
Copyright 2004 IEEE. Published in Proceedings of ASWEC 2004, April 15-16 2004, Melbourne, Australia. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager,
Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 732-562-3966.

Reciprocity: an Integrated, Continuous Approach to Software Training Authoring,
Delivery and Monitoring

April Nixon1 and John Grundy1,2

Department of Computer Science1 and Department of Electrical and Computer Engineering2,
University of Auckland, Private Bag 92019, Auckland, New Zealand

john-g@cs.auckland.ac.nz

Abstract

Providing software developers with suitable on-line
training support for the tools they use is challenging. We
describe Reciprocity, a tool we have developed to support
on-line software tool tutorial authoring and usage.
Reciprocity supports distributed tutorial construction and
viewing, tailored user adaptation, and provides continuous
feedback to tutorial authors on the use of their training
materials. We illustrate the use of Reciprocity for the
construction and use of a tutorial for a domain-specific
health data mapping specification tool. We describe our
tool’s architecture and implementation and report on three
evaluations we have carried out to measure its
effectiveness.

1. Introduction

Learning to use new computer software is a challenging
task for end users but also for software engineers, in terms
of the different software development tools they need to
learn [18, 12]. Computer-assisted instruction in general can
be defined as the use of computers as a medium for
delivering instruction. Much research has been carried out
in this area, which has seen the development of both
research and commercial systems for authoring and
delivering computer-assisted instruction, both generic and
for specific domains [7, 10, 11]. To date, there has been a
limited amount of research into providing software
development organizations with tools to support
appropriate software training material construction and
usage.

Much research has been done in the domain of
Computer-Assisted Instruction, where a computer
application is taught by means of related computer learning
applications [4, 10]. Much of this research has to date been
focused on learning environments for algorithms, theories
and specific course material [18]. Some limited work has
been done on delivering instructional material for computer
applications [11, 10]. However, most computer
applications continue to be delivered with paper manuals,
PDF documents or limited on-line help facilities. These

approaches suffer from inconsistent structure and content
by multiple authors, lack of feedback to authors from users,
difficulty in delivering updated instructional materials to
users, and a one-size-fits-all approach to the training
material.

In this paper we present a prototype environment for
the authoring and delivery of computer-assisted instruction
within the domain of software training. Our focus within
this area is to test the concept of an integrated authoring
and delivery environment focused specifically at software
development organisations, which supports continuous
service provision and continuous improvement through
iteration, real time delivery and reciprocal feedback
between learners and authors. To this end we have
developed Reciprocity, a software tool tutorial authoring
and viewing environment. Reciprocity provides support for
distributed software tool tutorial authoring, multi-user
tutorial on-line access, and continuous feedback to tutorial
authors. The aim of this tool is to enable training materials
for software tools to be more easily authored and delivered
to users remotely, and user feedback and usage statistics on
the training material collected and delivered remotely back
to authors. Our goal is to support a continuous cycle of
training material delivery, usage, feedback and revision,
leading to higher quality training material provision and
improved learning outcomes for tool users.

We first provide a motivation for this research from a
local Health IT software tool development organization.
This company’s in-house training group wanted to provide
users of their company’s software tools an improved on-
line tutorial service, and wanted for themselves a better
tutorial authoring and usage monitoring system. We review
related research in this area and how well these existing
tools suit the needs of training material authors. We then
show how tutorials are authored in our Reciprocity
environment, illustrate how these tutorials are used, and
describe how authors gain feedback on tutorial usage. We
describe the distributed system architecture and
implementation of our tool and report on three evaluations
of our tool’s effectiveness. We conclude with a summary
of the contributions of this research and directions for
future research.

2. Motivation

With increased use of computers and software in more
occupations and the increasingly business-critical nature of
this software, it is important that users receive sufficient
training. Orion Systems Ltd (www.orion.co.nz) is a
developer of software applications for the health industry.
Many of these applications are targeted towards health
system developers and integrators i.e. these are domain-
specific software tools whose end users and software
engineers. One such example is the Symphonia Messaging
Toolkit environment, a software tool for the specification
of complex data transformations between one health
message and another [1]. Orion Systems has an in-house
training group responsible for authoring user guides and
tutorials for systems such as Symphonia Messaging
Toolkit. This team has assembled manual-style
documentation and product usage examples, distributed as
multiple PDF files with the product.

