
Developing Adaptable User Interfaces for Component-based Systems

John Grundy and John Hosking
Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, New Zealand
{john-g, john}@cs.auckland.ac.nz

Abstract

Developing software components with user
interfaces that can be adapted to diverse reuse
situations is challenging. Examples of such adaptations
include extending, composing and reconfiguring
multiple component user interfaces, and adapting
component user interfaces to particular user
preferences, roles and subtasks. We describe our recent
work in facilitating such adaptation via the concept of
user interface aspects, which facilitate effective
component user interface design and realisation using
an extended, component-based software architecture.

1. Introduction

Component-based software applications are
composed from diverse software components to form an
application [1, 14, 16, 17]. Typically many of these
components have been developed separately, with no
knowledge of the user interfaces of other components
they may be composed with. This can result in
component-based applications with inappropriate,
inconsistent interfaces.

For example, two components with user interfaces
that need to be accessed simultaneously may be hard-
coded to each open a separate window. Components
which ideally should provide a consistent interface
metaphor may adopt different approaches e.g. menu
items vs buttons. Components may show unsuitable
interfaces or parts of interfaces to a user, due to the
user’s level of expertise, the task and/or role being
performed, and users’ personal preferences. As end
users reconfigure their applications, they may add new
components with user interfaces that introduce further
complications or inconsistencies to the overall
application interface.

There is thus a need for components to provide more
adaptable user interfaces than most do at present.
Unfortunately the design and implementation of many
existing software components, and the architectures
they are built upon, do not adequately support the
description of component user interfaces and adaptation

of them. Mechanisms allowing components to inspect
and understand other component user interface
elements, to programmatically adapt related component
interfaces to suit a particular reuse situation, and for
components to be able to extend and combine the
interfaces of other components with their own are
needed.

We describe our approach to addressing these
issues. This uses a concept of component user interface
aspects to describe component user interface elements
and adaptability. These aspects are characterised by
component developers and are encoded in component
implementations. Other components can use them to
determine the user interface elements of a component,
and standardised methods and interfaces can be used to
programmatically extend, compose and reconfigure
component interfaces in various ways. The use of a
workflow engine’s state allows adaptation of interfaces
to particular user roles and subtasks.

Section 2 illustrates the need for component user
interface adaptation using a component-based,
Collaborative Information System, and Section 3
reviews related research. Section 4 briefly describes our
concept of user interface aspects and the expression of
such aspects in a software architecture and component
implementation framework. Sections 5 to 7 illustrate
particular kinds of user interface adaptation our
approach supports, and briefly discusses realisation of
these techniques using our architecture. Section 8
summarises the contributions of this research and
outlines some future work directions.

2. Need for User Interface Adaptation

Our need to develop improved approaches to
component user interface adaptation arose from
experiences developing several component-based
environments [5, 6, 7]. A screen dump from one such
system, a collaborative travel itinerary planner, is
shown in Figure 1. A variety of software components
have been composed to produce this system, many
reused from other applications. However, in order to
provide end users with appropriate user interfaces, a

jgrundy

number of individual component user interfaces had to be adapted in various ways.

(1)

(2)

(5)

(4)

(4)

Figure 1. Some Itinerary Planner component user interfaces.

Through our work with a variety of component-
based systems we have identified four main kinds of
component interface adaptation:

x Extension. This is where one component allows one

or more of its user interface elements to be
extended in a controlled, consistent fashion by
other components, to support a single, consistent
interface for all. For example, in Figure 1 a
component storing editing events has its button
panel extended by a version control tool.This
seamlessly provides users access to the version
control tool’s facilities (1). Similarly, the itinerary
editor’s menu is extended by each kind of itinerary
item component (2).

x Composition. Combining elements of one

component’s interface with those of one (or more)
others may be more suitable for users than to have
each presented separately. For example, property
sheets from multiple components, such as the map
and map visualisation agent, can be combined (3).

x Reconfiguration. Other software components may

need to reconfigure a component’s interface. For
example, a collaborative work software agent has
adapted a component’s user interface to suit its
group awareness needs by highlighting parts of the
interface other users are interacting with (4).

x Adaptation to user, role and subtask. Users may

specify preferences about which elements or
alternative interfaces they want to use, default
values and constraints, and what adaptation
approaches are preferred. Some component user
interfaces and/or elements suit some users but not

others, based on the particular user’s role or
subtask being performed. For example, itinerary
item dialogues need some items hidden e.g. the fare
class, if a customer is the user of the interface,
rather than a travel agent (5).

