
In Proceedings of the 2006 Australian Conference on Software Engineering. Sydney, Australia 2006. 

A Service-Oriented Architecture for Software Process Technology 
 

Therese Helland 
Computas AS 
 PO Box 482 

 1327 Lysaker, Norway 
the@computas.com 

John Grundy1, 2 and John Hosking1 
1Dept. of Computer Science and  

2Dept. of Electrical and Computer Engineering, University of Auckland 
Private Bag 92019, Auckland, New Zealand 

{john-g, john}@cs.auckland.ac.nz 
 

Abstract 

As teams become more distributed and software systems 
increasingly complex, the difficulty of coordinating 
development processes becomes significant. Software 
Process Technology supports the planning and execution 
of software development processes to be managed and 
supported by computer programs. This paper describes the 
development of a decentralised process support and 
management tool, and explores its functionality for both 
process modelling and enactment. Our focus is on a highly 
distributed and service-oriented approach with the 
intention of providing good distribution of system 
components and easy integration of third-party tools and 
remote services for coordination by workflow. 

1 Introduction 

Software process technology supports the planning and 
execution of software processes to be managed and 
supported by a computer program [1, 3, 6, 22]. The process 
tool enables assignment of work to humans or other 
programs, passes the work on, and tracks its progress. An 
important potential advantage of such systems is the 
increased efficiency of software processes, resulting from 
the automation of previously manual and time-consuming 
tasks. Several different facilities are essential in providing 
computerised process support. Firstly, a means of defining 
processes and their execution is required. This is normally 
provided by a process modelling language and tool. 
Furthermore, functionality to allow for computerised 
enactment of the process model is typically provided by a 
process enactment engine. Other important features 
include good distribution of system components, seamless 
integration with third-party tools, and sufficient support for 
cooperative activities. Many current approaches to 
software process technology suffer from architectures with 
reliance on centralised servers, need for users to 
understand complex rule-based specification systems, 
limited feedback to users of process state, and limited 
accessibility of the coordination tools. 

This paper describes the design and implementation of 
a prototype software process support tool, IMÅL, which 
aims to address some of the weaknesses we have identified 
with previous approaches. The IMÅL environment 

employs a service-oriented architecture in order to provide 
better distribution of tool components and allow easier, 
more dynamic integration of environment components. It 
uses a user-tailorable meta-tool to support process 
specification and state visualisation, allowing run-time 
modification of the process visualisation notations. 
Integration of third-party document management and 
complex rule processing systems via a service-oriented 
approach devolve these tasks to other applications.  

We first describe the motivation for this research and 
critique some other existing process technology tools. We 
give an overview of IMÅL and our process modelling 
notation used in the tool. We illustrate a simple process 
example, describe the tool’s architecture and illustrate its 
usage. Finally, we evaluate IMÅL’s effectiveness for 
decentralised process support and give some directions for 
future research. 

2 Motivation  

Consider a software team collaborating on a software 
modification task. The team may want to make changes to 
the design of a set of modules, review these proposed 
changes, allocate implementation of the changes amongst 
the team, and carry out various unit and integration tests to 
validate the changes. The team may be working in a co-
located or distributed fashion. Many researchers and 
practitioners have identified the problems in coordinating 
such work, including managing access to shared 
documents (design, code and test); agreeing on division of 
responsibilities and work; knowledge of other workers’ 
past, current and likely future activities; and a shared, 
consistent work process [1, 5, 7].   

Various academic prototypes as well as some 
commercially available products have been developed for 
software process management and support. Examples 
include SPADE-1 [1], ProcessWeaver [5] and Oz [7]. 
These systems suffer from a range of deficiencies. For 
example, many deploy centralised client-server 
architectures in which a central server caters for process 
modelling and a centralised process engine provides 
computerised process enactment support. Examples of 
such systems are Regatta [10] and SPADE [19]. 
Disadvantages of such an approach include reduced 

jgru001
Text Box
In Proceedings of Australian Software Engineering Conference (ASWEC 2006).
(c) IEEE 2006. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.




robustness and performance and insufficient support for 
distributed work environments.  

Although support for activities such as collaboration, 
coordination and communication is essential for today’s 
dispersed work-teams and companies, another frequent 
shortcoming of process support systems to date is the 
limited support for cooperative activities. ProcessWeaver 
[5] and EPOS [12] are examples of systems with a limited 
range of coordination strategies. Other weaknesses are 
hard to use process modelling mechanisms and insufficient 
integration with third-party tools.  

