
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Preliminary Evaluation of a Guided Usability
Defect Report Form

Nor Shahida Mohamad Yusop
Faculty of Computer and Mathematical

Sciences
Universiti Teknologi MARA

Shah Alam, Selangor, Malaysia
nor_shahida@tmsk.uitm.edu.my

John Grundy
Faculty of Information Technology

Monash University
Melbourne, Australia

john.grundy@monash.edu

Rajesh Vasa
Faculty of Science, Engineering, and

Built Environment
Deakin University

Melbourne, Australia
rajesh.vasa@deakin.edu.au

Jean-Guy Schneider
School of Software and Electrical

Engineering
Swinburne University of Technology

Melbourne, Australia
jschneider@swin.edu.au

Abstract— Open source software development projects
typically use generic defect reporting forms, such as BugZilla
and Jira, even for specialized kinds of defects such as
usability issues. These issues typically tend to be reported as
unstructured text, mix multiple defect attributes, lack
precise cause, and overlook emotional impact on users. The
poor quality of these defect reports impacts on the ability of
developers to address them efficiently and effectively. In this
paper, we describe a novel guided defect reporting method
for capturing usability defects. We evaluate our approach
using an expert judgment approach where experienced
developers and researchers evaluate the clarity of usability
defects reported via conventional defect reporting tools and
our method. Our results show this is a promising approach
at capturing more clear usability defect descriptions.

Keywords—Bugzilla, expert judgment, jira, usability defect
reporting

I. INTRODUCTION
In typical software development environments,

usability defects are reported, tracked, and managed
similar to other functional defects using centralized defect
reporting tools such as Jira and Bugzilla. Usability issues
are often diluted among non-usability defects and end up
with a low severity rating [1]. There are different reasons
for this spanning from processes, communications, role of
reporters, all the way to the subjective nature of usability
defects [1]–[3]. In this paper, we focus on improving the
capture of usability defect information. Although finding
usability defects is an important part of a usability testing
process, communicating the defects effectively is critical
for effective and efficient resolution. Research on end-user
reporting indicates that even though users are fairly
successful in finding usability issues, the quality of
usability issue is low [4], [5].

In the context of open source software (OSS), multiple
studies argue that existing defect reporting tools are
inconvenient to report usability defects [6]–[8]. The use of
generic and brief defect reports do not help OSS
communities, which have varying levels of technical
knowledge, to create informative usability defect
descriptions, thus making it more challenging for them to
gain an understanding of what kinds of information is
useful to software developers in order to fix the usability
issues [9]. Furthermore, unstructured text with multiple
defect attributes results in low quality reports.

These limitations motivated us to design a new
usability defect report form to specifically capture usability
issues for Bugzilla. Based on our review of the literature
and analysis of different requirements gathered from our
survey of practitioners and open source software defect
repositories mining [9]–[11], we designed a guided defect
report form for capturing usability defects. We aimed to
maximize the alignment between the information needed
by OSS developers and the information that could be
provided by users. Our evaluation focused on assessing the
clarity of the usability defect descriptions generated using
our proposed defect report form. This was done by
conducting a study focusing on expert review of a
selection of usability reports submitted via the form. In this
paper, we describe our proposed guided usability defect
reporting form design, and then describe our study
followed by our findings.

II. RELATED WORK
Software defect reporting has been studied for many

years [12]–[15]. Most studies to date focus on defect
reporting tools, processess, quality, and predominantly
study functional defects [16]–[19]. Usability defect
reporting, on the other hand, has received much less
attetion in the software engineering community.

Most existing defect reporting tools provide generic
defect reporting interfaces, which are often used in their
default settings. For example, the defect reporting in
Bugzilla form supports custom fields, but has limited
flexibility and the expectation of using of plain textual
defect description limits our ability to describe graphical
issues, especially the dynamic aspect of usability issues
that cannot be explained using a single screenshot [20].
The vague definition of a general description field in
typical defect reporting forms is also one of the reasons
that testers often document a mix of information in this
field [14]. This is because the reporter may not have a
sufficient appreciation of what is supposed to be written in
the description field. They may write whatever comes to
mind, and in many cases the information reported is not
important, useful, or helpful enough for the software
developer to address the defects [9], [12]. To overcome
these limitations, a few studies have developed automated
support for interaction capture, trace capture, and auto-
complete defect reports [18], [21], [22]. However, in OSS
environments, these kind of developer-centric defect

John Grundy
2018 Australasian Software Engineering Conference, 26-30 Nov, Adelaide, Australia (c) 2018 IEEE

reporting solutions are not an effective solution as many
end-users have varying levels of usability knowledge and
prefer a defect reporting system that is less technical and
straight forward [6].

In usability engineering research, many studies have
taken the initiative to improve the quality of usability
defect report content [23], [24]. However, these initiatives
are often documentation heavy and include
comprehensive content with many supporting details,
some of which are not valued by software developers. As
an alternative to the heavy-documentation approach,
Howarth et al. [25] have developed the form-based
approach - Data Collection, Analysis, and Reporting Tool
(DCART) for collecting usability data from lab-based
usability evaluations. The DCART provides additional
support for novice usability evaluators to appraise of what
important information should be provided. Simões [8]
designed a new defect report template by exploring the
needs of designers in open source projects. Their
contribution shows a positive solution for eliciting the
information needed by OSS designers. However, the use
of an unstructured, open text forms still produced
incomplete, ambiguous, and irrelevant information. This
was because not all questions were relevant for different
types of problems, and such open-ended questions may
produce non-informative descriptions.

Since usability engineering reports are typically very
detailed and contain many usability jargon terms,
specialist interpretation and specialized usability training
and knowledge is required to effectively use the reports
[26]–[28]. However, in OSS engineering communities
typically consist largely of volunteers, with few usability
and Human-Computer Interaction (HCI) experts.
Furthermore, the large time and expense required for most
formal usability engineering studies if often not prioritized
in open source communities [29]. Key insights in usability
defect practices within OSS development are presented in
Table 1.

TABLE I. SUMMARY OF PREVIOUS STUDIES TRANSLATED INTO
FEATURES FOR A PROPOSED USABILITY DEFECT REPORT FORM

Online Survey [9] and Systematic Literature Review [10]
• Problem description, severity, context, and redesign description

were the four attributes most commonly used to describe usability
defects.

• A desirable usability defect report form should be simple, have
reasonable predefined values, and introduce usability keywords,
options and descriptors.

• Reporters often provide observed results, expected results, and steps
to reproduce when describing usability defects.

• Reporters ranked assumed cause as the most difficult information to
provide, but this was considered to be the most helpful information
by software developers.

• The top five most important attributes used by software developers
is assumed cause, screenshots, steps to reproduce, excepted results,
and software context.

• The most experienced problem with usability defect reporting
encountered by software developers were unclear assumed cause
and insufficient information in steps to reproduce.

Software defect repository mining [11]
• Supplementary information can improve defect resolution time
• The most widely reported attributes in usability defect reports are

actual output, expected output, and software context.
• Solution proposals were commonly described in words.
• Assumed cause is rarely reported in usability defect reports.
• Impact on human emotion and task performance was common to

explain usability defects.

