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Abstract 
Modelling the software architectures of large systems is a challenging task. A wide variety of abstractions 
are required by developers to assist them in describing and analysing such architectures, including 
information about the components and relationships that comprise a system, the static and dynamic 
structure of the system, and the behavioural responsibilities of components in the system. In addition, 
good tool support is needed to provide modelling, analysis, design and code generation, and reverse 
engineering facilities. This paper analyses several architectural modelling approaches and their tools. 
Deficiencies with these current approaches are used to motivate a synthesised modelling approach and 
appropriate tool support. 

1. Introduction 
 
Software Architecture has become a major field of research and practice in Software Engineering. Topics 
of particular interest to both researchers and practitioners include architecture modelling and analysis, 
Architecture Description Languages (ADLs), architecture styles, design and implementation of software 
architectures, especially middleware technologies, architecture reverse engineering, and formal 
specification and refinement of software architectures [1, 14, 16, 17, 19, 22]. Developing system designs 
and implementations based on a formalised Software Architecture better enables developers to meet 
functional and especially non-functional requirements, allows other developers to more easily understand 
the rationale behind a system design, facilitates reuse of high-level architectural abstractions and “best 
practices”, and provides a more structured development process for large systems and development 
teams. 
 
Of particular interest to us has been the modelling, analysis and implementation of software architectures, 
particularly those for component-based, collaborative systems [6, 7, 8]. Key issues we have encountered 
to do with Software Architecture in such systems include: 
 
• Architecture Modelling. Determining the parts (components) the system is to be slit into, what 

data/functions these embody, how these components are connected, and static vs. dynamic 
behaviour of the components. Visualising such information about a system is crucial to 
understanding and developing a system based on the architecture [6]. 

• Architecture Analysis. After determining and modelling a system’s architecture, it is necessary to 
reason about its expected performance, quality of service, cost, maintainability, etc. [9, 10]. 

• Architecture Refinement. Developers need to design solutions based around the architectural 
abstractions embodied in a software architecture model, implement these designs using suitable 
middleware technologies and evaluate the resultant system [7, 11]. 

 
This paper investigates these Software Architecture modelling and analysis issues with respect to current 
modelling approaches. The following section introduces two e-commerce applications and an example 
Software Architecture which might be chosen to realise these systems. Key requirements when 
modelling, analysing and refining such Software Architectures are outlined in the following section. 
Several brief case studies review some Software Architecture modelling techniques. A critique of these 
modelling techniques and their support tool’s modelling, analysis and refinement capabilities is given. 



 

The final sections present a proposed synthesis of these Software Architecture techniques into a new 
modelling approach for large-scale system architectures. A brief outline of necessary tool support is 
presented. 

2. An Example System 
We have been developing a range of component-based, collaborative systems, including CASE tools, 
meta-CASE tools and collaborative Information Systems [6, 7, 8]. Figure 1 illustrates two prototype e-
commerce systems we have developed. On the left is a screen shot from an on-line purchasing system, 
allowing customers to search for, order and pay for books via the WWW. Staff use traditional database-
oriented forms and reports to access the database, along with other desktop applications. On the right is a 
screen shot from a collaborative travel itinerary planner, allowing a travel agent and customer to 
collaboratively plan a trip [7]. This provides a variety of interfaces including structured itinerary editor, 
map visualisation, collaborative chat and desk top applications like Netscape™ and MS Word™. The 
travel itinerary planner was implemented using Java, SQL Server™ and several customised software 
agents, built and deployed by end users.  
 
Figure 2 shows a possible Software Architecture that might be suitable for such e-commerce applications. 
A DBMS server (e.g. SQL Server™) running on a dedicated machine provides high performance, remote 
data management for various client programs. An HTTP server provides customers access to HTML, CGI 
and applets, as well as staff access to intranet documents and services. An application server provides 
applets server-side processing functionality embodying business rules. Both customers and staff may have 
various desktop applications which share files via a web-based interface. In the collaborative itinerary 
planner, users can also build and deploy software agents from plug-and-play components, developing 
custom task automation, notification and tool integration agents. 
 

 

 
(a) On-line book purchasing. (b) Collaborative travel itinerary planner. 

Figure 1. Example e-commerce systems. 