In order to support the development of software
components that are amenable to these kinds of user
interface adaptation, approaches to specification, design
and implementation of adaptable interfaces and needed.

3. Related Research

Common adaptive user interface techniques used by
software developers include extensible menus and
panels and programmatical reconfiguration of interfaces
[12, 14, 4]. However, no commonly agreed design
guidelines exist for building systems with adaptable
user interfaces. Just as significantly, no commonly
agreed software architectures and implementation
techniques exist to allow developers to build adaptable
components.

User interface frameworks, such as Interviews [10]
and Amulet [13], permit composition of interfaces from
discrete objects representing user interface elements,
and most allow interfaces to be dynamically built and
changed at run-time. However, there is typically little
guidance or control over how other objects go about
discovering, understanding and adapting interfaces built
with these frameworks. Thus systems built using these
frameworks must use ad-hoc approaches to adaptation
which may well be incompatible with other’s

approaches, greatly reducing the reusability of software
components with adaptable interfaces.

Component-based software architectures for
building user interfaces, such as JavaBeans [14] and
OpenDoc [1], provide more powerful component
introspection mechanisms that allow other components
to discover properties, methods and events dynamically.
Unfortunately neither these introspection mechanisms
nor the design methods and coding standards for such
systems address the need for user interface adaptation in
any general, high-level way. Some basic design
guidelines suggest components should support
adaptation of the user interfaces, and the architectures
allow this, but no consistent approaches are used nor
appropriate implementation support exists.

Work on adaptable user interface systems [9, 3,
Refs], end user computing systems [11, 12], intelligent
user interfaces [Refs], and agent-based systems [Refs]
has contributed to the development of techniques
supporting various kinds of interface adaption. Some
adaptable and agent-based systems support a variety of
techniques for designing and implementing user
interface adaptation facilities [Refs]. Unfortunately
most such approaches use custom architectures and
implementations that assume all other components are
designed and built in the same way. A more major
limitation is the number of assumptions made about the
kinds of user interface techniques to be supported.
These are typically limited to extensible menus,
message areas and command lines.

Extensible workflow systems [6], process-centred
environments [2], and collaborative work tools [15, 18]
have long recognised the need for integrating and
modifying user interface elements. Most characterise
the adaptable parts of interfaces at very low levels of
abstraction however, and do not agree on a consistent
approach to implementing such adaptability. Many
make unreasonable assumptions about the adaptation
and software interfaces provided by related tools and
components, greatly reducing their flexibility.

4. A Supporting Architecture

Due to the limitations of current approaches, we
have been developing a technique for characterising
component user interfaces at a high-level of abstraction.
Support for describing and inspecting these
characteristics forms the basis for implementing
adaptation facilities in a component-based software
architecture. This work has been part of the
development of a new component engineering
methodology called aspect-oriented component
engineering [8]. This approach uses a high-level
concept of systemic aspects of a software application

for which components provide services or require
services from other components. We have used this

development method, and added architecture support
for it in JViews, our component development
framework, to identify, describe, reason about and
implement generic persistency, distribution,
collaborative work and end user configuration support
for component-based systems.

User interface information for components may also
be characterised using aspects. These describe the user
interface-related services a component provides to and
requires from other components. Examples of user
interface aspects include dialogues and windows a
component provides (or requires from another
component for extension), panels (composite user
interface elements) provided or required, and menus,
buttons and other basic interface elements provided or
required. Information recorded about these aspects may
include the nature of the interface element provided or
required, related elements and/or interfaces for the
component, how an element may be adapted and/or
preferred adaptation approaches, information about the
component’s software interfaces which enable
adaptation of elements, and information about particular
users, roles and subtasks for which elements are
relevant.