Most existing systems employ a homogeneous process 
engine, meaning that the process engine constitutes one 
single processing instance for enactment processing. Many 
process management and workflow tools also use their 
own custom data management approaches, typically 
centralised in one server component. The problem with 
such an approach is that all processing and data 
management is entrusted to one processing instance, 
reducing the robustness and flexibility of the engine. Some 
work has been done using de-centralised process engines 
to overcome these limitations, such as Serendipity-II and 
SwinDeW [9, 22]. While these tools provide decentralised 
and peer-to-peer workflow engines, they use single custom 
components for their process modelling and enactment. 

Many workflow tools have used distributed object 
technologies such as CORBA [7, 15]. However many of 
these solutions provide limited dynamic extension and 
discovery of resources due to the limitation of these object 
technologies. Recently there has been interest in 
developing solutions that use web services infrastructures 
to enhance run-time discovery of workflow nodes and 
support easier integration of third-party tools [4, 22]. 
While these provide improvements in the scalability and 
reliability of the workflow system architecture, very few 
approaches to date take a service-oriented view of the 
workflow components themselves, allowing a variety of 
workflow engine services to be modularised and 
discovered at run-time [22]. Business process modelling 
and integration using web services has become popular, 
and initial approaches extending this for workflow support 
have been developed [16, 4, 20]. Our aim in this work was 
to explore whether process technology could be developed 
employing a set of services rather than one monolithic 
server component as in traditional process management 
and workflow tools. Thus, we wanted to experiment with a 
service-oriented and highly distributed architecture for 
workflow tools to see if we could address some of the 
deficiencies of existing tools outlined above. The 
requirements for the process tool (IMÅL) we wished to 
develop were that it: 
• Has a configurable process modelling notation, 

supporting end user tailoring of the notation. 

• Supports modelling and enacting simple process 
flow, but with support for much more complex rules 
which are sometimes needed. 

• Uses a decentralised process management engine 
using a set of services, allowing deployment of the 
system across multiple machines for fault tolerance 
and load balancing. The ability to upgrade process 
services while the system is in use is highly desirable. 

• Reuses 3rd party Commercial Off The Shelf (COTS) 
services where possible as individual service 
components in the process engine. These should be 
interchangeable with other compatible services. 

3 The IMÅL Approach 

The approach we adopted for IMÅL focuses on a 
highly distributed and service-oriented process enactment 
engine. We use an existing, user-tailorable modelling tool 
to provide process modelling and visualization 
functionality, and user interaction with the system. An 
existing 3rd party rule-based engine component (Idiom) and 
document display tool (Microsoft InfoPath) were used to 
provide complex task automation and document 
management respectively. A prototype of IMÅL was built 
in order to investigate the advantages associated with such 
an approach. IMÅL’s architecture is shown in Figure 1. 

A meta-CASE tool, Pounamu [23], was used to define 
a visual process modelling notation and enacted process 
visualisation support tool, providing the main point of user 
interaction with the system. Process models are uploaded 
to a process model service that provides persistent process 
definition management. Models are run by one or more 
process engine services, two prototypes of which we have 
developed. One includes a simple flow-based engine and 
the second a complex rule-based engine. These enact parts 
of the process model and interact to coordinate their 
operation. A process state service provides persistent state 
information management for all enacted processes. A 
notification service detects changes to process model, 
state, resources (documents) and agents (users and 
automated services), informing subscribers of these events 
to support reactive process management. A web based 
process state service, user login service and document 
editing service interact with the other services to provide a 
range of user interface and user profile management 
functionality.  

Third-party tools are integrated with the modelling tool 
and engine using a service-oriented architecture. Pluggable 
enactment engines provide functionality to interpret the 
process models and allow for computerised process 
enactment. The process engine was split and distributed as 
several smaller web services with individual 
responsibilities, including a simple event based processing 
instance. Information about process state and allocated 
tasks is made available via a web based to-do list service.



 Pounamu meta-CASE 
Tool 

Process diagrams

Model 
Export 

State 
Import 

Local Model 
Data 

Process Model 
Service 

Process State 
Service 

Process Engine 
(Simple) Service

Process Engine 
(Idiom) Service 

Process Web UI 
Service

Document Editing 
(InfoPath) Service 

Notification 
Service 

Model 
Data 

State 
Data 

Idiom Rule 
Base  

Document 
Management 

Service

Document 
Store 

User Login/State 
Service 

UDDI Registry 
Service 

Subscribe/Notify 
Data  

SOAP messaging between services 

 
Figure 1. Decentralised architecture of the IMÅL process tool. 

 
All of these services may run on different host 

machines. For example all modelling tools are installed 
and run as separate services on each user’s PC. All 
services interact via SOAP XML messages and services 
may be discovered and integrated into the architecture at 
run time using a UDDI web services registry look-up. 
Many of these services use translation to and from 
different SOAP messaging protocols via the XSLT 
transformation scripting language. For example, the 
process model managed by the Pounamu modelling 
environment is translated to and from the format used by 
the process model service to read and write the model state 
managed by this service. 

