
Guest Editors Introduction: Special Issue on Innovative Automated Software
Engineering Tools – Part #2

John Grundy and John Hosking1

Introduction

This is the second part of our Special Issue on Innovative Automated Software
Engineering tools. Over 30 papers were submitted to the special issue, demonstrating
the key role that tools have in the ASE research and practice communities. The five
accepted papers appearing in this second part of the special issue underwent rigorous
refereeing, major and minor revisions and then were selected for their scientific
contributions. Coincidentally the papers cover an interesting range of ASE tool
application areas, including model-based testing, embedded software engineering,
symbolic execution and model checking, process-centred environments, and software
evolution. Several of these innovative tools adopt service-based and compositional
approaches to tool integration. Most have been validated not only on academic
problems but also with significant industrial applications and software teams.

We would like to thank very much the efforts of all authors of papers both appearing
in the special issue, but also those whose work we were unable to accept. We also
would like to thank the large number of referees from the automated software
engineering community who we had to draw upon very heavily in this process.
Finally, we thank Anand David from Springer for excellent assistance with editorial
system management and production work, and Bob Hall for having the faith in us to
Guest Edit this special issue.

Papers in Part 2 of the Special Issue on Innovative ASE Tools

Filho, Hasling, Budnik and McKenna present a tool for model-based testing, tedeso,
used within Siemens corporation. They describe the motivation and design of an
innovative tool to integrate into the development process to support workflow-driven,
service-oriented model-based testing. This service-oriented architecture of the tedeso
framework is a novel approach to extensible tool frameworks, as well as delivering
the model-based testing tool functionality. The authors recount key issues in adopting
such a service-oriented architecture and associated workflow for their toolset. The

																																																								
1	J. Grundy
  Centre for Computing & Engineering Software Systems, Swinburne University of
Technology, Melbourne, Australia 
email: jgrundy@swin.edu.au

J. Hosking 
College of Engineering & Computer Science, Australian National University,
Canberra, Australia 
email: john.hosking@anu.edu.au
	

tool has been adopted by a number of Siemens business units and the authors recount
experiences of the users of their platform.

Voelter, Ratiu, Kolb and Schaetz describe mbeddr, a novel automated tool for
engineering embedded software systems. mbeddr is a language workbench built upon
the C programming language that provides embedded software system engineers a
range of domain-specific capabilities tailored to their particular needs. The tool
provides rich C code annotation, requirements tracing, model checking, debugging
and integrated transformation support. mbeddr is targeted at small to medium
enterprises with particular embedded software development needs. They report on a
detailed evaluation of their toolset deployed in practice and the advantages of the
language workbench approach.

Pasareanu, Visser, Bushnell, Geldenhuys, Mehlitz and Rungta describe Symbolic
PathFinder, an innovative automated tool combining symbolic execution with model
checking. SPF generates test cases for Java programs by analyzing their byte code and
executing the programs with symbolic inputs. Constraints generated on expressions in
the programs are solved with a range of constraint solvers, and model checkers are
used to explore symbolic program executions. The tool architecture and
implementation is described along with reports of experiences using the tool in a
range of contexts, including academia, industry and NASA.

Maciel, Gomes, Magalhães, Silva and Queiroz present MoDErNE, a model-driven,
process-centred software engineering environment. Their tool incorporates support
both for process-centric software engineering task management and co-ordination
along with model-driven engineering facilities. They argue for a more process-centric
support platform for MDD including formalized transformation specification and
chaining. MoDErNE has been evaluated on several significantly sized problems,
several of which are reported as case studies.

Ghezzi and Gall present SOFAS, a service-oriented tool approach to software
evolution analysis, including bug data, version control information and issue tracking.
They introduce a framework supporting aggregation and storage of evolution
information and integrating a variety of diverse analysis tools using this unified data
source. A set of analysis tools uses a REST communication infrastructure and the
platform includes semi-automated analysis tool service composition. Two different
applications of the platform are described to illustrate its tool service composition
approach and its flexibility.

We do hope that you enjoy this second installment on Innovative ASE tools!

