
A Preliminary Survey of Factors Affecting Software
Testers

Tanjila Kanij
Swinburne University of Technology

Hawthorn, Victoria
Australia

Email:tkanij@swin.edu.au

Robert Merkel
Monash University
Clayton, Victoria

Australia
Email: robert.merkel@monash.edu

John Grundy
Swinburne University of Technology

Hawthorn, Victoria
Australia

Email:jgrundy@swin.edu.au

Abstract—Most software testing research has focused on the
development of systematic, standardised, and automated testing
methodologies and tools. The abilities and expertise needed to
apply such techniques and tools - such as personality traits,
education, and experience - have attracted a comparatively small
amount of research attention. However, the limited research in
the area to date provides some indication that the human traits
of software testers are important for effective testing. This paper
presents the opinions of software testers themselves, collected
through an online survey, on the importance of a variety of
factors that influence effective testing, including testing-specific
training, experience, skills, and human qualities like dedication
and general intelligence. The survey responses strongly suggest
that while testing tools and training are important, human factors
were similarly considered highly important. Domain knowledge,
experience, intelligence, and dedication, amongst other traits,
were considered crucial for a software tester to be effective. As
such, while systematic methodologies are important, the individ-
ual most clearly does matter in software testing. The results of our
research have implications for education, recruitment, training
and management of software testers.

I. INTRODUCTION

Software testing is a crucial part of the process of pro-
ducing high quality, reliable software systems. It can consume
more than fifty percent of the total development effort [1].
Despite decades of research in the field, effective and economic
software testing remains a challenge. To date, the majority of
software testing research has been devoted to the enhancement
of testing processes, test criteria, and to the development of
new techniques and tools for different types of testing [2].
Underlying such research is the assumption that software
testing should be, for the most part, a systematic, standardised
and automated process. If so, then the key abilities required
for a software tester are to be able to use the techniques, as
implemented in automated tools - beyond that, the only insight
and creativity required is to determine which technique or tool
is most appropriate for the testing task and to interpret testing
process outcomes.

On the other hand, a relatively small number of practi-
tioners and researchers have considered testing as a creative
human activity. According to Kaner, Bach, and Petticord [3],
manual and automated testing complement each other; auto-
mated testing cannot substitute for manual testing, as human
variability and insight can reveal bugs that cannot be found
automatically, while automated testing can “extend the reach”
of the software tester by increasing the amount of testing

achievable. According to Armour [4], good software testers
have a nose for testing, possessing “a kind of intuition that
tells them what to test and how”. Such ideas find full ex-
pression in the concept of exploratory testing [5], unstructured
testing described as “simultaneous learning, test design and
test execution”. Beer and Ramler [6] studied the importance
of experience in software testing. They found that experienced
software testers have higher level of domain knowledge that
helps support effective testing. According to their findings
experience helps a software tester more accurately interpret
the specification and to make better use of customised tools.
However, McDaniel, Schmidt, and Hunter [7], in a general
survey across a broad range of professions of the connection
between experience and job performance, noted a correlation
between experience and job performance. They further ob-
served that the correlation became weaker as the length of
experience increased, giving rise to the possibility that beyond
a certain point, additional experience may not make much
difference. da Cunha and Greathead [8] reported a connection
between personality, as measured by psychological testing, and
debugging performance. Overall, there is considerable support
in the literature for an alternative view of software testing as a
task critically dependent on the personal characteristics of the
software tester.

The relative importance of these factors is of crucial im-
portance both for researchers and practitioners. For practising
software testers and those who manage testing teams, if human
factors are key, identifying, motivating, and rewarding good
software testers is the crucial determining factor in a successful
testing program. If techniques and tools are most significant,
the selection and reward of individuals is less important
compared to appropriate training in the best techniques, and
the use of the most appropriate automated tools that support
these techniques. For researchers, if human factors are more
important than currently appreciated, a new research program
opens up: identifying the most important such factors, and
developing ways to identify individuals who have such traits
if they are innate, and how to develop these traits if they are
indeed teachable.

In reconciling these two viewpoints - techniques and tools
on one hand, human factors on the other - we believe that
the views of practising software testers are a good place to
start. This paper presents our attempt to assess these views:
a survey of the opinion of software testing practitioners on
the factors influencing their effectiveness. The questionnaire

jgrundy
2014 Australasian Conference on Software Engineering (ASWEC 2014), Sydney, Australia, April 2014, © IEEE CS Press.

jgrundy



included sections of questions on many of possible factors
influencing effectiveness of software testers, as well as open-
ended questions where survey respondents could mention other
factors not explicitly listed. Software testing professionals from
around the world participated voluntarily in the survey and
shared their perceptions with us.

The paper is organised as follows: Section II gives a brief
description of the survey and Section III presents the results in
detail. Section IV analyses some possible threats to the validity
of the survey and Section V discusses the results. Finally,
Section VI concludes the paper including directions for future
research.

II. STUDY DESIGN

While there are a number of different techniques for
soliciting information in social research contexts, such as this,
a survey was considered appropriate for this initial study. This
is because it allows the views of a wide range of people to be
collected in a feasible, timely manner [9].

A. Sample Selection

Our goal was to survey the perspectives of software testing
professionals. However, it is not only software testers them-
selves who may have an opinion on effective software testing;
managers of software testers, software developers who interact
with software testers, or developers who test their own software
may also have valuable insights. As noted in the introduction,
our primary goal was to seek the opinion of software testers
themselves.

To select the sample for the survey we have searched
for software testing related LinkedIn and Yahoo! groups. The
groups matching the keyword “software testing” were listed
using an automated script. From the description of the listed
groups, 21 Yahoo! and 29 LinkedIn groups were selected
using purposive sampling [9]. In this sampling process we
examined the description of each of the groups and selected
those that were active and were solely software testing related,
and excluded groups specifically relating to employment. Af-
ter seeking permission from group moderators and receiving
permission from 12 Yahoo! And 12 LinkedIn groups, we sent
invitations to participate to group members, providing a link
to our online survey. No financial or other reward was offered
for participation in the survey.