We have extended our JViews software architecture
and implementation framework to allow components to
advertise these user interface (and other) aspects.
Component developers characterise different user
interface aspect details a component supports during
design. This information is then encoded in component
implementations. JViews includes several
UserInterfaceAspectInfo classes that encode this
information, and provide a variety of methods for
adapting a related component’s user interfaces
programmatically. JViews is implemented in Java, and
uses JavaBeans components to realise its user
interfaces.

Consider a very common example of menu bar
extension: in this case itinerary item components
extending the itinerary editor component’s menu bar, as
illustrated in Figure 1. This is achieved by having the
itinerary editor designer characterise the menu bar as
being an extensible user interface affordance the editor
provides for other components. The itinerary item
designer characterises the user interface needs of these
components as requiring a component that provides an
extensible affordance (of some kind) they can extend.
Constraints may be specified about both the extension
provision and requirements of each of these
components: the editor may limit extension of its menu
bar to adding menus to the end or only adding menu
items to existing menus in the bar. Similarly, the
itinerary item component may require specifically an
extensible menu bar, or may generalise this to some
extensible menu (pull down or pop-up), or even any

extensible affordance (which may be a menu, button
panel, list or combo box or whatever).

The implementers of each component encode such
user interface information using appropriate JViews
UserInterfaceAspectInfo classes. These classes provide
standardised methods allowing this aspect information
to be obtained and basic adaptation to be programmed.
Alternatively, the implementers may use Java interfaces
provided by JViews which support various
programmatic adaptation of user interfaces.

Itinerary Editor

Component

Itinerary Item

Factory Component

<<User interface aspects>>
+ window frame
 KIND=frame
 DEFAULT_INTERFACE=true
 CAN_DISABLE=false
+ tree editor
 KIND=tree
 EDITABLE=true
+ message panel
 KIND=message area
 EDITABLE=false
+ extensible menu bar
 KIND=menu bar
 EXTENSIBLE=true
 EXTENDS_BY=add menu OR
 add menu item
- property sheet editor
…

<<User interface aspects>>
- extensible affordance
 KIND=menu,
 EXTENDS_BY=add menu item
+ creation menu item
 KIND=menu item

 FUNCTION=component creation
+ property sheet dialogue
 KIND=property sheet
 + property text fields
 KIND=labelled text field
 NUMBER=>1
 CAN_DISABLE=true
 DEFAULT_COLOUR=black
- property sheet editor
 OPTIONAL=true
…

Add Flight

Itinerary editor frame

Itinerary item menu item

(1)

(2)

(4)

(3)

(5)

Figure 2. Extensible affordance user interface
aspects.

Figure 2 illustrates the way JViews aspect classes
are used to provide a decoupled mechanism for
achieving this kind of user interface characterisation
and adaptation, resulting in highly reusable
components. Component objects are in solid line,
AspectInfo objects dashed. Aspect details are each
represented by their own object. Details with “+” in
front are provided by the component, “-” are required.
Some aspect detail properties are shown, describing
various characteristics of each user interface element.
For example, the itinerary item factory component
requires an extensible affordance (restricted to a pull-
down or pop-up menu by its KIND property) it can add
a user interface element to. The itinerary editor provides
an extensible pull-down menu bar which can be
extended by the addition of menus or menu items
(specified by its EXTENDS_BY property).

Each kind of itinerary item component has a factory
component to create items of this kind, which is linked
to the editor component. The factory obtains aspect
information from the editor (1) and inspects this
information to deduce the extensible affordance support
of the editor (2). It then creates a menu item to allow

users to access its functionality (3) and uses a
standardised method provided by the extensible
affordance aspect object (4) to programmatically extend
the user interface (5).

Figure 3 shows a larger example of JViews
components from our collaborative travel itinerary
planner with some user interface aspects of these
components. Note that user interface aspect details may
overlap e.g. a panel aspect detail describing an
aggregate of several textfield and button aspect details.
Not all user interface elements relating to a component
need have an aspect detail characterisation, for example
if the component designer wants them always treated as
a composite element or to not be adaptable.

We use the Serendipity-II workflow system [7] to
provide information about users, their roles in a task
specification and the particular subtask they are
performing. User preferences about interface adaptation
are associated with role information and a task adaptor
component monitors the workflow engine state. Several
of the components in the travel itinerary planner, such
as the tree-based itnerary editor, editing history, version
control tool, map visualisation and collaborative
awareness components have been reused from other
applications [6].