4 Process Modelling Language 

Our IMÅL prototype supports a Serendipity-style [10] 
visual process modelling language, but provides a new and 
unique implementation of the interpretation and execution 
of these process models. The process modelling and 
visualisation language can be tailored by the user in 
limited ways using the meta-CASE tool used to realise the 
process modelling.  

A visual meta-CASE tool, called Pounamu [23], was 
used to create a simple visual process modelling language 
and tool for IMÅL. It was also used to provide one of the 
main user interaction points for enacting and monitoring 
IMÅL processes. The Pounamu Process Modelling 
Language (PPML) was created and used when developing 
the Pounamu Process Modelling Tool (PPMT). PPML is a 
simple visual language based on that of the Serendipity 
process management tool [10]. PPML is somewhat less 
expressive that Serendipity’s but offers sufficient 
modelling capabilities for the purpose of providing 
computerised support for most kinds of process enactment. 
The language can be enriched with further modelling 

constructs using the meta-tool and more complex 
enactment rules using the 3rd party Idiom rule-based 
engine. 

Table 1 contains a summary of the modelling elements 
contained in PPML. PPML supports the concept of unique 
stage identifiers and allows for representation of the roles, 
artefacts and tools involved in process work. Additionally, 
PPML allows users to specify different input and output 
states for stages, which helps guide process flow when the 
process is being enacted. Another essential feature of 
PPML is the association of a service with stages. The 
service associated with a stage defines which processing 
instance is responsible for processing the stage’s work 
activities. If no service is specified, a default processing 
instance is used. Finally, PPML offers a separate model 
element with which to model role-actor associations. 

 
Figure 2. A simple IMÅL software process modelled 

using PPML and PPMT. 



Table 1. Core elements of the IMÅL Process Modelling Language. 
Notational 

Symbol 
 

Example 
 

Description 
Notational 

Symbol 
 

Example 
 

Description 

  

 
BaseStage – a basic stage in a 
process that involves work to be 
completed. It has a unique ID, name, 
a description of work involved, the 
role responsible for the work, the 
artefact and tool involved, and 
service responsible for processing 
the stage. 

 
 

 

 
LinkStage – a join of two or more basic 
stages which flow into one other basic stage. 
Can contain the operators AND, OR or XOR. 
An OR operation can also be modelled by 
several connectors into one stage.  More 
complex expressions can be defined which are 
interpreted by the 3rd party Idiom decision 
suite software component. 

 
 

 

 
StartStage – the first stage in a 
process. When a process is started, a 
flow from a start stage into a basic 
stage starts the process enactment.  

 

if(I > 0) 
else

 

 
ChoiceStage – a split of the flow from one 
basic stage into flows to two or more basic 
stages depending on a condition. It contains 
the value of the condition.  

 

 

 

 

 
Flow – a representation of process 
flow. Flows drive the process 
according to the output state of the 
stage it starts from and the input 
state of the stage(s) it ends in. 

  

 
RoleActor – an association between a role 
and the actors that fill this role. It contains the 
name of the role as well as a list of actors 
filling the role. 

 
 

 
 

 
StopStage – the last stage in a 
process. When a flow reaches this 
the process ends. 

 Resource 
Type 

 

 Design 
Visio doc 

 

Resource – a resorce used by a process 
stage/role actor associated with a process 
stage. 

 
Figure 2 shows the result of using IMÅL to model a 

simple software process. This process describes basic steps 
in the update of an existing software program by adding 
new functionality to it. In this model, three stages are 
defined along with associated resources and flow of work 
between stages, as well as role associations for three users. 

5 Example Usage 

We briefly illustrate usage of the IMÅL process 
management system with an example software process. 

5.1 The Pounamu Process Modelling Tool 

Figure 3 shows a screen shot of a process being 
modelled with PPMT. Start and stop stages, three base 
stages and five flows have already been added to the view, 
and the user is about to add a role-actor association. Once 
the user has finished adding role-actor associations, the 
view contains a simple process model and a process engine 
can be used to enact it. The modeller also supports 
multiple model views for each process model allowing 
complex process specifications to be broken into related 
pieces across several diagrams. 

In this example the process modeller has described a 
simple design/code/test/accept process with a loop back to 
the coding process stage from the testing stage. The 

finishing condition for the testing stage is then specified 
which causes the loop back. Various characteristics of each 
stage including role, resources and how the stage is 
enacted are also specified. For example, each stage in this 
example uses the SimpleFlow process engine which 
implements a simple workflow enactment. 
 

 
Figure 3. Process modelling in IMÅL.  

