Adaptive and Accessible User Interfaces for
Seniors Through Model-Driven Engineering

Shavindra Wickramathilaka!”, John Grundy’,
Kashumi Madampe!, Omar Haggag'

"Department of Software Systems and Cybersecurity, Faculty of
Information Technology, Monash University, Wellington Road, Clayton,
3800, Victoria, Australia.

*Corresponding author(s). E-mail(s):
shavindra.wickramathilaka@monash.edu;
Contributing authors: john.grundy@monash.edu;
kashumi.Madampe@monash.edu; omar.haggag@monash.edu;

Abstract

The use of diverse mobile applications among senior users is becoming increas-
ingly widespread. However, many of these apps contain accessibility problems
that result in negative user experiences for seniors. A key reason is that software
practitioners often lack the time or resources to address the broad spectrum of
age-related accessibility and personalisation needs. As current developer tools
and practices encourage one-size-fits-all interfaces with limited potential to
address the diversity of senior needs, there is a growing demand for approaches
that support the systematic creation of adaptive, accessible app experiences.
To this end, we present AdaptForge, a novel model-driven engineering (MDE)
approach that enables advanced design-time adaptations of mobile application
interfaces and behaviours tailored to the accessibility needs of senior users.
AdaptForge uses two domain-specific languages (DSLs) to address age-related
accessibility needs. The first model defines users’ context-of-use parameters, while
the second defines conditional accessibility scenarios and corresponding UI adap-
tation rules. These rules are interpreted by an MDE workflow to transform an
app’s original source code into personalised instances. We also report evaluations
with professional software developers and senior end-users, demonstrating the
feasibility and practical utility of AdaptForge.

Keywords: Model-driven engineering, Adaptive user interfaces, Senior end users,
Domain-specific languages, Software accessibility

1 Introduction

According to the World Health Organisation (WHQO), one in six people worldwide will
be aged 60 or older by 2030 [1]. Many of these senior individuals are likely to face age-
related challenges in vision, hearing, cognition, coordination, and mobility [2]. Despite
forming a large part of the population, seniors often face accessibility issues in software
applications, especially in user interfaces (Uls) [2-4]. Our user studies support this
trend. For example, the persona in Figure 1, based on our research, features Judy, a
senior with vision impairment who struggles to read small text in mobile apps. To
cope, she increases the text size using her device settings. However, this leads to other
problems, such as misaligned UI elements and less content on the screen, which create
new accessibility challenges. Such situations are common among older users and reflect
just one of many age-related needs that can negatively affect their experience [5].

Name: Judy Smith

Age: 72

Age-related impairments:

4 « Low vision (Hyperopia/farsightedness)

» \\h‘ o Requires reading glasses | Has low visual contrast sensitivity

image: Freepik.com

Background: Frustrations with apps:

* Occupation: Retired nurse

« Gender: Female 1. She finds it difficult to read small print on the app, even while wearing her

« Cultural/ethnic background: glasses.

Australian
2. She often uses zoom-in gestures to enlarge the text, but must navigate the Ul

[_)evices: Mobile (iPhone) and Tablet with touch gestures back and forth to read the entire content. In most cases,
(iPad) however, zoom-in gestures are not available in mobile apps.
Frequent mobile app uses: Judy’s workarounds:

« E-Banking

+ Shopping 1. She asked her granddaughter to increase the font size on her phone.

« Watching videos

2. She also uses her phone’s landscape mode to read text.
Mobile device usage per week: 10-20 h

Mobile app usage confidence: Average

Fig. 1 Meet Judy, a retired nurse who encounters significant accessibility barriers when using mobile
applications due to her low vision. She struggles with small font sizes and low-contrast foreground-
background colour combinations. Although she has increased the text size through her phone’s global
settings, this often results in misaligned Ul elements and excessive vertical scrolling.

A major responsibility for this issue can be attributed to software practitioners,
as they often do not consider seniors as an active user community [6]. Consequently,
different age-related accessibility needs of seniors are frequently overlooked during the
software development lifecycle [2, 3, 7]. However, this does not imply that developers
are apathetic towards the limitations faced by seniors in society. For instance, during
our interview study with software developers, the majority of participants demon-
strated some awareness and personal empathy for this societal challenge. For example,
one participant shared their personal experience with ageing: “I'm already getting to

the age where I have to take my glasses off to read up close. So, I understand some
of it.”

Despite this awareness, applying accessibility principles in real-world software
projects remains challenging. Seniors have diverse needs, and ageing is a highly
individualised process, leading to significant differences in abilities, limitations, and
experiences among users [8]. This variation means developers must consider numerous
potential accessibility scenarios. Addressing these manually with current development
tools is often time-consuming and costly, as noted by Akiki et al. [9]. One developer
in our study reflected this challenge: “In day-to-day life, we tackle more with business
requirements rather than user requirements [...]. Because our products change every
day, our requirements change every day, and it’s hard to always include all these
requirements.” Therefore, any solution to this problem must also take into account
the constraints faced by developers.

A more convenient way to address accessibility challenges is by following estab-
lished guidelines such as the Web Content Accessibility Guidelines (WCAG) [10]
or ISO 9241-171 [11]. These standards help developers design universally accessible
user interfaces that aim to reduce barriers for all users, including seniors. However,
this one-size-fits-all approach often falls short because seniors have diverse and non-
homogeneous accessibility needs that cannot always be met through general design
principles alone [9].

A more pragmatic approach to addressing this issue is the combination of: (1)
Model-Driven Engineering (MDE) [12], which considers software models as primary
artefacts for generating application code with minimal to no handwritten coding [12];
and (2) Domain-Specific Languages (DSLs) [12], which enable developers to model
the specific requirements of a given application domain — in this case, the age-related
accessibility needs of seniors. A DSL, or a combination of DSLs, can be designed
specifically for software practitioners as end-users. When the purpose of these DSLs is
to capture a particular domain: such as age-related accessibility and personalisation
needs, they are often more suitable than general-purpose modelling tools such as
Unified Modelling Language (UML) [12]. However, it is important to acknowledge that
developers must still invest time in learning how to use such tools, despite already
working under tight time and resource constraints.

This is where the inherent model transformation and code generation capabilities
of a model-driven engineering (MDE) workflow become valuable. By integrating DSLs
into an MDE process, developers can transform their models into executable appli-
cations that are both more accessible and personalised for their target users, while
significantly reducing the manual effort required through automation. The effective-
ness of this combined approach has been well demonstrated in several studies [13-16].
However, these studies have not specifically addressed the needs of the senior com-
munity. As a result, several gaps remain in terms of the comprehensiveness of senior
accessibility needs modelling, as well as in the demonstration and evaluation of the
approach [17]. With these gaps in mind, we devised the following approach to conduct
our study.

1. We first ran an exploratory focus group study with a community of seniors to
understand their accessibility and personalisation challenges with mobile apps;

2. We developed a set of DSLs aimed at software developers, allowing them
to represent senior accessibility and personalisation needs as software modelling
artefacts;

3. We prototyped an MDE-based Flutter application automatic adaptation tool that
takes our DSLs defined by developers and creates a new version of the Flutter app
applying the desired UI accessibility adaptations;

4. We evaluated our generated adapted Flutter apps with the same senior community
to see how well we had addressed their accessibility needs; and

5. We evaluated the DSLs and the overall MDE prototype with Flutter developers to
see how they perceive the practicality and usefulness of such an approach.

Key contributions to the MDE and Adaptive Ul sub-domain, and the
Low-code development community:

» We propose a pair of domain-specific languages (DSLs) that iteratively advance the
current state-of-the-art tools for modelling age-related accessibility and adaptation
needs.

* We propose a novel model-driven engineering (MDE) approach that shows how
low-code tools can be effectively integrated with traditional development practices.
This integration enables developers to create accessible and adaptive applications
for seniors, along with other user groups, without breaching typical time or budget
constraints in software projects.

Key contributions to the broader Software engineering community:

¢ We demonstrate that an MDE approach such as AdaptForge is a practical and useful
tool for the software industry, enabling developers to create better, more accessible,
and more personalised applications for disadvantaged user groups, such as seniors.

In this paper, we begin by detailing our proposed approach in Section 2. We then
describe two user studies conducted with senior end-users and software developers to
evaluate the approach, followed by a discussion of the findings in Section 3. Section 4
outlines the limitations and directions for future work, and Section 5 reviews related
literature. Finally, we discuss the research contributions in Section 6 and conclude the
paper in Section 7.

2 Our Approach
2.1 Research methods

This project primarily consists of 3 phases. The initial problem exploration, the design
and development tasks that were informed by the exploratory insights and finally an
evaluation with two different types of stakeholders to determine how successful we
were in addressing our goals. The Figure 2 further illustrates individual tasks within
each phase, followed by a brief phase-by-phase overview.

1. Problem Exploration

2. AdaptForge Design
& Development Phase

3.