This approach has a number of limitations, such as
large documents to browse, one-size-fits-all tutorials, and
the difficulty of updating and extending tutorials and
redistributing them to users. The need for a more advanced,
learner-centred and timely software training and assistance
mechanism was recognised. To this end we explored the
development of a task-oriented software training system
through a tool to support integrated tutorial building,
delivery and monitoring. We then looked at abstracting an
improved service model, moving from the current single
distribution of a paper-based training manual to a model of
continuous service of dynamic training material for
Symphonia Messaging Toolkit end users.

Computer assisted instruction, also known as CAI, can
be defined as the use of computers as a medium for
delivering instruction, and is analogous to computer-based
training [4, 16]. Various systems have been developed to
support the training of learners of computer software. The
SIMPLE environment [10] provides a computer-assisted
learning environment by composing multiple existing
applications via visual programming techniques. User
activity is logged for later playback to instructors to assist
in understanding their learning. Tutorials need to be
delivered to a student’s computer to be used. RIDES [11]
provides an environment for building lessons from
graphical rules. When building a lesson using RIDES an
author can 'record' a procedure that students must learn in a
way similar to recording a macro, simply by carrying out
the procedure. Students may then carry out the sequence of
actions that constitute the task and receive meaningful
feedback on the correctness of their actions. Algorithm
animation software [2, 8] has been used for many years to
help teach learners about computer algorithm behaviour via
interaction participation. Interactive illustrations and
animations [7, 18] have been used and found to be a very
effective means of self-tutoring in a number of computer-

assisted learning environments. Web-based software
training has become a common approach to providing
distributed tutorial material, especially for tertiary distance
learning and the corporate training sector [3]. On-line
software tutorials have also been tried for software
instruction, though seldom for software development tools
to date [5, 6]. Most on-line training does not provide
feedback to training authors on usage, though many
support messaging tools for user questions to experts.
Knowledge-based tutors offer another approach to
computer-aided instruction [12, 14]. These utilise
knowledge of the problem domain, user profile and context
in which a software application is to be used to provide
more appropriate, context-dependent learning approaches.
The main difference between traditional CAI systems and
Intelligent Tutoring Systems is the representation of
content. In CAI, content is generally designed using a
‘storyboard’ paradigm, where screens are designed and all
possible navigations between these screens are mapped.
Although navigation may be non-linear in structure, it is
still pre-defined. In ITS’s, content is kept separate from the
specification of how and when content is presented to the
student, allowing multiple use and reuse of content.

In general, most existing CAI approaches focus on
localised training programme authoring and subsequent
deliver to users’ PCs for interaction. There is often a
considerable delay in modifying materials and delivering
them to users, as with traditional training material delivery
via hard copy, Word, PDF and HTML help documents.
Web-based training delivery software overcomes this
delivery problem but typically does not address the issue of
giving feedback to tutorial authors, either implicit usage
statistics or explicit tutorial user feedback. Architecturally,
a pure web-based delivery system is prone to network
failure or slow network performance impacting on the
tutorial user’s experience i.e. the server hosting the tutorial
materials failing or being overloaded by simultaneous
requests. Customisation of training materials to a particular
user profile may also be limited. A web-based delivery
system may not be well-integrated with the target software
tool for which it is being used to supply training materials.

3. Outline of Our Approach

Interviews with Orion System’s training and support
team staff indicated that the current approach they used to
supporting Orion’s software tool products suffered from
several key deficiencies. Authors typically build tutorial
material and distribute it as a once-off release with each
software product version. Much tutorial material is not
integrated with the product as on-line help but rather in
stand-along printed manuals of PDF viewer documents.
Often authors would structure material differently and
inconsistently and much of the material was not focused on
learner tasks but rather the software tool features. It was

very difficult for training material authors to evaluate the
effectiveness and usability of their tutorials and to respond
proactively to different learners’ needs.