III. GUIDED USABILITY DEFECT REPORTING FORM DESIGN
Motivated by the fact that software developers and

reporters prefer to use web based defect reporting tools
over bundle applications [6], our usability defect reporting
form was designed to be like existing open source defect
reporting form structures. This was to reduce learning
curve and permit easier integration. We used Bugzilla
defect report form layout as a point of reference, as it is a
well-known open source defect reporting tool.

A. Form Design Criteria
Our strategy for designing the usability defect report

forms consisted of the following criteria, based on the
findings of the three studies that we conducted earlier [9]–
[11]. Based on the key findings listed in Table 1, we
designed our new usability defect report forms with the
following criteria:

Orthogonal defect descriptions - defect description
attributes only capture one value. Rather than unstructured
text descriptions, different attributes are separated into
their own entry with guidance on expected values rather
than being bundled together.

Explaining a defect attribute with multiple instances
- Single attributes in existing defect report forms are
inadequate for reporting usability defects. For example,
while defect report forms in the Mozilla project explicitly
have three separate attributes to capture (i) steps to
reproduce, (ii) actual results, and (iii) expected results,
often the information that really is needed was not
explained clearly or not even reported at all. While some
reporters may think that their reports are well explained,
they may provide inadequate information.

We propose several usability defect attribute instances
to assist reporters in supplying the most useful
information in their usability defect reports. Even
breaking up an attribute into multiple instances does not
always provide a better user experience and produce high
quality defect information, but this kind of form design
provides specific hints and examples about the
information the user should enter. These attribute
instances depend on the context of information to be
described. For example, to explain the impact of the
problem, we introduced three instances – How does this
problem affect your task? Explain your challenges, and
How annoying is this problem to you? Table 2 lists our
guided reporting form usability defect attributes and their
corresponding instances and values.

Guided wizard defect report form – using this
approach ensures defect attributes relevant to the
reporter’s information needs are presented. From a
technical user’s standpoint, plain forms might be
sufficient to report software defects, as they know what to
write and just what information is necessary to report.
This is not the case for less technical users. For an
optimum usability defect reporting process, we considered
a guided wizard form solution to guide novice reporters
and less technical users through the reporting process, to
hint at what is expected from them at each step, and to
present relevant options. Since we introduced more
usability attribute instances to collect important
information, a plain form is not the best way to collect this
kind of data. Key design decisions included: we break up
the attributes into smaller sections presented one at a time;

early data entered influences later data and we used
hide/show logic at the attribute and page level; we set
predefined values for many attributes to keep the content
clear and concise; we provide specific hints about the
information the reporter must enter; we use a question-
based approach so that users have a better idea on what
should be written in the textual form; and due to the
limited technical knowledge of many reporters, we used
different attributes for understanding the validity of the
problem.

Objective assessment of user difficulty – to better
measure the impairment of tasks, we capture the users’
feelings and difficulty caused by the usability defect. An
inspection of existing Bugzilla defect reports revealed
their limitation for eliciting information about user
difficulty, seeming to miss a coherent expression of users’
feelings and struggled to accomplish certain tasks.
Moreover, the subjective nature of usability defects made
some people think that the issue they identified was
invalid. Reeder and Maxion [30] defined the user
difficulty effect as “when the ability to achieve a goal is
impaired”. We used two user difficulty dimensions from
[30], and the subjectivity in determining user difficulty
was measured by using a scale rating with predefined
values.

B. Usage Example
We briefly demonstrate our guided usability defect

report form prototype. We reproduced the Firefox for
iOS#1145602 issue shown in Figure 1 on our iPhone and
wrote the detailed defect descriptions based on our
reproduction steps. Refer section IV for information on the
source of the defect.

To minimize the cognitive load imposed by our
proposed attributes and instances, we presented the
attributes in a tab-form style to ease navigation, group
related content and avoid long-scroll page. In total, there
are five tabs that represent the main attributes of the
existing Bugzilla defect report form. Table 2 shows brief
definitions of the proposed usability defect attributes and
lists their values. Pop up callouts were also used for each
free-form text attribute to provide hints on what type of
information should be supplied within each text input field.
The callouts pop up when a cursor is moved to each given
text box. The remainder of this section provides an
overview of the attrributes and instances.

1) Reporter Identification Tab: Similar to the
Bugzilla defect report form, upon submission of a new
defect report, a reporter has to select their role. This
depends on whether the defect reporter finds the defects
while using an OSS product, or when they contribute to
OSS development. The selection of this role will
determine the relevant defect attributes that will be
prompted in the floowing screens. Figure 2 illustrates a
role selection.

2) Software Information Tab: Information about the
open source software being used will vary between
software developer and user. When a software developer
reports a usability defect, the information about product,
version, and component is compulsory. However,
component information is made optional for end users
since component information is not automatically
available to users. For less technical users who are not

involved in product development, selecting appropriate
component is sometimes difficult as they might not know
which components best fits the location of the issues.
Refer to Figure 3.

Fig. 1. Example of usability defect in Firefox gor iOS project

Fig. 2. Type of reporter identification tab

Fig. 3. Software information tab

TA
B

LE
 II

.
LI

ST
 O

F
A

TT
R

IB
U

TE
S

A
N

D
 V

A
LU

ES
 U

SE
D

 IN
 N

EW
 U

SA
B

IL
IT

Y
 D

EF
EC

T
FO

R
M

S

A
tt

ri
bu

te

A
tt

ri
bu

te
 in

st
an

ce
s

A
tt

ri
bu

te
 ty

pe
s

In
pu

t t
yp

es

V
al

ue
s

C

ha
ng

es
 m

ad
e

to
 B

ug
zi

lla
 d

ef
ec

t
re

po
rt

 f
or

m
 f

or

cu
rr

en
t s

tu
dy

So

ftw
ar

e
In

fo
rm

at
io

n
*

Pr
od

uc
t

C
om

pu
ls

or
y

Pr
ed

ef
in

ed
 d

at
a

Th
e

na
m

e
of

 th
e

ap
pl

ic
at

io
n

in
 w

hi
ch

 th
e

is
su

e
ex

is
ts

.
R

eu
se

d
at

tri
bu

te

C
om

po
ne

nt

O
pt

io
na

l
Pr

ed
ef

in
ed

 d
at

a
Th

e
su

b-
pa

rt
of

 th
e

ap
pl

ic
at

io
n

on
 w

hi
ch

 th
e

is
su

e
ex

is
ts

.
R

eu
se

d
at

tri
bu

te

V
er

si
on

C

om
pu

ls
or

y
Pr

ed
ef

in
ed

 d
at

a
Th

e
ve

rs
io

n
of

 a
pp

lic
at

io
n

in
 w

hi
ch

 u
se

r
di

sc
ov

er
ed

 th
e

us
ab

ili
ty

 is
su

es
. I

f
us

er
 c

an
 re

pr
od

uc
e

th
e

is
su

e
in

 m
or

e
th

an
 o

ne
 v

er
si

on
, s

el
ec

t t
he

 e
ar

lie
st

.
R

eu
se

d
at

tri
bu

te

D
es

cr
ip

tio
n

Su
m

m
ar

y
/ t

itl
e

C

om
pu

ls
or

y
Fr

ee
 fo

rm
 te

xt

H
ea

dl
in

e
su

m
m

ar
iz

in
g

th
e

us
ab

ili
ty

 i
ss

ue
s.

