

SecDSVL: A Domain-Specific Visual Language To
Support Enterprise Security Modelling

Mohamed Almorsy and John Grundy
Centre for Computing and Engineering Software and Systems

Swinburne University of Technology
Melbourne, Australia

[malmorsy, jgrundy]@ swin.edu.au

Abstract-Enterprise security management requires capturing
different security and IT systems’ details, analyzing and
enforcing these security details, and improving employed security
to meet new risks. Adopting structured models greatly helps in
simplifying and organizing security specification and
enforcement processes. However, existing security models are
generally limited to specific security details and do not deliver a
comprehensive security model. They also often do not have user-
friendly notations, being complicated extensions of existing
modeling languages (such as UML). In this paper, we introduce a
comprehensive Security Domain Specific Visual Language
(SecDSVL), which enables capturing of key security details to
support enterprise systems security management process. We
discuss our SecDSVL, tool support and the model-based
enterprise security management approach it supports, give a
usage example, and present evaluation experiments of SecDSVL.

Keywords-component: Domain Specific Visual Language; visual
modelling tools, model-based security management

I. INTRODUCTION
Managing enterprise security involves capturing,

enforcing, monitoring and improving deployed applications’
security [1]. The wide-adoption of complex IT systems and
new hosting paradigms, such as cloud computing and SOA
platforms that rely on outsourcing enterprise assets, increase
the complication of the enterprise security management
process. Ordinary enterprise security management efforts
suffer from tools that provide only limited help in capturing,
modeling, and enforcing security requirements, difficulty in
maintaining consistency of security specifications across
different IT systems, and the need for repeated security
updates. In this paper, we focus on how to help security
experts in modeling details of their enterprise security
management process by the use of a novel domain-specific
visual language - SecDSVL.

Many security modeling efforts do exist, including
secureUML [2], UMLsec [3], KAOS [4], and i* [5]. Most
focus on either early stage security requirements engineering
(security requirements elicitation) or design time requirements
modeling (mapping security requirements to system entities
such as components, classes, methods,). Efforts focusing on
comprehensive security engineering – from security goals
down to security functions – do exist [6]. However, they
neither support enterprise security architecture details nor
integration of systems with operational environment security.

Moreover, all of these efforts result in models tightly coupled
to system models (UML models), making it hard to deliver
consistent updates and sharing of models among different
enterprise deployed software systems. Current efforts in
security modeling thus lack a comprehensive approach for
capturing the wide variety of security details existing in a
given enterprise. These include security objectives, risks and
threats, requirements, security architecture, and security
controls and mechanisms. Few support traceability between
security properties i.e. traceability between security objectives
to requirements and requirements to security controls.

To address this issue we introduce a new, comprehensive
security domain-specific visual language, SecDSVL.
SecDSVL helps in capturing the wide variety of security
details that arise during the enterprise security management
process and maintains traceability between differing levels of
abstraction of these security details. This helps security
engineers in reasoning about security requirements and
controls completeness and conformance – i.e. to make sure
that security objectives have been iteratively and
incrementally refined to their realization security controls.
Moreover, it helps in change impact analysis. Thus given a
modification on an abstract entity e.g. security objectives,
requirements, architecture, etc., we highlight other security
entities impacted by such a change. SecDSVL is used to
capture enterprise IT systems’ security details and UML
models are used to capture IT systems’ details. Enterprise
security engineers then work with these two models to map
security onto target systems’ entities. Finally, the specified
security is realized using an automated security controls’
configuration and integrated with enterprise IT systems using
system interceptors and dynamic Aspect-Oriented
Programming (AOP) that enables injecting code at arbitrary
system entities at runtime [7]. Thus, one integrated enterprise
security model, SecDSVL, captures all enterprise security
details and these are mapped onto different IT systems at
different granularity levels. Updates to SecDSVL
specifications are dynamically reflected on running systems.

Section II presents a motivating example for our research,
identifies key research challenges, and reviews key efforts in
security management and engineering. Section III describes
our general model-based security management approach that
we use in modeling and realizing enterprise security. Section
IV introduces SecDSVL as a part of our approach that helps

jgrundy
2014 Australasian Conference on Software Engineering (ASWEC 2014), Sydney, Australia, April 2014, © IEEE CS Press.

jgrundy

in modeling enterprise security. Section V presents a usage
example. Section VI describes SecDSVL evaluation details.
Section VII discusses key strengths and weaknesses and areas
for further research.

II. MOTIVATING EXAMPLE
Consider the scenario where an organization, Swinburne

University, is deploying different IT systems including: (i) an
HR system to manage staff and student details and recruitment
– called “Galactic system”. Galactic also supports student
management; (ii) a Timetable Management System organizes
labs, classes and lectures – called “Allocate+”; and (iii)
Swinburne portal and networked file systems. Swinburne
security administrators are very busy in managing all these
systems taking into account the number of users including
administration, staff, researchers, and students that have access
to such systems. The Swinburne file network is publicly
accessible to help their staff to work and access their resources
from home or even overseas. Swinburne is planning to be
ISO27000 certified. This requires applying an extensive
security management process, including conducting risk
analysis for the Swinburne operational environment including
their IT systems. They then have to integrate the identified and
deployed security controls with their IT systems. Currently,
this security management process is done manually.