Our JComposer CASE tool allows component
developers to specify aspect information as part of their
component modelling and design [8]. When JViews
components are implemented, information about their
user interfaces is encoded by JComposer in a
standardised form via UserInterfaceAspectInfo classes.
Aspect encodings can be modified dynamically, for
example to change default and preferred values and to
specify additional information, such as role and subtask.

The following three sections illustrate some
examples of adaptation of components using extension
and composition of related component interfaces,
reconfiguration of a component’s interface by other
components, and adaptation based on user preferences
and subtask.

5. Interface Extension and Composition

The most common example of user interface
adaptation we have encountered is the need for
components to seamlessly share user interfaces. Often
this is by one component providing an affordance (e.g.
button panel, pop-up or pull-down menu, combo box or
text field panel) that other components can extend. The
extending components thus present access to their own
data and functionality via another component’s
interface in a seamless fashion. This avoids the situation
of multiple, composed components presenting multiple,
inconsistent interfaces to end users. The itinerary editor
menu bar provides one example of this.

Itinerary
Items

Travel
Itinerary

Itinerary
Editor

Editing
History

Workflow
Engine

Users
(roles)

User Prefs
Editor

Task

Adaptor

Agent
Specification

Views

Agent
Components

Map
Visualiser

Map

Collaborative
awareness agent

Serendipity-II workflow tool

Collaborative Itinerary Planner

+dialogue
+event list panel
+extensible button panel
+undo/redo buttons
-graphical viewer

…

+preferences dialogue

+preferences info

component

+provided aspect detail

- required aspect detail

+ property sheet
+ property text fields
+ text field panel
- extensible menu

- frame

+ property sheet
+ property panel
+ property text fields
+ map window
+ node list

+ property sheet
+ property text fields
+ property panel
- subpanels

…

+ tree viewer
+ tree panel
+ tree window
+ property sheet
+ property text fields
+ extensible menu
…

- highlightable elements
- extensible menu

…

- tree viewer
- preferences editor
+ property sheet
+ property text fields

…

Version
Control

+ checkin/out buttons
- extensible button panel
+ checkin/out menu items

- extensible menu

inter-component
relationship

advertised aspect

Figure 3. Collaborative travel itinerary planner architecture and component user interface aspects.

Extended
button

panel

Extended

menu bar

Extended
pop-up

menu

Added
status

field

(a) Extensible panel. (b) Extensible menus and panel.

Figure 4. Examples of user interface extension.

For another example, consider the event history
component’s dialogue, shown in Figure 4 (a). A file
persistency component and version control tool
component are to be used with this event history to
manage export/import of event object data and
versioning of event object lists respectively. These
components, instead of providing or using their own
user interfaces, have extended the event history’s button
panel to give the user access to their functionality.
Clicking on these buttons will then open file save and
version check in/out dialogues as appropriate. Figure 4
(b) shows two more examples of menu extension for a
software agent specification view component. A
collaborative editing component has extended the view

component’s menu bar to provide the user with a
hierarchical menu. A newly created software agent,
represented by the rectangle icon, has extended the
icon’s pop-up menu to provide the user access to its
functionality. A component’s interface can be extended
by adding discrete elements e.g. buttons, text fields,
combo boxes, radio and check boxes and text areas. For
example, the collaborative editing component has added
a status message field underneath the view’s menu bar.

A related technique for supporting user interface
adaptation is composition of multiple component
interfaces. Figure 5 illustrates composition of itinerary
editor, visualisation agent and map component property
sheet panels. This allows end users to access and/or

modify these three component’s properties at the same
time, rather than have three dialogues. Such
composition can also be done at the individual user
interface element level, with components inter-mixed in
the composite dialogue.

Visualiser agent

properties

Itinerary editor
component

properties

Map
component
properties

Figure 5. User Interface composition.