ID  name 
description 

role 
artefact 

tool 
service 
inputs 
outputs 

3  Testing 
test system 

Tester 
test.doc 

MS Word 
simpleflow 

start test 
succeeded 

failed 

operator 
OR 

start name conditi
on

Tester 
 

John 
Therese 

role 
 

actors 

finished name 



5.2 Enacting a Process 

In order for process enactment functionality to be 
enabled, a process engine must be initialised and the user 
must start the process from the start stage drop down 
menu. When this is done, the first stage(s) in the process 
model turns red to indicate that it is ready to be enacted. 
This scenario, with a user about to enact the first stage, is 
depicted in Figure 4. A stage that is currently enacted has 
the colour blue, whereas completed stages turn green. 
Once a process has been enacted, the user can make use of 
the to-do list service to view ongoing information about 
the process. By plugging in a new instance of the engine 
for each process model, IMÅL allows for several processes 
to be enacted concurrently.  

The enacted process state changes each time a stage 
completes, is suspended or terminates. The user can 
directly indicate these state changes via a pop-up menu 
associated with each stage in the Pounamu process 
modelling tool. Alternatively they can interact with a web-
based to-do list. When completing a process stage the 
IMÅL engine determines the next stage(s) to enact based 
on the process model specification and enactment engine 
associated with the process stage. In our current prototype 
most stages use the SimpleFlow engine while some with 
complex rules use the Idiom rules engine. 

 

 
Figure 4. Process enactment in IMÅL. 

5.3 The Web-based To-Do List  

The to-do list is a key part of IMÅL, as it provides 
users with visual process state and progress information as 
well as functionality to directly enact processes. Users may 
use the to-do list to monitor and advance process state, 
without necessarily needing the heavy-weight Pounamu-
implemented PPMT modelling tool. In order to get access 
to the web based to-do list, users point their browser to the 
address of the service, enter username and password and 

select the login button. The username and password are 
checked against a database of users, and if the login is 
valid, users can click a view to-do list button to view 
information about their responsibilities in the process as 
well as overall process information. When a user requests 
information by clicking the view to-do list button, the 
information retrieved is displayed in the browser. Our to-
do list shares the same colour scheme used to show process 
state in the process model in Pounamu. Furthermore, it 
also includes functionality to enact the process model 
directly from the service. Figure 5 shows an example to-do 
list for a simple software update process. The to-do list 
may be configured by the user to refresh the display in the 
web browser periodically. This provides the user with an 
up-to-date overview of the current process state and other 
user activities. 

 
 

 
Figure 5. The IMÅL web-based to-do list. 

5.4 Process Automation with InfoPath and Idiom  

IMÅL provides users with the ability to view and edit 
process-related documents and to specify complex decision 
points in a process. Two existing tools, MS Infopath and 
Idiom Decision Suite, were integrated into IMÅL to 
provide these features. Infopath is an XML based tool in 
the Microsoft Office suite, which enables teams to easily 
gather and share information using rich, dynamic forms 
[14]. An InfoPath server is used to provide data input and 
output via a browser for enacted IMÅL processes. For 
example, Figure 6 (a) shows InfoPath being used to display 
time information for the simple maintenance software 
process. The XML document has been generated by the 
workflow engine and InfoPath invoked to display this 
using an InfoPath form. The user may update the time 



estimate in the InfoPath form, which is then extracted for 
use by the process model’s time monitoring sub-process. 

Idiom is a tool that captures and deploys rule-based 
business decisions [11]. Rather than build a complex, 
custom rules engine for IMÅL we chose to implement a 
simple process flow engine and allow users to specify 
complex rules using Idiom. Thus IMÅL uses idiom to 
provide complex rule-based processing logic for stages, 
and also to automate activities based on rule-based 
decision logic. Idiom was used in the example software 
process scenario to track and process total time spent by 
members of a team on a process, and to trigger actions 
depending on the result of its rules processing. When the 
enactment engine receives an automatic stage for 
processing, it delegates it to the Idiom rules automation 
service. The automation service uses previously specified 
Idiom rules to calculate the total time spent by the team so 
far, compares it against an estimated time for the process, 
and automatically sends an email notification to the 
process manager if the time spent is more than 10% over 
the estimate. Figure 6 (b) shows an example of an 
automatic email notification that has been sent by Idiom as 
a result of processing of an IMÅL automatic stage. 

 
 

 
Figure 6. (a) MS InfoPath displaying a document; and 
(b) an Idiom-generated automatic Email notification. 

6 IMÅL Design and Implementation 

In this section we present the design of the IMÅL 
system with an emphasis on the underlying service-
oriented architecture employed by our prototype.  