3.1. Developer User Study

Evaluation

3.2. Senior User Study

Conducting[Rliey copducting BomaliSpeciic Conducting Interviews Conducting Evaluative
Focus Group - - > Refined Focus —» Language — " - —> -
(N=7) — Group (N=9) Development With Devs (N=18) Focus Groups (N=22)
|Refines
o |
Thematic Analysis i i
L e MDE Pipeline __| | Thematic Analysis on ;’:‘I‘:"F‘;::glﬁizz
Accessibility Pain Development Dev Feedback Overview
Points l l
Ser:\riit'::asrgna Influences - At.il:a'ptlve App —! Developer Insights on Refined Senior
Definition Generation AdaptForge Personas
Informs | I
’ |Used in
Analysis of ‘ Accessibility
Exisiting > Recc dations for
Literature {Informs | ‘ Developing Apps for Senios

Paper: in scope

D Paper: out of scope

Fig. 2 The overall Research Methodology

2.1.1 Phase 1: Problem exploration

At the outset of our study, we aimed to gain a deeper understanding of the real-
world UI challenges faced by senior app users. To this end, we conducted an initial
pilot study with seven senior participants, followed by a focus group involving nine
additional seniors. Overall, the mean age among these 16 participants was 73.9 years,
while the median was 74. All participants were recruited from a well-established senior
community in Australia named the University of the Third Age (U3A). Using the-
matic analysis on the qualitative data collected, we identified three key types of app
adaptations required to holistically address common accessibility barriers encoun-
tered by seniors: (1) Presentation adaptations, (2) Multi-modality adaptations, and
(3) Navigational adaptations.

To contextualise these adaptation types, we derived three preliminary personas
to guide and motivate the subsequent tool design. The first persona focused on
vision-related limitations, such as reduced contrast sensitivity, which often neces-
sitate presentation adaptations (see Figure 1). The second persona illustrated the
impact of mobility impairments, such as arthritis, which may require alterna-
tive input and output modalities, including voice commands and screen readers. The
third persona addressed cognitive limitations, such as memory decline, which cre-
ate a need for simplified app navigation to reduce cognitive load. A detailed account
of this exploratory phase and the development of these personas is provided in
Wickramathilaka et al. [5].

Initially, these personas served as an internal design tool to guide the development
of AdaptForge and to identify complex code-generation challenges associated with

addressing age-related accessibility needs. For example, insights from our exploratory
focus groups revealed that increasing text size and adding new interface elements,
such as buttons for voice input, could result in a more cluttered user interface with
extended vertical scroll length. While such changes improve text readability, they may
also introduce new barriers for seniors with cognitive limitations or reduced hand
dexterity. In this context, the personas helped us identify the need for non-standard
adaptations, such as implementing a wizard-style interface to segment content.

In a later stage, we refined and extended these personas to more comprehen-
sively represent the accessibility and personalisation challenges faced by senior users
of mobile applications, as detailed in Wickramathilaka et al. [5]. It is important to
note that while the personas effectively captured the needs of a group of older users,
we designed all our tools with extensibility in mind. The design process was influenced
by a variety of resources such as accessibility standards (e.g., WCAG and ISO 9241-
171), previous studies on app accessibility for older adults (e.g., [18-21]) and existing
DSL metamodels for accessible and adaptive Ul design (e.g., [13, 16]). As a result, the
final prototype is capable of modelling accessibility and adaptation requirements for
a broader range of users beyond those represented in the three preliminary personas.

2.1.2 Phase 2.1: DSL design and development

Subsequently, we utilised the personas developed during our exploratory phase, along-
side the Web Content Accessibility Guidelines (WCAG), to evaluate the current
state-of-the-art approaches in the domain of Model-Driven Engineering (MDE)-based
UI adaptation. The personas served as a means to assess whether existing approaches
could accommodate the specific needs identified in our focus group study. Meanwhile,
WCAG served as a structured baseline due to its comprehensive accessibility criteria,
helping us assess how well existing approaches could be extended to meet diverse age-
related accessibility and personalisation needs. Our analysis revealed that although
current MDE-based approaches exhibit potential, they fall short in comprehensively
modelling the diverse accessibility and personalisation needs of seniors [17].

However, our investigation also revealed that an effective approach to addressing
accessibility and personalisation in user interfaces has already been explored in prior
research. Notably, Yigitbas et al. [16] proposed a method that combines two domain-
specific languages (DSLs) with a user interface modelling language, IFML [22], to
capture diverse accessibility scenarios for general users and employ model-driven engi-
neering (MDE) to transform these models into adaptive applications. We recognised
the potential of this approach for our own objectives and subsequently extended it.
Drawing on insights from existing literature, we developed our own interpretation
of using multiple DSLs in tandem, one to abstractly represent accessibility scenarios
encountered by senior users, and the other to define concrete adaptation logic. These
models are then interpreted within a model-driven engineering workflow to transform
application source code in a way that reflects the accessibility and personalisation
needs captured in the DSLs.

Another reason we adopted a dual-DSL approach is its logical alignment with the
goals of adaptive application design. As software practitioners, we recognised that

defining adaptation rules as complex conditional statements using relational and log-
ical operators, offers a powerful and intuitive way to represent real-world accessibility
scenarios encountered by senior users. For instance, consider the persona in Figure 1.
We could express a condition where adaptations are triggered if the app detects that
the user is over 72 years old and has a low vision impairment. Based on this condi-
tion, we could specify the appropriate adaptation logic required to generate a more
tailored application instance for that user. This is precisely the purpose of one of our
domain-specific languages: Adapt DSL.

However, such conditional expressions require access to contextual data to func-
tion effectively. A rule on its own cannot determine whether a user is over 72 or what
impairments they may have. To address this, we introduce a second DSL: Context
DSL, which models the relevant accessibility-related parameters of the user. In design-
ing Context DSL, we recognised that simply recording a few user details such as age
and device type is insufficient. Our goal was to ensure extensibility across all senior
demographics and application domains (e.g., e-health, e-banking, retail). Since the
intended users of these tools are software practitioners working in diverse domains, we
prioritised flexibility and extensibility. As such, Context DSL supports the modelling
of a comprehensive range of parameters across user, platform, and environmental con-
texts to accommodate a wide array of accessibility and personalisation scenarios in
tandem with Adapt DSL.

2.1.3 Phase 2.2: MDE based Flutter prototype development

To realise our novel DSLs and overall approach, we developed a proof-of-concept tool
suite, AdaptForge, using the Eclipse Modelling Framework (EMF) [23] and the Flutter
framework [24]. The decision to adopt Flutter was influenced by two key factors: (1)
we aimed to develop adaptive app prototypes using a widely adopted cross-platform
framework. This choice allowed us to initially apply our model-driven engineering
(MDE) approach to mobile applications, to generalise our findings to other platforms
(e.g., desktop and web-based) in the future. Additionally, it facilitated access to a
large global developer community with diverse experiences, which proved valuable
during the evaluation stage. (2) Our selection of Flutter over other frameworks, such
as React Native, was primarily due to the authors’ prior experience with implementing
adaptive behaviours in Flutter applications.

Our MDE pipeline integrates two DSL inputs: an Adaptation Rules model defined
using Adapt DSL and a Context-of-Use model defined using Context DSL. These
models collectively represent the accessibility and personalisation needs of an indi-
vidual or a group of users. The pipeline also requires a Flutter application written
in the Dart programming language. When the conditional statements in the adapta-
tion rules match specific context scenarios, the Flutter app’s source code is modified
accordingly. This transformation process is illustrated in Figure 3.

2.1.4 Phase 3: Evaluation

In the final stage of our study, we conducted two separate user studies to evaluate our
tool suite: (1) a developer interview study, involving 18 developers with professional
experience with the Flutter framework; and (2) a focus group study/acceptance test,

Preliminary Persona Corpus

Are modelled with (N M
Adapt DSL Context DSL Layer
Persona 01: Judy - Age 72 ((del) (del) (invisible to
(Vision Related Limitations) _— . developers)
References References
Persona 02: Carl - Age 65 . '
(Mobility & Modality Related) A 4 R v ;
e Interface layer
Limitations) Adapted | _ || _ Non-adapted _ | Adaptation | _|Context-of-Use (exposedtyo
Flutter apps Flutter app rules model model developers)
Persona 03: Kathryn - Age 67 @ \
(Cognition Related Limitations) _
Tailored for Input @
I v Transformation
@ Py Model-Driven layer
; g ing (invisible to
l Process developers)

Other Users/User Groups App tailoring can be extended to:

Fig. 3 The overall architecture of AdaptForge. Note that the scalability of tailored app instance
generation is not restricted to the three personas in the preliminary persona corpus; these are illus-
trative examples of how the overall approach can tailor personalised app instances for a variety of
senior needs. The modelling of accessibility needs and app personalisations can be extended to other
users and user groups (senior or otherwise).

conducted with 22 participants across three focus groups from the same senior user
community we collaborated with during the exploratory stage. The objective of the
senior user study was to assess whether the generated adapted Ul instances effectively
address the accessibility barriers faced by seniors due to their age-related needs. In
this paper, we place greater emphasis on the developer study evaluation, as it provides
critical insights into the effectiveness of our novel approach and highlights areas for
improvement. This focus is particularly important from the perspective of our primary
audience — the software developer community.

2.2 Overview of AdaptForge
2.2.1 AdaptForge architectural components

In our proposed AdaptForge approach (illustrated in Figure 3), there are three
architectural layers: (1) the Metamodel Layer, (2) the Interface Layer, and (3) the
Transformation Layer.