Care needs to be taken when designing user
interfaces that may be extended and composed, and
when designing components that extend or compose
other components’ interfaces. Designers need to be
aware that extending part of an interface will possibly
change the appearance, size and layout of the interface.
If inappropriate extension or no re-layout of elements is
done, undesirable layouts can result. Ordering of a
component’s user interface elements might be important
and should be preserved. For example, extending the
menu bar of an application should constrain new menus
to be at the end of the bar, so the File and Edit menus
are always kept at the start. Similarly, it may make
sense for a component that is extending another
component’s user interface to add its affordances in
places which relate to the affordances already there, e.g.
adding the Check in and Check out buttons BEFORE
the Close button (unlike for the event history dialogue!).
Developers need to specify ways in which user interface
elements can sensibly be embedded with user interface
elements from other components. We have found using
panels containing multiple elements gives reasonable
control on how these groups can be composed. In
addition, care must be taken with constraints, tab
ordering and field inter-dependencies, so that
behavioural constraints are sensibly preserved when
parts of a component user interface are composed.

While designing and implementing user interfaces
that support extension and composition takes more care
and effort, the reuse costs for these components drop
dramatically as new interfaces do not need to be
developed nearly as frequently than for components
whose interfaces are not adaptable. In addition, we have
found multiple components whose interfaces are shared
dynamically greatly enhances usability of applications.

We achieve user interface extension and
composition for JViews components in the way outlined
in the previous section. Composition is more complex
than extension, in general, with

UserInterfaceAspectInfo classes providing methods that
either return user interface objects to compose, or
compose user interface objects obtained from other
aspect information objects. A list of user interface
aspect names identifying interface elements to compose
can be specified and used dynamically. For example,
the map visualisation component specifies the “property
sheet” of related components, such as those of the map
and itinerary editor, are to be composed and displayed
in its property sheet dialogue. When this dialogue is
opened, references are acquired to the property sheet
panel objects of any related components a composed
user interface constructed with these.

6. User Interface Reconfiguration

Components often need to reconfigure the existing
user interface elements of other components, including
hiding, showing, disabling or enabling user interface
elements, or changing display and/or behavioural
characteristics, such as colour, default values and
constraints. A component may also make use of the user
interface elements provided by a component in ways
not anticipated by the original developer.

Disabled buttons

(a) Disabling of user interface elements.

Various
awareness

highlighting

(b) Adaptation of other component’s user interface
elements.

Figure 6. User interface reconfiguration

Figure 6 illustrates examples of such reconfiguration
from our collaborative itinerary planner. In Figure 6 (a)
the undo/redo buttons of the event history component
have been disabled by another component. This might
occur when undoing or redoing the stored events
doesn’t make sense, for example where the itinerary
represents a past trip and can’t be changed. Figure 6 (b)
illustrates adaptation of itinerary editor and itinerary
item component user interfaces by a collaborative work
awareness agent component. This agent highlights parts
of the itinerary another user is modifying in various
ways by adjusting the display characteristics of parts of
their user interfaces. For example, the item being edited
in the itinerary tree editor is highlighted, as is the field
being edited in an item property sheet dialogue. The
agent also uses the collaborative chat messaging tool for
notification, sending “map monitor” messages.

When designing user interfaces, component
developers may wish to allow parts of the interface to
be adapted by other components or limit the ways they
may be adapted. Components that may wish to adapt
the interfaces of related components need to be
provided with general mechanisms to identify and
programmatically extend these interfaces.

We achieve interface reconfiguration for JViews
components in the same way as extension and
composition are supported: components advertise parts
of their interface which may be reconfigured. User
interface aspect information classes provide methods to
enable, disable, hide, show and modify the display
characteristics of these interface elements. Some
constraints on what are permissible interface
reconfigurations can be specified. Components wanting
to reconfigure other components’ interfaces use this
aspect information and standardised methods to perform
appropriate reconfiguration. We have also developed
some extended Java AWT class specialisations and
interfaces to support more general adaptation of user
interfaces by composition, extension and
reconfiguration.

7. Adaptation to User, Role and Subtask

Adaptation of user interfaces may be made, as in the
previous examples, to extend, compose and/or
reconfigure a component’s user interface so related
components can express their interface needs in a
consistent, seamless way. Adaptation may also be
required due to particular user preferences, such as a
particular interface to display or interface characteristics
to use. A component user interface may also need to be
adapted to suit a user’s role in a task model and/or a
particular subtask a user is currently working on, to
ensure a component presents an appropriate interface
for the user.