Key Challenges: security management is a recurring
process that should be revised with the change of enterprise
business objectives or security risks. The security management
process includes capturing various security details and
systems’ details; an enterprise may operate a huge number of
IT systems. Maintaining consistency of security enforced on
such systems is a very complicated task.

Key Requirements: a security specification approach
should support capturing early stage security goals and
objectives, requirements, architectures, controls and
maintaining traceability between such concepts. It should help
in abstracting these details and facilitating the enforcement,
integration, and monitoring of such security and system details.

Key Efforts: existing security management standards
such as ISO27000 [1] and NIST-FISMA [8] define security
management processes and phases that should be conducted
and the steps to carry out in each phase. However, they do not
provide any toolset to conduct such processes. On the other
hand, existing research efforts in security management tend to
focus on specific phases of the security management process.
POSTIF: Policy-based security management [9], Ontology-
based management [10], and model-based security
management [15] efforts focus on automating the security
enforcement (configuration) of heterogeneous security
solutions using security policies, rather than how or what to
capture in terms of security objectives, requirements, controls
details. OCTAVE [11] approach focus on identifying possible
threats, existing infrastructure vulnerabilities, and security
plans to mitigate identified risks. CORAS [12] approach
focuses on security risk modeling including assets, threats,
vulnerabilities and risks with their likelihood and impacts.

Both approaches do not help in capturing security
requirements, architecture and controls, relations between
security and systems entities. Early-stage security engineering
approaches focus on security requirements elicitation and
capturing at design time. KAOS [4] was extended to capture
security requirements in terms of obstacles to stakeholder’s
goals. Obstacles are defined in terms of conditions that when
satisfied will prevent certain goals from being achieved. Secure
i* [5] focuses on identifying security requirements through
analysing relationships between users, attackers, and agents of
both parties. Secure Tropos [13] introduces two categories of
goals to help capturing security requirements and trust goals:
hard goals reflect system functional requirements and soft
goals reflect security requirements. These approaches do not
cover security modelling at system design stages (only security
requirements elicitation).

Later-stage security engineering approaches typically focus
on security engineering during system design. Both early and
later stage approaches lack a complete security model that
captures security details and abstraction levels. Misuse cases
[14] capture use cases that the system should not allow and
may harm the system operation or security. UMLsec [3]
extends UML with a profile that provides stereotypes to be
used in annotating design elements with security intentions
and requirements. UMLsec provides a comprehensive UML
profile but it was developed mainly for use during the design
phase. UMLsec has stereotypes for predefined security
requirements only (secrecy, secure dependency, critical…).
secureUML [2] provides a meta-model to design role-based
access control (RBAC) policies of target systems. Golnaz et al
[15] introduce vulnerability-centric security requirements
engineering approach. The proposed approach introduced
some of the key security concepts including vulnerability,
attack, and countermeasures as a complete solution – i.e. given
an existing vulnerability V, an attack may exploit it to attack
the system. This requires deploying countermeasures to
mitigate such vulnerabilities. Thus, this approach does not
capture all other relevant security concepts. Such security
engineering approaches are tightly coupled with system design
models, do not help in enterprise security architecture
development, and do not provide a comprehensive security
model (a model that captures all necessary security details).

Mappings

Repository
1 2

3

4

5 6

Sy
st

em
s’

 M
od

el
s

Se
cu

rit
y

M
od

el
s

Security ServicesSystem

Systems’ Models

System Wrapper Security Testing

Figure 1. Our Model-based security management approach

III. MODEL-BASED SECURITY MANAGEMENT
Our security management approach is based on model-

based security management, as shown in Figure 1. Security
and systems’ details are captured as abstract models and then
realized by automating deployment, configuration, and
integration of the security controls within target enterprise IT
systems.

System models (1) are developed and delivered by
software vendors using UML models. A system model should
capture system delivered features, system architecture and
main components, system classes, system deployment details.
Enterprise security models (2) are gradually developed and
frequently updated by enterprise security
engineers/administrators using SecDSVL. A security model
should capture security objectives, security requirements,
enterprise security architecture and design, security controls
operated. Unlike many other approaches, we use a separate
DSVL-based security model that captures security information
at varying levels of abstraction. Our rationale is to allow
security specialists to be able to effectively model security
properties, requirements and techniques without the need – or
distraction - of system-specific requirements or design models.