1. Metamodel Layer: This layer comprises two Domain-Specific Languages (DSLs):
Adapt DSL and Context DSL, which define the grammar and syntax for their
respective model instances in the Interface Layer. These DSLs serve as the
foundation for capturing accessibility-related requirements and adaptation rules.

2. Interface Layer: The Interface Layer provides developers with an interactive
environment to utilise the two DSL model instances: the Adaptation Rules Model
and the Context-of-Use Model. These models enable developers to comprehensively
represent various accessibility scenarios for senior users or other user segments.
Additionally, developers must ensure the integration of the DSL models into
the Flutter application’s source codebase, which facilitates the adaptation of UI
elements based on user-specific accessibility needs.

3. Transformation Layer: Once the DSL models are integrated, developers can
trigger the Ul adaptation logic defined within them. The Transformation Layer is
responsible for performing model-to-text transformations, automatically generat-
ing alternative Flutter app UI versions that align with the user requirements and
accessibility scenarios specified in the DSL models.

2.2.2 AdaptForge workflow in a real-world scenario

Aside from the tool interface layer, the other two layers in Figure 3 are either hidden
from or operate as black boxes to the users of AdaptForge: software developers.
To clarify the workflow from a developer’s perspective, consider the following example.

Suppose a development team has built an e-banking application using Flutter for
a user base that includes many senior users. To begin incorporating accessibility-
adaptations needs, the team can first model the users’ context-of-use parameters using
AdaptForge’s Context DSL. This can be done either by mapping detailed context-of-
use models for individual users or by taking a more segmented approach of creating
a small number of representative personas. In the example shown in Figure 3, we use
personas derived from our preliminary research phase: Judy (age 72), Carl (age 65),
and Kathryn (age 67) to demonstrate the latter approach.

Once the context-of-use parameters of the user base are modelled with Context
DSL, the team integrates their e-banking app into AdaptForge’s MDE pipeline. They
can then begin expressing adaptation logic that defines how the app should behave
under specific user conditions with Adaptation Rules models(with Adapt DSL editor).
For instance, if we consider the persona example of Judy from Figure 1, developers
might specify a rule such as: IF the user is over 60 AND has low visual contrast
sensitivity, THEN switch the app theme to black and white AND increase the font
weight of all text widgets to ’bold’. These rules are then automatically interpreted
by the MDE workflow, enabling the generation of adapted app variants tailored to
different user needs without requiring manual interface redesign.

The generated app variants are kept separate from the original source code of the
e-banking Flutter app, which remains the primary source of truth. Upon deployment,
the appropriate app variant is served to each end-user based on their accessibility
limitations or personalisation preferences. It is important to note that the current
prototype implementation of AdaptForge does not handle the full complexity of app
deployment and maintenance. However, our developer user studies have helped iden-
tify several viable strategies to support these processes, which we outline as part of
our future work.

Ultimately, AdaptForge enables software development teams to either use a newly
built Flutter app or use an existing one, plug it into our MDE workflow, model
user accessibility and personalisation needs using DSLs, and automatically generate
adapted app variants. This process eliminates the need for teams to invest additional
time and resources in manually producing multiple versions of the app. Once gener-
ation is complete, developers can deliver tailored app experiences to end-users while
preserving a pristine source-of-truth codebase.

v @ platform:/resource/org.eclipse.sirius.contextdsl.contextmodel/model.contextdsl

v 4 User Container
v * User 001

v 4 User Context

> 4 User Preferences

Vision Impairment true
Selection | Parent | List | Tree | Table | Tree with Columns

4+ Hearing Impairment false :
I¢ Vision Impairment true I <> Interpreter [£] Problems (& Terminal [T] Properties X E Console Fi PyuUnit g
v 4 Platform Context Property Value
+ Screen Dimensions Is True wtrue
> 4 Input Devices Severity =low
> + Output Devices Type =hyperopia, low color sensitivity, low visual acuity,

> 4 Assistive Features —— —
[+ Device Details iPhone 11 | — lbades etails i G
Selection | Parent | List | Tree | Table | Tree with Columns

v 4 Environment Context

> Interpreter (2. Problems & Terminal [T Properties X & Console Fi PyUnit g

> 4 Activity
4+ Time Property Value
+ Location home Name =iPhone 11
4 Weather sunny Os Name =i0S
+ Ambient Light 8000.0 Os Version =17.3
4+ Ambient Noise 75.0 Vendor =Apple

Selection\Parent List| Tree | Table | Tree with Columns

<> Interpreter [%! Problems (& Terminal [C] Properties X & Console Fi PyUnit g5 Git Staging

Property Value
Age 172
Id =001

User Name =Judy Smith

Fig. 4 An example Context-of-use model for the senior persona in AdaptForge for senior user Judy.
Here we show a semi-graphical editor developed using Eclipse’s Sirius modelling workbench.

2.3 AdaptForge Domain Specific Languages
2.3.1 Context DSL

The term Context-of-use was initially coined by Stephanidis et al. [25] and Calvary
et al. [26] to explain how modern-day UI requirements are multidimensional and
highly context-dependent. In particular, according to Calvary et al. [26], Context-of-
use is an n-tuple that comprises the following entities: 1) user of the system and
their attributes (e.g. accessibility needs, digital literacy, and language preferences),
2) platform: hardware and software components that the users use to interact with
the system (e.g. device type, screen dimensions, and I/O components), and 3) envi-
ronment in which interactions between the user and the system occur (e.g. ambient
noise and lighting levels, or the weather). The concept is fairly simplistic but allows
a great deal of flexibility when attempting to model an accessibility scenario of an
end-user. In addition, most existing studies in the domain already champion the use
of Context-of-Use modelling for adaptive Uls [9, 14, 16, 27-29].

To illustrate how an accessibility scenario for a senior individual can be captured,
consider the persona introduced in Figure 1. Judy, a 72-year-old with low colour con-
trast sensitivity, struggles to distinguish between foreground and background elements
in mobile applications when the colour combinations are not optimised for her condi-
tion. In one scenario, Judy is using a shopping app on her iPhone 11 while sitting in

10

(Mood

W (Mobility Impairmentw (Cognitive Impairmentw (Vision Impairment W (User Container |

+ type: string

Computer Experience

+ experienceLevel: string

+ confidenceLevel: string

Hearing Impairment

J + severity: string

+ id: string

+ id: string

L+ user: Set<User>

b A

(e)

i

User Context

A + type: string + severity: string + severity: string
+ id: string + type: string + type: string
[0..1] [0..1] [0..1]
user

[0.1]

+ id: string
+ type: string

+ severity: string
-

Privacy Preferences

[0..1]

<user Preference

«<
+ privacySetting: string
=" J

UserPreferences

<User preference
composition
attributes>

Platform Context

<User Context

~4@ composition attributes>

ContextOfUse

+ id: string

+ age: int

+ contextOfUse:

[0..3]

+ userName: string

Set<ContextOfUse>

[0..1]
userContainer|

¢

Context DSL

+ userContainer:
Set<UserContainer>

Ambient conditions

contextofuse

" and their attributes
: language

Font Preferences

colour, sound, touch,

+ type: string
+ style: string

+ scale: string

Device Details

+ name: string
+ osName: string

+ osVersion: string
- =

Output Devices

<inheritance to output

for r®| <Platform Context
and composition attributes>
Environment Context
<Environment Context
Assistive Features composition attributes>
[0..1] <inheritance to classes
and attributes for screen Activity
magnifier, Voice input, N N
Screen reader, and switch <inheritance to classes
control features> and attributes for Still,
InVehicle, and OnMove
[0..1] classes>
i (" . N
D
[0.1] e
> + height: float N Weather
L
i foat s vaerang
Input Devices Time
101 |jo.4
w | <inheritance to input —)‘ + value: date/time
< | device classes> [0..1]

device classes>

> + luxValue: double

+ noiseValue: double
- 7

Location
+ location: string
+ indoorTrue: boolean

+ outdoorTrue: boolean

+ publicTrue: boolean

Fig. 5 The Context DSL metamodel. At the root of the class diagram hierarchy is the ContextDSL
metaclass. It has a composition relationship with the UserContainer class, which is designed to hold
multiple instances of the User class. The User class links to an abstract ContextOfUse class, which is
further specialised into three subclasses: UserContext, PlatformContext, and EnvironmentContext. In
a runtime context-of-use model instance, a developer can instantiate User, Platform, and Environment
context nodes under a selected user and populate them with various subnodes in a layered tree-node
hierarchy, as illustrated in the metamodel.

her garden on a bright, sunny day. The combination of inadequate colour contrast in
the app and intense ambient light makes it difficult for her to view the screen clearly.
With limited options, such as shading the screen with her hand or moving to a shaded

area, this situation highlights the importance of adaptive solutions.

This scenario can be effectively represented using a Context-of-Use model, illus-
trated in Figure 4. The model follows a semi-graphical tree-node structure with a
top-level user container node that can represent one or more child users nodes. In

11

this example, we define the context parameters for Judy (User ID 001). A developer
can populate the model with predefined nodes such as vision impairment, specifying
attributes like severity and type (highlighted in red). Platform context, such as device
details (highlighted in green) and screen dimensions, can also be included. Environ-
mental parameters, including location or time, can be populated using real-time sensor
data from the user’s device (highlighted in blue).