A particular user of a component-based application
may wish to specify a variety of preferences about the
user interfaces the components present. This may
include their preferred user interface if multiple
alternatives exist for a component, default user interface
element appearance characteristics, and preferred
extension and composition approaches, if multiple exist
for a component. For example, consider the dialogue
shown in Figure 7. This is a standard configuration
interface provided by our UserInterfaceAspect class
allowing basic preferences about a component’s user
interface to be set. In this example the user may specify
which alternative interfaces they want shown for
itinerary item components, whether to show or hide
“expert” information like performance configuration
parameters in itinerary item property sheets, and any
user interface configuration-related properties, such as
default colours and font to use for user interface
elements.

Figure 7. Example of user preferences.

We achieve user preference-based interface
configuration for JViews components by having aspect
information classes record these preferences as
annotations and provide interfaces and data
management methods to access and modify them.
Additionally, a user preferences component can be used
which provides dialogues allowing users to specify user
interface-related preference information for multiple
component interfaces. Some preferences may be
system-wide defaults, such as colour and font choices.
Others are specific to components the preferences
component is linked to, and are obtained from user
interface aspect information advertised by these
components. Some reconfiguration and extension
properties of aspect information objects can be changed
dynamically e.g. to allow a user to “turn off” certain
reconfiguration approaches for some components.

Multiple users of an application typically perform a
specified role, with different roles potentially wanting
to use only parts of a component’s user interface.
Similarly, as users perform different subtasks of an

overall work task, certain component user interface
elements are appropriate and useful and others are not.
Example task model and role assignments are illustrated
in Figure 8, from the Serendipity-II workflow
management system.

Figure 8. Simple itinerary planning process
model.

Figure 9 illustrates some component user interface
adaptations to role and task that we have found useful in
the collaborative itinerary planner. The itinerary item
component’s user interface in Figure 9 (a) has two
forms: one for customers which hides some details, and
one for agents. In Figure 9 (b), two quite different
interfaces for itinerary item components are presented
to the travel agent, depending on whether they are
sketching a travel plan (subtask 1.2) or modifying a
detailed travel plan (subtask 1.5). Similar adaptation can
be employed for different subtasks for the travel agent.
In subtask 2, the agent does not require the Details or
stops fields, and can have the fare code defaulted from
customer preferences. In subtask 4, however, all fields
need to be shown.

Figure 9. Examples of adaptation to task.

We achieve such role and subtask-based adaptation
for JViews component user interfaces by the use of a
task adaptation component. This component is informed
of Serendipity-II workflow engine enactment events
and role assignments. It also provides a dialogue
allowing preferences about the user interface elements
of components linked to it to be set, in a similar manner
to the user preferences adaptation component. User
interface element aspect information is queried and
annotated by information such as for a given subtask
and/or role, whether or not the element should be
enabled, disabled, hidden, shown etc. When the user
interface elements of these components are to be
displayed, JViews user interface events are detected by
the task adaptation component which modifies the user
interface elements based on the current role and subtask
information it has.

8. Conclusions and Future Research

We have described an approach to engineering
software components with adaptable user interfaces.
High-level characterisations of component user
interface elements, including provided and required
elements, extensible and composable elements and
element groups, reconfiguration properties, and user
preference, role and subtask information are specified.
Encodings of these characterisations in component
implementations enables other components to access
this information, and programmatically adapt a
component’s interface via standardised methods and
interfaces. Our approach has provided us components
with interfaces that can be more suitably adapted in
diverse reuse situations. Most of our JViews
components now have better-integrated user interfaces
than achievable using standard Java Beans.

Characterisation of user interface elements can be
improved by adding more comprehensive layout,
appearance and semantic constraint specification. Tool
support for specifying user interface aspects is currently
rudimentary, and generating aspect characterisations
from the user interface specification tool of JComposer
would improve this. Third party components can have
aspect information specified in JComposer and used by
JViews components. Unfortunately these third party
components are not implemented with knowledge of
aspects and thus can not themselves programmatically
adapt JViews component interfaces. We would like to
develop our user interface adaptation techniques with
common component-based architectural services, such
as those of Enterprise Java Beans, Jini or CORBA in
future, making them more generally accessible. We also
plan to investigate the application of our approach to
3D, Virtual Reality interfaces and ubiquitous user
interfaces, which may provide a greater range of
possible adaptation approaches. There is currently a

clear separation in JViews between a component’s
logical model and its user interface, and a component’s
properties and methods are not used directly when
adapting its user interface. We are investigating the
specification of mappings between logical model and
user interface realisation, which will include the ability
to more easily adapt the appearance and behaviour of an
interface based on the way logical model structures
need to be composed and related to users, roles and
subtasks.