Both models – system and security – are then weaved
together by security administrators (3) while specifying
security to be enforced on target systems’ and their entities.
Models and mappings are maintained in a shared repository
and used by the security kernel (4) to integrate security
controls deployed in the operational environment within the
target IT system entities (5), and testing security controls’
integration with target entities (6), as specified in the security
mappings. A many-to-many mapping between the systems’
model and security models is supported. Thus, one or more
security concepts (security objectives, requirements and/or
security controls) are mapped to one or more system model
entities (system-level, feature-level, component-level, class-
level and/or method-level entities). Whenever a high-level
security concept such as security objective is mapped to a
system or system entity, it implies that all related security
requirements and controls are also mapped on the same entity.
This helps avoid security specification inconsistency problems
arising from wrongly configured or updated entities because of
newly defined security specifications. Once a modification is
applied to a modelled security concept, this update is reflected
on other systems that use this concept. The security kernel is
responsible for integrating security solutions as specified in
the security-system mappings (5). This is achieved using static
weaving AOP or even at runtime using dynamic-AOP. The
former is more efficient as security code (to call security
solutions) is already integrated with system code. However,
the latter is more dynamic i.e. changes in security specified to
be enforced on the target system can be realized at runtime [8].
In this paper we focus mainly on the SecDSVL as a security
modeller we introduce to capture security details. The rest of
the framework is published in different parts including model-
driven security engineering at runtime - MDSE@R [7] and
adaptive cloud computing security management [16].

IV. SECDSVL
SecDSVL provides a “mega-model” – a mega-model is a

set of multiple related models with interrelationships - to be
used by security engineers in managing enterprise IT systems’
security. To develop SecDSVL, we studied the existing
security management standards (NIST-FISMA [8], ISO27000
[1], steps are summarized in Figure 2 and explained in the next
subsection), and Common Criteria [17] in details and come up
with a comprehensive meta-model covering security
management details, as shown in Figure 3. We then applied
the physics of notations principles [18] in developing our
SecDSVL notations, as we discuss below.

Identify)
Enterprise)
Assets

Identify)
Security)
Objectives

Conduct)Risk)
Analysis

Identify)
Security)

Requirements

Develop)
Security)

Architecture

Implement)
Security

Figure 2. Standard security management process

A. Security Management Domain Model

Below we go through the main tasks/steps conducted in
any security management process. In each task, we identified a
set of concepts that need to be modeled, a set of relations to be
captured, and logical groupings of these concepts into models.

Identify Enterprise Assets; the first step in a security
management process is the identification of existing enterprise
assets to be secured. We capture enterprise assets using an
asset model. This captures all enterprise assets along with
categories i.e. information system, physical asset or business
value - and interrelationships. We use UML models to capture
IT systems’ detailed descriptions.

Identify Security Objectives; enterprise top management
defines key security goals, objectives, and losses of breaching
assets’ security. These objectives are captured in a security
objectives model. Objectives may be specified per asset– i.e.
objectives are mapped to the corresponding asset, or
enterprise-wide thus a given security objective could be
mapped to many assets. Possible relationships between
objectives include: composition – a security objective is made
up of sub-objectives; dependency – a security objective
depends on other security objectives in order to be
satisfied/achieved. Availability, integrity, confidentiality, and
accountability are key security objective categories [8]. Each
security objective has importance level indicating the impact
of a failure to meet such objective because of a security
breach. A security objective may have different realization
strategies: preventive, detective, and recovery.

SecurityObjectiveSecurityRequirement

SecurityZone

Name: string
Importace: enum
ObjectiveCategory: string
Strategy: enum

0..*

Dependent Objective

Name: string
SecurityArea: enum
RequirementDescription: string

Re
fe

re
nc

e

0.
.*

ZoneName: string
ZoneType: enum
ObjectiveCategory: string
Strategy: enum
Firwall: bool
IDS: bool

1..*

SecurityThreat

ID: string
Source: enum
Target: string
Objective: string[]
Vulnerabilities: string[]

SecurityVulnerability

ID: string
Category: enum
Description: string
Prerequisites: string[]
Consequences: string[]

SecurityAttack

ID: string
Description: string
Agent: string
Sequence: string[]
Consequences: string[]

IT Asset

Name: string
Importace: enum
SecurityObjectives: string[]

SecurityControl

Name: string
Provider: string
ControlFamily: enum
DeploymentPath: string

Threat Agent

Name: string
AgentType: enum
ObjectiveCategory: string
Threats: string[]

0.
.*

Pa
re

nt
 A

ss
et

Security Objectives

1..*

SecurityRisk

Name: string
Description: string
Impact: enum
Likelihood: integer

SecurityService
ServiceName: string
SecurityMechanism: enum
SecurityStandard: enum

0..*

Asset vulnerabilities0..*

Risk Agent

Planned Threats

Related attacks

Related vulnerabilities

Realized ByCompose

Deployed in

Deployed in

Refined as

Threatened By

Security Service1..*

Figure 3. SecDSVL meta-model

Conduct Risk Analysis; security engineers conduct risk
analysis on every enterprise asset to identify possible threats,
likelihood, and impact of such threats. This may include
performing vulnerability analysis to identify inherent flaws
that may be exploited by threat agents. Such security risk
details are captured in a security risk model. This may be
developed per asset – i.e. for each enterprise asset we develop
a risk model capturing possible risks, threats and attacks on
this given asset, or an enterprise-wide risk model capturing all
possible risks, threats and attacks and map such items onto
different assets. Threats are linked to source threat agents and
to exploited vulnerabilities.

