
Copyright © 2007, Australian Computer Society, Inc. This
paper appeared at the Eighth Australasian User Interface
Conference (AUIC2007), Ballarat, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 60. Wayne Piekarski and Beryl Plimmer, Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

 A Visual Language and Environment for Specifying User Interface
Event Handling in Design Tools

Na Liu1, John Hosking1 and John Grundy1, 2
1Department of Computer Science and 2Department of Electrical and Computer Engineering,

University of Auckland, New Zealand
{karen, john, john-g}@cs.auckland.ac.nz

Abstract
End users often need the ability to tailor diagramming-
based design tools and to specify dynamic interactive
behaviours of graphical user interfaces. However most
want to avoid having to use textual scripting languages or
programming language approaches directly. We describe
a new visual language for user interface event handling
specification targeted at end users. Our visual language
provides end users with abstract ways to express both
simple and complex event handling mechanisms via
visual specifications. These specifications incorporate
event filtering, tool state querying and action invocation.
We describe our language, its incorporation into a meta-
tool for building visual design environments, examples of
its use and results of evaluations of its effectiveness.

Keywords: Visual Language, User interface, Event
Handling, Meta Tool

1 Introduction
Visual design tools have many applications, including
software design, engineering product design, E-learning
and data visualisation. Pounamu (Zhu et al, 2004) is a
meta-tool we have developed for building such visual
design tools. High-level visual specifications of tool
meta-models and visual language notations allow end
users to modify aspects of their tools such as appearance
of icons and composition of views. However, both our
own and other researchers’ experiences indicate that
many end users also wish to modify tool behaviour
(Morch, 1998; Peltonen, 2000) and reconfigure user
interaction with their design tool. This includes
specifying editing constraints e.g. diagram element
layout; automated diagram modification e.g. auto-add or
resize of elements; semantic constraints e.g. allowing
connection of only certain typed elements; automatic
computation e.g. calculating an attribute value from the
values of connected diagram element attributes; and well-
founded user interactions e.g. alerting users to invalid
input.

Many end users of such tools are not programmers and do
not wish to learn or use complex textual scripting
languages to tailor their design tools in these ways. Most

approaches for design tool tailoring, however, use just
such techniques (Cypher and Smith, 1995; Lewicki and
Fisher, 1996; Peltonen, 2000). Some tools support limited
configuration via preferences and wizards, but these
severely limit the tailoring possible (Morch, 1998).
Programming by example has been used for end user
configuration, but is limited in power and it is often hard
to visualise and modify specifications learnt (Cypher,
1993; Smith et al, 1995).

Most visual design tools are “event driven”, meaning
when a user modifies a diagram in the tool, events are
generated and can be acted upon to modify other diagram
content, enforce constraints, etc. We have used the event-
driven nature of such tools as a vehicle to provide end
users with a domain specific visual language, Kaitiaki1,
with which to specify behaviours for their tools. We have
added this visual language to our Pounamu meta-tool
providing end users with little programming background,
a mechanism to detect events and specify actions to take.
We first motivate our work and survey related research,
then outline our approach and its design and
implementation. We finish with an evaluation,
conclusions, and future work opportunities.

2 Motivation
Consider a diagram-based design tool for web site and
GUI specification, an example of such is illustrated in
Figure 1. This consists of a web site map view (rear) and
a web form view (front). We have built this tool with our
Pounamu meta-tool along with a many other diagram-
based design tools (Zhu et al, 2004). Such applications
allow end users to model complex design problems using
visual notations appropriate to the domain. Pounamu
allows us to specify the meta-model, shapes and views
(diagrams) for tools such as these using a variety of visual
languages. Pounamu tool end users can modify the
specification, even while the tool is in use, and have their
changes reflected in the running tool (Zhu et al, 2004).
This is very useful for changing symbol appearance,
adding new symbols and diagram types, and even
extending a tool’s meta-model. As many users of our
tools are not programmers, providing ways of specifying
behavioural changes is more challenging.