A variety of different architecture models could be envisioned for this type of application, each with 
different performance, quality of service, security, cost and other characteristics. For example, all server-
side processing and data management could be run on a single machine, reducing cost but also 
performance and robustness. Alternatively, multiple server-side machines could support mirrored HTTP 
servers, internet-dedicated vs. intranet-dedicated hosts, multiple application server hosts and so on, all 
increasing robustness and performance, but also increasing implementation complexity and cost. Many 
details not shown below need to be reasoned about, including how processes running on multiple machine 
communicate via suitable middleware services, what objects make up each process/program, which parts 
of the system are static and which dynamic, what performance etc. characteristics different processes and 
machines have, concurrent processes, shared data management, and so on. 



 

 
 

 
Figure 2. An example distributed Information System Software Architecture. 

3. General Software Architecture Modelling Requirements 
 
When developing systems such as the on-line book ordering system or the travel itinerary planner, 
software engineers need to model appropriate Software Architectures, reason about the suitability of 
candidate architectures, implement these architectures, and evaluate the resulting system to ensure all 
system specifications are met. When modelling, analysing and refining Software Architectures, 
developers thus have a range of requirements of the modelling approach and tools used, which we have 
outlined below. 
 
• High-level Components. Software Architecture is concerned with high-level system components, 

rather than low-level design objects. Thus dividing a system into a manageable number of important 
components is fundamental in developing useful architecture models. Different kinds of system 
components exist, ranging from simply distinguishing client-side and server-side components, to 
distinguishing machines and devices from data management, processing, user interface, and device 
interface processes. Refinements of high-level components to intermediate architectural components 
and ultimately to design-level classes is usually necessary to manage the complexity of large system 
architectures. 

• Inter-component Relationships. Approaches to relating components are a crucial part of any 
Software Architecture model, and many different kinds of relationship might be distinguished. 
Modelling might range from indicating high-level relationships, describing actual data, control 
and/or event interchange, to detailed connection approaches, such as sockets, shared memory, 
remote method invocation or remote object middleware.  Grouping related components into 
aggregates and modelling connections between aggregates helps manage cognitive complexity of 
large-scale system architectures. 

• Dynamic vs. Static Structure. Many Software Architectures include a need to model dynamic 
structural characteristics, such as run-time addition or modification of components and component 
relationships. This is particularly important in systems where structural evolution is inherent [15], 
and user-enhancable systems, such as those using plug-and-play components and software agents 
[8]. 

• High-level Behavioural Characteristics. Software Architecture models need to capture information 
about high-level processing performed by components, the exchange of information between 
components, synchronisation of access to shared data and processing, replication of data, event 
subscription and notification models, parallel processing and real-time response characteristics. Such 



 

behaviour characterisation would normally be at a higher level than object-oriented design models, 
but more detailed than analysis and non-functional requirement specifications. 

• Requirements and Design links. Software Architectures are not developed in isolation. A particular 
architecture is motivated by functional, or more often non-functional, requirements captured about a 
system. Similarly, a Software Architecture model is of little use unless it is refined into a detailed 
system design and implementation. Thus parts of an architecture model need to be related back to 
the system requirements they embody and to the design-level artifacts that realise them. 

 
In addition to a Software Architecture modelling approach satisfying the above requirements, developers 
need tool support to make such modelling techniques feasible for deployment. We have outlined the main 
requirements we have identified for tool support for Software Architecture development below: 
 
• Modelling. Different modelling notation editors are required to allow developers to describe the 

range of architecture information identified above. As developers often sketch out parts of 
architectures roughly and then refine them over time, quite flexible modelling tools are necessary. 
Multiple views used to capture different perspectives on a system’s architecture model, and 
consistency management between these views, are essential. The ability to reuse different 
architecture styles and patterns, and package various parts and abstractions from an architecture for 
reuse, are necessary to support long term architecture improvement.  

• Analysis. Many different characteristics of a candidate architecture need to be analysed to ensure a 
model is sensible and meets requirements. Tools available to a developer might include those for 
analysing performance and quality of service, using ranges of performance values and QoS 
parameters. The correctness of a model can be checked with regard to consistent and complete 
structural and behavioural characteristics.  

• Implementation. Support for refining an architecture model into a design and subsequent 
implementation is necessary, along with reverse engineering support enabling developers to deduce 
architecture models from existing designs. Design model and potentially code generation are possible 
from architecture models. Care needs to be taken to ensure a wide range of design and 
implementation tools are catered for, by using standardised interchange file formats where possible. 