6.1 Service-Oriented Architecture 

When developing IMÅL we wanted to experiment with 
the concept of a set of co-operating services to realise a 
complex process modelling and enactment tool with 3rd 
party component integration via services. Depicted in 
Figure 7 is an outline of the service-oriented architecture 
that we have employed for IMÅL. The architecture is 
based on a collection of web services with different 
responsibilities that work together to support process 
modelling, enactment and third-party tool integration. The 
front end of the system is the user interface, which is 
provided either by the process modelling tool or a web 
browser. Further, the user interface is linked to underlying 
system information stored in various repositories via a web 
services layer. The process engine itself consists of a 
collection of web services with different responsibilities. 

 

USER

USER PC

Process Modelling &
Enactment Tool

Process
model in

XML-format
Refresher Service

State Database Service

Process Database Service

Simple Flow Service

XML Parser

SOAP-WAN

SOAP-WAN

SOAP-WAN

Complex Flow Service

Automation Service

Document Flow Service

Other External Services

SOAP-WAN

SOAP-WAN

MAIN PROCESS ENGINE SERVICE

SOAP-WAN

SOAP-WAN

UDDI Registry

USER PC

Web Browser

Login & View To-Do List

SOAP-WAN

SOAP-WAN

To-Do List Service

ToolService

 
Figure 7. Architectural Design of IMÅL. 

 
The following are key components and services that 

make up our service-oriented, distributed process engine: 
• Process Modelling & Enactment Tool – responsible for 

user interaction with the system by allowing for 
modelling and enactment of processes. Additionally, 
this component provides a way to connect to and 
forward the process definition and enactment events to 
the main process engine service. 

• Main Process Engine Service – coordinates process 
enactment using several services. The service uses the 
XML Parser for interpretation of process model 
information. 

• State Database Service – stores information about stage 
state. 

• Process Database Service – stores other process related 
information. 

• Simple Flow Service – enables simple process flow by 
processing enactment events. 



• Complex Flow Service – enables complex process flow 
for enactment events. 

• Refresher Service – stores updates to the user interface 
and process model resulting from the processing of 
enactment events. 

• To-Do List Service – displays to-do lists for users that 
log in to the service. 

• Tool Service – presents the user with third-party tools 
needed to perform work. 

• Automation Service – provides automation of tasks that 
need no user intervention. 

• Document Flow Service – controls the flow of 
documents and artifacts for enactment. 

• Other External Services – includes additional external 
services that the main process engine might 
beneficially make use of, such as awareness and 
collaboration services.  

• UDDI Registry – provides an interface for looking up 
and discovering services. 

6.2 Component Interaction 

The way in which the various IMÅL components 
interact is essential to the quality of the support for 

processes enacted by the system. Figure 8 (a) shows a 
sequence diagram of event flows between different system 
components in a process enactment situation (Figure 3 (b) 
shows the user perception of this scenario). 

Process enactment is initiated by the user enacting a 
stage in a pre-defined process model in Pounamu (1). 
Because the process engine component subscribed to 
process events when it was initialised and plugged into the 
IMÅL architecture, it is notified about the enactment event 
when it occurs (2). The component forwards the event to 
the process engine service (3), which further delegates it to 
the simple flow service for processing (4). During 
processing, the simple flow service updates the state 
database (5) and stores necessary updates to the process 
model and user interface in the refresher service (6-7). 
Finally, Pounamu’s process engine component retrieves 
the updates from the refresher service via the process 
engine service (8-9), and applies them in Pounamu (10-
11). Figure 8 (b) shows important event flows between 
components in a view to-do list scenario. 

Project
Modeller

Process Engine
Component

Process Engine
Service

Simple Flow
Service

USER

1. enactStage()

2. notifyEnactmentEvent()

State Database
Service

5. update()

4. processEnactmentEvent()

Refresher
Service

6. addPMUpdate()

7. addMenuItemUpdates()

3. forwardEnactmentEvent()

8. getGUI&PMUpdates()

10. refreshPM()

11. refreshGUI()

9. getUpdates()

Web
Browser

To-Do List
Service

Process Database
Service

State Database
Service

USER

3. getUserInfo()

2. processRequest()

9. getStateInfo()

4. setMessage()

6. viewTodoList()

1. login()

7. processRequest()

8. getProcessInfo()

10. setMessage()

11. displayTodoList()

{if login
is successful}

5. displayLoginResult()

 
Figure 8. Sequence Diagrams of (a) enacting a Process Model and (b) to-do lists 



The view to-do list scenario starts with a user pointing 
a Web browser to the address of the to-do list service. To 
be able to use the service, the user must supply his/her 
username and password and hit the login button (1). The 
login request is then processed by the to-do list service (2) 
by checking the username and password against a table of 
users in the process database (3). A message is set to 
indicate whether or not the login was successful (4), and 
the result of the login is displayed to the user (5). If the 
login is accepted, the user can choose a view to-do list 
option (6). Again, the request is processed by the to-do list 
service (7). The state and process database services are 
used to retrieve state and process information respectively 
(8-9). Finally, a message is set to indicate that the to-do list 
has been prepared (10), and the web browser displays the 
list to users (11).  