A variety of approaches have been used to support
reconfiguration of diagramming tools. Frameworks, such
as Suite (Dewan and Choudhary, 1991), Meta-Moose
(Ferguson et al, 1999) and Unidraw (Vlissides and
Linton, 1989) require modifications to the tool’s code,

1 Kaitiaki is the Maori word for handler, or guardian

with an edit-compile-run cycle. Some Tcl/Tk-based tools
may be modified while in use (Welch and Jones, 2003),
but this requires use of the Tcl programming language.
MetaEdit+ (Kelly et al, 1996) and GME (Ledeczi et al,
2001) provide API based code integration facilities, but
code must be pre-compiled. Usually only programmers
familiar with the tool architecture can make such
modifications.

Figure 1. Example of a diagram-based design tool.

A common alternative approach supporting run-time
modification is scripting. This is supported, for example,
by Amulet (Myers, 1997) and Peltonen’s UML tool
(Peltonen, 2000). MetaEdit+ also provides a custom
scripting language for report generation while GME uses
OCL as a scripting language for constraint specification.
These are difficult for non-programmer users to
understand and use. Our Pounamu meta-tool uses this
approach, with event handlers specified using textual
Java fragments accessing a defined API and compiled on-
the-fly. Figure 2 shows a Pounamu event handler for a
web site design tool. This is a powerful mechanism for
extending Pounamu and very sophisticated event
handling behaviour has been implemented with it. While
end users have been very complimentary of Pounamu’s
visual design tools, they have been less complimentary
about the event handler specification as it requires
programming skills and knowledge of the Pounamu API
even for simple handlers.

Programming by demonstration and rule-based
approaches have been used to specify behavioural
constraints in some systems, often together and most
notably in children’s programming environments such as
KidSim (Smith et al, 1995) and Agentsheets (Repenning
and Sumnet, 1995). Most rule-based approaches
exemplify “Event-Condition-Action” based visual
languages where the user specifies an event of interest;
conditions (“filters”) when the action(s) should be run in
response to the event; and action(s) to run to modify the
tool’s state.

Other Event-Condition-Action rule-based languages have
been developed for a variety of domains, including
building and tailoring design tools (Costagliola et al,

2002; Ledeczi et al, 2001; Lewicki and Fisher, 1996),
user interface event handling (Berndtsson et al, 1999;
Jacob, 1996), process modelling (Grundy et al, 1998) and
database rule handling (Matskin and Montesi, 1998).
However these approaches often suffer from use of
inappropriate, textual rule-based languages for end users;
reliance on many abstract concepts like control structures
and variables; limitations on expressive power of the
languages; difficulty in visualising and debugging learned
rules from demonstration by the user; and limitations of
reconfiguration power, including compile-time rather
than run-time changes.

Figure 2. Example of event handler textual

specification

3 Our Approach
Given the problems noted above, we wanted to replace
Pounamu’s textual, Java code-based event handler
specification tool with one using a visual language
suitable for non-programmer end users. To develop this
replacement visual language, Kaitiaki, and its
specification tool we carried out an analysis of Pounamu
event handlers from a wide range of tools to identify key
constructs used to specify different tool behaviours. All
had aspects of (1) specifying the event(s) of interest; (2)
querying the tool state in various ways; (3) filtering
event/query results and making decisions; and (4)
performing state changing actions on filtered objects. We
also looked at the metaphors used in existing rule-based
and event-condition-action event handler specification
tools to see how these manifested the behavioural
specifications and how suitable these were for end users.
From this analysis and survey, we developed a set of key
requirements and design approaches for our new Kaitiaki
visual event handler designer:
• A need to represent key “building blocks” of state

query, data filtering and state modification (actions).

• A need to represent event objects and their attributes;
various objects from the Pounamu tool state (both
view and model); and query results (typically
collections of Pounamu state objects).

• A need to represent “data” propagation between
event, query, filter and action representations.

• A need to represent iteration and conditional data
flow.