• Evaluation. Support for handling feedback from evaluation of developed systems should be included 
in any architecture modelling tool. Such feedback can be used not only to refine an architecture but to 
record performance, QoS, security, integrity and other run-time data, which may later be used to 
guide future model development and analysis. 

4. Case Studies 
In this section we review some related work into Software Architecture modelling, analysis and 

refinement. This is not intended to be a comprehensive literature review, but to highlight particular 
contributions of interest which are used in the following sections to help motivate and develop a new 
architecture modelling approach. Comprehensive reviews of recent Software Architecture research and 
practice can be found in various recent works on Software Architectures [1, 19, 20]. 

4.1. UML Deployment Diagrams 
 
The Unified Modelling Language (UML) [2, 3] provides a variety of notations for modelling software 
systems. These include class diagrams, collaboration and sequence diagrams, and use case diagrams. For 
architectural modelling, UML deployment diagrams are most suitable for capturing information and 
deployment of system processes on machines. Component diagrams give further information about the 
grouping of design objects into programs. Many tools exist for supporting UML modelling, the most 
popular being Rational Rose ™ [18]. Figure 3 shows an example of a UML deployment diagram built 
using Rose for the book purchasing system introduced in Section 2. Deployment diagrams are quite 
simple, with two main kinds of entity (“processor” (machine) and device), with processes deployed on 
machines able to be listed. Machine and device inter-connection is via simple association links. 
Deployment diagram entities and links can be annotated with notes to document further information about 
them, and process concurrency characteristics can be specified. Code can not be generated from 
deployment diagrams, and processes in these diagrams do not directly relate to design-level classes or 
their methods. No consistency management between deployment diagrams, UML class diagrams and 
resultant code implementing a system is supported in Rose or most other UML-based CASE tools. 



 

 

 
Figure 3. Example of a UML Deployment Diagram. 

4.2. JComposer Component Diagrams 
 
JComposer is a CASE tool for developing component-based systems [6]. Figure 4 shows an example of a 
JComposer component diagram. Such diagrams provide a variety of abstractions for modelling 
components, relationship components, links, and event filtering and actioning components. A variety of 
links can be used, including structural association and aggregation, generalisation, event flow, and 
“usage” (which includes method calling or more general inter-component relationship identification). 
Both low-level components, corresponding to design-level objects, and higher-level “aggregate 
components” can be modelled in JComposer. Complex inter-component relationships can themselves be 
modelled as components, with a variety of characteristics specified. Code can be generated to implement 
low-level components, and design-level component refinements and requirements-level component 
abstractions linked to architectural components. Thus JComposer describes the static structure of 
components and the dynamic behaviour of component instances for component classes that make up a 
system. Sophisticated consistency management between these different levels of abstraction is supported.  
 

 
Figure 4. Example of a JComposer Component Diagram. 



 

4.3. Serendipity-II Agent Specification Diagrams 
 
Serendipity-II is a process management environment, built using JComposer, which provides a variety of 
visual process modelling views [8]. Serendipity-II also provides views for interactively speciftying 
software agents, similar to JComposer component views but where actual running software components 
are created and composed [7, 13]. Serendipity-II was used to construct the itinerary planner prototype 
outlined in Section 2 by composition of reusable software agents. Figure 5 shows two Serendipity-II 
agent specification views for part of the travel itinerary planner. This describes how travel itinerary 
update events are detected by an agent which updates a map visualisation, and how map visualisation 
events are detected by an agent which notifies other users via the collaborative chat component. 
Serendipity-II supports the notion of components, event filtering components, and event actioning 
components. Event propagation between components, and inter-component method calling, are indicated 
by links between component representations. As users construct Serendipity-II agent specification views, 
appropriate software agents are found or created, and as links are constructed or modified graphically, 
appropriate inter-component relationships are established or modified. Various additional component 
parameters are set via dialogues. 
 

 
Figure 5. Serendipity-II agent specification views. 

4.4. Clockworks MVC Diagrams 
 
Clockworks provides an integrated environment for developing programs using the Clock language [5, 
21]. Clockworks components correspond to design-level classes, like UML class diagram classes and 
some JComposer components, which are composed of layered Abstract Data Types. A Model-View-
Controller approach is used to define views of the model components in a layered, tree-based manner. 
“Server” components thus act as the root of a Clockworks MVC tree, with “client” components defined as 
composites built on top of this model. Figure 6 shows an example of a Clockworks architecture diagram 
for the travel itinerary planner from Section 2. The Itinerary component is the model, which would be 
managed on a server machine, with ADTs providing access to itinerary item structures. Two views are 
defined for the itinerary, one for travel agents and customers to edit the itinerary in a tree-structured way, 
and one for map visualisations. Each view is composed of sub-components providing different parts of 
the itinerary views, and each runs on a client PC. 
 