B. Questionnaire Design

The survey questionnaire was designed to elicit the re-
spondents’ opinions on some of the factors that our intuitions
and literature review suggested might affect the effectiveness
of a software tester. To elicit these responses, the survey in-
cluded both closed and open questions [9]. While closed-form
questions are easier to summarize, open questions allowed
respondents to point out issues that were not mentioned in the
closed-form questions. Most closed survey questions used a
Likert scale [10] with five possible responses from “completely
disagree” to “completely agree”.

The survey had a total of 29 questions, split into eight
sections:

1) Personal Information: The personal information section
collected general information about the respondents including
gender, age ranges, nationality and educational attainment.
The survey was anonymous and as such did not record any
personally identifying details of respondents.

2) Employment Information: The questions in this section
asked respondents about their type of present employment,
main job responsibilities and amount of experience they have
in the present role. We also asked the respondents about the
size of their employer (a “large” company defined as having
50 or more employees, whereas a small one had fewer than
50), and whether they worked for a software company (defined
as a company whose main focus was building or maintaining
software).

3) Performance of Software Tester: Questions in this sec-
tion asked the respondents about their broad view on what
factors should be taken in to consideration to measure the
performance of software testers, what human qualities influ-
ence performance in this role and what should be done, both
individually and at an organizational level, to improve the
performance of software testers. This section also addressed
whether programming skill and academic track record are
connected with software testing effectiveness.

4) Automation of Testing: This section asked the respon-
dents about their use of automated testing tools. Questions
included how frequently they used such tools, which tools
they used, and in what ways the tools helped to improve their
effectiveness.

5) Experience in Software Testing: This section asked
respondents about their view of experience in software testing.
The questions asked about the importance of experience, and
whether the benefits of experience accumulated only until
some point of “saturation”, after which no additional benefit
was gained.

6) Characteristics of Software Testers: This section asked
respondents’ opinions on the personality characteristics of
good software testers. The characteristics listed were based
on the well-known “Big Five” factor model of personality,
which is one of the most popular models of personality traits
in modern personality psychology research [11]. This model
groups the many traits that can be used to describe an indi-
vidual’s personality into five broad dimensions, Extraversion,
Agreeableness, Conscientiousness, Neuroticism, and Openness
to Experience. The dimensions of this model were described,
in simplified language, as possible characteristics of “good”
software testers.The respondents were asked to consider a
“good” software tester they personally knew and to indicate
(using a Likert scale) whether they believed that the individual
considered exhibited this characteristic.

7) Training/Certification in Software testing: To address
the importance of training and certification, we asked re-
spondents whether they had done any training or certification
related to software testing in the last five years and how useful
the training/certification was to them.

8) Software Test Team Building: This section asked ques-
tions about testing as a team activity, including a general
ranking of important factors for individuals to possess when
working as part of a testing team, whether various types



TABLE I. AGE RANGES (QUESTION 1.2)

18-30 years 39.8%
31-40 years 35%
41-50 years 17.5%
51-65 years 2.9%

No Response 4.9%

of diversity within the test team is desirable, and whether
experience working together as a team is important.

For space reasons, the results of this section are not
included in this article and have been published in a separate
article [12].

C. Pilot study and ethics approval

A pilot project on a selected sample software engineers
was conducted. In the pilot project the questionnaire was
sent to 7 software engineers requesting to comment on the
questionnaire. 5 of them gave us their opinion about the
questionnaire. From their feedback, changes including adding
one survey subsection, and additional questions, as well as
rewording of several other questions, were made.

At Swinburne University of Technology, any research activ-
ity conducted with human needs to undergo ethical review. The
final version of the questionnaire was approved on behalf of
Swinburne’s Human Research Ethics Committee (SUHREC)
by a delegated SUHREC subcommittee (SHESC2).

D. Implementation

The survey itself was conducted online, with the invitation
emails containing a link to the survey site.

The online site and the data analysis tool were implemented
using custom-built PHP, JavaScript and HTML scripts. The
responses are stored in a MySQL database. The survey is
available at [13]. We chose to use a custom data collection and
analysis tool to allow us to very flexibly present and analyse
data from the survey. It also allowed us to ensure a level of
data protection as specified in our Ethics clearance application.

III. RESULTS

The data was collected during July 2010 to March 2011.
A total of 104 respondents completed the survey. As the
respondents had the option to leave questions blank, our results
report how many respondents did not answer each question.

A. Personal Information

The majority of the respondents (71.8%) were male, with
23.3% female participants, and 4.9% of participants who did
not indicate their gender. More than half of the respondents
were between 18-40 years of age. Table III shows 28.8% of
respondents reported their “Country” as India, with the second
largest group of respondents (24%) coming from the United
States.

Table II indicates the educational attainment of the respon-
dents. The vast majority had a university degree in software
engineering or another IT-related field, with a substantial
minority possessing a graduate degree.

TABLE II. EDUCATIONAL INFORMATION (QUESTION 1.4)

University Degree in Software Engineering 26%
University Degree in Another IT Field 14.4%

Graduate Degree in Software Engineering 16.3%
Graduate Degree in Another IT Field 10.6%

Associated Degree/Diploma in Software Engineering 4.8%
Associated Degree/Diploma in Another IT Field 3.8%

Other Degree/Diploma 16.3%
No Degree/Diploma 4.8%

No Response 2.9%

TABLE III. COUNTRY OF THE RESPONDENTS (QUESTION 1.3)

India 28.8%
United States of America 24%
Bangladesh 9.6%
Netherland 4.8%
United Kingdom, Pakistan, Finland 2.9% each
Sweden, Romania, New Zealand, Brazil, Israel 1.9% each
UAE, Egypt, Switzerland, Philippines, Mexico, Poland,
Austria, Australia, Denmark, Ireland

1% each

No Response 3.8%

B. Employment Information

Table IV reports the employment status of the respondents.
Nearly 60% of respondents were employed by large IT com-
panies; with a little under 20% of the sample employed by
smaller IT companies, and a similar proportion employed by
larger “non-IT companies”. Table V shows that almost half
of the respondents (49%) had more than five years of job
experience.