The metaphor used by Kaitiaki is thus an “Event-Query-
Filter–Action” (EQFA) model. This is articulated as
“When this event happens, I want these changes made to
these things”. This is loosely based on our Serendipity
event handling language which has been successfully
used by end users in the process enactment domain to
express similar kinds of event-driven behavioural models
(Grundy et al, 1998). The key visual constructs of our
language are representations of events, tool objects,
queries on a tool’s object state, state changing actions
(including primitives relevant to common event handler
requirements), and data flow links between these.

Event of interest

Event property(s)

Tool state e.g.
Diagram changed

Query over state e.g.
all items in Diagram

Filter of objects e.g.
only particular type Objects

Action 1:
Move objects

Action 2: change
colour of all objects

Filtered Objects

Figure 3. The Kaitiaki EQFA metaphor.

A Kaitiaki event specification is conceptually of the form
outlined in Figure 3. An end user selects an event type of
interest; adds queries on the event and Pounamu tool state
(usually diagram content or model objects that triggered
the event); specifies conditional or iterative filtering of
the event/tool state data; and then appropriate state-
changing actions to be performed on target tool state
objects.

Complex event handlers can be built up in parts and
queries, filters and actions can be parameterised, and
reused. Ordering is handled by dependency analysis in
the code generator. Domain specific tool icons are also
incorporated into the visual specification of event
handling as placeholders for the Pounamu state, to
annotate and make the language more expressive.

4 Kaitiaki Visual Notation
The design of our Kaitiaki visual language focuses on
supporting modularity and explicitly representing data
propagation. We have avoided using abstract control

structures and adhered to a dataflow paradigm to reduce
the user’s cognitive load. An overview of the main
constructs of Kaitiaki is shown in Table 1 with an
example Kaitiaki event handler view shown in Figure 5.
From this we see the visual form of the constructs
described in the previous section, i.e. events, filters, tool
state queries, and actions plus iteration over collections of
objects, dataflow input and output ports and connectors,
and concrete iconic forms.

A single event or a set of events is the starting point for a
Kaitiaki event handler specification. From this event
various data flows out (event type, affected object(s),
property values changed etc). Queries, filters and actions
are parameterized with data propagated through incoming
connectors. Multiple flows are supported with multiple
dataflow connectors pointing to/from a visual construct.
Queries retrieve elements and output one or more data
elements; filters select elements from their input; actions
apply operations to elements passed to them.

Event representation

Abstract Pounamu state
representation

 Single Data Element

Collection of Data
Elements

Filter

Query on a tool’s state

State changing action

Iteration

Data propagation link
Data flow ports in and
out

Concrete specification
of Pounamu model
elements (state)

 etc.

Table 1. Kaitiaki language key visual constructs.

State querying

Obtain a named
property value of a
shape

Obtain all the shapes
in the modeller panel

Obtain all connectors
in the modeller panel

Obtain all connectors
connected to a shape

Data filtering

Select shapes of type
from set or test type of
single data element
input

Select a given
connector type

Select all shapes that
are connected from a
particular shape (i.e.
connector source)

Select all shapes that
are connected to a
particular shape (i.e.
connector target)

Filter on a not null
value

Filter on an
expression value

State modification

Set a list of name-
value pair properties
for a shape

Set a value to a named
property

Set a list of values to a
named property

Move a shape by an
offset to a location

Horizontally/vertically
align a shape with
other aligned shapes

Create a new shape

Create a connector of
a specified type and
connect two shapes
using the connector

Table 2. Overview of Kaitiaki reusable building
blocks.

Queries and actions are invoked immediately when their
actual data parameters are available (data push). If no
related data dependency is specified, i.e. no data input
parameter flows to the constructs, then queries and
actions are invoked on demand when all other parameters
to a subsequent flow element have a value (data pull).

Table 2 shows some of the predefined primitives for these
constructs. These define the core vocabulary for our
domain specific language, providing a base set of
operations useful for diagram and diagram element
manipulation. Typically this involves locating or creating
elements, setting their properties, relocating/aligning
them, and connecting them.