6.3 Implementation  

We used an existing meta-CASE tool, Pounamu, to 
define a visual process modelling tool for IMÅL. Firstly, 
the simple visual PPML, described in Section 4, was 
developed. Our PPMT tool was then constructed using 
Pounamu’s meta-tool capabilities to realise the PPML. 
Pounamu enabled us to define a process modelling 
component for IMÅL that supports multiple views of 
software processes, different view types (process flow, 
resources, roles, document management), persistency of 
models, and distributed, collaborative process modelling. 
The PPML process modelling notation implemented by the 
PPMT tool can be modified by users via the meta-tool to 
change the look and feel of the process modelling 
diagrams while it is in use. 

Pounamu utilises XML as the saving and loading 
format for all model projects. It was therefore natural to 
take advantage of this feature when building the process 
system. Hence, process models modelled using the PPMT 
are stored as XML automatically by Pounamu, and this 
XML save format is used to provide an interchange format 
between IMÅL’s PPMT modelling tool and its process 
state management and enactment services. Pounamu 
provides a full web service-based API allowing it to be 
integrated as the process modelling component of the 
system as well as providing enacted process visualisation. 

Web services are software technologies that support 
interoperable machine-to-machine interaction over a 
network [21, 19]. We chose web services as the technology 
with which to implement the service-oriented process 
engine of IMÅL. Advantages of web services include 
language and platform independency and good 
compatibility with commonly available XML management 
tools and standards. The IMÅL process enactment engine 
is built up of a collection of web services. A main service 
is responsible for coordination between all the smaller 
components of the enactment engine. Each service can run 

on a separate machine and be replicated, producing a 
highly distributed, scalable and robust environment. 
However, though the components are separate distributed 
web services, instances of each are all needed in order for 
the process engine to work properly as a whole. 
Communication between the services is facilitated by 
SOAP messages.  

Services included in the current version of our IMÅL 
prototype are the main process engine service, state and 
process database services, simple flow service, refresher 
service, tool service, automation service and to-do list 
service. They were all implemented using Java and the 
Java Web Services Developer Pack (JWSDP). We used 
relational databases (SQL Server) as the storage facilities 
for the process engine state and user management services. 
These could be replaced straightforwardly by services 
using e.g. JDO, XML or object database technology, or 
LDAP server for user authentication. 

We chose the Java Server Pages (JSP) technology to 
implement the to-do list as it is a thin-client technology 
providing platform independence and dynamic web pages.  
Our to-do list JSP embeds Java processing code within 
HTML code and accesses data from server-side 
components. When the page is displayed in a web browser, 
both the static presentation code and the dynamic content 
are displayed. Figure 9 shows how data access is achieved 
from the JSP page.  

To-Do List 
Service 

State 
Database 
Service 

Process 
Database 
Service 

 
To-Do List 

JSP 

Browsers on 
user PCs 

 
Figure 9. To-do list JSP and process state services. 

  
MS InfoPath was used as our user interface realisation 

tool as it supports XML display and capture via web forms 
and a web service API. InfoPath was integrated via a tool 
initialisation service, which automatically starts up tools 
the users need to perform work on stages. The InfoPath 
instance is used to display pre-existing XML documents as 
web forms for users to view and modify, with the IMÅL 
process engine extracting document content from the XML 
for use in decision-making for the workflow. XML 
documents can also be generated by the workflow engine 
from process state and other document information and 
InfoPath forms are used to display this information to 
users. 

The Idiom rule engine was integrated into the IMÅL 
architecture to provide a complex rules engine service. 



IMÅL passes Idiom parameters from the IMÅL state and 
process database services and the Idiom rule engine service 
uses its rule base to process these. Results are returned to 
IMÅL for use in process decision making and display of 
information via InfoPath forms. Idiom may also invoke 
other third-party tools as a result of rule processing, such 
as email, messaging, spreadsheet or databases. 

7 Evaluation 

We have carried out three evaluations of our prototype 
IMÅL process management tool. One involved a group of 
users designing and enacting simple software processes 
collaboratively with IMÅL and completing a questionnaire 
with a set of closed and open responses. The second 
involved a Cognitive Dimensions assessment IMÅL’s 
visual process modelling language to identify its strengths 
and weaknesses. The third was a performance evaluation 
of IMÅL under heavy loading. 