Table VI indicates the respondents’ job responsibilities.
Note that respondents were able to select more than one option.
76.9% of respondents indicated that they were responsible
for ’testing software modules/programs developed by others’.
45.2% of the total respondents indicated responsibility for
managing “software testers within a project”. Very few re-
spondents indicated that they were responsible, either partly
or primarily, for software development. Some respondents
explicitly mentioned quality assurance (QA) management as
their job responsibility. Individual respondents mentioned roles
such as teaching, research, consulting, hiring software testers,
and business development, amongst others.

C. Performance

The vast majority of respondents agreed that performance
of software testing varies from tester to tester, as indicated
in Table VII. Respondents believed that the difference was
substantial, with 35% stating that the best software tester they
had worked with was “50% more valuable to the project”,
and 27% choosing an 80% figure. Interestingly, in open-ended
comments, a number of respondents nominated higher figures,
though a few were skeptical about being able to quantify the
difference.

1) Measurement of Performance: Table IX summarizes the
respondents’ views on the importance of various factors that
might be used for measuring the effectiveness of software
testers. It appears from the responses that the majority of
the respondents have at least somewhat agreed that all of the
factors listed here are important to the testing role. Among
the listed factors quality of bug report is considered important
factor by almost all the respondents (92.3%). Bug advocacy
(83.7%), Rigorousness of test planning and execution (78.8%)



TABLE IV. EMPLOYMENT TYPE (QUESTION 2.1)

Self Employed 1%
Employed in a Small IT Company 18.3%
Employed in a Large IT Company 58.7%

Employed in a Small Non-IT Company 0%
Employed in a Large Non-IT Company 17.3%

Not Employed 2.9%
No Response 1.9%

TABLE V. EXPERIENCE (QUESTION 2.3)

No experience 1%
Less than 1 years experience 5.8%

Between 1 and 3 years experience 18.3%
Between 3 and 5 years experience 24%

More than 5 years experience 49%
No Response 1.9%

and Severity of bugs found (76%) follow the list. The response
on the factor “number of bugs found” was more mixed - 34%
of the respondents at least somewhat disagree that number
of bugs found is an important factor for measuring perfor-
mance of software testers. 31.7% of the total respondents,
in the accompanying open-ended question, indicated other
factors that they think important in measuring performance
of software testers. A review of the factors mentioned by the
respondents shows that 6.7% mentioned domain knowledge
(including the problem domain, the product, and the relevant
testing techniques) as an important factor. A similar number
of respondents mentioned understanding requirements and the
quality of the communication with developers.

Other responses to the open-ended question included (in
order of frequency of occurrence): analytical ability, imple-
mentation of plans, creativity, level of testing automation,
and preventative teaching to the developers. Interestingly, only
one respondent opined that the performance of a software
tester can be measured by the number of bugs reported in
the “live” environment (after deployment). Ultimately, this
is probably the key measure for software testing activity -
ensuring deployed software has minimal number and criticality
of errors.

2) Importance of programming skill and academic perfor-
mance: A majority of respondents do not think that program-
ming skill helps to improve performance as a software tester,
with 67% disagreeing, and less than 12% agreeing, as shown
in Table X.

As table XI shows, there was a somewhat mixed response
on whether academic record is a good predictor of testing
effectiveness, with roughly half of the respondents agreeing
to some extent, but 22% disagreed and 24% neither agreed
nor disagreed.

3) Contributors to Performance: This question asked re-
spondents to indicate the extent to which they agreed that
various human qualities might influence the performance of
software testers. Table XII summarizes the responses. These
show that most respondents agreed that the qualities mentioned
were influential. Almost all the respondents (92.4%) agreed
that good knowledge of the problem domain is an important
quality for software testing. Intelligence (90.4%), dedication
(90.4%), Thoroughness (88.4%), Knowledge of specific testing
technique (86.5%), positive attitude (83.6%), interpersonal
skill (83.7%) were considered influential by the vast majority

TABLE VI. MAIN JOB RESPONSIBILITIES (QUESTION 2.2)

Developing software module/program on soft-
ware specification and testing self developed
modules/programs

7.7%

Developing software module/program on soft-
ware specification and testing modules/programs
developed by others

11.5%

Testing software modules/programs developed
by others

76.9%

Manage Software Testers within a project 46.2%
Others 19.2%
No Response 2.9%

TABLE VII. RESPONSES ON “PERFORMANCE VARIES A LOT FROM
TESTER TO TESTER” (QUESTION 3.1)

Completely Disagree 7.7%
Somewhat Disagree 3.8%

Neither Agree Nor Disagree 3.8%
Somewhat Agree 26%
Completely Agree 56.7%

No Response 1.9%

of responses, and punctuality (70.2%) was also considered
influential by a very clear majority of respondents. Respon-
dents were less clear on the influence of testing specific
training/certification - 44% agreed that it was influential,
where 25% disagreed and 27% were not sure.

(13.5%) respondents mentioned some other qualities. The
most common one was “motivation”; others included “Accept-
ing new challenges”, “Automation of testing”, “ability to work
under pressure”, “knowledge sharing and good communication
skill”, and “out of box thinking”.

a) Individual measures for self-improvement: Re-
sponses to the open-ended question 3.7 (“In your opinion, what
can help to improve your performance as a tester”) covered a
broad range of ideas, from “putting the evil hat on and trying
to break the application in any way...” to “study philosophy,
rhetoric, deconstruction, fallibilism, ethnomethodology, quali-
tative methods, grounded theory. . . ”. However, some common
themes were observed; for instance, software testers must be
dedicated and make an active effort to improve their work; as
one respondent put it, software testers should “love testing”.
Many respondents mentioned the need for learning, including
both new testing techniques, and about the problem and busi-
ness domain of their work. Learning from one’s own personal
experience, as well as the experiences of other software testers,
were considered important by respondents.