5 Examples of Kaitiaki Specifications
To construct a visual event handler specification a user
identifies the target affected shape, view or model entity.
She specifies the event(s) the event handler should
respond to, and then adds building blocks to the handler
specification. The concrete representations of Pounamu
data, such as the shape icons, allow her to relate her
queries, filters and actions to concrete objects in
Pounamu. Basic elision support lets her show and hide
concrete icons, queries, filters and actions to help manage
larger specifications. To better illustrate the
expressiveness of Kaitiaki, we use as examples several
event handlers defined for the web site design tool shown
in Figure 1. The web site map view (of a simple model
like eBay) supports a hierarchical breakdown of web
pages for sub-paging management. It requires several
layout constraints to be enforced.

Figure 4. Example of addition of a new sub-page.

5.1 A Layout Constraint Event Handler
When creating a page icon for the web site map diagram,
several values for its properties need to be set. These are
gathered from a range of sources. An event handler is
needed to implement one of the layout constraints. Users
need to be able to create a new page by a right-click on an
existing page; the newly created page is made a child of
the existing page and a link is drawn between the old and
new pages. The new sub-page and all other sub-pages
belonging to this parent are aligned and repositioned upon
arrival of the new page. Figure 4 shows the effect of this

event handler when a new sub-page is added to the
selected.

Figure 5. Specifying a layout constraint event handler.

Figure 6. An example of a reusable visual query.

The event handler specification for this task is shown in
Figure 5 which demonstrates the use of predefined
Kaitiaki primitives (e.g. create, align and set property and
connect shapes). It also demonstrates package and reuse
of queries and actions. The modelling constructs
contained in this event handler specification include a
user defined trigger event (a context-menu event) called
AddNewPage which has the acting Shape flowing from it;
a query, getSubPages (a packaged query) that locates
existing sub-pages of the currently selected page shape
(parent as propagated to the query); four actions, the
newShape action creates the new page shape; the alignH
action does a horizontal alignment (with a user specified
vertical distance in between) of the new page shape with
the other existing sub-pages; the setProps primitive then
sets default properties for the newly created page shape;
and the connect primitive creates a connector of the
SubPage connector type and connects the new page
shape with its parent shape using the connector, now the
event handler leads to a final stage, i.e. the end of the
event handler specification.

Data sourced from outputs of “source” entities flows
through data propagation links to act as input to “sink”
entities. Each of the data propagations is statically
checked for type compatibility of their data sender and
consumer. Also incorporated in the event handler
example are some end-user target tool icons, e.g. one on
the flow from the AddNewPage event to the connect
action annotates the flow to visually indicate the type of
shape (page) on the flow. Another on the flow from the
setProps action annotates the flow to indicate that the
state change (which sets defaults values) also affects a
page shape (the new sub-page). Shadowed icons, such as
the one on the subPages flow from getSubPages, indicate
multiplicity in the result. These optional annotations do
not affect the semantics and are secondary notation
augmenting the specification (although their types are
checked). They have been generic titles (ParentPage,
NewSubPage, etc) to emphasise the reusability of the
event handler for other page shapes.

Figure 6 shows the packaged getSubPages query, which
is composed of a number of primitives. We explicitly
specify start (data flow in) and end (data flow out) ports
for a package. Starting with a parent shape flowing in
from the start to the connectedFrom filter, the getShapes
query which gathers all available shapes (via data pull) is
invoked. The PageShape filter selects all shapes that are
of the PageShape type. The connectedFrom filter then
selects only those that are connected from the specified
parent shape. The end flow of the composed query
indicates that on termination, this query flows out the set
of sub-pages of the parent page. This query is invoked in
the event handler in Figure 5, but can be reused by other
event handlers. Actions and filters can similarly be
specified and reused.

5.2 A User Interaction Event Handler
Kaitiaki also supports specification of user interface event
handlers which can be used to add event-driven backend
extensions such as generating JavaScript for a dynamic
web site. Kaitiaki provides a set of frequently used form-
based visual primitives to specify such interactions,
including user interface rendering, e.g. adding a control
or setting focus; form content modification, e.g. inserting
web content or clearing selections; content validation, e.g.
field format checks; confirmation prompts, e.g. to permit
proceeding to a next step; error notification; and page
navigation.