Clockworks specifies Clock component (class) structures and aspects of component behaviour. Code is 
generated from Clockworks specifications, including quite complex design refinements of architectural 
abstractions (such as code for client-side caching, shared ADT access and concurrency controls) [15]. 
ADTs can be annotated to represent replication, for example the itinerary items can be replicated. Client-
server splits are identified on tree branches, with components above the split on the server machine and 
those below on the client. Various data caching options can be specified, including pre-send caching,  pre-
fetch, simple caching and no caching. Concurrency control annotations can be used to indicate concurrent 
access. 



 

 

 
Figure 6. Example of a Clockworks Architcture Diagram. 

4.5. ViTABaL Toolie Diagrams 
 

 
Figure 7. ViTABaL toolie and ADT diagram. 

 
ViTABaL (Visual Tool Abstraction Language) is a notation and environment for modelling systems 
based on the tool abstraction paradigm of Garlan et al [4, 9].  Components are either “toolies”, which 
embody functionality, or “abstract data types”, which embody data management. Toolies typically share a 
pool of ADTs, and communication between toolies is either via the ADT pool or direct communication. 
Figure 7 shows a ViTABaL Toolie diagram describing the book purchasing program from Section 2. 
ViTABaL provides a range of inter-toolie message passing abstractions, including synchronous and 



 

asynchronous broadcasting and requests, and before-action and after-action event monitoring. ViTABaL 
also allows toolies to be decomposed into smaller aggregate toolies, with local ADTs and inter-toolie 
communication. Dynamic addition and removal of toolies is possible. Unlike UML, JComposer and 
Clockworks, manipulating ViTABaL diagrams corresponds to manipulating live architecture component 
instances. A set of toolie monitoring and debugging tools are fully-integrated with ViTABaL toolie 
diagrams. Inter-toolie communication code is dynamically generated from toolie diagrams rather than 
coded manually. 

5.6. PARSE-DAT Process Graph Diagrams 
 
PARSE-DAT provides a notation, editing tools and analysis method for specifying and simulating 
dynamically-structured software architectures for distributed and parallel processing systems [Refs]. The 
PARSE notation uses a set of symbols to represent static architectural components, including function, 
data and control servers (processes) and a variety of path inter-connections between processes. It also 
provides symbols to represent dynamic parts of a software architecture i.e. nodes and connections that can 
be created and modified at run-time. Figure 8 shows a PARSE process graph for the collaborative travel 
itinerary planner from Section 2. In this example, notification agents and their monitoring/actioning 
connections shown as dynamic (as end-users can create and remove these dynamically, as can other 
software agents). 
 
PARSE-DAT provides an environment for modelling architectures using PARSE. A PARSE process 
graph can be translated by PARSE-DAT into a formal specification using π-calculus. This can then be 
analysed to verify the correctness of the PARSE process graph specification. An integrated modelling and 
analysis environment is provided by PARSE-DAT, with feedback from architecture analysis into the 
modelling process. 
 

 
Figure 8. Example PARSE Process Graph Diagram. 

5.7. JComposer Aspect Diagrams 
 
A recent enhancement of JComposer has been the addition of component “aspects”, used to categorise 
and describe the provided services and required services of components, including both their functional 
and non-functional characteristics [12]. Aspects include persistency management, distribution strategies, 
security and transaction processing models, user interfaces and component configuration support, and for 
each such aspect a component may provide or require several aspect details. Figure 9 shows a JComposer 
aspect diagram for the book purchasing application, where JComposer component aspects are visualised 
and inter-relationships specified. Provided aspect details are indicated by a “+” and required by a “-“. 
Aspect details have properties further specifying their characteristics, which may include performance, 
robustness, security, integrity and other non-functional requirements. Aspect information can be modelled 



 

at the requirments-level for abstract components, at software component object design-level, can be 
encoded in component implementations and be accessed by users and other components at run-time. 
JComposer supports the modelling of component aspects, refinement of aspects, encoding generation and 
consistency management between aspects at different levels of abstraction. Aggregate aspects can be used 
to describe provided and required services of multiple, related components, including a whole 
component-based system. 
 