Identify Security Requirements; security requirements
describe the actions to be taken by enterprise security
engineers in order to mitigate or avoid identified threats.
Security requirements are captured in a security requirements
model. For each specified security objective and identified
security risk, we may define a set of security requirements e.g.
“the system should not grant access to a resource X unless the
user is authorized by the user name and password”. NIST [2]
have 18 Security requirements’ families including audit,
cryptography, and authentication, privacy, etc.

Develop Enterprise Security Architecture; Security
architects use the security requirements model to develop a
security architecture model. This captures planned behavior
and structure of enterprise security. It shows how and where
security controls and enterprise assets are positioned in the
given enterprise architecture.

Moreover, it captures how these security controls are
integrated with other enterprise assets. A security architecture
model includes identifying security zones (domain) in the

enterprise operational environment including uncontrolled,
controlled, restricted, and managed zones. Security architects
define security services that will be deployed or used in every
zone. These include authentication, authorization,
cryptography, audit, etc.

Implementing Security; security administrators specify
security controls that realize security services specified in the
security architecture model. These security controls are
captured in a security controls model. This model covers
security controls location, configuration parameters, etc.

Traceability; each security entity in this security
management process should retain tractability details to its
high-level (parent) entities and to the lower-level (realization)
entities. This helps in managing consistency and validating
completeness of security models – i.e. validating that security
controls defined retain the necessary trace back information to
existing security requirements and not redundant. It also
confirms that all security objectives, requirements and threats
are realized by specific control(s). Figure 3 shows the meta-
model of SecDSVL based on the tasks, concepts, and relations
discussed above.

B. SecDSVL Notations

Given the security management concepts as summarized in
SecDSVL meta-model Figure 3, we used Moody’s Physics of
Notations (PON) principles [18] in designing our SecDSVL
for the above models. Below we summarize the key PON
principles and how PON were applied on SecDSVL.
The PON Principles. This includes a set of principles that
should be taken into consideration when designing a visual
language. These notations help improving language usability

including: Semiotic clarity principle focuses on assessing
notations redundancy, overload, deficit, and excess.
Perceptual discriminability principle focuses on
discriminability between different symbols. Semantic
transparency principle focuses on the relation between
visual notations and semantics of the concept. Complexity
management principle focuses on managing complex
diagrams. Cognitive integration principle focuses on visual
and conceptual integration between diagrams. Visual
expressiveness principle focuses on improving notations
expressiveness using visual variables such as color, shape,
size, brightness. Graphic economy principle focuses on
minimizing number of graphical symbols. Some of these
principles are related to modeling language such as complexity
management, cognitive integration and graphic economy.
Others focus on individual concepts’ properties such as
semiotic clarity, visual expressiveness, and perceptual
discriminability. Given the discussed security concepts,
relations and PON principles, we have developed our
SecDSVL physical notations, as shown in Table 1. Below, we
discuss the design decisions we made during the development
of these visual notations for SecDSVL and our selections and
reasons behind these decisions. Usually icon selection does
not have much (if any) scientific justification - it is often more
of an art rather than science [13]. However, we tried to find a
careful balance between expressiveness and simplicity when
selecting SecDSVL notations and their combinations to form
our DSVLs.
PON and SecDSVL. We discuss how we use the PON
principles when selecting SecDSVL notations.

Enterprise Assets: we use the “puzzle” shape to capture
enterprise assets. An asset “puzzle” is a part of the enterprise
assets “image”. Each puzzle has pop-outs to capture provided
capabilities and pop-ins representing required capabilities.
Puzzle color visual variable captures asset criticality {high,
moderate, low} in {red, grey, and white}.

Security Objectives: we use the “star” shape to reflect
stakeholders’ dreamed objectives. We use a set of visual
variables to visualize a security objective attributes. The star
line color is used to capture objective importance e.g. highly
important - red, moderate – grey and low - white. Shading is
used to capture security strategy – e.g. preventive, detective,
recovery, or any. Fill color is used to capture objective
category – i.e. confidentiality - black, integrity - blue,
availability – green, and accountability - orange.

Security Threat: we use an “oval” shape with an extra
icon to represent a security threat. Icon style is used to reflect
threat type, as defined in Microsoft STRIDE [19] – spoofing –
stick man, tampering – down arrow, repudiation - + icon
which means repeat, information disclosure – up arrow, all can
read, and DOS – x icon which means not available.

Threat Agent: we use “sticky man” shape to capture
threat agent concept. Color variable reflects agent type – i.e.
external attacker – red, or malicious insider – black – usually
unseen or unexpected in terms of security breach.