Context DSL as depicted by its metamodel depicted in Figure 5, is an iterative
improvement upon current state-of-the-art DSL methods for modelling context-of-
use scenarios. Our approach draws particular inspiration from Bendaly Hlaoui et
al. [13], whose work presented one of the most comprehensive context-of-use DSL
metamodels. We also took influence from Yigitbas et al. [16]; although their context-
of-use metamodel was comparatively shallower, it offered valuable insights into how an
additional DSL could be employed to transform static, tree-like contextual parameters
into meaningful accessibility scenarios.

A minor enhancement in our proposed metamodel (Figure 5), compared to
the related works reviewed in Wickramathilaka and Mueller [17], is the inclusion
of meta-classes for modelling user preferences within the UserContext meta-class
(e.g., preferences for privacy, colour, font, and multimedia). Additional improvements
include meta-classes for assistive feature usage and I/O device modelling. Importantly,
our prototype implementation is novel and distinct from existing MDE-based UI adap-
tation approaches. For example, Yigitbas et al. [16] implemented their context-of-use
models using a textual, JSON-like DSL, while Bendaly Hlaoui et al. [13] utilised a
graphical DSL. In contrast, our implementation adopts a semi-graphical approach (see
Figure 4) built using the Sirius DSL definition workbench [30]. This choice reflects
our design intent for the tool to be used by software developers familiar with hier-
archical, semi-graphical structures (e.g., file system hierarchies). Unlike prior studies,
we also evaluated the usability of this modelling approach and were able to validate
our intuition through empirical feedback.

2.3.2 Adapt DSL

While our Context DSL can model diverse accessibility scenarios, another DSL is
required by AdaptForge to specify and apply adaptation operations when a context-
of-use scenario is identified. For this purpose, we introduce Adapt DSL. Unlike the
abstract and graphical approach taken with Context DSL, Adapt DSL is descriptive
and concrete, focusing on the definition of adaptation operations and rules. Conse-
quently, a textual language was chosen, leveraging conditional statements commonly
found in programming languages to make it intuitive for its intended users: software
developers.

To illustrate the capabilities of AdaptDSL, consider the user persona shown in
Figure 1. As discussed in the previous subsection, runtime instances of ContextDSL
can model accessibility scenarios experienced by senior end-users. These scenarios
can then be referenced in AdaptDSL through complex conditional expressions. For
example, the adaptation rule illustrated in Figure 6 uses the condition attribute
(Figure 6, Section C) to incorporate various User, Platform, and Environment context

12

id: "Rulel",
name: "High contrast rule for low contrast",
wcag: "1.4.3 level AA, 1.4.4 Level AA, 1.4.6 level AA, 1.4.8 level AAA, 1.4.11 level AA",
priority: "high",
comments:{
problem: "User's vision is affected by farsightedness anf low contrast sensitivity",
solution: "Applying a set of WCAG guidelines under the perceivable principle.

Text is more visible and UI elements are easier to differentiate due to high contrast",
advantages: "Text is more visible and UI elements are easier to differentiate due to
high contrast ratio",
trade-offs: "Increased text elements lead to more scrollable space"

+
condition: userContext.visionImpairment.type == "low contrast” AND userName == "Judy Smith"
AND platformContext.deviceDetails.Name == "iPhone 11"

AND environmentContext.ambientLight. Value >= 5000,
operations: [

key: ["add_shipping_fullname","add_shipping_address", "add_shipping_zipcode"],
widget_type: TextFormField,
adaptation_type: Presentation,
comments: "Increasing the text size within the textFormFields and changing the
@__> overall colour scheme for black and white to enhance contrast",
adaptations: {
TextStyle: {
fontWeight: "FontWeight.bold", color: "Colors.black", fontSize: 24.0
},
InputDecoration:{
fillColor: "Colors.white",

(:)__—} border: {

enabledBorder: {
color: "Colors.black", width: 2.0, radius: 20.0
}

}

Fig. 6 An example adaptation rules model for Judy (a runtime model instance of Adapt DSL).
To explain each section in the model: A) WCAG reference field, B) Overall comment definition of
the rule, C) Context DSL referencing conditional statement, D) Unique widget(s) reference field, E)
Widget type field, F) Adaptation type field, G) Comment definition field for a granular adaptation
operation, and H) Example adaptation operations for a TextFormField presentation adaptation.

parameters that define a context-of-use (e.g., a low-vision senior using an iPhone 11
in a high ambient light environment).

To enhance the interpretability of each rule, developers can include metadata such
as the relevant Web Content Accessibility Guidelines (WCAG) success criterion via
the wcag attribute (Figure 6, Section A), and provide descriptive comments using the
comment structure, which supports fields for problem, solution, advantages, and
trade-offs (Figure 6, Section B).

The operations attribute then specifies the actual adaptation logic to be applied
within a Flutter application. This requires several parameters: the key attribute
(Figure 6, Section D) identifies the widget(s) to be modified; widget_type (Section
E) specifies the type of widget; adaptation_type (Section F) defines the type of
source code adaptation; and an additional comments attribute (Section G) allows for
more granular documentation of each adaptation operation. Finally, the specific Ul
modifications are defined in the adaptations attribute (Figure 6, Section H), which
supports various Flutter widgets covered by our DSL.

13

Adapt DSL 1.1 ion Rules Model Conditional Statement
+ adaptationRulesModel: ’—‘—) daptationRule: + expression:
Set<AdaptationRulesModel> ;; J%a;zzio:;ﬁ» Set<Expression>

[1.1]

[1..*] adaptationRule statement

[1.1]

Comment Adaptation Rule expression
+ probIAem.: s1r-lng] +id: string eseion M.
+ solution: string comment + name: string
+ advantages : string (_—I +wcag: string L
+ trade-offs: string + priority: string A

Or Expression

[1..1] key +comment: Set<Comment>

+ expression:
+ condition: 1 g
Set<ConditionalStatement>
.___________________
[0.1]
+ operation: Set<Operation> And Expression andExpression
singlekey [Keylist |
[1..1] operation + expression:
+ value: string + values: string[*] [Set<C i ic <€
Operation
9 +key: Set<Key> [0.1
\A:Z’;T;:'t:l)l?:n comparisonExpression
i g
Text + comments: string Comparison Expression
* + widget_type: WidgetDefinition + relationalOperator: e
+ ElevationButton i : e
SYEEoNELNO [+ adaptation_type: AdaptationType string n.1
+ Row || +leftOperand: rightOperand
+ adaptations: Set<Adaptations> Set<PrimaryExpression>
+ Column _
+ Container Adaptation Type [l Set<PrimaryExpression> | .1
+ Image + Presentation adaptations leftOperarjd
+lcon + Navigation Primary
+ TextFormField gaodalty | i
+ DropDownFormField Adaptations f
< other supported Flutter widgets > + adaptationAttribute:
Set<AdaptationAttribute [*]> ‘ |
@eneral Adaptation Anributq | Form Groups Attribute I 'y Identifier Expression String Value
1.7] [..1]
t ationAttri - J : ad apmgon ,{mibme identifier | + identifier: identifier value: string
PR
| Adaptation Attribute
T d Identifier Gnrenthlslzed Expression
+ fullldentifier: string + expression:
-
<Supported Flutter
widget attribute .
o) fext Form Fiel
(et | Attributes - -
<List of Flutter <List of Flutter b«««cx«-- <List of Flutter ‘ Speech To Text Attribute W | Text To Speech Attribute | Number Value
Container widget Text widget TextFormField widget + stt: boolean + tts: boolean +value: double
attributes> attributes> attributes> [E—

Fig. 7 The Adapt DSL metamodel. At the root of the class diagram is the AdaptDSL meta-class,
which has a composition relationship with the Adaptation Rules Model class. This allows users to
instantiate multiple Adaptation Rule objects within the Adapt DSL editor. The Adaptation Rule
class includes three key meta-classes: (1) Comment, used to define metadata for adaptation rules; (2)
Conditional Statement, which enables users to construct complex conditional logic; and (3) Operation,
where users define concrete app adaptations targeting supported Flutter widget meta-classes such as
Text, Container, and Icon.

Our Adapt DSL metamodel is shown in Figure 7, and its overall design is influ-
enced by several existing studies [13, 16, 29, 31]. However, it also introduces several
significant contributions to the research space. First, it supports the definition and ref-
erencing of various types of metadata related to specific accessibility barriers. Notably,
we introduce new meta-classes that incorporate references to the Web Content Acces-
sibility Guidelines (WCAG), enabling developers to ground their adaptation rules in

14

widely accepted accessibility standards. Additionally, the metamodel includes a ded-
icated structure for documenting adaptation-related metadata such as the problem
addressed, proposed solution, associated advantages, and trade-offs.

Another key contribution is the demonstration that abstract adaptation rule mod-
els can be integrated with widely used industrial frameworks such as Flutter, rather
than relying solely on UI modelling languages like IFML to identify adaptation points
[16]. We show that any framework exposing granular UI components can potentially
be integrated with Adapt DSL at the metamodel level, allowing flexible adaptation
of individual components or groups of components based on developer-defined rules.
Finally, we believe our prototype implementation of adaptation rules represents one
of the most mature realisations of this concept among the MDE-based adaptive Ul
approaches we examined in our prior study [17].