From these interviews and discussions, we identified
the key aims of this work as:
• providing training authors with an environment

specifically targeted at producing and maintaining
their software tool training materials

• providing a distributed delivery mechanism whereby
updates to training material is automatically distributed
to all users

• ensuring that users of software training material have
up-to-date materials relevant to their own user profiles
and software tool training needs

• capturing usage statistics (implicit feedback) and user
comments and suggestions (explicit feedback) in a
context-aware fashion

• automatically providing this feedback to training
material authors so they can use it to proactively
enhance their training material

This lead us to the conceptualisation of training

material delivery as a “continuous service model” i.e. a
cyclical process of authoring->using->feedback->revision.
By modelling the provision of software training as a
continuous service of dynamic material rather than as a
one-off delivery of e.g. a static training manual, we aimed
to provide training authors with a much improved
environment specifically targeted at producing and
maintaining software training material. Key goals of this
environment were to:
• reduce the time required to author, update and

distribute training material
• make the authoring process more integrated, more

user-friendly and the structure and appearance of the
material more consistent

• ensure timely delivery of updated training materials to
users and feedback from users to authors

The addition of end user tutorial usage and testing
reporting, and an open communication channel between
authors and learners, aimed to discover if this type of
information is useful input into the iterative refinement and
evolution of software tool training material.

Figure 1 shows an outline of the process of using our
Reciprocity on-line tutorial authoring and viewing
environment. A training support person authors tutorials
using our tutorial authoring program (1). This includes
tutorial structure, text and graphic content, animation,
target software instruction, and import of material from
other authoring systems. This training material is stored in
a authoring database (2), from which it is accessed by
tutorial viewing programs. Material can be accessed on-
line or the database partially replicated by viewers.
Software tool users (“learners”) access the tutorials as they
require (3), choosing between novice or expert tutorials,
tutorials focused on particular tasks, or context-sensitive
tutorials as they require. Learners supply information about
their training needs and feedback on how helpful they find
parts of tutorials, and the viewing program captures usage
statistics for each part of a tutorial (4). This learner profile,
feedback and usage information is captured in the
Reciprocity database (5). As tutorial authors review their
material, this information is retrieved for the parts of the
tutorial in question (6). The information is presented in-
context associated with the tutorial elements in the
authoring program (7), and is used to refine the tutorial and
respond to the learner feedback.

In the following sections we illustrate the use of
Reciprocity for authoring and using parts of our
Symphonia Messaging Toolkit tutorials. We then describe
key aspects of its architecture and design required to
achieve our continuous service model for training material
delivery. We report on evaluations of these tutorials by
novice and expert users of the software, and then
summarise a comparison of its support features against
assessment criteria from software instruction literature.

 1. Support tutorial

designs

Author

7. Present user
profiles, usage
and feedback

2. Support
tutorial
designs

Authoring
program

Viewing
program

6. Query user
profiles, usage
and user
feedback

3. Using support
service tutorials

4. User profile and
course usage and
review information

5. Store user profile,
course reviews and
usage information Shared

Tutorials

Figure 1. Overview of the Reciprocity on-line tutorial system.

4. Tutorial Authoring

A training tutorial in Reciprocity is organised into
Courses, each course having one or more Lessons. Each
lesson has a set of subjects making up the lesson that can
be viewed in sequence or as required from a lesson index.
Each subject has a number of pages and each page contains
content such as text, graphics, animations (sequences of
pages that can be played), and software tool playback
instructions. Each lesson may have specified usage criteria
whose statistics the Reciprocity viewer collects as the
lesson is used.

Figure 2 shows examples of the authoring tool in use
when developing parts of a lesson for the Symphonia
Message Toolkit. The authoring tool provides a toolbar for
manipulating lesson construction (1) and a tree-based
organization of courses and lesson content (2). The content
of a selected page is displayed in the page editor (3), in this
example containing title, explanatory text and example
graphic. Pages have multiple layers of content that may be
manipulated to arrange the content (4, 5). Graphics are
imported from other tools and a range of formats are
supported for playback in the viewer. Examples include
bitmap screen dumps, GIF, TIF and JPEG images, PDF,
and Flash. This allows authors to use sophisticated content
design tools and import their material into Reciprocity
tutorials.