 
Figure 9. Example of a JComposer Aspect Diagram. 

6. Critique of Modelling Approaches 
 
Each of the architectural modelling approaches identified in the previous section offers a different way to 
specify characteristics of a system architecture. Table 1 summarises these different approaches with 
respect to the requirements for architecture modelling outlined in Section 3. 
 
The UML provides a wide range of system modelling capabilities, with deployment diagrams providing a 
reasonably high-level approach to architecture modelling. There isn’t a way to group machines and 
processes, however, and specifying information about the inter-relationships between processes is very 
limited. It appears only the static structure of architectures can be described and visualised, and very 
limited information about system behaviour can be captured. Limited links and consistency between 
deployment diagrams and other UML artifacts exist. Modelling support in tools like Rose is reasonable, 
but no analysis support exists i.e. validating deployment models, suggesting suitable models etc. No 
support exists for realising deployment diagram-specified information nor feeding back information from 
testing the architectures specified. 
 
JComposer component diagrams are generally lower-level than deployment diagrams, though aggregate 
components can be used to model similar abstractions to processes. No information about machine 
deployment is directly supported in such views. A much richer range of inter-process structural and 
dynamic information can be modelled, similar to UML class and collaboration diagrams but with richer 
event modelling. Dynamic structural configurations are not modelled visually. Usage and event links can 
model “aggregate” method and event inter-change between components, and relationship components can 
be used to model complex architectural facilities like middleware. Links and consistency management 
with requirements-level and design-level entities are provided. Very few analysis tools for component 
configurations exist, especially about processing concurrency and dynamic configurations, but . Code 
generation is supported, though refinement to design-level components must be done first. Feedback from 
a component visualisation tool can be utilised when modifying architectures. 



 

 
Serendipity-II diagrams tend to be at a similar level to JComposer diagrams, though there are some 
annotations indicating machines distributed agents run on and their inter-process communication 
middleware [13]. Dynamic system architecture composition is supported by Serendipity-II, though most 
modelling work tends to focus on lower-level, detailed component event and message inter-change. New 
composite agents can be built from reusable parts and repeatedly instantiated and parameterised, fostering 
reuse of higher-level abstractions. A good range of reusable components is provided for users, though 
their tailorability is often limited. Some limited, distributed monitoring of agents is supported. 
 
 UML JComposer Serendipity-II Clockworks ViTABaL PARSE-

DAT 
Aspects 

Components Medium-
level 
machines 
and 
processes 

Low to 
medium-level 
data and 
behaviour 
components 

Low to 
medium-level 
components 
(“agents”) 

Low level 
model and 
view 
components 

Medium to 
high-level 
toolies and 
ADTs 

Medium to 
high-level 
servers 

Low to 
high-level 
components 
and 
component 
aspects 

Relationships Very 
limited 

Structural, with 
dynamic event 
exchange and 
method calling 

Event & 
message 
propagation, 
association 

Structural, 
with some 
dynamic 
events and 
messages 

Message-
passing 
association 
and 
semantics 

Inter-process 
data 
communicatio
ns 

Provides 
and 
requires 
associations 

Structure Static Static Static (though 
run-time 
specified by 
user) 

Static Mainly 
static, run-
time 
specified 
by user 

Static and 
dynamic 

Mainly 
static with 
some 
dynamic 

Behaviour Limited Low-level: 
good; Limited 
at higher levels 

Low to medium 
level event 
propagation, 
associations 

Good for 
medium-level 
behaviour 

Good for 
medium 
and high 
level 
behaviour 

Good for 
medium- high 
level process 
communicatio
n 

Non-
functional: 
good; 
Functional: 
limited 

Links Limited 
links & 
consistency 

Some links & 
consistency to 
both 
requirements & 
code 

Limited Code links & 
consistency 
good 

Code links 
& 
consistency 
good 

Formal 
specification 
can be 
generated 

Good: 
consistent 
metaphor 
throughout 

Modelling Good Very Good Good Very Good Very Good Very Good Basic 
support 

Analysis Very 
limited 

Limited Basic 
configuration 
validation 

Some for 
annotations 

Consistenc
y checking 

Very Good Basic 
configurati
on 
validation 

Implementati
on 

Code 
generation 
& reverse 
engineering 
from class 
diagrams 

Good – 
integrated 
environment 

Reuse of 
existing 
components 

Good – 
integrated 
environment 

Very good 
– well-
integrated 
environmen
t 

Limited Limited – 
some code 
generation 
& reverse 
engineering 

Evaluation Testing 
tool; no 
feedback 

Component 
visualisation 
tool 

Limited 
debugging 
support 

Some 
debugging 
support 

Integrated 
testing & 
monitoring 
tools 

Limited Run-time 
aspect 
information 
used 

Table 1. Comparison of approaches. 