b) Organisational measures for improvement: Simi-
larly, responses to the open-ended question 3.8 (“What can
your employer do to improve your performance in your role
of software testing”) were quite broad. The most common
theme amongst responses was the need for training, not only
in testing techniques but also in the problem domain. Most
of the respondents think that the employer should arrange
training and ensure usage of new knowledge in the project.
They also emphasised good communication with developers
and customers (a number of respondents mentioned direct
customer contact as important), including full access to product
specification documents. Some respondents mentioned the
importance of sufficient time for testing, and the need to
introduce testing in the early stage of the development life
cycle. Respondents believe that the employer should trust,
respect, motivate, and encourage software testers to do well



TABLE IX. RESPONSES ON “FACTORS IMPORTANT IN MEASURING PERFORMANCE OF SOFTWARE TESTERS” (QUESTION 3.2)

Completely Dis-
agree

Somewhat
Disagree

Neither Disagree
Nor Agree

Somewhat Agree Completely
Agree

No Response

Number of Bugs Found 22.3% 11.7% 12.8% 47.9% 13.8% 2.1%
Severity of bugs 9.6% 2.9% 9.6% 35.6% 40.4% 1.9%
Quality of bug report 1% 1% 2.9% 31.7% 60.6% 2.9%
Bug Advocacy 1% 2.9% 10.6% 35.6% 48.1% 1.9%
Rigorousness of test plan-
ning and execution

0% 3.8% 14.4% 29.8% 49% 2.9%

TABLE XII. RESPONSES ON “QUALITIES INFLUENCING PERFORMANCE OF SOFTWARE TESTERS (QUESTION 3.3)

Completely Dis-
agree

Somewhat
Disagree

Neither Disagree
Nor Agree

Somewhat Agree Completely
Agree

No Response

Knowledge of specific test-
ing techniques

1% 5.8% 3.8% 37.5% 49% 2.9%

Expertise in the problem do-
main

1% 1% 2.9% 33.7% 58.7% 2.9%

Testing specific
training/certification

12.5% 12.5% 26.9% 31.7% 12.5% 3.8%

Intelligence 0% 0% 7.7% 35.6% 54.8% 1.9%
Dedication 0% 1% 3.8% 20.2% 70.2% 4.8%
Punctuality /Time value 4.8% 4.8% 16.3% 27.9% 41.3% 4.8%
Thoroughness 0% 0% 6.7% 24% 64.4% 4.8%
Positive Attitude 2.9% 2.9% 7.7% 23.1% 60.6% 2.9%
Interpersonal Skill 0% 1% 9.6% 38.5% 45.2% 5.8%

TABLE VIII. COMPARED TO AN “AVERAGE” SOFTWARE TESTER, THE
BEST SOFTWARE TESTER YOU HAVE WORKED WITH IS... (QUESTION 3.6)

20% more valuable to the project 9.6%
50% more valuable to the project 34.6%
80% more valuable to the project 26.9%

100% more valuable to the project 13.5%
x(!)% more valuable to the project 12.5%

No Response 2.9%

TABLE X. RESPONSES TO QUESTION “DO YOU THINK GOOD
PROGRAMMING SKILLS HELP TO IMPROVE PERFORMANCE AS A SOFTWARE

TESTER?” (QUESTION 3.4)

Completely Disagree 30.8%
Somewhat Disagree 36.5%

Neither Agree Nor Disagree 18.3%
Somewhat Agree 8.7%
Completely Agree 2.9%

No Response 2.9%

in their job, and provide adequate recognition of good work.

D. Influence of Automated Tools

In response to Question 4.1, 62.1% of the respondents of
our survey indicated that they frequently use automated tools
for software testing. While 35% indicated that they do not.
The most commonly-used tools reported by our respondents
(Question 4.1.1a) were Selenium and QTP. QuickTest Profes-
sional (QTP) is a functional and regression testing tool that
provides a graphical interface to create, execute, and report
the results of test scripts. QTP can be customised by manually
writing scripts to drive testing. Selenium is a web testing
framework that also provides a GUI to generate scripts for
web testing, with an interface to run web testing scripts in a
variety of scripting languages. The next most common type of
tool mentioned was in-house custom testing tools. WinRunner,
loadRunner, JMeter, Fitness were also listed multiple times by
the respondents.

Nearly one-third (31.7%) of respondents identified the most
common benefit of automated tools was as a time-saver, though
this sentiment was variously expressed as increased speed,

TABLE XI. RESPONSES ON “ACADEMIC RECORD IS A GOOD
PREDICTOR” (QUESTION 3.5)

Completely Disagree 3.8%
Somewhat Disagree 18.3%

Neither Agree Nor Disagree 24%
Somewhat Agree 36.5%
Completely Agree 14.4%

No Response 2.9%

improved productivity, and less manual testing effort. Related
to this, 13.6% of respondents mentioned that automated tools
can help doing ”repetitive and mundane tests” - presumably,
this relates both to time savings and to reducing boredom. 6.7%
respondents mentioned that they could use the human time
saved by test automation tools to perform additional testing.
Some respondents mentioned the use of automated tools for
specific types of testing - 11.5% respondents mentioned that
automated tools are especially helpful for ”regression testing” -
several of these specifically identified the ease of capturing test
cases to run on updated software versions - while 5.8% think
these are helpful for load and performance testing. 5.8% re-
spondents opined that automated tools improved test accuracy.
Other benefits identified by respondents included improved bug
tracking and traceability. A small number of respondents stated
that automated testing could improve the quality of testing,
expressing greater confidence in tested code, and increased
“reach”, and that fewer bugs were found manually than with
automated testing.