One feature of on-line training found to be of particular
use for learners in other studies [10, 11] are animations of
example scenarios of software applications in use.
Reciprocity provides an animation definer (6), allowing the
tutorial author to create sequences of animated examples
and explanation of software application usage. In this
example a step-by-step sequence of the installation wizard
for Symphonia is captured, along with example input data
from the user, example output from the Wizard and
explanation of each step in the animation of using the
Wizard. The author captures these example tool screen
shots as they use the subject software tool. The learner may
step through the animation in sequence, may look at
specific steps as they require, or ask Reciprocity to show
then the things they need to do when using the target
software. The author specifies expected leaner input
(mouse click, keystrokes etc) required to advance the
animation, which can be used to provide a “simulation” of
the target software in use.

Depending on the way the Reciprocity tutorial viewer is
integrated with the target software application, such
animations may also be used to drive the application itself,
having the authoring tool capture interaction events with
the target application. When the lesson containing the
animation is used from within the target application, the
events were then replayed in the target application giving
the learner a “live” animation.

(1)

(2)
(3)

(4)

(5)

(7)

(6)

Figure 2. Examples of tutorial authoring in Reciprocity.

Finally, the author can specify a range of monitoring
and feedback criteria for parts of a lesson, as shown in (7).
This allows the Reciprocity viewer to capture particular
requested usage characteristics and the learner can
subjectively rate various characteristics. This captured
information can then be viewed by the author when
reviewing and revising the lessons.

5. Lesson Usage and Monitoring

Packaged courses can be accessed by a viewer
organised in two fundamental ways: a separate tutorial
viewer application or an integrated component within the
target application. We initially built a stand-alone
Reciprocity tutorial viewer as a Java application, allowing
any software tool tutorial to be authored and viewed. We
briefly experimented with a web-based viewer client, to
avoid the need for a learner to install a separate viewer
application, but this provided much less sophisticated
interaction and playback facilities. An integrated viewer,
where the viewer forms a component of the target software

application itself, is also possible. In this section we
describe our stand-alone Java application viewer as it has
the most sophisticated functionality.

Figure 3 shows an example of a tutorial from the

Symphonia course being used by a software developer
wanting to learn to use this tool. When a learner logs into
the Reciprocity viewer, they are presented with a list of
learner-specific available courses (1). Highlighting
indicates which course lessons have been completed,
partially completed or not yet used (2). A list of lesson
content is shown in a tree structure similar to the authoring
program (3), and content in a viewing panel (4). Subjects
and pages can be accessed from the tree view or stepped
through, as can animations and recorded interaction event
sequences (5). The viewer allows the learner to provide
closed and open question feedback to the tutorial author on
various characteristics (6). An integrated, context-
dependent mail tool supports messaging between tutorial
authors and learners, automatically capturing the context of
the messages (7).

(1)

(2)

(5)

(3)

(4)

(7)

(6)

Figure 3. Example of using a Reciprocity tutorial.

(1)

(2)

(3)

Figure 4. Viewing tutorial usage statistics and feedback.

Learner feedback and usage statistics can be viewed by
the author of a course or lesson, as shown in Figure 4 (1).
These allow the author to determine when and how tutorial
parts have been used, and to interpret learner responses to
their courses. The lesson author specifies feedback they
would like learners to give them, which might include how
helpful a lesson or part of a lesson has been, what
information was easy/hard to use, what information is
missing and so on. Closed answer responses e.g. “rate on
scale of 1-5…” are summarised, while open-answer
responses can be browsed anonymously. The author can
specify a range of usage statistics for Reciprocity to collect
as lessons are used, and these include number of accesses
to a course/lesson/subject, distinct learners accessing a
course/lesson/subject, and time spent viewing course
components. The author may correspond with individual
course learners, using a similar integrated, context-aware
mail tool as shown in Figure 3, or may broadcast messages
to selected learner groups, as shown in Figure 4 (3).