An example of the web form design view is shown in
Figure 7. This includes a web form design (1) in the style
of an eBay auction site including labels, buttons,
hyperlinks, images etc. An event handler specifies
behaviour triggered by a button OnClick event (2); when
the PlaceBid button is clicked, the input the user has
entered in the textbox is to be validated. If input is
invalid, forward navigation is prohibited, the textbox
cleared and focus set to the textbox so the user can re-
enter a valid input; a validation message is also set to
guide the user through the process. JavaScript is
generated from the visual event handler specification and
is inserted into the client-side script source.

(1)

(2)

Figure 7. Specifying a user interaction event handler.

5.3 Dynamic Visualisation of Event Handlers
A consequence of introducing a visual language to
generate Pounamu event handler code from visual
specifications is the need to support their incremental
development and debugging. To this end we have
developed a visual debugger which dynamically
annotates an event handler specification view for a fired
event. The viewer exploits the dataflow between event
handler building blocks to update a visualization of event
handler execution in its own view.

Figure 8. Visualising execution of a visual event

handler.

The dynamic visualization of an event handler execution
includes the visualization of EQFA element invocation
(by flashing the corresponding node in the graph) and the
visualization of data propagating path to the next

construct (by highlighting the dataflow path). The
traditional “debug and step into” metaphor is used and
step-by-step visualization controlled by menu command.
As seen in Figure 8, when the “Step Into” button is
clicked, the next element to be invoked and the data
propagation path are highlighted and handler execution
pauses. The user can then step into the next element,
abort the handler or inspect data values on a propagation
path. The final state of the event handler execution
highlights all the invoked constructs (nodes coloured in
green) and the entire data propagation path. The states of
the propagated data are able to be displayed in the
debugging state information panel.

6 Design and Implementation
We have implemented an environment for Kaitiaki as an
extension to the existing Pounamu meta tool. As shown in
Figure 9, the main components added to Pounamu to
generate Pounamu event handling code and visualize a
running event handler include: Pounamu views and
model for specifying visual event handler models; XML-
based representation and storage for both library and
user-defined queries and actions; and the visual debug
viewer.

We have developed form-based specifiers for queries and
actions to allow reconfiguration/modification of existing
library code modules and creation of new ones by expert
users. These are added to the library of reusable building
blocks so end users can visually add them to
specifications. Query/Action XML DTDs have been
defined for Pounamu and XML data files are used for
saving to and loading from a library of queries and
actions. Visual Kaitiaki nodes are integrated with code
modules by the code generator. There is strong coupled
mapping of visual components and code components,

thus component-based code generation from a
specification is achieved. The visual links (connectors)
instantiate the visual entity components as they are
required i.e. initialise query/action modules and invoke
them as needed. The independent use of component-
based visual and code components increases the
modularity and reusability of the programming
constructs.

Pounamu Meta-tool

Meta-tools

Meta-tool Editors
e.g. shape, view,
meta-model definers

Visual event
specification tool

XML Tool
Specifications

XML
query/action
Specification

Event Handler
Java Code Code Generation

Views

Models

Figure 9. Extensions to Pounamu (highlighted).

Figure 10. Compiling a visual event handler.

The code generator first performs a model (dependency)
analysis and then sets module properties obtained from
the visual model. It buffers code for creating event
instance and query/action invocation, and finally writes
the completed event handler code to an XML file. Figure
10 shows an example of this translation for the
AddNewPage specification. Data propagation links
instantiate actual method calls to target queries or actions,
generating the <code> XML construct in the Pounamu
event handler XML. Each query and action pulls out the
reusable, parameterised code from the component.
Parameter values are substituted and XML is generated
for the <method> construct of Pounamu in the event
handler XML.