Th
e

tit
le

 s
ho

ul
d

co
ns

is
t

th
e

de
sc

rip
tio

n
ab

ou
t (

1)
 a

 s
of

tw
ar

e
en

tit
y

or
 a

n
en

tit
y

be
ha

vi
or

, (
2)

 a
 r

el
ev

an
t

qu
al

ity
 a

ttr
ib

ut
e,

 (3
) t

he
 p

ro
bl

em
, (

4)
 th

e
ex

ec
ut

io
n

co
nt

ex
t,

an
d

(5
) w

he
th

er

th
e

re
po

rt
is

 a
 d

ef
ec

t o
r f

ea
tu

re
 re

qu
es

t.

R
eu

se
d

at
tri

bu
te

 b
ut

 a
 c

ap
tio

n
is

 p
ro

vi
de

d
to

 h
in

t
th

e
ap

pr
op

ria
te

 w
ay

s
to

 w
rit

e
m

ea
ni

ng
fu

l
de

fe
ct

 r
ep

or
t

tit
le

.

U
sa

bi
lit

y
de

fe
ct

 ty
pe

O

pt
io

na
l

Pr
ed

ef
in

ed
 d

at
a

In
di

ca
te

s t
he

 c
at

eg
or

ie
s o

f u
sa

bi
lit

y
is

su
es

. T
he

re
 a

re
 si

x
pr

im
ar

y
ca

te
go

rie
s:

(1

)
V

is
ua

ln
es

s,
(2

)
In

fo
rm

at
io

n
pr

es
en

ta
tio

n,

(3
)

A
ud

ib
le

ne
ss

,
(4

)
M

an
ip

ul
at

io
n,

 (5
) T

as
k

ex
ec

ut
io

n,
 a

nd
 (6

) F
un

ct
io

na
lit

y.

 Th
e

se
le

ct
io

n
of

 t
he

 m
ai

n
us

ab
ili

ty
 d

ef
ec

t
ca

te
go

ry
 w

ill
 d

et
er

m
in

e
th

e
as

so
ci

at
ed

 u
sa

bi
lit

y
de

fe
ct

 s
ub

ca
te

go
rie

s
th

at
 w

ill
 b

e
pr

om
pt

ed
.

U
po

n
se

le
ct

io
n

of
 u

sa
bi

lit
y

de
fe

ct
 s

ub
ca

te
go

rie
s,

ex
am

pl
es

 o
f

de
fe

ct
s

as
so

ci
at

ed

w
ith

 th
e

se
le

ct
ed

 c
at

eg
or

y
ar

e
lis

te
d.

If

 th
e

ex
pe

rie
nc

ed
 p

ro
bl

em
 is

 n
ot

 in

th
e

lis
t,

th
e

de
fe

ct
 r

ep
or

te
r

m
ay

 c
ho

os
e

“O
th

er
”

op
tio

n
an

d
de

sc
rib

e
th

e
pr

ob
le

m
 in

 d
et

ai
l.

N
ew

 a
ttr

ib
ut

e.
 T

he
 v

al
ue

s
w

er
e

ba
se

d
on

 t
he

 r
ev

is
ed

O

pe
n

So
ur

ce
 U

sa
bi

lit
y

D
ef

ec
t

Ta
xo

no
m

y
[3

1]
.

Th
e

va
lu

es

w
er

e
or

ga
ni

ze
d

hi
er

ar
ch

ic
al

ly

in
to

si

x
ca

te
go

rie
s:

Vi

su
al

ne
ss

(a

pp
ea

ra
nc

e,

la
yo

ut
,

ob
je

ct

st
at

e)
, I

nf
or

m
at

io
n

pr
es

en
ta

tio
n

(n
am

in
g

an
d

la
be

lin
g,

no

n
m

es
sa

ge
 f

ee
db

ac
k,

 e
rr

or
 a

nd
 n

ot
ifi

ca
tio

n
m

es
sa

ge
,

on
 s

cr
ee

n
te

xt
, m

en
u

st
ru

ct
ur

e)
, A

ud
ib

le
ne

ss
 (v

oi
ce

 a
nd

so

un
d,

au

di
o

cu
es

,
te

xt

an
d

fe
ed

ba
ck

in

sp

ee
ch

),
M

an
ip

ul
at

io
n

(k
ey

bo
ar

d
pr

es
s,

m
ou

se

cl
ic

k,

fin
ge

r
to

uc
h,

 v
oi

ce
 c

on
tro

l,
sc

ro
lli

ng
 m

ec
ha

ni
sm

,
dr

ag
 a

nd

dr
op

,
zo

om
in

g)
,

Ta
sk

 e
xe

cu
tio

n
(a

ct
io

n,
 r

ev
er

si
bi

lit
y,

sy

st
em

 ta
sk

 fe
ed

ba
ck

),
Fu

nc
tio

na
lit

y.

Pr
ob

le
m

 su
m

m
ar

y
C

om
pu

ls
or

y
Fr

ee
 fo

rm
 te

xt

C
on

ci
se

 d
es

cr
ip

tio
n

of
 th

e
us

ab
ili

ty
 is

su
es

.
R

eu
se

d
at

tri
bu

te
.

St
ep

s t
o

re
pr

od
uc

e
C

om
pu

ls
or

y
Fr

ee
 fo

rm
 te

xt

St
ep

 b
y

st
ep

 in
st

ru
ct

io
ns

 to
 re

pr
od

uc
e

th
e

is
su

es
. I

t i
s

re
co

m
m

en
de

d
th

at
 th

e
in

st
ru

ct
io

ns
 to

 b
e

ex
pl

ic
itl

y
gi

ve
n

as
 a

 n
um

be
re

d
se

qu
en

ce
 o

f i
ns

tru
ct

io
ns

.
R

eu
se

d
at

tri
bu

te
.

A
ss

um
ed

 c
au

se

O
pt

io
na

l
Fr

ee
 fo

rm
 te

xt

D
es

cr
ip

tio
n

of
 w

ha
t p

os
si

bl
e

ca
us

e
of

 th
e

pr
ob

le
m

.
N

ew
 a

ttr
ib

ut
e.

Fa

ilu
re

 q
ua

lif
ie

r

Pr
ed

ef
in

ed
 d

at
a

In
di

ca
te

s w
hy

 u
se

rs
 th

in
k

th
e

ex
pe

rie
nc

in
g

us
ab

ili
ty

 is
su

es
 o

r d
is

sa
tis

fa
ct

io
n

of
 t

he
 p

ro
du

ct
 i

s
a

re
al

 i
ss

ue
:

(1
)

W
ro

ng
,

(2
)

M
is

si
ng

,
(3

)
In

co
ng

ru
en

t
m

en
ta

l m
od

el
, (

4)
 Ir

re
le

va
nt

, (
5)

 B
et

te
r w

ay
, a

nd
 (6

) O
ve

rlo
ok

ed
.

O
nl

y
on

e
va

lu
e

ca
n

be
 se

le
ct

ed
 a

t o
ne

 ti
m

e.

N
ew

 a
ttr

ib
ut

e.
 T

hi
s

at
tri

bu
te

 w
as

 a
da

pt
ed

 f
ro

m
 [

33
].