6. Design and Implementation

In this section we describe the architecture and
implementation of our prototype Reciprocity on-line
software training environment. We needed a distributed
environment that allows multiple tutorial authors to build
up training materials incrementally, storing them in a
shared repository. Users access the training material

repository as required. We needed to ensure that down-time
of the repository would not unduly impact on users, so
local user PC caching of training material would need to be
supported when required. In addition, users may want to
access the materials via a stand-alone viewer program, a
web browser or an integrated viewer built into their target
software tool for which they are receiving training. Both
implicit and explicit usage information and user feedback
are required which must be captured by the user’s
Reciprocity viewer and fed back to the tutorial author, in
the context of the tutorial components being
used/commented upon.

Figure 5 shows the main architectural abstractions that
make up our Reciprocity prototype. The course authoring
client allows the user to create, modify and analyse the
content of various courses. It stores all tutorial materials in
a shared repository and provides the author with usage
statistics and user feednback on tutorial components. It also
includes facilities for constructing animations of the target
software application being used, which can be replayed by
the tutorial users. We also prototyped an extension to this
authoring tool that captured basic interaction events from a
Java software application which were recorded for replay
by learners. This was to demonstrate our architecture could
be used to capture and replay actual software tool
interaction events if desired.

Author

Client

GUIs

Remote

Author

Server IF

Remote

Author

Client IF

Author

Server
Master
Server

Client Side Server Side

Course Designs

Database

Data

Manager

Remote

Learner

Client IF

Learner

Server

Learner

Client

GUIs

Remote

Learner

Server IF

Target Software

Application

Target Software

Application
http(s)

http(s)

sql

Tcp/ip

bitmaps,
events

events cache

Figure 5. Architecture of Reciprocity.

All course material is stored in a remote repository,
accessed by an authoring server. We used a textual http
protocol to support author and viewer client interaction
with the server, supporting various lesson content
distribution and allowing corporate firewalls to be crossed.
The author server, which can potentially be replicated and
distributed to support large numbers of authors, connects to
a master server that provides data storage and retrieval
support. A learner server, which again may be replicated
and distributed to support a large learner base, provides
similar access to the shared course data. The author server
can manipulate course data owned by each author, while
the learner server can only read data made accessible to
each learner and add messages, usage data and learner
feedback.

The learner client provides access to the course content,
tailored to each learner’s needs. A subset of the total
number of courses and lessons available is accessible to
each learner, and usage history of each is captured for each
learner. In addition, each learners feedback on a course’s
content and their messages related to course content are
recorded. An integrated email messaging tool was used to
support direct communication with tutorial authors as well
as to associate user “comments” with tutorial content.

The learner client may cache parts of the tutorial
content to reduce the need to continually download images
and animations, and to allow the courses to be used if the
learner server should become inaccessible temporarily.
This becomes important when a large number of users may
otherwise simultaneously access the server, causing
response delays. We also developed a prototype event
replay facility to demonstrate the target software tool could
be driven by the learner client to provide a “live”

animation. In this scenario, events captured by the tutorial
author using the target application can be replayed by the
tutorial user to see their version of the application driven,
producing the live animation.

We implemented our Reciprocity prototype using Java
applications for the Author and Leaner Clients, Author and
Learner servers and Master server. An http protocol is used
by the clients to access the Author and Leaner servers, and
a custom textual protocol was used to access the Master
server functionality. For our prototype we used a Microsoft
Access 2000™ relational database to store course content.
We used only standard SQL constructs and a more
sophisticated database, such as SQL Server™, could be
used. We used Swing GUI components to provide the
Author and Leaner Client interfaces. A simple web-based
viewer was prototyped to experiment with web-based
delivery but we found this lacked the interaction support
we desired for Learners. The Learner Client was added to a
simple Java application to support simple interaction event
capture and playback to demonstrate this is feasible with
our approach.

7. Evaluation

We have carried out three evaluations of our
Reciprocity prototype: two surveys of users of the
environment and one qualitative evaluation using two
heuristic approaches, one focusing on the integration of
learning and usability when evaluating educational
multimedia software [Squires 99], and the other on general
software usability [Nielsen 94]. Our aim was to gauge the
degree of assistance to novices in the first evaluation and to
get expert feedback from experienced training material

authors at Orion Systems in the second survey. The
qualitative evaluation assessed Reciprocities usability
against general criteria and its support for learning against
instructional software assessment criteria.