On the other hand, a small minority of respondents (4.8%)
indicated reservations about automated tools. Most of the
respondents of this group opined that automated tools often
require excessive (and thus costly) maintenance. They also said
that some automated tools sometimes produce large scripts.
One respondent mentioned that most tools do not exactly
do what one needs, so part of a tool can be used. Another
respondent noted the lack of a “suspicious mind” in automated
tools, and that they are a means, not an end in themselves:
“Machines can’t feel, they can’t have a hunch, they can’t be
suspicious, they can’t investigate, and they can’t change their



TABLE XIII. RESPONSES ON “PERFORMANCE GROWS WITH
EXPERIENCE“ (QUESTION 5.1)

Completely Disagree 1%
Somewhat Disagree 16.3%

Neither Agree Nor Disagree 14.4%
Somewhat Agree 41.3%
Completely Agree 25%

No Response 1.9%

minds due to better information. More important is that test
automation shouldn’t be a goal; test automation helps you
achieve goals”.

A few respondents mentioned that software testers need to
understand the tool very well before using it and should be
able to judge when it is necessary to use automated tools. One
respondent also said that tools should be simple, quick and
directly related to business value. A few responses suggested
that tester should write their own tools after understanding the
problem domain.

E. Experience

As Table XIII indicates, a majority of respondents agree to
some extent that performance grows with experience. However,
this was neither universal nor unequivocal, with considerably
more respondents choosing “somewhat agree” than “com-
pletely agree”, and a considerable fraction either disagreeing
or declining to express an opinion.

We requested the respondents to comment on the impor-
tance of experience in software testing (Question 5.3). 39.4%
of the respondents responded. While virtually all agreed that
experience could be important, many expressed the view that
not all experience is equally valuable. The following response
is representative: “Some people learn from experience, some
don’t. Good software testers become great over time; terrible
software testers stay terrible!”.

Some respondents nominated specific reasons for the im-
portance of experience. According to some of these, an expe-
rienced software tester can easily get common bugs and can
assess where the probability of bugs is high; as a result they
can test new modules in quick time. One respondent also said
“already tested test cases” remain in the mind of the expe-
rienced software tester, presumably assisting in the planning
and execution of future testing. According to the respondents,
experience helps software testers to prioritise work and is
useful for better planning and analysis. The respondents also
said experience helps to increase knowledge of the domain
and the product. Some also opined that experience helps to
grow adaptability in different situations. However, one thing
most of the respondents emphasised is that experience is only
fruitful if software testers learn from the past, including their
mistakes. It was also mentioned that a variety of experience,
including new challenges was important.

1) Saturation of Experience: We asked whether the re-
spondents think performance is “saturated” after some level
of experience - that is, at some point, is there no benefit
to additional experience. Table XIV shows that respondents
tended to disagree with this proposition, with only 21% agree-
ing and 44% disagreeing. It is notable that a high proportion
of respondents either indicated no view, or did not answer the
question at all.

TABLE XIV. RESPONSES ON “PERFORMANCE IS SATURATED AFTER
SOME EXPERIENCE“ (QUESTION 5.2)

Completely true 1%
Somewhat true 20.2%

Neither Agree Nor false 15.4%
Somewhat false 22.1%
Completely false 22.1%

No Response 19.2%

For those who agreed that saturation of experience occurs,
we asked when this point is reached, using an open-ended
question (Question 5.2.1). Then most frequent response to this
was that it varied according to the individual. Some specifically
said that saturation comes after 2-3 years - one respondent
nominated a period of 5 years. According to some respondents
saturation occurs if a software tester is bored with repeatedly
doing similar work. A few respondents stated that saturation
can never come to the life of an IT professional until, as one
respondent put it, “after retirement”.

F. Personality Characteristics of Software Testers

Question 6.1 asked respondents to consider a good software
tester they have worked with (or themselves, if they believe
that they are a good tester), and to state whether they agreed
that characteristics associated with the factors of the “Big Five”
model of personality were exhibited by that person. The re-
sponses indicate that 70.2% respondents completely agree that
good software testers should be open-minded. Respondents
tend to agree with all of the five characteristics listed except
“tendency to negative emotionality”, were associated with
the good software tester they considered. Interestingly 23%
respondents at least somewhat agree that this characteristic was
exhibited by the individual they considered, despite the fact
that negative emotionality might be seen as undesirable. In the
accompanying open-ended question, some other characteristics
were also reported by the respondents. Most of them said
“attention to the details” should be a characteristic of a
good software tester. Some other characteristics listed by the
respondents include “innate investigation traits”, “skepticism”,
“tenacity”, “loyalty”, “creativity” and so on.

G. Training/Certification

56.7% of the respondents indicated that they had done
training/certification in software testing in the last five years
(Question 7.1). Of those, 78% mentioned the name of the
training/certification. The most common named courses were
the various levels of ISTQB [14] certification, representing
32.7% of those who nominated a specific training course or
certification. Some respondents said they have done training on
scripting, QA tools and domain-specific product knowledge. A
few respondents mentioned attending conferences, and reading
books and blogs.

1) Why (or why not) Training/Certification is important:
We obtained a range of responses to Questions 7.2 and 7.3,
which asked respondents to indicate whether they found the
training/certification useful, and why. The majority found them
at least somewhat useful. A number of respondents indicated
that the certification courses were quite general and theoretical;
a few mentioned alternative sources of ideas which they found
more useful; one respondent indicated that courses served as a



TABLE XV. RESPONSES ON “CHARACTERISTICS OF GOOD SOFTWARE TESTER“ (QUESTION 6.1)

Completely Dis-
agree

Somewhat
Disagree

Neither Disagree
Nor Agree

Somewhat Agree Completely
Agree

No Response

Good interaction with out-
ward social world

2.9% 3.8% 15.4% 45.2% 28.8% 3.8%

Open mindedness/Openness
to new experi-
ences/Intellectual curiosity

1% 1% 3.8% 19.2% 70.2% 4.8%

Tendency towards negative
emotionality

28.8% 16.3% 26% 16.3% 6.7% 5.8%

Qualities like Trust, mod-
esty and so on

1.9% 10.6% 16.3% 35.6% 30.8% 4.8%

Personal Organization 0% 1% 11.5% 33.7% 50% 3.8%

motivation to read relevant books. Some respondents thought
that their training/certification helped to better understand the
work, find new way and approach for testing, and helped to
save testing effort. Respondents of this group advocated that
the taught techniques broadened the knowledge of the testers;
it depended on the tester how to apply the techniques in their
specific problem domain. On the other hand, some respondents
opined that the generic tools that are taught are often useless
while self learned materials are considerably more useful.