Security Vulnerability: we use “bug” shape to visualize
security vulnerabilities. Bug color is used to reflect discovered
vulnerability category including: input validation (such as
SQL Injection), output validation (Cross Site Scripting - XSS),
processing (race conditions), or hosting service related
vulnerability such as Cross Site Request Forgery - CSRF.

Security Attack: we use “Bomb” shape to capture security
attacks. Bomb color reflects different attack objectives as
discussed in the security objective concept above.

Security Requirement: we use “document” shape to
capture security requirements. Document color is used to
capture security requirement family – e.g. access control,
cryptography, identity management, etc. which is linked to the
security objective category.

Security Zone: we use “Big box” shape to represent
security zone. Box color is used to represent zone security
level – e.g. uncontrolled, controlled, secured, and managed.

Security Service: we use “process” shape to capture
security services. Process color reflects service security
category. We use the same coloring scheme as for security
requirements.

Security Control: we use the “guard” shape to represent
security controls. We use the same coloring schema as used in
the security requirements.

Traceability between models is realized using drag-and-
drop of model elements – e.g. dragging a security objective
Obj (defined in a security objectives model) to a security
requirement Req (in a security requirements model) creates a
link between these objects and updates Req objectives list to
include objective Obj.

Table 1. Summary of key SecDSVL Notational Elements
Concept Physical/

Notation
Visual/Variables/and/Concept attributes/binding

Asset {Colour,(asset(criticality}(:({(Red,(Grey,(White}
{Pop(outs, Provided(capabilities}
{Pop(ins, Required(capabilities}

Security/
Objective

{Line(Colour,((Importance}(: {Red,(Grey,(White}
{(Shading,(Strategy}(:({(vertical,(horizontal,(diagonal}
{(Fill(Color,(Objective(Category}(:({Black, Blue,(Green,(
Orange}

Security
Threat

Relations(with(other entities(including(threat(agent,((
vulnerabilities,(and(assets.
{Icon,(threat(agent(objective}({(X(,((((,((((((((,((((,((((((}

Threat/Agent {(Colour, Agent(Type}(:{(Red,(Black}(

Security/
Vulnerability

{(Colour, Vulnerability(Category}(:{(Red,(Black,(Green,(
Yellow}(

Security/
Attack

{(Colour, Attack(Objective}(:{(Red,(Black,(Green,(
Yellow}(

Security/
Requirements

{(Colour, Requirement(Family}(:{(Red,(Black,(Green,(
Blue, Orange,(etc}(

Security Zone {Colour, Zone(Security(Level}(:(({(Yellow,(Grey,(
Magenta,(White}

Security
Service

{Colour, Service(Category}(:{(Red,(Black,(Green,(Blue,
Orange,(etc}(

Security/
Control

{(Colour, Control(Family}(:{(Red,(Black,(Green,(Blue,
Orange,(etc}(

X

Figure 4. Examples of the assets model and Galactic system description model

B

E

C

<stereotypes>
<stereotype*name="
…

<property*name="
<property*name="
<property*name="
…

</stereotype>
<stereotype*name="
…

<property*name="
<property*name="
<property*name="
…

D

A

Max$password$
length

Min$password$
length

Data$
Encryption

Max$password$
length

Min$password$
length

Data$
Encryption

Data$
Encryption

canget
authorized$user$
to$perform$action$

using$CSRF

X

gains$access$to$
Swinburne$

Portal$using$SQL$
Inject.

Elevate$
privileges$
using$LDAP$
Query$Inject.

Application$Server

Database$Server

Web$Server

Load$Balancer

Federated
Identity$Service

Access
Manager$Service

Antivirus$
Service

Authorization
Service

disclose$data$
transmittedin
plain$text

Swin IDS LDAP
Swin

Antivirus$

Swin key
Mgmt Swin

Availability Confidentiality

Integrity

Accountability

X D

A

B

C

E

Figure 5. Examples of Swinburne SecDSVL Models

V. USAGE EXAMPLE
We illustrate how security engineers use our SecDSVL in
managing their enterprise IT systems’ security. We highlight
the involved stakeholders and their roles and expected
outcomes in each step. We use our motivating example from
Section II, where Swinburne University has a set of deployed
IT Systems that need to be secured. We illustrate this usage
example using screen dumps from our Visual Studio plug-in
based SecDSVL toolset. This toolset provides an integrated
environment for modeling systems (UML and UML profiles),
security (SecDSVL), weaving system and security models,
and realizing specified security.
Modeling Enterprise IT Systems: Swinburne security
engineers identify and model existing IT systems that need to
be secured. These details are captured in Swinburne assets
model. Figure 4-A shows existing IT systems and connections
between them. We see from assets’ colors that Galactic is a
critical asset, allocate is low, others are moderate. For each
asset, Swinburne then develops, if not delivered by system
vendor, a detailed system description model (Figure 4). This
model captures key details of the system including system
features (Figure 4-B), system architecture (Figure 4-C),
system classes (Figure 3-D), and system deployment details
(Figure 4-E). We developed a UML profile that captures
dependences and relations between system entities e.g. system
features to realization components, and system components to
realization classes.