For the first survey, we used a group of novice
Symphonia users, staff and graduate students from the
University of Auckland. The aim of this survey was to
simply gauge the suitability of the environment’s facilities
for general software training support. For the second
survey, we used staff from Orion Systems and a
comprehensive set of Symphonia lessons. Some Orion staff
were experienced users of the tool, including their training
support team, typical of our intended course authors.
Others had not used it and were representative of the target
software developers (i.e. our target tutorial users) for who
the message mapping toolkit was designed. The aim of this
second survey was to gauge the suitability of the tool for
novice to expert users in the target domain, both trainers
(“authors”) and programmers (“users”). Both Authoring
and Learner clients were used in both surveys and users
carried out lesson authoring and learning tasks then
completed a post-task questionnaire.

In the first survey we had the user group rate the
usefulness and importance as well as experienced usability
of the Author and Learner client programs. On the whole,
all features of the current prototype tools rated very well. A
number of key authoring tool features that were desired or
that users felt required enhancement were identified. These
included support for more flexible overviews of content
and storyboards, hyperlinks between course elements and
improved graphical reporting of course rating and usage
statistics. Viewer features that were identified as needing
improvement included supporting wider range of content,
target application integration and addition of ability to sit a
test of learned material. In our second survey, the current
prototype course structuring and page layout specification
features were rated rather lower and experienced training
material authors used to high quality authoring tools
suggested these required some improvement. Hyperlinks,
improved media support (sound, video) and the ability to
create tests for Learners were all also rated as highly
desired features to add to the tool. For the Learner client,
improvements to navigation support and media support
were the key features desired by the Symphonia Messaging
Toolkit programmers using Reciprocity to learn how to use
this tool.

We carried out a further evaluation of our Reciprocity
prototype by employing a qualitative evaluation of the
environment using two sets of evaluation criteria. The first
a set of heuristics we used [Squires 99] focus on the
integration of learning and usability when evaluating
educational multimedia software. These criteria include
assessing the appropriateness of the complexity of the
multimedia used, learner activity when using the tutorial,
use of fantasy in the tutorial metaphors, software
navigatability, and learner feedback, motivation and

control. The second set of heuristics [Nielsen 94] provide a
more general evaluation the usability of software
applications. These include measures such as visibility of
system status, match between the system and the real
world, user control and freedom, consistency and use of
standards, error prevention and recovery support, and
flexibility and efficiency of use.

Our qualitative evaluation found that, using Squires’
learning assessment criteria, the environment supports
integrated learning and usability well. Key advantages
include encouraging active users, appropriate use of multi-
media, simple navigation and supporting learner feedback
to authors. Areas for improvement include more flexible
navigation support, allowing learners to “try again” during
animated demonstrations if they make a mistake, and
provision of a testing facility for learners to gauge their
progress. These results concurred with the feedback from
the survey of Orion’s training team members and further
discussions with team members. From our general usability
criteria assessment, the tool provides a good match
between real world and system concepts (by using
terminology from paper-based manuals), good user control,
enforces consistency of structure of tutorials, and uses
simple and clear designs for authoring and viewing
interfaces. Areas for improvement include error prevention,
undo/redo of actions, and improved flexibility of
navigation between parts of tutorials. Integration of the
viewer and target software tool may also improve aspects
of tutorial usage for the user.

We are planning to investigate ways to integrate
Reciprocity with other applications to support better
capture and reply of actions. We plan to use web service-
based technologies to support remote application
interaction to achieve this, and are planning to integrate the
viewer with a meta-CASE tool we are developing using
this approach. The addition of a self-test facility [9] to
enable learners to gauge their progress and potentially to
allow authors to view summarised test results for a group
of learners is a facility our evaluations suggest could
greatly enhance Reciprocity’s support for learning.

8. Summary

We have described a new on-line training material
authoring and viewing environment, Reciprocity. This tool
supports the creation and evolution of training materials for
software applications and multi-user distributed access to
this material. Learner profiles allow tailoring of tutorial
materials to different groups and individuals, and feedback
to authors from learners includes both explicit ratings,
messaging and usage statistics. Evaluation of a prototype of
Reciprocity used to support a Health IT software provider’s
message toolkit application tutorials has demonstrated the
tool provides useful support for continuous software
training material update, distribution and usage.