IV. THREATS TO VALIDITY

We have considered two possible type of threats that can
attenuate the validity of the survey outcome, which we discuss
below:

A. Internal Validity

The pattern of responses in the characteristics and train-
ing/certification section indicates that the intended meaning
and context of those questions might not have been clear
enough to all respondents. In the case of the characteristics sec-
tion, we suspect that the underlying purpose of the questions
was simply not understood by many respondents. Secondly,
as training and certification are perceived quite differently by
some in the community of interest, and our questionnaire
did not distinguish between the two, the responses on the
questions of this section may be heavily influenced by the
ongoing debate about the value of various certifications, rather
than the value of ongoing specialized training more generally.
Therefore, due to the likelihood of confusion in the responses
to these two questions, any conclusions from these two sections
of the survey could not be reliably drawn. It is, of course,
possible that other survey questions were not interpreted as we
had intended, but the results show no evidence that this was
the case. For many questions the themes in the open-ended
responses showed that the respondents had interpreted those
questions as we had.

Another threat to validity is the possibility of random (or
just ill-considered) or less than candid responses, which is
a common issue in this kind of study. However our survey
responses were volunteered freely without any possibility of
compensation, and were completely anonymous. Contact with
potential respondents was made indirectly through broadly
distributed mailing lists, rather than through individual con-
tacts. Therefore, we believe that there would have been little
motivation for either “throwaway” responses or lack of candour
- if respondents did not wish to answer honestly and fully,
we believe that the most likely course of action from them
would have been simply to not participate in the survey. We

believe that the patterns of the survey response support this
view, particularly given the extended and thoughtful responses
provided to the open-ended questions.

B. External Validity

One possible external threat to the validity of the survey
outcome is the representativeness of the respondents. As a
voluntary survey with an unknown response rate, the survey
does not represent any kind of random sample. The sample
size was not particularly large for a survey questionnaire.
Sampling through a limited number of mailing lists raises
the possibility that the respondents may belong to certain
subgroups within the wider testing community, with similar
interests, experiences, and attitudes towards testing, which may
not be reflective of the broader community of software testers.
For instance, there is a possibility that younger and more
sociable testers might be more likely to participate the mailing
lists.

Responses were skewed towards software testers from
countries where English is the main language used in technical
contexts - our survey had no responses from Germany, China,
or Japan, for instance. However, while we cannot be sure
of the representativeness of our responses, the demographic
and employment information provided suggests that for the
most part respondents were experienced, professional software
testers, and as such were the intended targets of our survey.

Another threat to the external validity of our research is that
it seeks only the thoughts and views of expert software testers.
They may reflect the “common wisdom” of the profession,
but that common wisdom may well be wrong. It is routine in
the physical and social sciences for specific empirical studies
to reveal “common wisdom” to be unsupported by evidence.
As such, while valuable, we cannot claim our results are
conclusive. Instead, our survey may best be thought of as a
source of plausible hypotheses which can be justified with
more detailed empirical studies.

V. DISCUSSION

In the opinion of our respondents, the effectiveness of
individual software testers varies considerably, as discussed in
Section 3.3. At least 80% of respondents believe that the “best”
testers were at least 50% more valuable to the project. While
it would be unwise to over-interpret this specific figure, the
responses to this question alone indicate that testers themselves
believe that the individual and the individual’s capabilities,
approach and skill matters a great deal in software testing. We
can therefore go on to consider what influences the individual’s



effectiveness, and whether these influences are innate, or the
result of training, experience, or other external factors.

A number of factors that are related to the effectiveness
of software testing were identified. Good domain knowledge
was very strongly identified as important, and was mentioned
in multiple sections by the respondents. More than 90% of
respondents believed that good knowledge of the problem
domain is a desired quality of a software tester. This was
also explicitly mentioned by some of the respondents as
important for measuring the effectiveness of software tester.
Good domain knowledge is of course strongly associated
with experience. This corresponds with Beer and Ramler [6]’s
examination of testing practice, which showed that, in the
cases studied, the program specifications provided to software
testers were insufficient to construct comprehensive software
test suites. Testers (or domain experts) were required to use
their domain knowledge to “fill the gaps” in such incomplete
specifications. As well as domain knowledge, some of our
respondents expressed similar ideas to Armour’s [4] “nose for
testing” - in Section III-E respondents noted that experienced
software testers developed the ability to identify error-prone
parts of software to focus testing on. While experience was
generally considered positive, merely “serving time” was not
considered sufficient by our respondents. Learning from the
past deeds results in continuous growth that is desired for
the effectiveness of software testing. While experience is
something gained from the software tester’s work environment,
the ability to learn from that experience seems likely to be
partly innate.

In terms of recruiting and training software testers, the
development of suitable expertise in the domain of application
of software systems and the development of both domain
expertise and testing expertise would seem to be critical.
Historically testing education and training has focused on
generic skills and techniques rather than using domain knowl-
edge to e.g. design tests, interpret test results and so on.
Development of expertise and experience has been assumed to
happen implicitly as one practices testing. A more structured
approach to gaining deep domain knowledge prior to assuming
testing responsibilities for a complex system would seem to
be a sensible practice. Similarly, as pointed out by some
respondents, not all experience is ”equal” and consideration
of exposure to different aspects of testing and system under
test may be useful. This may improve both tester performance
and test quality, but also tester development and engagement.