Clockworks provides similar capabilities to UML class diagram and JComposer component diagrams, 
except for the addition of various architecture-related annotations. These provide additional information 
for architecture modellers in regards to specifying component and relationship characteristics, and some 
dynamic behavioural characteristics. No dynamic component structure visualisation support exists in 
Clockworks, and limited behavioural specification at the visual level. Good integrated tool support exists, 
with code generation and debugging tool support. Limited analysis tools check the suitablility and 
compatibility of architectural annotations on Clockworks models. 
 
ViTABaL, in general, attempts to describe larger architectural entities than Clockworks, JComposer and 
UML class diagrams (“toolies” vs. software components or objects), although large toolies can be built 
from smaller ones which are more like conventional design-level objects. ViTABaL supports both low-



 

level behavioural specification between toolies and ADTs and higher-level, abstract associations. Some 
limited support for dynamic system structure is supported in the visual notation, and annotations 
indicating which machine a toolie is to be run on are used. Consistency management between toolie views 
and toolie method implementation code is supported, including automatic code generation for complex 
inter-toolie method and event propagation via middleware abstractions. Modelling of  toolie views is done 
“live” in ViTABaL, with users manipulating actual running architectural entities. Some limited analysis 
support is provided including structural and basic behavioural validation, and some concurrency 
annotation and validation support. Monitoring and debugging tools are tightly integrated with the 
modelling tools, and monitor information can be used to improve architecture structure. 
 
PARSE-DAT provides a mainly process-oriented view of architectures. Inter-process communication 
strategies are well-represented, along with basic data management, process management and control 
process discrimination. Good support is provided for dynamically structured systems, unlike many other 
approaches. Limited detail about structural and behavioural relationships is captured. PARSE-DAT 
supports editing and analysis of PARSE process graphs, with a greater degree of formal specification and 
verification than most other techniques. Limited support for design-level refinement and architecture 
implementation and evaluation is provided. 
 
Component aspects provide an additional perspective on architectural entities unlike those of the 
preceding systems. Aspects offer various perspectives on architecture component provided and required 
services, with the ability to reason about related components via their aspects. Some support for 
modelling, analysing and refining aspects is provided by JComposer. Run-time use of aspects is 
supported by the JViews software architecture and its implementation framework. 

7. A Synthesised Architecture Modelling Approach 
 

Issues Facilities 
 OOD Capabilities Low-level Software Architecture High-level Software Architecture 
Components UML/JComposer/Clockworks 

software components; 
Serendipity-II dynamic, 
running components. 

UML machines; ViTABaL toolies; 
aspects; PARSE servers 

ViTABaL toolie groupings; 
aggregate aspects; machine 
groupings; Process groupings 

Relationships UML/JComposer/Clockworks 
generalisation, association. 
JComposer event propagation. 
UML method calling. UML 
state transition. 

JComposer usage links; ViTABaL 
toolie and PARSE server message 
exchange; aspect provides and 
requires relationships; aggregate 
message/event links; link annotations. 
Middleware characteristics. 

High-level structure, data/control 
exchange, usage links; aggregate 
provides and requires associations; 
link annotations. High-level 
middleware characteristics. 

Structure Static and dynamic component 
and relationship 
characterisation. 

Machine, process and process group, 
toolie, and server data management 
and various interconnection 
specification. Dynamic parts and 
relationships. Middleware support 
ORBs. 

Machine and toolie groupings; 
dynamic groupings and 
relationships.  

Behaviour Method and event exchanges. 
State transitions. 

Tool/process/server-level dynamic 
behaviour. Grouping of methods, 
events, state transitions. Concurrency 
and parallel processing characteristics. 

Overview of data and control 
movement. Overview of 
concurrency/parallel processing. 
Overview of communication 
strategies. 

Links OOA specifications, detailed 
design classes and code 
modules. 

Individual OOA specification objects, 
program and process entities, OOD 
classes, non-functional requirements. 