Th
e

de
fin

iti
on

 o
f

th
e

va
lu

es
 w

as
 r

ef
in

ed
 to

 r
ef

le
ct

 th
e

in
te

rp
re

ta
tio

n
of

 fa
ilu

re
 q

ua
lif

ie
r b

as
ed

 o
n

th
e

st
at

em
en

t
w

rit
te

n
in

 th
e

de
fe

ct
 re

po
rt,

 n
ot

 fr
om

 th
e

ob
se

rv
at

io
n.

A

ct
ua

l r
es

ul
ts

U

se
r o

bs
er

va
tio

n
O

pt
io

na
l

Fr
ee

 fo
rm

 te
xt

D

es
cr

ip
tio

n
of

 w
ha

t w
as

 w
ro

ng
, w

hy
 is

 it
 w

ro
ng

, o
r,

an
y

er
ro

r s
ho

w
n.

R

eu
se

d
at

tri
bu

te
.

Ta
sk

 d
iff

ic
ul

ty

O
pt

io
na

l
Fr

ee
 fo

rm
 te

xt

Th
e

an
tic

ip
at

ed

di
ff

ic
ul

tie
s/

ch

al
le

ng
es

th

e
us

er

en
co

un
te

re
d

as

a
co

ns
eq

ue
nc

e
of

 th
e

pr
ob

le
m

. A
dd

iti
on

al
 in

fo
rm

at
io

n
ab

ou
t h

ow
 y

ou
 d

id
 a

w

or
ka

ro
un

d
fo

r t
he

 u
sa

bi
lit

y
de

fe
ct

 to
 c

on
tin

ue
 u

si
ng

 th
e

so
ftw

ar
e

co
ul

d
be

ex

pl
ai

ne
d

he
re

.

N
ew

 a
ttr

ib
ut

e.

A
nn

oy
an

ce
 le

ve
l

O
pt

io
na

l
Pr

ed
ef

in
ed

 d
at

a
A

 s
ca

le
 t

o
ra

te
 t

he
 u

se
r’

s
an

no
ya

nc
e

or
 m

oo
d

w
he

n
ex

pe
rie

nc
in

g
th

e
us

ab
ili

ty
 is

su
es

 (1
-5

 sc
al

e;
 1

=
N

ot
 a

t a
ll,

 5
 =

 V
er

y
m

uc
h)

.
N

ew
 a

ttr
ib

ut
e.

R
ep

ro
du

ci
bi

lit
y

O

pt
io

na
l

Pr
ed

ef
in

ed
 d

at
a

Th
e

ab
ili

ty
 t

o
re

pr
od

uc
e

th
e

is
su

e
an

d
m

ak
e

it
ha

pp
en

 a
ga

in
 i

n
th

e
sa

m
e

de
vi

ce
, d

iff
er

en
t d

ev
ic

e,
 o

r i
n

ot
he

r e
nv

iro
nm

en
t:

Y
es

 o
r N

o.

R
ev

is
ed

 a
ttr

ib
ut

e.
 T

he
 fr

ee
 te

xt
 a

ttr
ib

ut
e

w
as

 c
on

ve
rte

d
to

 Y
es

 a
nd

 N
o

op
tio

n.

Su
pp

or
t e

vi
de

nc
e

O
pt

io
na

l
A

tta
ch

m
en

t
Su

pp
le

m
en

ta
ry

 m
at

er
ia

l s
uc

h
as

 im
ag

e,
 a

ud
io

, v
id

eo
, s

ta
ck

 tr
ac

es
, c

ra
sh

 lo
g

th
at

 c
an

 h
el

p
to

 re
pr

od
uc

e
th

e
is

su
e.

R

eu
se

d
at

tri
bu

te
.

Ex
pe

ct
ed

re

su
lts

U

se
r e

xp
ec

ta
tio

n

O
pt

io
na

l
Fr

ee
 fo

rm
 te

xt

D
es

cr
ib

es
 w

ha
t

be
ha

vi
or

 i
s

ex
pe

ct
ed

 w
he

n
th

e
is

su
e

oc
cu

rr
ed

,
or

 w
ha

t
ch

an
ge

 is
 re

qu
ire

d
to

 th
e

w
ay

 th
e

so
ftw

ar
e

w
or

ks
 o

r t
o

im
pr

ov
e

so
m

e
ot

he
r

as
pe

ct
s.

R
eu

se
d

at
tri

bu
te

.

So
lu

tio
n

pr
op

os
al

O

pt
io

na
l

Fr
ee

 fo
rm

 te
xt

R

ec
om

m
en

da
tio

n
to

 r
em

ed
y

th
e

us
ab

ili
ty

 is
su

es
, i

nc
lu

di
ng

 th
e

al
te

rn
at

iv
es

so

lu
tio

ns
 a

nd
 ra

tio
na

le
 fo

r t
he

 re
co

m
m

en
da

tio
n.

N

ew
 a

ttr
ib

ut
e

Su
pp

or
t e

vi
de

nc
e

O
pt

io
na

l
A

tta
ch

m
en

t
Su

pp
le

m
en

ta
ry

 m
at

er
ia

l t
o

su
pp

or
t t

he
 id

ea
 o

f
pr

op
os

al
 s

uc
h

as
 P

ho
to

sh
op

sk

et
ch

es
, A

SC
II

 a
rt,

 sc
re

en
sh

ot
s,

or
 c

od
e

pa
tc

h.

R
eu

se
d

at
tri

bu
te

 *
So

ftw
ar

e
in

fo
rm

at
io

n
at

tri
bu

te
 in

st
an

ce
s c

an
 b

e
m

or
e

de
pe

nd
in

g
on

 th
e

pr
oj

ec
t.

O
th

er
 in

st
an

ce
s a

re
 su

ch
 o

pe
ra

tin
g

sy
st

em
, h

ar
dw

ar
e

pl
at

fo
rm

, b
ui

ld
 id

en
tif

ie
r a

nd
 e

tc
.

3) Description Tab: Rather than an unstructured text
form as in the default Bugzilla setup, in our wizard,
usability defect inforamtion is captured in multiple
attribute instances as shown in Figure 4. Five attribute
instances are used to summarise usability issues – title,
usability defect type, problem summary, steps to
reproduce, and failure qualifier. The usability defect type
and failure qualifier attributes were added to the original
Bugzilla defect report to help software developers
understand the nature of the problem and accept the issue
as valid. Both attributes are often found in usability
evaluations, however, in the OSS development, the
absence of formal usability evaluation make it impossible
for software developers to understand how and why users
claim certain difficulties as usability issue. The values of
usability defect type and failure qualifier were adopted
from our revised open source usability defect taxonomy
(OSUDC) [31] and Orthogonal Defect Classification [32]
scheme. However, we revised the values of failure
qualifier to reflect the OSS situation.
• Wrong – when the reporter notices that something has

gone wrong while performing a task or some elements
on the user interface are violating usability principles
and standards.

• Missing – when the reporter fails to find something in
the user interface that he/she expected to be presented,
or the results of performing certain task did not meet
his/ her expectations.

• Irrelevant – when the user interface contains
information objects, steps to accomplish task or
functionality that do not contribute to system services
and are unnecessary.