A group of eight people evaluated IMÅL by carrying 
out a set of process modelling and enactment tasks relating 
to maintenance of a software system. Half of the 
participants were experienced with process modelling tools 
and half had used the Pounamu meta-tool’s user interface 
before. The participants firstly reviewed and made small 
changes to a maintenance-oriented software process 
model. Some changes were made individually, some 
collaboratively via IMÅL with other users. They then 
enacted a process model and used this to coordinate work 
making small changes to an open source software 
application. Coordination activities included check-in and 
check-out of designs and code, email messages informing 
users of document changes and test results, and final 
agreement on completion of the process tasks. The survey 
demonstrated that our proof-of-concept IMÅL prototype 
using a service-oriented architecture and the functionality 
it offers were regarded favourably by users. Particularly, 
the feedback on the usability of the system was positive. 
There were no perceived performance or reliability 
problems with the tool, though only a small number of 
people were concurrently using it in our experiments.  

Problems with our prototype included limited process 
enactment support via the “simple flow” engine, 
necessitating use of the Idiom rules engine design tool for 
more complex process flow decisions. Tailoring the 
process modelling notation requires use of the Pounamu 
meta-tool and this currently provides limited control over 
“safe” modifications for end users. It turned out to be easy 
for end users to break the process modelling tool when 
making changes via the meta-tool. 

To follow up our user survey a cognitive dimensions 
evaluation was undertaken of the IMÅL modelling 
language. The Cognitive Dimensions (CD) framework was 
first introduced by Thomas Green in 1989 [8].  It provides 
a set of discussion tools for evaluating notations and 

information artefacts. We examined 14 characteristics of 
the modelling language including its appropriateness of 
mapping to the process modelling domain, support for 
multiple views and representation of dependencies, the 
tool’s support for changing models, expressiveness of the 
notation and error-correction support in the tool. The 
IMÅL tool beneficially provides good closeness of 
mapping, high consistency and few hard mental operations 
for users. However the modelling functionality of the tool 
is reasonably error-prone and there is currently insufficient 
visibility and juxtaposability of models. Models are not 
viscous, i.e. it is easy to change them but the tool currently 
provides very limited validation of a model before 
enactment by the engine. 

One concern often expressed with web services 
technologies and service-oriented architectures is their 
performance under heavy loading. IMÅL uses a 
comparatively large number of independent components, 
each modelled and realised as a web service, that are often 
combined into a single process engine instance in most 
other process management tools [22, 9]. For example, 
model representation, enacted model state, to-do list and 
user logon information are all potentially distributed 
services in IMÅL. Our current implementation of these 
services requires web service invocations between modules 
even if they are deployed on the same machine. We carried 
out a performance test of IMÅL distributing these services 
over multiple machines on a local area network, then ran a 
large number of process enactment events and assessed the 
number of operations supported by our distributed, service-
oriented architecture. Our IMÅL prototype will 
comfortably support over 100 concurrent users assuming 
one enactment event per second per user, with associated 
communication between the various process enactment 
services. Response time per user from the to-do list and 
Pounamu visual process modelling tool is well under a 
second in this scenario. However, automated tasks in the 
process model will significantly reduce throughput of the 
enactment engine if inter-service communication is 
required. For example, complex rule evaluation by the 
Idiom rules engine, form rendering by InfoPath and 
database or CVS operations may adversely impact other 
IMÅL services in unpredictable ways, depending on their 
deployment scenario. 

Several areas for future improvement of IMÅL exist. 
We currently do not have replicated instances of each 
service to support fault-tolerance and load-balancing for 
scalability. These are straightforward to add, but further 
performance analysis of the architecture is required to 
identify bottlenecks in communication and processing for 
each service, to identify correct replication and optimal 
deployment of service instances. We have to date only 
implemented one version of each engine service type 
(simple and Idiom-based automatic) one notification 
service interface (email) and one existing third-party 



product integration (InfoPath). Adding alternative services 
that provide the same interface but different 
implementation would enable us to better investigate 
IMÅL’s service generality and further improve this. Using 
other existing services e.g. user authentication, event 
notification services, and version control like CVS, would 
further demonstrate the benefits of the service-oriented 
architecture we have employed.  

8 Summary  

We have developed the IMÅL service-oriented process 
support environment. This offers functionality to model 
work processes as well as computerised support for 
enactment of the resulting process models. In order to 
enable process modelling and user interaction with the 
process system, the Pounamu meta-CASE tool was used to 
build a domain-specific process modelling environment. 
Further, a distributed and service-oriented process 
enactment engine was implemented as a collection of web 
services. This engine can be used to instantiate a process 
model generated by Pounamu at runtime, and provides the 
user with ongoing process enactment support throughout 
the process. Additionally, users can access information 
about the process state and tasks they are responsible for 
via a web based to-do list service. Task automation is 
supported by “automatic” stages whose decision logic is 
implemented by the Idiom rules engine acting as a service. 
Document management is provided by the Microsoft 
InfoPath tool as a web service. Evaluation of the IMÅL 
prototype has shown its process modelling and enactment 
support are usable and that its performance is acceptable 
for a moderately large number of concurrent users. Various 
potential enhancements include service replication for 
scalability and fault-tolerance, further third-party service 
integration, and supporting multiple, alternate services 
from different vendors for the same functionality. 
 
