
Autom Softw Eng (Feb 2013)

DOI 10.1007/s10515-013-0121-3

1	

Guest Editors Introduction: Special Issue on
Innovative Automated Software Engineering
Tools
John	
 Grundy	
 and	
 John	
 Hosking 	

	

	

	

Introduction
By definition, "automated" software engineering needs the support of automation
tools, in order to be effective (or even possible) (Grundy and Hosking, 2001).
Many tools have been developed to support automation, in both narrow and broad
domains. These range across AI toolkits, theorem provers and model checkers;
requirements, design, coding and testing support tools; various configuration
management, process enactment and project management support tools; and code
generators, code analysis, visualisation, refactoring and reverse engineering tools.

To continue to advance the field of Automated Software Engineering, good
automation-support tools need to be developed and deployed alongside, and in
combination with, new and improved ASE techniques. Such tools are usually
themselves extremely complex engineered software artifacts. ASE tools are
challenging to design, to build, to scale, to make robust, and to integrate and
evolve. To engineer such increasingly complex tools, we must investigate new
directions in tool engineering and deployment. We need new approaches to
building, scaling, and deploying tools, new domains or ways in which to apply
tools, and new techniques for synthesizing tools.

Background
Traditionally Automated Software Engineering (ASE) has been supported by a
variety of tools. These particularly include tools for theorem proving, model
checking and other complex model analysis all being techniques which are
extremely difficult if not impossible to do without tool support (Holzmann,	

1997). Other early ASE tools developed included tools to assist in requirements
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

 	
 J. Grundy
Centre for Computing & Engineering Software Systems, Swinburne University of
Technology, Melbourne, Australia
email: jgrundy@swin.edu.au

J. Hosking
College of Engineering & Computer Science, Australian National University, Canberra,
Australia
email: john.hosking@anu.edu.au
	

Autom Softw Eng (Feb 2013)

DOI 10.1007/s10515-013-0121-3

2	

capture and analysis, particularly for very formal requirements modeling; tools to
support software testing, particularly test case generation and test result analysis;
and tools to support complex software development processes. These included
CASE (Computer Aided Software Engineering) tools with model analysis
features, process-centered environments with enactable software processes,
project management tools, and version control and configuration management
tools.

Wider applications of automation to Software Engineering have become popular
in more recent times. These have included ASE techniques for model construction
including those for requirements, design, coding, or combinations of these. These
techniques have been embodied in various Model-Driven Engineering processes
and associated tool support (Scmidt, 2006). Other popularized application areas
have been ASE tools for reverse engineering, refactoring, and visualisation of
models and/or code. While such tools have existed for some time, the complexity
of modern software applications has meant they have become critical for many
development and maintenance tasks. Even more recent areas of application
include various data mining, search-based software engineering applications and
other knowledge-intensive software tasks, driven again by the huge increase in
size of software and which in turn require sophisticated ASE tools to support them
(Harman and Jones, 2001).

Special Issue Focus
We sought substantial, archival contributions to the ASE literature that included
either new application areas of ASE tools, new innovations in applying ASE tools
to traditional areas, or new ways of realizing innovative ASE tools. The latter
includes architecting of ASE tools and addressing challenging issues of scaling,
robustness, reliability and integration. We asked authors to focus on the tool
aspect, not the technique aspect of their work. We wanted journal readers to be
able to learn important lessons about tool innovation in the target tool domain(s)
so that other researchers could benefit from the work presented. We expected
evaluation to be holistic. Some tools can be clearly evaluated and compared to
other tools by their performance, scaling to large models, and the range of support
features offered. Others might have to be evaluated on their support for software
engineers including tool usability, expressiveness, effectiveness, differentiation
from other tools, and integration with other tools.

Overall we received 32 submissions to the special issue, a very gratifying number.
All papers were refereed by at least three experts in the Automated Software
Engineering community. After re-revision of nearly a dozen papers, we accepted 9
papers for the special issue, the first four of which appear in this issue of the ASE
journal. The second set of papers will appear in a later issue of Automated
Software Engineering.

Papers in Part 1 of the Special Issue on Innovative
ASE Tools
Arendt and Taentzer describe a framework and Eclipse-based support tool for
model quality assurance. Their approach supports the definition and evolution of

Autom Softw Eng (Feb 2013)

DOI 10.1007/s10515-013-0121-3

3	

complex models necessary to support a range of complex, model-based software
engineering tasks. Their innovative tool supports not only model capture and
management, but analysis of models using a variety of metrics and then the
application of a range of model refactorings to address model short-comings, or
“bad smells”. They evaluate their tool on several large model analysis and
refactoring problems investigating tool scalability, performance, and suitability.

Walderhaug describes a novel ASE toolchain for the health domain. This toolset
supports developers in engineering complex services for this domain using health
concepts to ensure standardized, integrated services result. A model-driven
development to services engineering is employed whereby complex health
services are modeled abstractly then successively refined down to
implementations. Key benefits include support for ensuring adherence to
standardized concepts and interfaces, documentation of services, integration into
complex service-oriented architectures, and traceability from requirements to
service implementations. A detailed experiment with developers was performed to
assess various aspects of the toolchain suitability.

O'Halloran describes an approach to automated verification of code using
Simulink®. The CLawZ toolset provides a highly automated approach to
verifying correctness of complex, dynamic code generated from the Simulink®
tool. An auto-coder generates Ada code from the Simulink® specification. The
CLawZ tool uses a formal model derived from the source model and a set of
refinement script generators. A refinement checker and a theorem prover are then
used to determine if errors exist in the source model and code. This ASE tool was
evaluated by comparing effort used in a traditional testing-based approach to the
effort used to deploy CLawZ on the same problem.

Nöhrer and Egyed describe a tool to guided decision-making in software
engineering tasks. Their innovative ASE tool supports software engineers in
capturing and reasoning about complex decision paths and dependencies in a
range of contexts, including product line engineering. Their tool allows users to
answer a set of questions in an arbitrary order and to have complex inter-
dependencies analysed and users guided in terms of ordering, conflict avoidance,
and conflict resolution. They evaluated their tool using six complex decision
scenarios including architectural product line engineering and product
configuration.

We hope that you enjoy this first installment on Innovative ASE tools!

References
Grundy,	
 J.C.	
 and	
 Hosking,	
 J.G.	
 Software	
 Tools,	
 Wiley	
 Encyclopaedia	
 of	
 Software	
 Engineering,	

2nd	
 Edition,	
 Wiley,	
 2001.	

Holzmann,	
 C.J.,	
 The	
 model	
 checker	
 SPIN,	
 IEEE	
 Transactions	
 on	
 Software	
 Engineering,	
 vol.	
 23,	

no.	
 5,	
 May	
 1997.	

Scmidt,	
 D.C.,	
 Model-­‐driven	
 Engineering,	
 COMPUTER,	
 vol.	
 39,	
 no.	
 2,	
 February	
 2006.	

Harman,	
 M.,	
 Jones,	
 B.F.,	
 Search-­‐based	
 Software	
 Engineering,	
 Information	
 and	
 Software	

Technology,	
 vol.	
 43,	
 no.	
 14,	
 December	
 2001.	