• Better way – when the reporter suggests that
something in the user interface could have been done
differently, or suggests a different way of doing a
certain task.

• Overlooked – when the reporter overlooks an entity in
the user interface, or does not know how to perform a
certain task.

• Incongruent mental model – when the user interface is
unclear because it does not match the reporter’s mental
model, previous experiences, or they notice
inconsistencies with other similar applications.

4) Actual Results Tab: Describes what currently
happens when the usability defect is present, as shown in
Figure 6. There are five attribute instances – user
observations, task difficulty, annoyance level,
reproducibility and support evidence. The task difficulty
and annoyance level are two new attributes to emphasize
the impact the issue has on users. We used plain input text
to give flexibility for reporters to explain their challenges
while overcome the issue, and rating scale to objectively
measure user frustration.

5) Expected Results Tab: Describes what the user
believes should happen if the defect were fixed, as shown
in Figure 6. There are three attribute instances – user
expectation, solution proposal and supporting evidence.
Solution proposal is an optional attribute to allow
reporters to share ideas how each issue should be solved,
how it actually works from a user’s perspective, or a

proposed technical solution. If reporters have any sketches
or ASCII art, they could upload them.

(a) Description about usability defect type

(b) Detailed description about the problem, steps to reproduce and failure

qualifier

Fig. 4. Description information tab

(a) Description about the actual results

(b) Information about annoyance level, reproducibility and supplementary

materials

Fig. 5. Actual results tab

Fig. 6. Expected results tab

IV. PRELIMINARY EVALUATION
Even though the proposed usability defect report form

was intended for less technical users, in this preliminary
evaluation we only focused on expert users. The rationale
of assessing via expert judgment during our preliminary
evaluation was to verify the clarity of technical content in
particular, to assess the readability and understandability
of the proposed attributes, whereas these aspects may
have been more difficult and less reliable to verify with
less technical users. The outcome of the preliminary
evaluation only focuses on the aspect of clarity of the
usability defect report information, rather than ease of use
of using the proposed forms or the effectiveness of the
proposed attributes to improve defect resolution time. The
following subsections describe participant selection,
problem selection, and protocol in conducting our
preliminary evaluation.

A. Participant Selection
In our study, three experienced software development

experts evaluated the information presented in the Bugzilla
defect report form and our proposed form. The evaluators
had significant levels of experience in both industrial
development and academic research environments. Two
evaluators had substantial experience with Bugzilla, and
one had limited exposure to the Bugzilla defect reporting
tool. The participation is on voluntary basis.

B. Problems Selection
To evaluate our proposed open source usability defect

report forms, we decided to use the Firefox for iOS
project. Firefox for iOS is a mobile web browser from
Mozilla for the iPhone, iPad, and iPod touch. We selected
ten usability defects from the Firefox for iOS project for
the evaluation case study. These case study defect reports
were then used in our evaluation. The ten usability defects
were chosen in the following way:

• The usability problems were selected randomly from
the 861 New defects (as of 21st March 2017). The
decision to use defects with New status guaranteed that
the defects had not been examined by the software
developers, and we have the possibility of reproducing
the defects using our own Firefox for iOS app and
reporting them using our proposed form.

• The defects were tagged with Bugzilla usability
keywords - ue, uiwanted, useless-UI, ux-affordance,
ux-consistency, ux-control, ux-discovery, ux-
efficiency, ux-error-prevention, ux-error-recovery, ux-
implementation, ux-interruption, ux-jargon, ux-
minimalism, ux-mode-error, ux-natural-mapping, ux-
tone, ux-trust, ux-undo, ux-userfeedback, ux-visual-
hierarchy. The rationale for using these developer-
tagged keywords was made to reduce selection bias, as
the software developers already assessed the validity
of the defects and accepted the need for fixing them.

• The defects are reproducible using our own iOS
mobile device. This allowed us to rewrite the usability
defect descriptions using our defect report form and
not bias them based on the original descriptions that
had been submitted.

C. Development of Case Studies
We chose five usability defect reports from Firefox for

iOS projects. We considered two approaches to select the
report to reproduce: sampling randomly, or sampling only
reports with GUI-related usability defects. We chose the
latter, since our goal is to reproduce the issue and rewrite
the usability defect descriptions. We found GUI-related
usability defects are more objective and much easier to
reproduce in our iPhone. We read the defect report,
understanding the problem context, and reproduced the
problem on our own until we found the reported problem.
Then we used our proposed usability defect report forms
to write usability defect descriptions for the defects. The
defect report evaluation case studies used can be found in
Chapter 7 of [31].

Although both original and proposed defect report
forms contain specific contextual information (i.e., status,
people, tracking, software information), the defect
descriptions given to evaluators contained minimal
information. We only provided contextual information
about reproduction steps, actual and expected results, and

explanation of the usability defects. We limited the
amount of detail provided to evaluators to ensure the
evaluators were not biased with a specific defect report
format. The final copy of defect reports that were
presented to the evaluators was modified to prevent the
identification of specific formats.

D. Evaluation Criteria
The four aspects we used for the evaluation were

adopted from [33], [34]:

• Informative – According to Capra’s guidelines [35],
informative usability defect descriptions should
describe the solution to the problem, the cause of the
problem, and the usability issue involved in the
problem. Describing this information has been
suggested as important to better understand and fix the
problem [35], [36]. This information should be
supported with screen snapshots, pictures, video and
audio, usability design principles and/ or previous
research.

• Accuracy – Accuracy is measured in terms of how
closely the problem can be reproduced by the
evaluators. Good defect descriptions should consist of
a clear set of instructions that other readers can use to
reproduce the defect on their own;

• Claim and rationale - In the absence of usability
specialists to observe and verify usability defects in
open source projects, justification about why it was a
problem [33] is critical for software developers to
understand the nature of the problem. The claim about
the problem should justify the failure qualifier criteria
that violates user expectations, including missing,
incongruent mental model, irrelevant, wrong, better
way, and overlooked. When arguing for a particular
claim, support for rationale and evidence is valuable in
confirming the validity of the problems.

• Impact – The defect description should contain
something valuable that highlights the priority of
defects that need to be fixed. For this purpose, defect
reports should describe the impact of the problem on
business goals (i.e., costs, time loss), user task, and
human emotion [4]. Impact on the user’s task explains
about interruptions of task performance, unnecessary
steps to work around the problems, or the user
struggling with task completion, while human emotion
places emphasis on confusion, frustration, annoyance,
and uncertainty [30].

For each of these aspects, the evaluators were given

eleven questions as listed in Table 3. Each evaluation
aspect was given a score of 1 if the evaluators thought that
the usability defect report “completely described”, 0.5 if
the usability defect report “partially described”, and 0 if
the usability defect report “do not describe” the evaluation
aspects. The total quality score was calculated by
summing up the scores, that ranged between 0 (low
quality) and 11 (high quality).

E. Protocol
Each evaluator was given the following material: (1)

Five original usability defect reports of Firefox for iOS
product; and (2) Five usability defect reports of Firefox
for iOS developed with our new reporting tool. The
evaluators were required to read the ten defect reports and
evaluate the contextual information of each report on four

aspects. For each aspect, we evaluated whether the report
provided or failed to provide a description containing the
aspect under consideration. Problems were evaluated in
random order and it was not made known as to which
reporting tools and format was used to record the usability
defects the evaluators reviewed.