Low-level architectural entities, 
non-functional requirements. 
Possibly grouped OOA objects. 

Table 2. Some desired Architecture Modelling capabilities. 

Overall the notations and tools described in Section 4 provide a good range of architecture modelling 
approaches. Many support particular aspects of architecture modelling well, but either do not address 
others or address them in unsatisfactory ways. A synthesis of these modelling techniques can be 
envisaged which combines their various features to provide a more complete modelling notation for large 
software architectures. Table 2 summarises the various capabilities that might be chosen to support such 
modelling. Note that an architecture modelling approach would normally be from a static view of a 
system i.e. JComposer, UML, PARSE and Clockworks-style specification of classes/processes, rather 
than a ViTABaL and Serendipity-II view and manipulation of actual running objects. However, support 



 

for both is needed in general – architects may work with static specifications whicha refined into OO 
designs and implementations, but the ability to view and modify running architectures via suitable 
abstractions is also necessary.  
 
Figure 10 illustrates the kind of modelling capabilities that might be used based on the combination of 
features identified above. From our work in developing architectures for several large software tool 
environments and collaborative systems, we have determined that it is important to provide a range of 
abstractions for modelling architectures. These range from high-level views capturing information about 
the overall architecture and important composite components, to low-level views specifying all 
architectural refinements and information about concurrency controls, data access and replication, data 
and operation specification and so on. As the various notations overviewed in this paper have some 
overlap in terms of their modelling capabilities, a new, consistent set of notational symbols would be 
required so that a consistent set of abstractions is available to modellers. 
 

 
Figure 10. Multi-level architecture modelling using a synthesis of approaches. 

8. Tool Support 
 
Good tool support is necessary to make such a synthesised modelling approach feasible. Such a modelling 
tool needs to support various views of a software architecture, ranging from high-level, basic structural 
and behavioural abstractions to detailed component connectivity, data management and behavioural 
specifications. Guideance support, including reusable architectural styles and patterns, Analysis tools like 
those of PARSE-DAT, ViTABaL and JComposer aspects are required to enable developers to formally 
reason about their architectures. OO designs and implementation code generation should be supported by 
the tool, in conjunction with existing CASE and development environments. Results of using 
architectures, such as actual performance characteristics, robustness, security and maintainability, should 
be captured and associated with various architectural abstractions. Reverse engineering of existing 
architecture models needs to be supported by the tool, to enable developers to reuse and evolve their 
existing system architecture models and infrastructure. 
Multiple Views 
 
Multiple views of a large system’s architecture should provide representations of parts of the architectural 
characteristics at varying levels of abstraction and focusing on different parts and aspects of the 
architecture. For example, high-level views of the overall system might use ViTABaL and PARSE-DAT 
style toolies/processes, UML machines and JComposer aspects to characterise overall system 
characteristics. High-level annotations of components and links might indicate abstract characteristics of 



 

each. Refinements of such views might focus on structural inter-relationships (sub-toolies, sub-processes, 
components, component trees etc.), behavioural inter-relationships (message passing details, middleware 
support structures, event subscription and notification details etc.), depictions of important concurrency 
and parallelism, assignment of processes etc. to machines, refinements of aspects, aggregate aspects and 
aspect inter-relationships, and model-view-controller style structures. These “mid-level” architectural 
views would be refined to OOD-level classes and perhaps some implementation-level code, detailing the 
realisation of architectural decisions. 
 
All editing tools should support appropriate notational representations and highlight links between 
different views and refinements of the architecture. Some details about specifications at various levels 
would require dialogue input, though use of appropriate annotations would be desirable on the visual 
representations. Formalised encodings of parts of the architecture, such as aspect properties, constraints 
on data and operation usage (pre/post-conditions, invariants etc.), sequencing of operations and so on 
would likely require textual encodings. Consistency management between views is essential, as many 
parts of the synthesised notation contain overlaps with other parts. Flexible consistency management is 
more likely to be useful, with a lot of consistency checking on-demand rather than always enforced i.e. 
more analysis-style checking than editing-level checking. Appropriate basic syntactic and semantic 
editing checks should be enforced where appropriate though. Supporting “sketching” of incomplete parts 
of architectures without undue validity checking would likely enhance modellers ability to experiment 
and informally document architectural ideas before rigid checking is applied. 