7 Discussion and Evaluation
We have carried out a Cognitive Dimensions (Green et al,
2000) investigation of our visual event specification

language and prototype environment to gauge its
effectiveness. This identified the following features:
Abstraction gradient - Abstractions introduced are visual
iconic constructs and data flow between them. These
abstractions support query/action composition allowing
users to specify Pounamu data queries and state changing
actions as discrete, linked building blocks in the
language.
Closeness of mapping - Kaitiaki constructs map onto the
basic features of our EQFA metaphor. Concrete
representation of Pounamu data elements is supported
too. The metaphor is related to the way Pounamu
supports event processing and mixes abstract and
concrete constructs.
Error proneness - The existing Java-based Pounamu
event handler designer is very error-prone for both novice
and experienced users due to reliance on API knowledge
and Java coding. Kaitiaki reduces some areas of error
proneness by hiding API details and using data flow and
visual constructs. However, as the specification is still an
abstraction users can still specify faulty behaviour.
Progressive evaluation - Kaitiaki allows progressive
evaluation of a visual event handler specification even
when it is partially complete. Modifications to event
handlers take effect immediately after re-registration in
an end user tool. The visual debugger allows a user to
step through a handler’s elements and view data, which
isn’t supported by the Java code based event handler.
Viscosity - Modifying an event handler specification is by
direct manipulation and a user can change one module’s
without affecting the rest of the specification.
Hard Mental Operations - The dataflow metaphor and
visual constructs used as primitives in Kaitiaki increases
its comprehensibility compared to the Java-based version.
Secondary Notation - Kaitiaki allows the user to layout,
resize and annotate items in the view with iconic and
textual labels, to increase a specification’s readability.
Visibility and Juxtaposability - Information for each
element of an event handler is readily accessible. The
visualization of a running event handler is juxtaposed
with the modelling view that triggers its execution.
Consistency and Hidden Dependency - Hidden
dependency is introduced in both Pounamu and its
specified tools to manage consistency in multiple views.

An informal evaluation of the visual event handler
specification tool has been carried out with experienced
Pounamu users and some novice users. Feedback
suggests the visual specification approach is greatly
favoured for most event handler specification tasks. We
plan a more formal evaluation with novice users to better
gauge this.

With respect to requirements, our EQFA metaphor
captures event generation, state querying, filtering and
iteration over query results, and state change actions to
describe event handler specifications. The dataflow
metaphor describes the composition of these event
specification building blocks and seems to map well onto
users’ cognitive perception of the metaphor. Packing
complex parts of a specification into reusable building
blocks allows very complex event handlers to be defined
with the model. A proof of concept support tool has

<method>
public Vector getSubPages (PounamuShape parent) {
 //code module
}
public void connect(PounamuShape parent, PounamuShape
 child, String connectorType)
{
 //code module
}
</method>

<code>Vector subPages = getSubPages(parent);</code>

demonstrated the approach is feasible permitting both
simple and complex Pounamu event handlers to be
defined visually, code to be generated for them and visual
debugging of them supported.

A potential weakness of Kaitiaki is the abstract
representation of all events, queries, filters and actions.
We have attempted to mitigate this with the addition of
concrete iconic representations and are experimenting
with elision techniques that allow concrete icons and
Kaitiaki elements to be collapsed into a single meaningful
icon.

8 Summary
We have developed a prototype visual language and
proof-of-concept support environment for specifying
diagramming tool event handlers. This uses a metaphor of
generating event, tool state queries, filters over query
results and state changing actions, with dataflow between
these building blocks. The support environment allows
users to compose handlers from these constructs and
relate them to concrete diagramming tool objects. A
debugger uses the visual notation to step through a
specification, animating constructs and affected diagram
objects. We have added this tool to the Pounamu meta-
diagramming tool and specified and generated event
handlers for example tools, demonstrating the feasibility
of the approach.

We are exploring a programming by example extension
to allow users to make changes to an existing modelling
tool view and generate actions and data flow connections
between actions in an event specification view. These are
then tailored and abstracted by adding queries and filters
to make a generic event handler. The dataflow metaphor
used to compose a specification has interesting potential
concurrency issues for parallel flows. We are examining
extra synchronisation constructs to manage this. In
addition, automatic layout of an event handler
specification may be useful to improve a user’s ability to
show/hide/ collapse parts of a specification to manage
size and complexity.