Modelling Swinburne Security Details: Swinburne
security administrators develop and revise the enterprise
SecDSVL model. In this scenario, Swinburne security
administrators document security objectives that must be
satisfied (Figure 5-A) including confidentiality, integrity,
availability. This model should be repeatedly revisited to
incorporate changes in Swinburne security objectives. Security
administrators then use security objectives to identify security
threats, vulnerabilities, and risks related to a given asset or
enterprise-wide that violate these objectives (Figure 5-B).

Next, Swinburne administrators develop their security
requirements model (Figure 5-C), including “authenticate
user” and “data encryption” requirements. Swinburne security
engineers then develop a detailed security architecture model
including services and security mechanisms to be used in
securing enterprise assets (Figure 5-D). In this example we
show the different security zones that cover Swinburne
networks and allocation of IT systems to zones. The security
architecture also shows security services, security mechanisms
and standards to be deployed. Swinburne security engineers
finally specify the security controls (i.e. the real
implementations) for the security services modeled in the
security architecture model (Figure 5-E).

In this example it includes SwinIDS Host Intrusion
Detection System, LDAP access control and SwinAntivirus.
These are used to realize the security requirements and
security architecture as previously specified. Each model

keeps track of related security entities. Each security control
maintains traceability information to parent models’ entities.

Weaving Systems and Security Models: after developing
the enterprise assets model and system description models,
and the SecDSVL model, Swinburne security engineers map
security attributes (in terms of objectives, requirements and
controls) to Swinburne assets e.g. Galactic system (in terms of
features, components, classes). This is achieved by drag and
drop of security attributes to systems entities. SecDSVL
support different granularity levels – i.e. may define security
on component level or even on method level. All models and
defined mapping are maintained in models repository to be
used by security enforcement point. The dashed red lines
between Figures 3 and 4 show security to system mappings,
such as (1) placement of deployment nodes within security
zones; (2) security objectives that should be met on different
components; and (3) security solutions mapped to deployment
node or system entities, as shown in links between Figure 3
and Figure 4.

Table 2. Comparison between SecDSVL and existing efforts
Tool 1 2 3 4 5 6 7 8 9 10

Misuse case X X √ √ √ X X X X X

UMLsec X X X X ● X ● X X ●

SecureUML X X X X ● X ● X X ●

KAOS X √ ● √ √ X X X X X

i* X √ ● √ √ X X X X X

Tropos X √ ● √ √ X X X X X

CORAS √ ● √ √ X X X X ● ●

OCTAVE √ ● √ √ X X X X ● X

FISMA √ √ √ √ X X X √ √ X

ISO27000 √ √ √ √ X X X √ √ X

SecDSVL √ √ √ √ √ √ √ √ √ √

[1] Assets Model, [2] Security Objective, [3] Security Threats and

Vulnerabilities, [4] Security Risks, [5] Security Requirements, [6] Security

Architecture, [7] Design, [8] Security Controls, [9] Traceability, [10] Mapping

between systems and security models
√: Fully Supported ● : Partially supported X : Not supported

Table 3. Assessing SecDSVL against PON principals
PON Principal Attribute Found %

(1) Semiotic Clarity Symbol deficit 0%
Symbol redundancy 0%
Symbol overload 0%
Symbol excess 0%

(2) Perceptual

Discriminability
Shapes Discriminability 100%
Textual differentiation 0%

Redundant Coding 0%

Perceptual Popout 100%

(3) Semantic

Transparency
Icons 90%

(4) Complexity

Management
Modularization Yes

Hierarchy Yes

(5) Cognitive

Integration
Conceptual Integration 100%

Perceptual Integration Yes

(6) Visual

Expressiveness
Use of colour 100%

Choice of Visual Variables 60%

Range of Visual Variables Values 60%

Textual Vs Graphical Encoding 100%

(7) Graphic Economy Number of graphical symbols 100%

Figure 6. Level of agreement of usability factors

VI. EVALUATION
SecDSVL Comprehensiveness: We have evaluated

SecDSVL provided capabilities in capturing different kinds of
enterprise security details with different levels of abstractions
compared to existing security management, risk management,
and security engineering approaches. Table 2 shows SecDSVL
compared to a range of other existing security modeling
techniques based on their documented capabilities. Rows in
the table reflect existing security engineering and modeling
efforts. Columns reflect the set of security concepts that we
have identified from our analysis of the existing security
management standards including NIST-FISMA and ISO27000
(as discussed in the earlier sections). Table 2 shows that none
of the existing approaches provides a comprehensive security
model that covers every aspect in the security management
process. Table 2 shows that security management approaches
focus on assets, risks, threats, and mitigation controls. Risk
management approaches focus on similar areas except for
security controls. Early stage security engineering efforts
focus on security objectives and requirements. Later-stage
security engineering efforts focus on security requirements,
mapping and integration with target systems.