References 
 
1. Bandinelli, S.C., Di Nitto, D. and Fuggetta, A., Supporting 

Cooperation in the SPADE-1 Environment, IEEE 
Transactions of Soft. Eng., vol. 22, pp. 841-865, 1996. 

2. Bandinelli, S. C., Fuggetta, A. and Ghezzi, C. Software 
Process Model Evolution in the SPADE Environment, IEEE 
Transactions of Soft. Eng., vol. 19, pp. 1128-1144, 1993. 

3. Ben-Shaul, Z. and Kaiser, G.E. A Paradigm for Decentralized 
Process Modelling and its Realization in the Oz Environment, 
16th Int. Conf. Soft. Eng., Sorrento - Italy, 1994, IEEE. 

4. Cardoso, J.   Sheth, A.   Semantic Web processes: semantics 
enabled annotation, discovery, composition and orchestration 
of Web scale processes, In Proceedings of the 4th Int. Conf. 
on Web Information Systems Engineering, Rome, Italy, 10-
12 Dec 2003, IEEE. 

5. Fakasa,  G.J., Karakostas, B. A peer to peer architecture for 
dynamic workflow management, Information & Software 
Technology, vol. 46, no. 6, May 2004, Elsevier, pp.423-31. 

6. Fernström, C., Process Weaver: Adding Process Support to 
Unix, presented at 2nd Int. Conf. on the Software Process, 
Berlin - Germany, 1993. 

7. Filho, R., Wainer, J., Madeira, E., Ellis, C. CORBA based 
architecture for large scale workflow, In Proceedings of the  
Fourth Int. Sym. on Autonomous Decentralized Systems, 
Tokyo, Japan, March 20 - 23, 1999, IEEE CS Press. 

8. Green, T. R. G.  Cognitive Dimensions of Notations, in 
People and Computers V, A. Sutcliffe and L. Macaulay, Eds. 
Cambridge - UK: Cambridge University Press, 1989, pp. 443-
460. 

9. Grundy, J.C. Apperley, M.D., Hosking, J.G., and Mugridge, 
W.B., A Decentralized Architecture for Software Process 
Modelling and Enactment, Internet Computing, Vol. 2, 1998. 

10. Grundy. J. C.  and Hosking, J. G. , Serendipity: Integrated 
Environment Support for Process Modelling, Enactment and 
Work Coordination, Automated Soft. Eng., vol. 5, pp. 27-60, 
1998. 

11. Idiom Software Ltd, Idiom, 2001. 
12. Jaccheri, M.L. Larsen, J.O. and Conradi, R. Software Process 

Modelling and Evolution in EPOS, presented at 4th Int. Conf. 
on Soft. Eng. and Knowledge Eng., Capri, Italy, 1992. 

13. McPherson, S. JavaServer Pages: A Developer's Perspective, 
April 2000. 

14. Microsoft, Microsoft Office Infopath Product Guide, March 
10 2003. 

15. Miller, J.A., Sheth, A.P, Kochut, K.J., Wang, X.  CORBA-
Based Run-Time Architectures for Workflow Management 
Systems, Journal of Database Management, vol. 7, no. 1, 
1996, 16-27. 

16. Shen, J., Yang, Y. Zhu, C., Wan, C. From BPEL4WS to 
OWL-S: Integrating E-Business Process Descriptions, 2005 
IEEE Int. Conf. on Services Computing, Orlando, USA, July 
2005. 

17. Sun Microsystems, Developing XML Solutions with 
JavaServer Pages Technology, 2003. 

18. Swenson, K.D., A Business Process Environment Supporting 
Collaborative Planning, Journal of Collaborative Computing, 
vol. 1, pp. 15-34, 1994. 

19. Systinet Corporation, Introduction to Web Services, 
Cambridge, Massachussetts, USA 2003. 

20. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, 
A.H.M. Analysis of Web services composition languages: the 
case of BPEL4WS, In Proceedings of 22nd Int. Conf. on 
Conceptual Modelling, LNCS 2813, Springer-Verlag 2003, 
pp.200-215. 

21. W3C, Web Services Glossary, August 2003. 
22. Yan, J., Yang, Y., and Raikundalia, G.K., SwinDeW - A 

Peer-to-peer based Decentralised Workflow Management 
System, to appear in IEEE Trans. on Systems, Man and 
Cybernetics. 

23. Zhu, N., Grundy, J.C. and Hosking, J.G. Constructing 
domain-specific design tools with a visual language meta-
tool, CAiSE 2005 Forum, Portugul, June 2005, Springer. 

 