9 References
Berndtsson, B., Mellin, J., and Hogberg, U. (1999):

Visualization of the Composite Event Detection
Process. Proc Intnl Workshop on User Interfaces to
Data Intensive Systems, IEEE CS Press, pp. 118-127.

Costagliola, G., Deufemia, V., Ferrucci, F., Gravino, C.
(2002): The Use of the GXL Approach for Supporting
Visual Language Specification and Interchanging. Proc
HCC’02, pp131-138.

Cypher, A. and Smith, D.C. (1995): KidSim: end user
programming of simulations, Proc CHI’95, pp. 27-34.

Cypher, A. (1993): Watch What I Do: Programming by
Demonstration, MIT press.

Dewan, P. & Choudhary, R. (1991): Flexible user
interface coupling in collaborative systems, CHI'91,
41-49.

Ferguson R, Parrington N, Dunne P, Archibald J,
Thompson J ((1999): MetaMOOSE-an object-oriented

framework for the construction of CASE tools: Proc
CoSET'99, LA.

Green, T. R. G., Burnett, M. M., A Ko, J. (2000):
Rothermel, K. J., Cook, C. R., and Schonfeld, J., Using
the Cognitive Walkthrough to Improve the Design of a
Visual Programming Experiment, Proc VL2000, 172-
179

Grundy, John, Rick Mugridge and John Hosking (1998)
Visual Specification of Multi-View Visual
Environments. Proc VL’98, 236-243.

Grundy, J.C., Hosking, J.G., Mugridge, W.B. and
Apperley, M.D. (1998): An architecture for
decentralised process modelling and enactment, IEEE
Internet Computing, 2:5, 53-62.

Jacob, R. A (1996): Visual Language for Non-WIMP
User Interfaces, Proc. VL’96.

Kelly, S., Lyytinen, K., and Rossi, M. (1996): Meta
Edit+: A Fully configurable Multi-User and Multi-Tool
CASE Environment, Proc CAiSE'96, LNCS 1080.

Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom
G., Sprinkle J., Karsai G. (2001): Composing Domain-
Specific Design Environments, Computer, 44-51.

Lewicki, D. and Fisher, G. (1996): VisiTile - A Visual
Language Development Toolkit, Proceedings of the
1996 IEEE Symposium on Visual Languages, pp. 114-
121.

Matskin, M. and Montesi, D. (1998): Visual Rule
Language for Active Database Modelling, Information
Modelling and Knowledge Bases IX. IOS Press, pp.
160-175.

Minas, M. and Viehstaedt, G. (1995): DiaGen: A
Generator for Diagram Editors Providing Direct
Manipulation and Execution of Diagrams, Proc. VL
'95, 203-210

Morch, A. (1998): Tailoring tools for system
development, Journal of End User Computing, pp. 22-
29.

Myers, B.A (1997): The Amulet Environment: New
Models for Effective User Interface Software
Development, IEEE TSE, vol. 23, no. 6, 347-365.

Peltonen, J. (2000): Visual Scripting Language for UML-
based CASE tools, Proc. of ICSSEA 2000, volume 3.

Repenning, A. and Sumnet, T. (1995): Agentsheets: a
medium for creating domain-oriented visual languages,
Computer, 28, no. 3.

Smith, D.C., Cypher, A. and Spohrer, J. (1995): KidSim:
programming agents without a programming language,
Communications of the ACM, vol. 37, no. 7, pp. 54 –
67.

Vlissides, J.M. and Linton, M. (1989): Unidraw: A
framework for building domain-specific graphical
editors, Proc. UIST’89, ACM Press, pp. 158-167.

Welch, B. and Jones, K. (2003): Practical Programming
in Tcl and Tk, Prentice-Hall.

Zhu, N., Grundy, J.C. and Hosking, J.G. (2004):
Pounamu: a meta-tool for multi-view visual language
environment construction, Proc VL/HCC’04, pp. 254-
256.