F. Analysis
Due to the limited number of evaluators, we used

descriptive statistics to describe evaluation results. In
addition, we measured level of agreement among
evaluators using Fleiss Kappa Inter-rater reliability
(IRR)1.

V. RESULTS AND DISCUSSION
The expected outcome of this preliminary evaluation

was that case study usability defect reports contain much
more information than the original usability defect reports,
receiving higher scores for the eleven evaluation criteria.
Table 4 shows the evaluation scores for the eleven
evaluation criteria range from 0 to 1. The outer right
column is the overall inter-rater reliability for each
usability defect report. As shown in Table 4 it can be seen
that the case studies usability defect descriptions were
evaluated with higher scores than the original usability
defect descriptions for most of the evaluation criteria.
Also, the higher agreements on case studies usability
defect descriptions suggest that the presence of certain
information in the report is clearer and more
understandable to the readers.

TABLE III. EVALUATON CRITERIA ASKED IN THE EXPERT
EVALUATION

Aspect Questions
Informative 1. Q1. Does the defect report offer proposals for

solutions? For example, the descriptions provide
alternatives and tradeoffs, and supplied rationale
for the recommendations [33].

2. Q2. Does the defect report describe the cause of the
problem, including a justification of what posed a
problem, including system components that are
affected or involved?

3. Q3. Does the defect report describe the main
usability issue involved in the problem? For
example, a description about what is wrong with
the interaction architecture, interface and user task
design.

Accuracy 4. Q4. Has the defect report explained in detail step
by step how to reproduce the problem, including
user’s navigation flow through the system?

5. Q5. Are you able to reproduce the problem on your
own device and environment?

6. Q6. Were the actual results you observed similar to
the one in the defect description?

Claim and
rationale

7. Q7. Does the defect report offer a justification for
why the reporter thinks that it was a problem?

Impact 8. Q8. Does the defect report explicitly mention what
poses a problem to the user?

9. Q9. Does the defect report describe the impact of
the problem on business effect, impact on the
user’s task, and importance of the task?

10. Q10. Does the defect report describe reporters’
emotion, feeling, or reactions with regards to the
issues?

11. Q11. Does the defect report mention how often the
problem occurred or if other users experienced the
same problem?

1

 http://www.real-statistics.com/reliability/fleiss-kappa/

TABLE I. PERCENT AGREEMENT ACROSS THREE EVALUATORS EVALUATED THE PRESENCE OF USABILITY DEFECT INFORMATION

Report Evaluators Evaluation Criteria IRR Informative Accuracy Claim and rationale Impact
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Original 1 E1 0.5 1 1 0.5 0 0 0 0.5 0 0.5 0 0.79
 E2 0.5 1 1 0.5 1 0.5 0 1 0.5 0.5 0

E3 0.5 1 1 1 1 0.5 1 1 0 1 0
% Agreement 1.00 1.00 1.00 0.67 0.67 0.67 0.67 0.67 0.67 0.67 1.00

4 E1 0.5 0 1 0.5 0 0 0 0.5 0 0 0.5 0.55
E2 0.5 0.5 1 0.5 0 0 0.5 1 0.5 0 0
E3 1 1 1 1 1 1 1 1 0 0 1

% Agreement 0.67 0.00 1.00 0.67 0.67 0.67 0.00 0.67 0.67 1.00 0.00
6 E1 0 0 0 1 0 0 0 0 0 0 0 0.48

E2 0.5 0.5 0.5 1 0 0.5 0.5 0.5 0.5 0.5 0
E3 1 1 1 1 0 0 1 0.5 0 0 1

% Agreement 0.00 0.00 0.00 1.00 1.00 0.67 0.00 0.67 0.67 0.67 0.67
8 E1 0.5 0.5 0.5 0.5 0.5 1 0 0 0 0 0 0.61

E2 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0 0 0
E3 0.5 1 1 1 1 1 1 1 0 0.5 1

% Agreement 1.00 0.67 0.67 0.67 0.67 0.67 0.00 0.00 1.00 0.67 0.67
10 E1 0 0 0.5 0.5 1 1 0.5 0.5 0 0 0 0.55

E2 1 0.5 1 0.5 0.5 0.5 0.5 1 0.5 0 0
E3 1 1 1 1 1 1 1 1 1 1 1

% Agreement 0.67 0.00 0.67 0.67 0.67 0.67 0.67 0.67 0.00 0.67 0.67
Case Study 2 E1 0.5 1 1 1 1 1 1 1 0.5 1 0 0.88

 E2 0.5 0.5 1 1 1 1 1 1 1 1 0
E3 1 1 1 1 1 1 1 1 0.5 1 0.5

% Agreement 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 0.67
3 E1 1 0.5 1 0.5 1 1 0.5 1 0 0.5 0 0.73

E2 1 0.5 1 1 1 1 1 1 1 1 0
E3 1 1 1 0.5 0 0 0 1 0 1 0

% Agreement 1.00 0.67 1.00 0.67 0.67 0.67 0.00 1.00 0.67 0.67 1.00
5 E1 1 1 1 1 1 1 1 1 0 0.5 1 0.73

E2 1 0.5 1 1 1 1 0.5 1 0.5 1 0.5
E3 1 1 1 1 0 0 1 1 0 0 1

% Agreement 1.00 0.67 1.00 1.00 0.67 0.67 0.67 1.00 0.67 0.00 0.67
7 E1 0 1 1 1 0 0 0.5 1 0 1 1 0.70

E2 1 0.5 1 1 1 1 1 1 0.5 0 0.5
E3 1 1 1 1 1 1 1 1 1 1 1

% Agreement 0.67 0.67 1.00 1.00 0.67 0.67 0.67 1.00 0.00 0.67 0.67
9 E1 1 0.5 1 1 1 1 1 1 1 1 1 0.88

E2 1 0.5 1 1 1 1 1 1 1 1 0.5
E3 1 1 0 1 1 1 1 1 0.5 1 1

% Agreement 1.00 0.67 0.67 1.00 1.00 1.00 1.00 1.00 0.67 1.00 0.67

The highest score (score =1) of evaluation aspects for
case study was observed in Q3 – issue description, Q4 –
steps to reproduce, and Q8 – user difficulty. The three
evaluators were in a perfect agreement (IRR = 100%) on
four out of five defect reports, indicating that these reports
more clearly described the issue and steps to reproduce. In
the original defect reports, even though the three
evaluators could identify the presence of this information,
their evaluation of the clarity of this information varies.
This result suggests that by introducing multiple attributes
instance, giving hints and example for free form text input
could improve the clarity of the usability defect
descriptions.

For the user difficulty attribute, even though this
attribute was not specifically requested on the original
defect report, this information could be identified by some
of the evaluators with varying scores. Our approach to
introduce specific attributes to collect information on task
difficulties has shown a promising assistance to help
reporters convey the impact of the issues in a meaningful
way. From our preliminary evaluation, the three
evaluators had 100% agreement that the five case study
defect reports have well described user difficulties and
challenges. However, other evaluation criteria related to
impact, Q10 – human emotions, has shown contrary
results, even though the new proposed usability defect
form has specifically requested this information. The
varying scores of Q10 for all the five case studies usability
defect descriptions reflect that user frustration written in a
textual description may cause different interpretations.