2.4 MDE-based Adaptive user interface modification

Once the developer has modelled the age-related accessibility adaptation needs of
their senior user base using AdaptForge’s Context DSL and Adapt DSL, these mod-
els are transformed into structured data formats and then fed into a Model-Driven
Engineering (MDE) pipeline. AdaptForge’s MDE pipeline also takes an off-the-shelf
Flutter application source code to adapt as its input.

The AdaptForge MDE pipeline queries the adaptation rules model for key prop-
erties within a rule’s adaptation operations. Upon identifying these key properties, it
traverses the Abstract Syntax Tree (AST) of the Flutter app’s Dart source code to
locate the UI widgets with the specified key properties. Once these widgets are identi-
fied, the MDE pipeline applies source code modifications as defined by the adaptation
rules model. An example of this adaptation pipeline is illustrated in Figure 8.

Both our Adapt DSL and the MDE pipeline are tightly integrated with the Flut-
ter framework in our AdaptForge prototype proof-of-concept tooling. Consequently,
porting our current implementation to a different tool stack (e.g., React, Angular)
will require significant rework of both components to their different Ul languages.
However, our proposed approach is designed to be highly flexible for applications
developed within the Flutter framework. Currently, most demonstrable app adapta-
tions can be applied with minimal integration-related changes to the original codebase.
For instance, all screenshots generated for this paper were taken from an open-source
Flutter app project!, in which we had no involvement in development. We simply
loaded the app’s source code into AdaptForge to demonstrate its adaptability through
our approach. For example, to adapt the presentation of both the Text and Icon wid-
gets in one of the app’s Uls (Figure 8), only two additional lines of code were required
— key property lines enabling the MDE pipeline to query the Abstract Syntax Tree
(AST) and identify the relevant widgets. We believe that most apps developed using
Flutter can be similarly adapted with minimal code modifications.

1 https://github.com/adeeteya/FlutterFurnitureApp

15

https://github.com/adeeteya/FlutterFurnitureApp

m Non adapted Dart code snippet @ Adapted Dart code snippet
appBar: AppBar(appBar: AppBar(
leading: IconButton(leading: IconButton(
onPressed: () { onPressed: () {
Get.back(); Get.back();
+ H
icon: const Icon(icon: const Icon(
key: Key('add_shipping_appbar_icon'), key: Key('add_shipping_appbar_icon'),
Icons.arrow_back_ios_new, Icons.favorite,
color: kOffBlack, color: Colors.red,
size: 20, ﬁ size: 30.0,
), semanticLabel: 'Favorite Icon',
), textDirection: TextDirection.ltr,
centerTitle: true,),
title: const Text()
key: Key('add_shipping_title'), centerTitle: true,
"ADD SHIPPING ADDRESS", title: const Text(
style: kMerriweatherBold16, key: Key('add_shipping_title'),
), "ADD SHIPPING ADDRESS",
) style: TextStyle(
- N n fontSize: 24.0,
Adaptation rule operations snippet color: Colors.blue,
oper?tions: [fontWeight: FontWeight.bold,
key: ["add_shipping_appbar_icon"],),
widget_type: Icon, textAlign: TextAlign.center),

adaptation_type: Presentation,

adaptations: {
t X 0:3 =
@ icon: "Icons.favorite", b - -

size: 30.0,

color: "Colors.red",
semanticLabel: "Favorite Icon",
textDirection: "TextDirection.ltr"

}
}’
{

key: ["add_shipping_title"],
widget_type: Text,
adaptation_type: Presentation,

adaptations: {

textAlign: "center",
TextStyle: { Non adapted app Ul
fontSize: 24.0,
color: "Colors.blue",

< ADD SHIPPING ADDRESS

fontWeight: "FontWeight.bold" 10:30 - T -
}
} } ¥ ADD SHIPPING ADDRESS
Adapted app Ul

Fig. 8 A simple source code transformation example of a presentation adaptation. In this exam-
ple, two Flutter widgets (Text and Icon) within an AppBar are transformed. The original app (D)
and its source code (A) were sourced from an open-source GitHub repository. The MDE pipeline
applies the specified adaptation rules operations (C.1 and C.2) to modify the property values of each
Flutter widget (B). The adapted app instance (E) now reflects the changes defined in (C.1) — Icon
widget and (C.2) — Text widget.

16

2.5 An Example Usage

Drawing from insights gained through our exploratory focus group studies with
seniors, we identified three categories of adaptations required to address their acces-
sibility and personalisation needs: : Presentation, Modality, and Navigation. In this
section, we use this internal classification framework to provide use cases and explain
how a software developer can use the AdaptForge prototype to adapt application
source code, resulting in tailored, adaptive user interface instances.

2.5.1 Presentation adaptation

In the example persona of Judy given in Figure 1, we describe how her vision impair-
ment creates accessibility barriers in her app Uls due to small text and insufficient
background-foreground colour contrast. However, with the presentation adaptation
capabilities of AdaptForge, we demonstrate how our approach can mitigate such issues.
Ideally, to meet such a requirement, our adapted app instance should be similar to
Section (B) in Figure 9.

In this section, however, the purpose is to depict how we achieve such presentation
adaptations through a concrete example. To do so, let us consider the least amount
of presentation adaptations that we can achieve through AdaptForge: a simple widget
attribute change to two of the most commonly used Flutter widgets: A Text widget
and an Icon widget. In Figure 8, we illustrate a non-adapted app instance in Section
(D). Among the granular widgets that aggregate the UI, let us consider the Text
widget that acts as the page header: ’ADD SHIPPING ADDRESS’ and the ’back’
icon given in the non-adapted UI. For the sake of a demonstration, let us define two
adaptation operations within an adaptation rule: (C.1) aims to change the ’back’ icon
into a ’favourite’ icon, whereas we use (C.2) to increase the text size and change
the colour of the header text widget. Once these adaptation operations are executed
within our MDE pipeline, Section (B) depicts how the ’add_shipping_appbar_icon’
and ’add_shipping_title’ widgets now have modified attributes compared to the non-
adapted UI source code from Section (A). A comparison of Section (D) and Section
(E) reveals how the source code changes have changed the UL

It is worth noting that we used only Text and Icon widgets in our demonstration
as they can be easily and visually demonstrated. However, our current prototype sup-
ports similar widget attribute adaptations for a range of Flutter widgets, including
Container, ElevatedButton, TextField, TextFormField, DropdownField, Row, Col-
umn, AppBar, Image, GridView, and SliverGrid. In the current iteration, we support
more commonly used Flutter widgets, but the adaptation capabilities can be easily
extended to others.

Developers can add a key property with a unique identifier to any of the aforemen-
tioned Flutter widgets and then use the Adapt DSL’s rules model to specify stylistic
property modifications for specific contextual situations, as modelled by the Context
DSL. The AdaptForge code generator subsequently injects these modified properties
into the relevant widgets, updating the source code accordingly.

17

o1 e o1 RS 91 - 9:41 -

< ADD SHIPPING ADDRESS < ADD SHIPPING ADDRESS < ADD SHIPPING ADDRESS < ADD SHIPPING ADDRESS

— © o
e A A
v

Zipcode (Postal Code)

Select Country - # Select Country -
CONTINUE
Select City - Select City -

Select District v Select District v
e B
SAVE ADDRESS SAVE ADDRESS

® © ®

“ Non adapted app Ul ” + Presentation adapted app Ul }» { Modality adapted app Ul } { Navigation adapted app Ul l

Fig. 9 An example is illustrated where the Add Shipping Address interface of the open-source furni-
ture app, shown in (A), is incrementally adapted using AdaptForge. First, the UI widget presentation
attributes are modified, as seen in (B). Next, text-to-speech and speech-to-text functionalities are
integrated, as depicted in (C). Finally, the adapted source code is further modified to transform the
form into a dynamic stepper form, resulting in a navigation-adapted UI instance, shown in (D).

2.5.2 Multi-modality adaptation

Adapting the Dart source code to add text-to-speech and speech-to-text functionality
is more complex compared to presentation adaptations. It involves generating the
required imports (such as Flutter’s Text-to-Speech and Speech-to-Text plugins) and
the corresponding Dart code to produce an executable UI. However, this task is feasible
through the proposed approach, as demonstrated by the source code example in Figure
10.

2.5.3 Navigation adaptation

Compared to the previously demonstrated adaptation types, navigation adaptations
are arguably the most complex. When senior users require modifications to an appli-
cation’s navigation or workflow, the resulting changes to the source code can be highly
variable. This variability makes it challenging to define a standard implementation
method. One accessibility concern identified through our exploratory and evaluative
focus group studies is that seniors often prefer less overwhelming user interfaces, par-
ticularly when experiencing age-related cognitive limitations [5]. Moreover, certain
adaptations, such as increasing Ul element sizes or incorporating additional modal-
ities like audio, can inadvertently introduce new accessibility barriers by increasing
vertical scroll space or overall interface complexity.