User Evaluation: We carried out a user evaluation to
assess SecDSVL usability. We had seven post-graduate
researchers to use our developed tools and platform. Five of

them are working in software engineering research. Two of
them are working in the security domain. None were involved
in the development of SecDSVL. We gave them a one hour
training session on the tool. Then, we asked them to: explore
SecDSVL notations; read a set of security models developed
by SecDSVL; and modify these models with new security
needs. We conducted a usability survey to gain their feedback
on SecDSVL and modeling toolset. The results show that
they successfully understood and updated security models.
They give positive feedbacks about the overall approach and
the tool usability, and the capabilities in managing systems’
security Figure 6 (1: strongly disagree…5: strongly agree).

Figure 1. S
ecDSVL and PON: We have assessed SecDSVL against the
physics of notations principles. For each principle, we
calculate the conformance ratio (number of SecDSVL
notations that satisfy a PON principle against total number of
SecDSVL notations).

Table 3 shows that SecDSVL design covers most of good
principles and successfully avoids bad practices in modelling
languages design. (1) SecDSVL has no Semiotic clarity
problems which focus on having one-to-one correspondence
between concepts and graphical notations. (2) Concepts’
shapes are efficiently discriminable – i.e. no overlap or
conflict between shapes of different concepts. No text is used
to support differentiation between shapes. (3) Icons have been
selected to match perceptual expectations as much as we can
(still this is a matter of art – e.g. we use start to represent an
objective, bug to reflect defect and so on). We got feedback on
the security zone (big box) to be replaced with more
expressive icon (thus 1 out of 10 need to be revised). (4)
Diagram complexity is managed using hierarchical
organization (using meta-model relations) and diagrams
modularization using loose-coupling diagraming – i.e. every
diagram can reflect specific security aspect. This is directly
supported by the underlying platform. (5) Navigation between
diagrams is also managed by the underlying platform.
Moreover, drilling and tracing conceptual concepts throughout
the whole SecDSVL is supported. (6) Many visual variables
have been used to replace text-based notations including
colors, icons, shape line style, shading, and line color. Some
people did not like shading and line color as easy to
discriminate visual variables (thus 2 out of 5 need to be
updated). (7) The number of shapes is efficient compared to
existing concepts.

VII. DISCUSSION

We developed SecDSVL to better support the security
management process specified in NIST and ISO27000 security
management standards. SecDSVL supports asset modeling,
security objective modeling, security risk modeling, security
requirements modeling, security architecture and design
modeling, and security controls modeling. We maintain
relationships and traceability between each of these different
security models’ entities. Tool support is via a Visual Studio

plugin. From our experiments, SecDSVL succeed in capturing
most of security details arise during the security management
process. SecDSVL concepts can be refined in lower-level
concepts (using other sub-models) or in specific concept details
e.g. sub-objectives that make up a specific security objective.
Users have found that SecDSVL is easy to learn and use, and
effective in capturing security details.

A key question with regard to any modeling language is
how to decide the right level of abstraction. In SecDSVL, we
cover a range of different abstraction levels including security
objectives, requirements, risks and threats down to the
realization security services and controls. We are currently
working on extending security controls with configuration
details. Thus, security administrators can fully depend on
SecDSVL model in configuring their security controls as well.

Existing security management efforts fail to ensure that
modeled security is met by deployed systems. This is usually
done manually causing delay in updating IT systems with new
security specifications. To overcome this limitation, we
connected the security requirements, captured in SecDSVL
models, with the enterprise IT systems architectures and
security enforcement controls, captured in UML models. Using
AOP techniques we succeed in enforcing security specified
onto IT Systems. This helps in supporting runtime security
updating to mitigate newly discovered vulnerabilities and risks.

A key feedback from the user evaluation practitioners is the
suitability of the threat and vulnerability shapes. They
recommend using more expressive shapes to support perceptual
expectations taking into consideration threats and
vulnerabilities’ attributes. SecDSVL is currently developed as
Microsoft Visual Studio 2010 plug-in using Microsoft
Modeling SDK (the tool along with examples can be download
from MDSE@R: http://sourceforge.net/projects/mdse-r/). We
are developing a web-based SecDSVL as a stand-alone web
tool. Moreover, we plan to conduct more extensive evaluation
using industrial case studies, and automate SecDSVL models
generation using security analysis tools such as risk and
vulnerability models using vulnerability and risk assessment
tools.

VIII. SUMMARY
We have introduced a new, comprehensive security

specification domain-specific visual modeling language,
SecDSVL. This is used for capturing a variety of security
specifications for enterprise security including objectives,
risks, threats, requirements, architecture, and enforcement
controls. Moreover, it helps in maintaining traceability
between these security concepts. SecDSVL is developed using
Moody’s Physics of notations principles. We performed a
comparative evaluation between SecDSVL and existing
enterprise security modeling approaches, a user evaluation of
SecDSVL notations, and an evaluation against key PON
principles. These showed that SecDSVL is effective and
efficient for enterprise security management modeling.