Although Klein et al. [37] found that users are able to
express their frustration positively, but not all users are
skilled enough to communicate details of the frustrating
issues to the developers [38]. In fact, commonly used
web-based defect reporting tools, such as Bugzilla, do not
provide an easy means to convey user frustration. This
motivated us to use “annoyance level rating” scale in our
proposed usability defect report form. However, the
clarity of this attribute was not evaluated in our
preliminary evaluation, since we aimed to minimize bias
on certain field formats during the evaluation. Rather than
presenting user frustration using a rating scale as
suggested, we described user frustration as descriptive
text.

We also introduced a new attribute failure qualifier to
capture the reason why reporters think that the
experienced usability issues or dissatisfaction of a certain
product is a valid issue. Our preliminary evaluation shows
that the five case study usability defect descriptions
clearly explained their claim and rationale, where three
evaluators were in 100% agreement to award a score of 1
to Q7 – failure qualifier on the five case studies. Since the
original usability defect reports do not have a specific
attribute for this information, it is bias to compare the
clarity of this information in both original and case study
usability defect descriptions. However, the ability of
evaluators to identify this information in the original
usability defect description suggests that some reporters
were able to provide this information even though the
description was vague. The introduction of predefined

values (missing, wrong, incongruent mental model,
irrelevant, better way, and overlooked) in our proposed
usability defect report form is seen as a promising
approach to assist reporters in providing a reason why the
problem is reported.

In the current Bugzilla defect report template, the
reproducibility of issue was recorded as Yes / No using
free text form. However, we were in doubt of this
information when mining open source usability defect
reports [11] - whether the issue has been really reproduced
or if it was entered in error due to a default value in this
field. As such, we revised the reproducibility attribute
value. We changed the free text input into predefined
option Yes or No. If the Yes option is selected, the
number of occurrence will be asked. In this way, we are
able to minimize invalid data and provide more evidence
to support the impact of the issue. However, our results
were not promising. As shown in Table 4, Q11 – number
of occurrence was rated variedly in both original and case
study usability defect reports. We believe this
insignificant result was influenced by the way we
constructed the case study usability defect reports to avoid
bias on a certain format. Further end-user studies will be
required to evaluate the effectiveness of the proposed
reproducibility attribute.

Our prior work shows that the cause of the problem is
rarely found in most usability descriptions [9], and similar
findings can be found in Table 4 (refer to Q2 – assumed
cause). Although information about assumed cause could
be identified in both original and case study usability
defect descriptions, the three evaluators interpret the
clarity of this information differently. Possibly, the use of
plain text to describe possible cause is not suitable and the
descriptive informative may cause subjective
interpretations from technical readers. Including evidence-
based information such as stack traces, UI event traces,
and error logs are beneficial for software developers, but
this information is not readily available for less technical
users. An approach to resolving this is to rephrase or
redefine attributes related to Q2 to better capture relevant
information.

In terms of solution proposal, the introduction of this
attribute did not have a significant impact on described
recommendations to solve usability issues. Possibly, the
descriptions of solution proposal and expected result are
quite similar and it makes it difficult for evaluators to
differentiate between them. The inability of evaluators to
fully recognize the presence of solution proposal suggests
that the information presented is not meaningful to be the
basis of fixing the usability issues (Q1 – solution
proposal). However, we believe that the introduction of
specific attribute to request supplementary material,
especially the supplement of visual components like
ASCII art, Photoshop sketches is helpful to support the
proposing idea.

Since no open-ended question was provided with the
assessment questions, we could not obtain the evaluators’
qualitative feedback on the overall form. However, the
findings from this preliminary evaluation suggest several
opportunities for improving the proposed usability defect
form, such as: (1) minimize descriptive information to
avoid misinterpretation of the problems, (2) find better
ways to capture evidence-based information for less

technical users, and (3) avoid redundant attributes – in our
case, we removed the solution proposal attribute and
revised the definition of the expected result attribute to
accommodate solution proposal.

VI. THREATS TO VALIDITY
External Validity - The choice of evaluators and

number of evaluators affects the outcome of the
evaluation. Previous studies have reported that evaluators’
background can have a significant impact on the outcome
of software testing [39], [40], and we have seen this
potentially affecting the quality of the assessment defect
reports as well. We plan to use other evaluation methods
in future to retest the outcomes of this study. For example,
to replicate the study conducted by Capra [34] with
different settings.

Internal Validity - The selection of ten usability
defect reports from only one system as an instrument for
evaluation is a key threat to internal validity. Since we
reused the original defect reports as a basis to construct
new ones, this could potentially introduce bias when we
self-reproduced the five case studies used in the
evaluation. To minimize this bias, instead of just copying
the original information and adding dummy information
to the new form, we reproduced the defects on our own
and wrote the usability defect description using our own
interpretation. The original defect reports were used as the
guidelines to reproduce the problems. Hence, we consider
the instruments as supportive for evaluating the quality of
information between original and case study defect
reports.

Construct Validity - The appropriateness of the
assessment metrics used to rate the quality of information
threatens the construct validity. To mitigate this threat, we
adopted well-accepted Capra’s guidelines [35] as a ground
of quality assessment metrics used for evaluation.

VII. SUMMARY AND FUTURE WORK
Our proposed usability defect report forms contain

four main criteria based on the findings of literature
reviews, online surveys, and software defect repositories
mining: 1) each attribute captures only one value, 2) one
attribute is explained with multiple instances, 3) attributes
are prompted when relevant to the reporter’s information
needs, and 4) user difficulties are measured using
objective scales. These criteria were used to create a
prototype form, based on the current Bugzilla defect
report layout. The clarity of usability defects descriptions
constructed using our proposed forms was then evaluated
using an expert judgment approach. The results from the
preliminary evaluation are encouraging. The proposed
new attributes show an improvement in the clarity of
usability defect descriptions, and the uses of multiple
attributes instance could possibly increase the accuracy
and completeness of usability defect report content.

These findings have several implications. First,
software defect reporting tools could be redesigned to
consider information needs of different types of defects.
For example, user frustration is very important to convey
usability issues and this information can be overlooked if
a plain text or generic defect report is used. Second, our
results raise several design opportunities to explore about

an ideal usability defect description content and format for
less technical users, automatically extracted information,
the choice of descriptive and evaluative attributes, and the
amount of effort required to fill in the form. Future work
will consider direct integration of our form into the issue
tracker and expanding the scope of evaluation.

ACKNOWLEDGMENT
Support from Swinburne University of Technology,

Deakin University, Ministry of Higher Education
Malaysia and ARC Discovery Project DP140102185 are
gratefully acknowledged.

REFERENCES
[1] C. Wilson and K. P. Coyne, “The whiteboard: Tracking usability

issues: to bug or not to bug?,” Interactions, pp. 15–19, 2001.
[2] N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “What

Influences Usability Defect Reporting!? – A Survey of Software
Development Practitioners,” in 23rd Asia-Pasific Software
Engineering Conference (APSEC), 2016.

[3] K. Hornbæk, “Current practice in measuring usability: Challenges
to usability studies and research,” Int. J. Hum. Comput. Stud., vol.
64, pp. 79–102, 2006.