From the responses to the influential qualities of software
testers (Section III-C3) it is apparent that “Intelligence” and
“Dedication” are considered particularly important qualities,
as the significance of both of these qualities was indicated by
more than 90% of the respondents. These factors are success
factors in most skilled professions. g, the “general intelligence”
commonly assessed using IQ tests, is positively correlated with
job performance in a variety of job types [15], though the basis
of this correlation is controversial [16]. While the extent to
which intelligence is innate is also highly controversial, it is
considered to have at least some innate component [17, p. 177].
“Dedication” is also interesting in that it is closely related to
traits like self-discipline, responsibility, and a tendency to hard
work, which are identified as facets of the Conscientiousness
(C) trait in the “Big Five” traits from personality theory in

psychology [18]. There is a very considerable body of work
on the innate, social, and cultural factors affecting personality;
regardless, it seems unlikely that dedication is something typ-
ically taught in a class on software testing techniques. Several
other characteristics mentioned by respondents may also relate
to personality traits in the Big Five model, for instance,
“investigation skill”, having an “open mind” and an “intention
to learn from experience” seem to relate to the Openness to
Experience(O) trait in the model. We explicitly sought opinions
on whether the Big Five traits were common in good software
testers (Section III-F), but it was not possible to mimic the
elaborate assessments used by personality psychologists in a
brief survey question, and the responses to this question were
therefore inconclusive. da Cuhna and Geathead [8] also found
a connection between personality traits and debugging ability.
As they used a different assessment method with a different
underlying description of personality traits, it is difficult to
directly compare our observations to their results. However,
we believe our results provide sufficient justification for further
investigation of the connection between personality traits and
the effectiveness of a software tester.

Implications of these findings for recruitment, training and
management of software testers include a need to identify
and support characteristics often mentioned, such as curiosity,
tenacity, thinking outside the box, and ability to creatively and
deliberately go about trying to “break” a system. While some
of these characteristics are generally recognised to be useful
for software developers in general, some are quite counter-
intuitive. Testing is the only software development activity that
actively and explicitly tries to “break” or crash / destroy a
system - it is fundsmentally a “destructive” set of tasks. In
contrast, all other software development tasks are “construc-
tive”, or at least support constructive activities. Personality or
other personal characteristics that enable testers to act in a
destructive mind-set may impact their effectiveness for these
activities. Creative ways of testing systems not envisaged by
the developers may identify weaknesses that a “constructive”
mindset may not.

Many respondents mentioned communication and inter-
personal skills (ability to accurately describe faults, persuade
developers as to their existence and importance, and to teach
them how to avoid such faults in future) as important for
software testers. This was done in the context of qualities that
influence performance, and, interestingly, as a way to assess
their performance. Again, such skills are at least partly innate,
and are generally associated with Extroversion in the Big Five
model. Furthermore, if they are systematically taught at all,
they are not taught in the context of specialized training in
software testing tools and techniques.

This implies that both education and training of software
testers may benefit from more explicit attention to these areas.
Similar capabilities and characteristics are of course important
for software developers in general. However, testers again have
a special role in that they need to deeply understand domain
and technical areas in order to be able to effectively test
and understand test results. They must also effectively convey
to developers and others these results and their implications.
However, as we have noted, the qualities identified above
are, to our knowledge, not generally the focus of special-
ized testing training. Indeed, at first glance, they appear to



have much in common with the “generic skills” required of
software developers and many other IT professionals. It is
therefore an open question whether there are characteristics
which are related with being an effective software tester, that
are not as significant for other IT occupations. One quality
mentioned above that may be more significant to testing than
other software development activities is “investigation skill”.
Determining whether investigation skill, or some other quality,
is uniquely significant for effective software testing is worthy
of further examination.

As shown in Section 3.4, the majority of survey respon-
dents did use some kind of test automation tool. They sped up
testing, improved accuracy, and freed software testers to devise
new tests rather than conducting repetitive and prosaic tasks.
As Kaner put it, the tools extended human reach [3]. Tools
were considered particularly useful for regression testing.
However, it is important to consider the nature of the tools used
by our respondents. QTP and Selenium automate the process of
test execution and evaluation, and assist with the test and defect
management process. They do not automate the generation of
test cases. Nor did software testers mention the use of test
coverage tools to evaluate test adequacy. The main use of
automated test case generation was for performance testing
(through the use of LoadRunner and Jmeter), not for functional
testing. This may be an artefact of our sample, as it is possible
that test generation tools are popular in particular problem
domains, but not in those in which our respondents work.
Another possibility, in the case of coverage tools, is that unit
testing, where coverage is most significant, may be performed
by developers themselves rather than a distinct testing team. It
is also possible that the in-house custom tools mentioned by
a number of respondents were used for test case generation.
Our findings on automated tools were similar to those of Ng et
al. [19], who conducted a survey of Australian software testing
practices in 2003. They found a similar proportion of survey
respondents used automated tools. Furthermore the tools were
used primarily for automating test case execution, regression
testing, and defect tracking. It is striking that, seven years later
that the parts of the testing process which are automated have
not changed. If test generation tools are indeed not widely
used in industry, this presents a challenge to academic testing
research: why haven’t automated test case generation tools
found their way from the laboratory to industrial use?

In general, our respondents tend to believe that education
and training is helpful, but there were a variety of views as
to the type of training that is most helpful. It is unfortunate
that our survey did not distinguish between training and
certification, which limits our ability to draw strong conclu-
sions about this area as noted in Section IV-A. Certification
has a dual role - as well as an opportunity for learning,
certification provides a credential indicating that the holder has
(presumably) demonstrated an understanding of the syllabus,
which may be significant for recruitment purposes. There is a
long lasting and vigorous debate on the value of certification
in software engineering [20], [21], which we did not intend
to contribute to with this survey. However, it is notable that
some respondents found their training/certification to be quite
abstract. Some found this a useful theoretical basis for their
work, others reported difficulty in applying what was taught
in practice. In response to the questions on self-improvement,
and employer assistance, training in the problem and business

domain, as well as in specific technologies, was frequently
mentioned.