To address this issue, a promising strategy is to segment UI content and present
it incrementally, thereby simplifying the user’s interaction workflow [5, 18]. This type
of adaptation alters the app’s navigational structure, and we selected it as a use case

18

decoration: InputDecoration(
labelText: "Full name",
hintText: "Ex:Aditya R",

fillColor: Colors.white,
enabledBorder: OutlineInputBorder(
borderSide: BorderSide(
color: Colors.black, width: 2.0),
borderRadius:

BorderRadius.circular(20.0))),

key: Key('add_shipping_fullname'),

keyboardType: TextInputType.name,

onChanged: _nameOnChanged,

validator: _nameValidator,

style: TextStyle(fontWeight: FontWeight.bold))),

Padding(

padding: EdgeInsets.only(top: 0.0, bottom: 20.0),
child: TextFormField(

decoration: InputDecoration(

Address

Zipcode (Postal Code)

SAVE ADDRESS

SAVE ADDRESS

Adapted app Ul

Non adapted app Ul —[

F rule op snippet
{
key: ["add_shipping_fullname","add_shipping_address", "add_shipping_zipcode"],
widget_type: TextFormField,
adaptation_type: Modality,
comments: "enabling text-to-speech and speech-to-text features and generating the
code for new functionality",
adaptations: {
stt: True, // speech-to-text
tts: True // text-to-speech
}
}
Non adapted Dart code snippet Adapted Dart code snippet - widget modification
Padding(Padding(
padding: Edgelnsets.only(top: 0.0, bottom: 20.0), padding: Edgelnsets.only(top: 0.0, bottom: 20.0),
child:] TextFormField(i TextlormileldwlthSpeech(I

decoration: InputDecoration(
labelText: "Full name", .
hintText: "Ex:Aditya R",
fillColor: Colors.white,
enabledBorder: OutlineInputBorder(
borderSide: BorderSide(
color: Colors.black, width: 2.0),
borderRadius:
BorderRadius.circular(20.0))),
key: Key('add_shipping_fullname'),
keyboardType: TextInputType.name,
onChanged: _nameOnChanged,
validator: _nameValidator,
style: TextStyle(fontWeight: FontWeight.bold))),
Padding(
padding: EdgeInsets.only(top: 0.0, bottom: 20.0),

Y

Adapted Dart code snippet - TTS + STT functionality integration

class TextFormFieldWithSpeech extends StatefulWidget {
final Key? key;
final String? headerText; .
final String? hintText;
final TextInputType? keyboardType;
final Function(String)? onChanged;
final String? Function(String?)? validator;
final int? maxLength;
final TextInputAction? textInputAction;
final TextEditingController? controller;
final bool obscureText;
final AutovalidateMode? autovalidateMode;

Fig. 10 An example of multi-modality adaptation with source code transformation. The previous
presentation adaptation example is extended to integrate text-to-speech and speech-to-text function-
ality for the defined TextFormField widgets. In (C), when the speech-to-text and/or text-to-speech
properties are set to true, the MDE pipeline identifies the relevant widget (A.1) and adapts the
source code to include the necessary functionality, as shown in (B.1) and (B.2). This transformation
is reflected in the app’s front end, where the adaptation evolves from instance (A.2) to (B.3).

19

to demonstrate how our approach manages the code generation challenges typically
associated with such workflow modifications.

Accordingly, we used DSL inputs to dynamically introduce a wizard-style inter-
face into an originally static, single-page form. This allows developers to restructure
a single-page form into a dynamic stepper form, with the segmentation of form fields
defined through our DSL. Figure 11 illustrates how AdaptForge achieves this adap-
tation. Unique widget identifiers from the original form (A.2) are referenced in the
adaptation rule to specify three form groups. In the adapted UI (B.3), the MDE
pipeline generates source code that separates the original form into these three groups,
as specified in the rule’s configuration.

2.5.4 Comment generation

In addition to the adaptation types discussed above, we provide support to develop-
ers in the specification and maintenance of comments for each adaptation rule and its
associated granular adaptation operations (shown in Figure 6). This allows developers
to document the purpose of each rule and the specific adaptations it addresses, partic-
ularly concerning the senior user’s age-related needs. Notably, this documentation can
include references to the relevant WCAG guidelines that inform the adaptation rule.
When the MDE pipeline modifies the source code, it embeds these comments within
the modified Dart files. This practice provides developers with a clear documentation
trail, helping them track any adaptations made to the original source code.

2.6 Implementation

To develop our prototype AdaptForge tool suite, we utilized the Eclipse Modelling
Framework (EMF) and its Domain-Specific Language (DSL) workbench tools. For the
Context DSL, we implemented the DSL using the Sirius workbench [30]. Additionally,
we employed Acceleo [32] as a model-to-text transformer to convert the Sirius run-time
model instance into a cleaner XML format. The development of the Adapt DSL was
conducted using Eclipse’s Xtext framework [33], with Xtend serving as the model-to-
text transformer to generate a JSON structure from the Adapt DSL’s textual run-time
model instances. The current prototype tool suite is also tightly integrated with the
Flutter framework. Specifically, Flutter’s widget documentation was used to define the
widget attribute adaptation classes for the Adapt DSL. In its current implementation,
the MDE pipeline exclusively generates and adapts Dart code.

20

ADD SHIPPING ADDRESS

0 51

'
:

Zipcode (Postal Code)
4

conmmue | mack

@ seo2

© ss3
SAVE ADDRESS

SAVE ADDRESS

Non adapted app Ul Adapted app Ul

{
key: ["add_shipping_fullname","add_shipping_fullname","add_shipping_address",
"add_shipping_zipcode","add_shipping_country",
"add_shipping_city","add_shipping_district"
widget_type: TextFormField,
adaptation_type: Navigation,
comments: "test", @
adaptations: {
formGroups: [
["add_shipping_fullname", "add_shipping_address", "add_shipping_zipcode"],
["add_shipping_country"],
: ["add_shipping_city", "add_shipping_district"]
}
i
Non adapted Dart code snippet Adapted Dart code snippet
Padding(Al child: Column(children: [
adding: Edgelnsets.only(top: 0.0, bottom: 20.0), StepBasedForm(.
child: TextFormFieldWithSpeech(formKey: _formKey,
decoration: InputDecoration(addressController: _addressController,
labelText: "Full name", nameOnChanged: _nameOnChanged,
hintText: "Ex:Aditya R", nameValidator: _nameValidator,
fillColor: Colors.white, addressOnChanged: _addressOnChanged,
enabledBorder: OutlineInputBorder(addressValidator: _addressValidator,
borderSide: BorderSide(pincodeOnChanged: _pincodeOnChanged,
color: Colors.black, width: 2.0), ‘) pincodeValidator: _pincodeValidator,
borderRadius: countryOnChanged: _countryOnChanged,
BorderRadius.circular(20.0))), countryValidator: _countryValidator,
key: Key('add_shipping_fullname'), cityOnChanged: _cityOnChanged,
keyboardType: TextInputType.name, cityValidator: _cityValidator,
onChanged: _nameOnChanged, districtOnChanged: _districtOnChanged,
validator: _nameValidator, districtValidator: districtValidator),
style: TextStyle(fontWeight: FontWeight.bold))],
Padding(Adapted Dart code snippet
padding: EdgeInsets.only(top: 0.0, bottom: 20.0), class StepBasedForm extends StatefulWidget {

final GlobalKey<FormState> formKey;

final AddressController addressController;
final void Function(String) nameOnChanged;
final String? Function(String?) nameValidator;
final void Function(String) addressOnChanged;
final String? Function(String?) addressValidator;
final void Function(String) pincodeOnChanged;
final String? Function(String?) pincodeValidator;
final void Function(String) countryOnChanged;
final String? Function(dynamic) countryValidator;
final void Function(String) cityOnChanged;

final String? Function(dynamic) cityValidator;
final void Function(String) districtOnChanged;
final String? Function(dynamic) districtValidator;

StepBasedForm({
required this.formKey,
required this.addressController,
required this.nameOnChanged,
required this.nameValidator,
required this.addressOnChanged,

Fig. 11 An example of navigation adaptation with source code transformation. The previously
adapted UI source code (A.1) is further transformed into a segmented form through automatically
modified source code (B.1). (B.2) shows the additional classes and functionalities applied to the orig-
inal code to enable this operation. To trigger this transformation, the developer defines the grouping
and ordering of the relevant TextFormField widgets through the adaptation rules model (C). The
final transformation to the UI instance is shown, evolving from (A.2) to (B.3).

21

3 Evaluation

We evaluated AdaptForge using two separate but parallel qualitative user studies. Our
approach’s primary target audience was software developers. Therefore, we aimed to
present AdaptForge in action (as a video demonstration) and gather their feedback
regarding its usefulness, practicality, ease of use, potential for real-life adoption, and
suggestions for improvement. On the other hand, the ultimate beneficiaries of our
study are seniors. Thus, our second study — a focus group study focused on demon-
strating the adaptive UI prototypes and obtaining feedback from seniors to assess
whether their age-related accessibility needs have been effectively addressed. Both
studies were approved by the Monash Human Research Ethics Committee (MUHREC
Project ID: 42470).

This paper primarily focuses on the feedback from software developers, as they
are the intended users of AdaptForge. However, developers will not use the tool in
isolation, without considering its impact on end-users. Therefore, we also provide a
summary of the feedback received from seniors regarding the UI prototypes generated
using AdaptForge.