[4] V. Garousi, E. G. Ergezer, and K. Herkilo, “Usage , usefulness and
quality of defect reports!: an industrial case study,” in Proceedings
of the 20th International Conference on Evaluation and Assessment
in Software Engineering, 2016.

[5] D. M. Nichols and M. B. Twidale, “The Usability of Open Source
Software!: analysis and prospects,” in Open Source Software in
Business: Issues and Perspectives, Ravi Kumar., Hyderabad, India:
The ICFAI University Press, 2006, pp. 167–188.

[6] G. Çetin, D. Verzulli, and S. Frings, “An Analysis of Involvement
of HCI Experts in Distributed Software Development: Practical
Issues,” Online Communities Soc. Comput., vol. 4564, pp. 32–40,
2007.

[7] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects!: Limitations of Open Source Defect Repositories and
Suggestions for Improvement,” in Proceedings of the 24th
Australasian Software Engineering Conference, 2015, pp. 38–43.

[8] F. P. Simões, “Supporting End User Reporting of HCI Issues in
Open Source Software,” 2013.

[9] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects – Do Reporters Report What Software Developers Need!?,”
in Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering, 2016.

[10] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects: A Systematic Literature Review,” IEEE Trans. Softw.
Eng., vol. 43, no. 9, pp. 848–867, 2017.

[11] N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa,
“Analysis of the Textual Content of Mined Open Source Usability
Defect Reports,” in 24th Asia-Pasific Software Engineering
Conference (APSEC), 2017.

[12] T. Zimmermann, R. Premraj, N. Bettenburg, C. Weiss, S. Just, and
A. Schro, “What Makes a Good Bug Report!?,” IEEE Trans. Softw.
Eng., vol. 36, no. 5, pp. 618–643, 2010.

[13] E. I. Laukkanen and M. V. Mantyla, “Survey Reproduction of
Defect Reporting in Industrial Software Development,” in
International Symposium on Empirical Software Engineering and
Measurement, 2011, pp. 197–206.

[14] S. Davies and M. Roper, “What’s in a bug report?,” in Proceedings
of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement - ESEM ’14, 2014, pp. 1–
10.

[15] J. D. Strate and P. a. Laplante, “A Literature Review of Research in
Software Defect Reporting,” IEEE Trans. Reliab., vol. 62, no. 2,
pp. 444–454, Jun. 2013.

[16] J. Li, S. Tor, R. Conradi, and K. J. M.W., “Enhancing Defect
Tracking Systems to Facilitate Software Quality Improvement,”
IEEE Softw., vol. 59–66, 2012.

[17] T. Zimmermann and S. Breu, “Improving Bug Tracking Systems,”
in 31st International Conference on Software Engineering -
Companion Volume, 2009, pp. 247–250.

[18] S. Herbold, J. Grabowski, S. Waack, and U. Bünting, “Improved
Bug Reporting and Reproduction through Non-intrusive GUI
Usage Monitoring and Automated Replaying,” in IEEE Fourth

International Conference on Software Testing, Verification and
Validation Workshops, 2011, pp. 232–241.

[19] B. Dit and A. Marcus, “Improving the Readability of Defect
Reports,” in Proceedings of the International Workshop on
Recommendation System for Software Engineering, 2008, pp. 47–
49.

[20] D. M. Nichols and M. B. Twidale, “Usability processes in open
source projects,” Softw. Process Improv. Pract., vol. 11, no. 2, pp.
149–162, Mar. 2006.

[21] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W. Maalej,
“Monitoring user interactions for supporting failure reproduction,”
in 21st International Conference on Program Comprehension
(ICPC), 2013, pp. 73–82.

[22] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D.
Poshyvanyk, “Auto-completing Bug Reports for Android
Applications,” in Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 673–686.

[23] M. Theofanos and W. Quesenbery, “Towards the Design of
Effective Formative Test Reports,” J. usability Stud., vol. 1, no. 1,
pp. 27–45, 2005.

[24] N. Bevan, J. Carter, J. Earthy, T. Geis, and S. Harker, “New ISO
standards for usability, usability reports and usability measures,” in
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2016.

[25] J. Howarth, T. S.Andre, and R. Hartson, “A Structured Process for
Transforming Usability Data into Usability Information,” J.
usability Stud., vol. 3, no. 1, pp. 7–23, 2007.

[26] A. Bruun and J. Stage, “Barefoot usability evaluations,” Behav. Inf.
Technol., vol. 33, no. 11, pp. 1148–1167, Feb. 2014.

[27] J. Howarth, T. Smith-jackson, and R. Hartson, “Supporting novice
usability practitioners with usability engineering tools,” Int. J.
Human-Computer Stud., vol. 67, no. 6, pp. 533–549, 2009.

[28] M. B. Skov and J. Stage, “Supporting problem identification in
usability evaluations,” in Proceedings of OZCHI’05, the CHISIG
Annual Conference on Human-Computer Interaction, 2005, pp. 1–
9.

[29] L. Zhao and F. P. Deek, “Improving Open Source Software
Usability,” in Proceeedings of the Eleventh Americas Conference
on Information Systems, 2005.

[30] R. W. Reeder and R. A. Maxion, “User interface defect detection
by hesitation analysis,” in Proceedings of the International
Conference on Dependable Systems and Networks, 2006, pp. 61–
70.

[31] N. S. M. Yusop, “Improving Reporting of Usability Defects in
Open Source Software Projects,” 2017.

[32] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, B. K.
Ray, and D. S. Moebus, “Orthogonal Defect Classification - A
Concept for In-Process Measurements,” IEEE Trans. Softw. Eng.,
vol. 18, no. 11, pp. 943–956, 1992.

[33] K. Hornbaek and E. Frokjaer, “What Kinds of Usability-Problem
Description are Useful to Developers?,” in Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 2006,
vol. 50, no. 24, pp. 2523–2527.

[34] M. G. Capra, “Comparing Usability Problem Identification and
Description by Practitioners and Students,” in Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 2007.

[35] M. G. Capra, “Usability Problem Description and the Evaluator
Effect in Usability Testing,” 2006.

[36] K. Hornbæk and E. Frokjær, “Comparing usability problems and
redesign proposals as input to practical systems development,” in
CHI 2005: Technology, Safety, Community: Conference
Proceedings - Conference on Human Factors in Computing
Systems, 2005, pp. 391–400.

[37] J. Klein, Y. Moon, and R. W. Picard, “This computer responds to
user frustration: Theory, design, and results,” Interact. Comput.,
2002.

[38] D. M. Nichols, D. Mckay, and M. B. Twidale, “Participatory
Usability!: supporting proactive users,” in Proceedings of the 4th
Annual Conference of the ACM Special Interest Group on
Computer-Human Interaction, 2003, pp. 63–68.

[39] M. Hertzum and N. E. Jacobsen, “The Evaluator Effect: A Chilling
Fact About Usability Evaluation Methods,” Int. J. Hum. Comput.
Interact., vol. 15, pp. 183–204, 2003.

[40] T. Kanij, R. Merkel, and J. Grundy, “A Preliminary Study on
Factors Affecting Software Testing Team Performance,” in
International Symposium on Empirical Software Engineering and
Measurement, 2011, pp. 359–362.