Acknowledgements

The assistance of Orion Systems Ltd in supporting this
research is gratefully acknowledged, particularly the
involvement of Dave Brewerton in acting as mentor for the
project. April Nixon was supported by a Technology in
Industry Fellowship from Technology New Zealand.

References

1. Brewerton, D. Symphonia 3 Training Manual, Orion
Systems New Zealand Limited, www.orion.co.nz,
2001.

2. Byrne, M., Catrambone, R. and Stasko, J.., Evaluating
Animations as Student Aids in Learning Computer
Algorithms, Computers & Education, Vol. 33, No. 4,
1999, pp. 253-278.

3. Coppola, N. W., Myre, R. Corporate software training:
is Web-based training as effective as instructor-led
training? IEEE Transactions on Professional
Communication, vol. 45, no.3, Sept. 2002, pp.170-86.

4. Demetry, J.S., Black, B., Voltmer, D., Nahvi, M.,
Jones, J. Computer-Assisted Interactive Instruction:
Results from a Developmental Effort, Frontiers in
Education, 1992. Proceedings. Twenty-Second Annual
Conference, Pages 662 –667.

5. Foster, G. Online help systems: learning while
working, In Proceedings of the 2002 International
Conference on Computers in Education, Auckland,
New Zealand, 3-6 December 2002, pp.652-653.

6. Garcia-Crespo, A., Domingo, P., Lancha, M., and
Ruiz-Mezcua, B. EDU-EX: an intelligent educational
system generator tool over the Web, In Proceedings of
the 1997 Conference on Intelligent Information
Systems, IEEE CS Press, pp.503-506.

7. Gould, D.L., Simpson, Rosemary M., and van Dam, A.
Granularity in the Design of Interactive Illustrations,
Proceedings of ACM SIGCSE 1999.

8. Hundhausen, C., Douglas, S., and Stasko, J., A Meta-
Study of Algorithm Visualization Effectiveness,
Journal of Visual Languages and Computing, vol. 13,
no. 3, June 2002, pp. 259-290.

9. Hussmann, S., Covic, G. and Patel, N. Effective
Teaching and Learning in Engineering Education
using a novel Web-based Tutorial and Assessment
Tool for Advanced Electronics, International Journal
of Engineering Education, 2002.

10. Marcy, W.M., Hagler, M.O. Implementation issues in
SIMPLE learning environments, IEEE Transactions on
Education, Volume: 39 Issue: 3, Aug. 1996 Page(s):
423 –429

11. Munroe et al, A Tool for Building Simulation-Based
Learning Environments, Behavioural Technology
Laboratories, University of Southern California.

12. Murray, T. Authoring Knowledge Based Tutors: Tools
for Content, Instructional Strategy, Student Model, and
Interface Design, Journal of the Learning Sciences,
1998. Vol. 7, No.1, pp. 5-64.

13. Nielsen, J. Usability inspection methods, in: J. Nielsen,
R.L. Mack (Eds), Usability Inspection Methods, John
Wiley, New York, 1994, p. 30.

14. Petropoulakis, L., McArthur, S., McDonald, J., Agent-
controlled internet tools for computer-based distance
training in industry and education. International
Journal of Continuing Engineering Education, vol.12,
no.1-4, 2002, pp.267-276.

15. Reeves, T.C., Evaluating interactive multimedia,
Educational Technology, May p. 47-52.

16. Spalter, A.M, Simpson, R.M., Legrand, M., Taichi, S.
Considering a full range of teaching techniques for use
in interactive educational software: a practical guide
and brainstorming session. 30th Annual Frontiers in
Education Conference, IEEE CS Press, Vol.2, 2000,
Champaign, IL, USA, pp. 19-24.

17. Squires, D. and Preece, J. Predicting quality in
educational software: Evaluating for learning, usability
and the synergy between them, Interacting with
Computers 11 (1999) p. 467-483.

18. van Dam, A. Education: the Unfinished Revolution,
ACM Computing Surveys (CSUR) December 1999.