7.2. Analysis Tools 
 
Two main kinds of analysis checks could be envisaged: basic consistency checking applied to the model 
at differing levels of abstraction, and formal reasoning about various architectural properties (e.g. 
concurrency deadlock potential, potential points of failure, expected performance given required data 
management and transaction processing parameters, potential security anomalies, etc.). Model 
consistency checking must ensure information specified about the architectural model from various 
perspectives (views) defines a complete architecture specification, is internally consistent and all required 
services of architecture components are satisfied. Model analysis should assist modellers in determining 
whether their models meet the non-functional and functional specifications for the system, and that the 
architecture has appropriate expected performance properties (processes won’t deadlock, data won’t be 
corrupted, security won’t be breached and so on). The use of formalisms like state machine models, as 
employed in ViTABaL, and π-calculus, as employed in PARSE-DAT, should be deployed where 
possible, to ensure such architectural analysis is well-grounded. In addition, wizard-like guideance for 
modellers, using various metrics and recommended practices, could give more informal feedback on the 
likely suitability of an architecture model. 

7.3. Design and Code Generation 
 
Developers will want to generate design-level classes and perhaps implementation-level code based on 
their architecture models. For large systems, such design and code generation alleviates a great deal of 
tedium and error-prone hand-coding, but also ensures consistency between model and 
design/implementation. A key to ensuring the success of design/code generation tools is to allow various 
third-party CASE tools and development environments to use generated information. This suggests the 
use of standardised representations of design information, such as XMI-based UML encodings, and target 
language code. IDLs, as provided by middleware systems like CORBA, also offer an encoding which is 
more portable than custom tool repository formats. 

7.4. Reverse Engineering Support 
In addition to generating designs and some code, an architecture modelling tool needs to support reverse 
engineering. This is for two reasons: to support round-trip engineering where design and code changes 
can be reverse-engineered back into the architecture model, and to support the modelling and evolution of 
existing systems. A complexity with the second case is identifying appropriate architectural abstractions 
from OO design-level classes. Some common architectural patterns or styles might be recognised by a 
tool, but modeller intervention is probably necessary in general to capture all architectural features, 
particularly higher-level abstractions. 



 

7.5. Architecture Performance Measurements 
When modelling architectures a number of metrics and formal analysis techniques could be deployed to 
assist developers as outlined above. In general, additional information about the actual performance 
characteristics (speed, robustness, integrity, security, quality etc.) would be very useful to base analysis 
reasoning on. For example, if a modeller wanted to compare socket-based inter-process communication 
speed and reliability to CORBA-supported remote operation invocation, various actual system 
performance measurements relating to the use of these different architectural abstractions and 
implementing component implementation would be useful. A modelling environment that captured such 
characteristics by monitoring running systems could offer improved guidance and analysis support to 
developers, and the results used by developers to validate a system meets non-functional requirements. 
Storage of such results against reusable architectural entities would facilitate more accurate and 
appropriate reuse in future architecture modelling situations. 

9. Conclusions 
 
The different architecture modelling approaches overviewed in this paper offer various facilities to 
developers, most of them complementary and from differing perspectives. A synthesis of these, and 
possibly other, approaches would seem to offer a more holistic method for developing software 
architecture specifications for large systems. Important features of such an approach include support for 
multi-level architecture component and relationship modelling, static and dynamic structure modelling, a 
range of behavioural modelling facilities, and appropriate linkage to requirements and design artifacts. 
Development tool support should include multiple views and consistency management, various formal 
and semi-formal analysis techniques, design and code generation as well as reverse engineering support, 
and the capture of actual performance data for use when analysing and evaluating architectures. 
 
We are currenty developing a unified notation for modelling software architectures based on a synthesis 
of the approaches surveyed in this paper. An important characteristic of this approach is the use of 
multiple levels of architectural model refinements and a common notation at each level to express 
architectural elements. A prototype CASE tool supporting this approach is planned for development, by 
extending the JComposer CASE environment to add some of the architecture modelling facilities outlined 
in the previous sections. This has the dual advantage of using JComposer’s metaCASE facilities and 
allowing linkage of requirements-level artifacts and design-level artifacts in JComposer to the 
architecture-level artifacts. The addition of more formal Architecture Description Language properites to 
this modelling approach may enhance its overall analysis capabilities. Interchange of ADL and 
architecture modelling notation models may enhance the ability of developers to work with appropriate 
notations and approaches in different domains and for different perspectives of systems. 
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