Our results are consistent with our original conjecture that
human factors are crucial in software testing. This supports
the idea that identifying good software testers, and identifying
individuals with the potential to be good software testers, is
potentially valuable. For the measurement of existing software
testers, a number of factors were suggested by our respondents.
One clear finding was that bug count is not considered a good
measure of performance. Instead, producing high-quality bug
reports, and the ability to communicate them effectively to
developers, were considered better measures. While it was
mentioned by only one respondent, the ultimate measure of
a testing process is the reliability of the delivered system. It
is an appealing measure, but teasing out the influence of an
individual software tester on this would be challenging in a
research context, let alone an industrial one. In any case, it
is difficult to conclude much from our survey in this area. It
is even more the case in terms of the question on prediction,
where responses were insufficiently strong to conclude much at
all. One interesting result was the response indicating that good
programming skills do not help to improve software testing
effectiveness. It is difficult to know what respondents meant
by this. Many respondents mentioned that software testers
should have good scripting skill and expertise in automation,
which in our view is a form of programming. Only half of
respondents at least somewhat agreed that a person’s academic
record was a good predictor of their software testing ability.
This is a potentially fruitful area for further investigation; some
of the qualities identified earlier in the discussion, such as
intelligence and personality characteristics, may be good places
to begin such an investigation.

VI. CONCLUSIONS AND FUTURE WORK

Our survey results indicate that software testers do indeed
think that testing-specific tools and techniques are an important
part of being a good software tester. But they are only a
part. Factors like intelligence, dedication, interpersonal skills,
and motivation were viewed as crucial in being an effective
software tester. As such, according to our respondents, the
answer to the question - does the individual matter in software
testing - is very clearly yes.

Therefore, it is important to identify the origins of these
qualities, and how they can be measured and predicted. To
what extent are they innate? What is the contribution from
the general work and life experience of the software tester?
Can they be taught to some extent? And, importantly, which
ones are unique to software testing, and which are common to
software engineers, or even IT professionals in general? Would
someone with stronger traits in one or more areas likely make
a better software tester, or not? Do different areas of software
testing emphasise or drawn upon different personal capabilities
and characteristics?

Many of these questions are the domain of applied psychol-
ogy. Others, specific to software testing, can best be studied
by further, more detailed investigations, rather than broad-
ranging surveys. Our study raises many important questions,
opening up an entirely different perspective on improving the
industrial practice of software testing. As such we believe
further investigation in this area will be very valuable.



Key future investigations we plan to carry out include
detailed personality profiling of software professionals using
the Five Factor Model to see if there appears any specific
traits different between testers and other IT professionals. We
want to determine better ways of assessing software tester
performance, in order to be able to correlate personality and
other characteristics with performance in software testing. A
better characterisation of software testing tasks is necessary
as it appears different tasks require quite diverse skill and
expertise and potentially are impacted by different personal
characteristics. Finally, investigating in more detail training
and certification needs of software testing professionals and
organisations would provide guidance on development of these
areas.

REFERENCES

[1] Beizer, Boris, Software testing techniques (2nd ed.). New York, NY,
USA: Van Nostrand Reinhold Co., 1990.

[2] Bertolino, Antonia, “Software testing research: Achievements, chal-
lenges, dreams,” in FOSE ’07: 2007 Future of Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 85–103.

[3] B. J. Kaner C. and P. B., Lessons Learned in Software Testing : A
Context-Driven Approach. New York, NY, USA: John Wiley & Sons,
Inc., 2002.

[4] P. G. Armour, “The unconscious art of software testing,” Communica-
tions of the ACM, vol. 48, no. 1, pp. 15–18, 2005.

[5] J. Bach, Exploratory testing Explained, E. v. Veenendaal, Ed. The
Testing Practitioner. UTN Publishers, 2002, www.satisfie.com.

[6] Beer, Armin and Ramler, Rudolf, “The role of experience in software
testing practice,” in SEAA ’08: Proceedings of the 2008 34th Euromicro
Conference Software Engineering and Advanced Applications. Wash-
ington, DC, USA: IEEE Computer Society, 2008, pp. 258–265.

[7] M. A. McDaniel, F. L. Schmidt, and J. E. Hunter, “Experience correlates
of job performance,” Journal of Applied Psychology, vol. 73, no. 2, pp.
327–330, 1988.

[8] A. D. D. Cunha and D. Greathead, “Does personality matter? An
analysis of code-review ability,” Communications of the ACM, vol. 50,
no. 5, pp. 109–112, May 2007.

[9] M. Denscombe, The good research guide for small-scale social research
projects. Milton Keynes, UK: Open University Press, 2003.

[10] S. Boslaugh and P. A. Watters, Statistics in a Nutshell. Sebastopol,
CA, USA: O’Reilly, 2008.

[11] N. Haslam, Introduction to Personality and Intelligence. London, UK:
SAGE Publications Ltd, 2007.

[12] T. Kanij, R. Merkel, and J. Grundy, “A preliminary study on factors
affecting software testing team performance,” in ESEM, 2011, pp. 359–
362.

[13] “A survey of key factors affecting effectiveness of software testing
professionals,” http://www.benambra.org/survey/.

[14] “ISTQB homepage,” http://www.istqb.org/.
[15] M. J. Ree and J. A. Earles, “Intelligence is the Best Predictor of

Job Performance,” Current Directions in Psychological Science, vol. 1,
no. 3, pp. 86–89, June 1992.

[16] D. C. McClelland, “Intelligence is not the Best Predictor of Job
Performance,” Current Directions in Psychological Science, vol. 2,
no. 1, pp. 5–6, February 1993.

[17] A. R. Jensen, The g Factor. West Port, CT, USA: Praeger Publishers,
1998.

[18] D. P. McAdams, The Person: An Integrated Introduction to Personality
Psychology, 3rd ed. Orlando, FL, USA: Harcourt, Inc, 2001.

[19] S. Ng, T. Murnane, K. Reed, D. Grant, and T. Chen, “A Preliminary
Survey on Software Testing Practices in Australia,” in Proceedings of
the 2004 Australian Software Engineering Conference (ASWEC’04),
2004, pp. 116–125.

[20] Leonard L. Tripp, “Software certification debate: Benefits of certifica-
tion,” Computer, vol. 35, pp. 31–33, 2002.

[21] Adam Kolawa, “Software certification debate: Certification will do more
harm than good,” Computer, vol. 35, pp. 34–35, 2002.


