-W., Salehnamadi, N., Malek, S.: Test automation in open-source android apps:
A large-scale empirical study. In: Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, pp. 1078–1089 (2020)

Liu, T., Wang, H., Li, L., Bai, G., Guo, Y., Xu, G.: Dapanda: Detecting aggressive push
notifications in android apps. In: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 66–78 (2019). IEEE

Mauthe, N., Kargén, U., Shahmehri, N.: A large-scale empirical study of android
app decompilation. In: 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pp. 400–410 (2021). IEEE

Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Le Traon, Y.:
Effective {Inter-Component} communication mapping in android: An essential step
towards holistic security analysis. In: 22nd USENIX Security Symposium (USENIX

21

https://9to5google.com/2020/08/10/android-tv-growth-apps-users-operators/
https://9to5google.com/2020/08/10/android-tv-growth-apps-users-operators/
https://www.statista.com/statistics/718737/number-of-smart-tv-users-in-the-us/
https://www.statista.com/statistics/718737/number-of-smart-tv-users-in-the-us/


Security 13), pp. 543–558 (2013)

View and restrict your app’s compatible devices (2021). https://support.google.com/
googleplay/android-developer/answer/7353455

Tileria, M., Blasco, J.: Watch over your tv: A security and privacy analysis of the
android tv ecosystem. Proceedings on Privacy Enhancing Technologies 3, 692–710
(2022)

Thomas, D.R., Beresford, A.R., Coudray, T., Sutcliffe, T., Taylor, A.: The lifetime
of android api vulnerabilities: case study on the javascript-to-java interface. In:
Cambridge International Workshop on Security Protocols, pp. 126–138 (2015).
Springer

Google Play TV apps (2024). https://play.google.com/store/apps?device=tv&hl=en&
gl=US

Wijesekera, P., Baokar, A., Hosseini, A., Egelman, S., Wagner, D., Beznosov, K.:
Android permissions remystified: A field study on contextual integrity. In: 24th
USENIX Security Symposium (USENIX Security 15), pp. 499–514 (2015)

Wang, H., Liu, Z., Liang, J., Vallina-Rodriguez, N., Guo, Y., Li, L., Tapiador, J., Cao,
J., Xu, G.: Beyond google play: A large-scale comparative study of chinese android
app markets. In: Proceedings of the Internet Measurement Conference 2018, pp.
293–307 (2018)

Xu, M.e., othersMa, Y., Liu, X., Lin, F.X., Liu, Y.: Appholmes: Detecting and char-
acterizing app collusion among third-party android markets. In: Proceedings of the
26th International Conference on World Wide Web, pp. 143–152 (2017)

Google Play Python API. (2021). https://github.com/NoMore201/googleplay-api

Get Started with TV Apps. (2023). https://developer.android.com/training/tv/start/
start#dev-project

22

https://support.google.com/googleplay/android-developer/answer/7353455
https://support.google.com/googleplay/android-developer/answer/7353455
https://play.google.com/store/apps?device=tv&hl=en&gl=US
https://play.google.com/store/apps?device=tv&hl=en&gl=US
https://github.com/NoMore201/googleplay-api
https://developer.android.com/training/tv/start/start#dev-project
https://developer.android.com/training/tv/start/start#dev-project

	Introduction
	Motivation
	Dataset Collection and Dataset Evaluation 
	Dataset collection
	Pairs with Identical/Different App Package Name
	Pairs with Identical/Different App Package Artifacts

	Empirical Results
	RQ1: APK Artefact
	RQ2: Security & Privacy Analysis

	Threats To Validity
	Discussion
	Related Work
	Conclusion