Acknowledgements

Support for this research from the New Zealand
Public Good Science Fund is gratefully acknowledged.

References

1. Apple Computer Inc., OpenDoc Users Manual, 1995.

2. Bandinelli, S., DiNitto, E., and Fuggetta, A., “Supporting
cooperation in the SPADE-1 environment,” IEEE
Transactions on Software Engineering, vol. 22, no. 12,

841-865, December 1996.
3. Eisenberg, M. and Fischer, G. (1994): Programmable

Design Environments: Integrating End-User
Programming with Domain-Oriented Assitance,
Proceedings of ACM CHI’94, ACM Press, pp. 431-437.

4. Goldberg, A. and Robson, D., Smalltalk-80: The
Language and its Environment. Reading, MA: Addison-

Wesley, 1984.
5. Grundy, J.C., Mugridge, W.B., Hosking, J.G. Static and

dynamic visualisation of component-based software
architectures, In Proceedings of 10th International
Conference on Software Engineering and Knowledge
Engineering, San Francisco, June 18-20, 1998, KSI

Press.
6. Grundy, J.C., Mugridge, W.B., Hosking, J.G., and

Apperley, M.D., Tool integration, collaborative work and
user interaction issues in component-based software
architectures, In Proceedings of TOOLS Pacific '98,

Melbourne, Australia, 24-26 November, IEEE CS Press.
7. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and

Apperley, M.D. An architecture for decentralised process
modelling and enactment, IEEE Internet Computing,

Vol. 2, No. 5, September/October 1998, IEEE CS Press.

8. Grundy, J.C. Aspect-oriented Requirements Engineering
for Component-based Software Systems, In 1999 IEEE
Symposium on Requirements Engineering, Limerick,

Ireland, 7-11 June, 1999, IEEE CS Press.
9. Grunst, G., Oppermann, R., Thomas, C. G. Adaptive and

adaptable systems, In Hoschka, P. (ed.): Computers As
Assistants - A New Generation of Support Systems.

Hillsdale: Lawrence Erlbaum Associates, 1996. 29-46.
10. Linton M.A., Vlissides J.M., Calder, P.R. 1989:

Composing user interfaces with Interviews,
COMPUTER, Vol. 22, No. 2, February 1989, 8-22.

11. Mehandjiev, N. and Bottaci, L. (1998): The place of user
enhanceability in user-oriented software development,
Journal of End User Computing, Vol. 10, No. 2, 4-14.

12. Morch, A. Tailoring tools for system development,
Journal of End User Computing 10 (2), 1998, pp. 22-29.

13. Myers et al (1997): Myers, B.A. et al, The Amulet
Environment: New Models for Effective User Interface
Software Development, IEEE Transactions on Software
Engineering 23 (6), June 1997, 347-365.

14. O’Neil, J. and Schildt, H. Java Beans Programming from
the Ground Up, Osborne McGraw-Hill, 1998.

15. Roseman and Greenberg (1997): Roseman, M. and
Greenberg, S., Simplifying Component Development in
an Integrated Groupware Environment, Proceedings of
the ACM UIST'97 Conference, ACM Press, 1997.

16. Sessions, R. COM and DCOM: Microsoft's vision for
distributed objects, John Wiley & Sons 1998.

17. Szyperski, C.A. Component Software: Beyond Object-
oriented Programming, Addison-Wesley, 1997.

18. ter Hofte, G.H. and van der Lugt, H.J., CoCoDoc : A
framework for collaborative compound document editing
based on OpenDoc and CORBA. In Proceedings of the
IFIP/IEEE international conference on open distributed
processing and distributed platforms, Toronto, Canada,

May 26-30, 1997. Chapman & Hall, London, 1997, p.
15-33.