3.1 Evaluation with developers
3.1.1 Study protocol

In this study, we opted to do 1-hour interviews with software developers. Due to
the complexities and familiarity necessary to install and set the prototype in a
participant’s own device, we adopted an approach where we simulated an adapta-
tion workflow with AdaptForge running on the first author’s personal computer and
produced three video demonstrations?.

At the beginning of the interview session, we presented a scenario where a sig-
nificant portion of a Flutter app’s user base was aged above 60. Then we explained
how these senior users find accessibility barriers in the app due to their diverse and
personalised age-related accessibility needs and our proposal to address this.

In the first video demonstration, we used a simplified representation of Figure 1,
which explained Judy’s accessibility needs. We then used the Context DSL editor to
create a context-of-use model representation of Judy. After the demonstration, we
asked questions from the participants with regards to how practical and useful they
found the modelling tool, its ease of use, suggestions for improvement, and the likeli-
hood of the participant adopting the modelling tool in a real-life software development
project.

In the second demonstration, we continued the same example by defining an Adap-
tation Rules Model for Judy’s accessibility scenarios via Adapt DSL’s editor. We then
input both the context-of-use model and adaptation rules model into the MDE pipeline
and generated an adapted app instance based on them. These adaptations were solely
focused on presentation aspects (e.g., making text larger and bolder, changing the
theme to black and white, enhancing the input box and button borders etc...). Again a
similar set of questions to the previous demonstration were asked from the participant.

Zhttps://drive.google.com/drive/folders/11b_P07ybFD7SoDS1r7rrd Wd7wks1la6n?usp=sharing

22

https://drive.google.com/drive/folders/11b_P07ybFD7SoDS1r7rrdWd7wks1la6n?usp=sharing

The final demonstration was focused on applying complex adaptations such as the
integration of text-to-speech and speech-to-text features into the Ul and transforming
a traditional form into a dynamically grouped wizard pattern-based step-by-step form.
We wanted to determine the practical implication of such complex source code adapta-
tions where the source code differs drastically compared to much simpler presentation
adaptations.

We then concluded the session where we invited the participant to express their
opinions on their overall impressions and the AdaptForge’s potential for adoption in
a real-life software development project.

3.1.2 Participant recruitment

We recruited 18 participants to the study. Our primary recruitment criteria were for
the software developers to have at least 6 months of professional experience in the Flut-
ter framework. The recruitment was done through social media advertisements and
authors’ personal and professional contacts. Participation in this study was voluntary.

3.1.3 Data collection

Each interview session was carried out over Zoom, except for one that was done in
person. Both Zoom sessions and the in-person session followed the same interview
protocol, and therefore, how the interview was conducted does not have any impact on
results. Session durations ran from 45 minutes to 85 minutes. The average duration per
session was 59.9 minutes. We audio-recorded the sessions via Zoom and transcribed
the data with Otter.ai.

3.1.4 Data analysis

After generating the interview transcripts, we carefully cleaned the dataset and famil-
iarised ourselves with it. Subsequently, we subjected the data to a thematic analysis
process. The initial coding revealed a diverse set of concepts, requiring iterative refine-
ments to eliminate redundancies and streamline the codes into a hierarchical structure.
Ultimately, we classified the codes under the following root themes: (1) Positive Reac-
tions from Developers for AdaptForge, (2) Negative Reactions from Developers for
AdaptForge, and (3) Suggestions for Improving AdaptForge.

While classifying the codes under these overarching themes was intuitive, identi-
fying sub-themes within them proved challenging due to the variability in developer
feedback. For instance, under the Suggestions for Improving AdaptForge theme, devel-
opers offered a highly diverse range of suggestions. Nevertheless, we successfully
organised the codes into a more manageable, theme-based hierarchy by the end of the
analysis.

3.1.5 Participant information

The demographic data for our evaluation study with software developers (N=18) is
provided in Table 1. In terms of age distribution, the majority of participants (n=15,
83.3%) were between 21-34 years, while the remaining n=3 (16.7%) fell within the

23

ID | Age Software Mobile dev. | Flutter exp. | Use Importance of
industry Exp. accessibility | addressing age-
exp. standards? specific UI needs

D1 21-34 5 - 10 years 2 - 4 years 2 - 3 years Yes Important

D2 | 21-34 5 - 10 years < 1 year < 1 year Yes Essential

D3 | 21-34 2 - 4 years < 1 year < 1 year Yes Essential

D4 | 21-34 5 - 10 years 5 - 10 years 2 - 3 years Yes Essential

D5 | 21-34 2 - 4 years < 1 year < 1 year Yes Essential

D6 | 21-34 5 - 10 years 5 - 10 years > 5 years Yes Important

D7 | 21-34 5 - 10 years 2 - 4 years 2 - 3 years Maybe Important

D8 | 21-34 2 - 4 years 2 - 4 years 2 - 3 years Maybe Important

D9 | 21-34 < 1 year < 1 year < 1 year Yes Essential

D10 | 21 - 34 5 - 10 years 5 - 10 years > 5 years Maybe Important

D11 | 21- 34 2 - 4 years 2 - 4 years 3 - 4 years Maybe Essential

D12 | 35-59 > 10 years 2 - 4 years 3 - 4 years Yes Important

D13 | 21 - 34 < 1 year < 1 year < 1 year No Somewhat Important

D14 | 21 - 34 5 - 10 years 5 - 10 years 3 - 4 years No Important

D15 | 35 - 59 > 10 years > 10 years > 5 years Yes Essential

D16 | 35 - 59 5 - 10 years 5 - 10 years 2 - 3 years Maybe Somewhat Important

D17 | 21 - 34 5 - 10 years 5 - 10 years 3 - 4 years Yes Somewhat Important

D18 | 21 - 34 > 10 years 2 - 4 years 3 - 4 years No Somewhat Important

Table 1 Demographic data of software developers
Developer ID Design Integrate Capture per- Provide Use general Rarely
universally native sonalisation configuration practices personalise
accessible UI accessibility needs via dashboard unless Ul
based on settings personas for UI per- special case
accessibility sonalisation handling is
guidelines needed

D1 X X X

D2 X X X

D3 X X X X

D4 X X X

D5 X X X

D6 X X X

D7 X X

D8 X

D9 X X

D10 X

Di1 X

D12 X

D13 X X

D14 X X X

D15 X X X X

D16 X X

D17 X X

D18 X X

% 66.7% (12) 61.1% (11) 38.9% (7) 38.9% (7) 5.6% (1) 22.2% (4)

Table 2 Current strategies used by developer participants to address age-specific UI needs

24

35-59 age category. We then assessed participants’ experience levels across three key
dimensions: (1) overall professional experience as developers, (2) experience in mobile
development, and (3) experience in the Flutter framework.

Regarding overall professional experience in the software industry, most developers
(n=9, 50%) reported having 5-10 years of experience. Additionally, three participants
(16.7%) had more than 10 years of experience, while two (11.1%) were novice devel-
opers with less than one year of experience. With respect to experience in mobile app
development, the levels varied; however, only a minority (n=>5, 27.8%) reported hav-
ing less than one year of experience. A similar trend was observed for experience in the
Flutter framework, where again, five participants had less than one year of experience.
Notably, we were able to recruit developers with 3—4 years (n=>5, 27.8%) and even
more than five years of experience in the framework (n=3, 16.7%) — an encouraging
finding, given that Flutter 1.0 was only released in late 2018 [24].

Next, we aimed to assess the current priorities and strategies our developer partic-
ipants follow when developing accessible software, particularly for senior users. First,
we inquired whether participants incorporate accessibility standards, such as WCAG,
into their development practices. Encouragingly, 10 participants (55.6%) reported that
they do. To further explore developers’ perspectives on addressing accessibility bar-
riers in Uls for seniors, we asked them to rate the importance of considering senior
age-related accessibility needs using a Likert scale. Notably, 7 participants (38.9%)
stated that it is essential, while another 7 participants (38.9%) considered it impor-
tant. This indicates that the vast majority of our sample acknowledged the significance
of accessibility considerations in Ul development.

The final question in our pre-interview questionnaire (Table 2) aimed to gain a con-
crete understanding of the exact strategies software developers employ when designing
Uls and apps for senior users. The most prevalent strategy among participants (n=12,
66.7%) was designing universally accessible Uls with accessibility standards such as
WCAG in mind. Another commonly adopted approach (n=11, 61.1%) was ensur-
ing that Uls comply with native operating system-level accessibility settings and
requirements. Encouragingly, a majority of participants (n=11, 61.1%) reported hav-
ing strategies to support personalisation for their users. Specifically, seven participants
(38.9%) stated that they interact with end users to create personas, while seven of
them (38.9%) indicated that they provide a UT configuration dashboard for end-user
customisation. Conversely, a minority (n=4, 22.2%) admitted that they rarely take
steps to personalise their Uls for seniors, citing time and resource constraints as
limiting factors.