IX. ACKNOWLEDGMENT
The authors are grateful to Swinburne University of

Technology and the FRST SPPI project for support for this
research.

REFERENCES
[1] International Organization for Standardization (ISO),

"ISO/IEC 27000 - Information technology - Security
techniques - Information security management
systems - Overview and vocabulary," ISO/IEC
27001:2005(E), 2009.

[2] T. Lodderstedt, D. Basin, and J. Doser, "SecureUML:
A UML-Based Modeling Language for Model-
Driven Security," in Proc. of The 5th International
Conference on The Unified Modeling Language,
Dresden, Germany, 2002, pp. 426-441.

[3] J. Jürjens, "Towards Development of Secure Systems
Using UMLsec," in Fundamental Approaches to
Software Engineering. vol. 2029, ed: Springer Berlin
Heidelberg, 2001, pp. 187-200.

[4] A. Lamsweerde, S. Brohez, and e. al, "System Goals
to Intruder Anti-Goals: Attack Generation and
Resolution for Security Requirements Engineering,"
in Proc. of the RE’03 Workshop on Requirements for
High Assurance Systems, Monterey, 2003, pp. 49-56.

[5] L. Liu, E. Yu, and J. Mylopoulos, "Secure ¡* :
Engineering Secure Software Systems through Social
Analysis," International Journal of Software and
Informatics, vol. Vol.3, pp. 89-120, 2009.

[6] H. Mouratidis, J. Jürjens, and J. Fox, "Towards a
Comprehensive Framework for Secure Systems
Development," in Advanced Information Systems
Engineering. vol. 4001, E. Dubois and K. Pohl, Eds.,
ed: Springer Berlin / Heidelberg, 2006, pp. 48-62.

[7] M. Almorsy, J. Grundy, and A. S. Ibrahim,
"MDSE@R: Model-Driven Security Engineering at
Runtime," presented at the Proc. of the 4th
International Symposium on Cyberspace Safety and
Security Melbourne, Australia, 2012.

[8] National Institute of standards and technology
(NIST), "The Federal Information Security
Management Act (FISMA)," Washington: U.S.
Government Printing2002, http://csrc.nist.gov/
drivers/documents/FISMA-final.pdf, Accessed on
August 2012.

[9] C. Basile, A. Lioy, G. M. Perez, F. J. G. Clemente,
and A. F. G. Skarmeta, "POSITIF: A Policy-Based
Security Management System," in Eighth IEEE
International Workshop on Policies for Distributed

Systems and Networks, 2007. POLICY '07, 2007, pp.
280-280.

[10] B. Tsoumas and D. Gritzalis, "Towards an Ontology-
based Security Management," presented at the Proc.
of 20th International Conference on Advanced
Information Networking and Applications - Volume
01, 2006.

[11] P. Marek and J. Paulina, "The OCTAVE
methodology as a risk analysis tool for business
resources," presented at the Proc. of The 2006
International Multiconference Computer Science and
Information Technology, 2006.

[12] R. Fredriksen, M. Kristiansen, B. Gran, and K.
Stølen, "The CORAS Framework for a Model-Based
Risk Management Process," in Computer Safety,
Reliability and Security. vol. 2434, S. Anderson, M.
Felici, and S. Bologna, Eds., ed: Springer Berlin /
Heidelberg, 2002, pp. 39-53.

[13] H. Mouratidis, and P. Giorgini, "Secure Tropos: A
security-oriented Extension of the Tropos
Methodology," International Journal of Software
Engineering and knowledge Engineering, 2007.

[14] G. Sindre, and A. Opdahl, "Eliciting security
requirements with misuse cases," Requir. Eng., vol.
10, pp. 34-44, 2005.

[15] G. Elahi, E. Yu, and N. Zannone, "A vulnerability-
centric requirements engineering framework:
analyzing security attacks, countermeasures, and
requirements based on vulnerabilities," Requir. Eng.,
vol. 15, pp. 41-62, 2010.

[16] M. Almorsy, J. Grundy, and A. S. Ibrahim,
"Adaptable, Model-driven Security Engineering for
SaaS Cloud-based Applications," Automated
Software Engineering Journal, vol. 29, 2013, pp1-38.

[17] Common Criteria for Information Technology
Security Evaluation, "Part 1: Introduction and general
model, Version 3.1," 2006,
http://www.commoncriteriaportal.org/files/ccfiles/CC
PART1V3.1R1.pdf, Accessed on August 2013.

[18] D. Moody, "The "Physics" of Notations: Toward a
Scientific Basis for Constructing Visual Notations in
Software Engineering," IEEE Transactions on
Software Engineering, vol. 35, pp. 756-779, 2009.

[19] M. Abi-Antoun and J. r. M. Barnes, "STRIDE-based
security model in Acme," Technical Report CMU-
ISR-10-106, Carnegie Mellon Univ., 2010.2010.