3.1.6 Results

A key theme that emerged from our analysis was how AdaptForge could either enhance
or hinder the developer experience in a software development setting. Nearly all partic-
ipants (n=17) provided positive feedback on the strengths of AdaptForge, highlighting
how it could make the development process more intuitive and less burdensome when
designing personalised software Ul for seniors and other user groups. However, some
participants (n=10) also expressed concerns, offering critical feedback on potential
drawbacks. We identified that these limitations stem from the current implementation

25

of the prototype, which can be improved in future iterations based on the improve-
ment suggestions provided by all participants (n=18). In this section, we examine
and summarise the key findings of the study, encompassing positives, negatives, and
suggestions for improvement as discussed by the majority of participants.

Developer feedback on AdaptForge’s strengths

Ease of use in DSLs:

The design and usability of the DSLs received highly positive feedback from devel-
opers, with 17 out of 18 interviewees expressing approval. Individually, 15 developers
found Context DSL user-friendly, while Adapt DSL was similarly well-received (n=15).
For Context DSL, developers particularly appreciated its tree-like hierarchy, as it
aligns with their existing mental models. As [D2] noted, “I think it’s very easy to
understand because it’s very well structured, and it’s like a tree, so it’s very easy for
developers to understand, because, you know, the structure just makes sense itself.”
Similarly, Adapt DSL was praised for its user-friendliness, with developers finding its
JSON-like structure intuitive and easy to understand. As [D7] mentioned, "It’s very
user friendly due to its JSON structure, and we all know JSON, and it’s like, not [a]
very steep learning curve”

Enhanced developer convenience:

Another recurring theme (n=11) in the data regarding developers’ experience with
AdaptForge was its potential to provide convenience in addressing age-related needs for
end-users. Developers were particularly positive about its automated code generation
capabilities through DSL models, which they felt could save time and reduce effort
compared to traditional development methods. For example, [D5] noted, "I think it
saves a lot of time for a developer, because, in order to deal with all the adaptations
happening in the user interface. Especially, when you have a lot of users with different
needs.”

Usefulness and practicality of the approach:

17 out of 18 participants agreed that our proposed AdaptForge tool and its sub-
components are useful and beneficial in achieving our goal: finding a better approach
to addressing age-related accessibility needs in Uls for seniors. Even [D14], who was
the most critical participant in our study, acknowledged that at least one of our sub-
components, Context DSL, could be situationally useful. This is further evidenced by
what was said by [D10] regarding the overall usefulness of AdaptForge , "I'm really
interested in using this kind of tool if I'm developing this kind of app, and I think it’s
really useful and it can save a lot of developers’ time, and it will make the app more
usable to the senior users as well.”

In addition, a majority of the participants (n=16) stated that the approach that
we have taken in this project is a practical one. Of course the developers had a wide
range of improvement suggestions to ensure that our next tool iterations mitigate
the practical considerations raised regarding our current prototype implementation.
For example, the following was noted by [D15]: "Outside my previous suggestion of
generated files, I'm pretty impressed. And I think it could be a maintainable solution.
I think it’s accessible for developers.”

26

Potential for real-life adoption:

We specifically asked our study participants whether they would be willing to
use our proposed tool and its subcomponents in a real-life Ul development project,
particularly when designing for a user base that includes a significant proportion of
senior users. The feedback we received was overwhelmingly positive, with 16 out of 18
participants agreeing that they would be inclined to adopt our approach. For example,
[D1] noted, “I would definitely use it. And like I said, this might be a must-use model
or approach in the future.”. Another participant — [D7] told us, I find it very useful,
and I’'m kind of impressed. And at the same time, I was wondering why we don’t have
such a tool at the moment. And I'm really happy that people like you are doing such
implementations, and I think it will help 1000s and 1000s of developers, plus millions
of users, while using and while implementing, both scenarios to have this kind of tools.”

Developer feedback on AdaptForge’s weaknesses and potential
mitigation strategies

Incurring extra effort:

A non-majority (n=7) of participants raised a concern about how Adapt-
Forge could require additional effort from developers. For example, [D10] highlighted
the extra effort required to learn and integrate the tool into existing development
workflows, stating, "It takes some extra time when we are implementing this, because
this is a totally separate thing. Currently, since we are mot making it [app]
dynamic, it’s mostly static. So if you are making it dynamic, it will take some extra
time.” A different but solitary concern was from D14, where they pointed out the fact
that considering age-related needs in an app might fall outside a developer’s typical
responsibilities: “It’s a UX guy job. It’s not a developer’s job to do all of this, right?”

Mitigation strategies: A significant portion of our participants (n=8) proposed that
we need mechanisms in place to provide developers with guidance when it comes to
modelling tasks. Concrete examples, personas, and model documentation metadata
could help developers in reducing the learning effort. This is evidenced by [D8] who
stated, “I think one thing that could be better is if we have recommended way of doing
something right, so without just giving the operations you can just set up, okay, these
are the conditions and then allow users to use that as a template to begin with, so
they know what sort of like combinations we how to consider to start with”.
Infeasibility in collecting users’ context data:

A minority of the participants (n=>5) commented on how impractical it would
be to capture the user, platform, and context parameters of the users in order to
facilitate our proposed approach in the first place. To illustrate this challenge, [D4], a
UX engineer, highlighted concerns about the onboarding process and user retention,
stating, "How long will it take to configure these things when they [users] install the
application? Because that’s also a concern. Sometimes, when you are creating [an]
application, [it] is much more concerning about how speedy the onboarding process is.
If it is too complicated for any use, it doesn’t matter that like age [related needs] or
like if they need personalised usage, but if we make it a little longer or [add] extra
steps, it can be a concern of the user. Like, it can drop user from the installing the
app, or drop [them] out [from] doing some actions in the application.”

27

Mitigation strategies: Four interviewees provided suggestions on this matter and we
identified two potential strategies to resolve it. (1) Seniors volunteering the accessibil-
ity information during the onboarding process: This is the more traditional approach
and was proposed by both [D12] and [D15]. Despite [D4]’s doubts about putting a
burden such as this on the seniors leading to a drop in user base, [D15] is of the
opinion that it is a viable approach as evidenced by his statement: "My mom would
definitely use it, for sure. She already uses some of those, like text scaling and stuff
like that on her phone”; and (2) A universal accessibility profile: This method was
suggested by both [D8] and [D12] and the latter had a great example to showcase its
approach: “Hey, look, you can create yourself a profile of your impairments over here.
And then apps can subscribe to that service so that when that person, when Judy, logs
into this new app, she needs to be able to do the New Zealand travel declaration, the
New Zealand traveller declaration will go over to that service, grab her profile and
then apply it all to the Ul, yeah? So she doesn’t have to do that for every single app”
Code scalability, maintainability and versioning:

Developing even a small app would take tens of thousands of code lines. For exam-
ple, [D14] shared with us that an app he’s developing for a small startup reached over
80,000 lines of code. Even in such cases, where the user base is relatively small, imple-
menting personalized UI adaptations using our proposed approach to adaptive code
generation could significantly increase the codebase size. With the need to store multi-
ple adaptive permutations, the total number of lines of code could grow exponentially,
leading to both code readability and maintainability issues, as noted by a group of
participants (n=6). For example, [D14] noted, "the second a human needs to look at
it and fiz it and change it [codebase], we have to have some kind of maintainability
or structure or readability”. Consequently, this issue also leads to issues with version
control. As explained by [D10], "So definitely, we are using something like GitHub or
GitLab. So you have to put the code there if you are doing a change again, like Ul,
change functionality, you have to add all these new changes to each version.”

Mitigation strategies: To prevent the codebase from becoming unwieldy or unmain-
tainable due to the source code adaptations performed by AdaptForge, participants
suggested several strategies. One notable approach was: Slotting in widgets based on
API calls. In this method, the application is designed so that its source code includes
allocated spaces for any widgets that may need adaptation. When an adaptation is
triggered, the necessary operations and context parameters are sent to an adaptation
service REST API, which then serves the required adapted widgets. These widgets
are dynamically slotted into the source code, creating an adapted app instance with-
out requiring complex code generation. For example, [D10] described this approach as
follows: “In the Flutter you provide the space. So that provided space, you’ll be listen-
ing to the back end again. And with the adaptation coming, you’re replacing the
widget with the new widget coming according to the adaptation from the back [end]”.
A key advantage of this approach is that developers would no longer need to maintain
multiple code repositories for each app permutation, reducing code duplication and
simplifying maintenance.

28

Deployment concerns:

Another practical issue raised by participants (n=>5) was the deployment of adap-
tations to end-users in a real-world setting. For example, [D17] explained to us that
they optimise the app bundle size so that the app is able to work efficiently even on
an older mobile device that has limited resources such as storage. This leads to a chal-
lenge where it would be disadvantageous for us to store an adaptation service, DSL
models, and conditionally generated code locally. Thus, it would require us to maintain
a centralised server, allowing over-the-air (OTA) updates to deliver necessary adap-
tations to users’ apps. However, OTA-based adaptations face significant restrictions
under current App Store and Play Store policies. As [D15] pointed out, "The question
of it being in an App Store is kind of a problem, right? Because you have to go through
a lot of like getting approvals for app changes.” Even minor updates or bug fixes
require going through a lengthy and unpredictable approval process, making frequent
or dynamic adaptations impractical within the existing mobile app ecosystem.

Mitigation strategies: To mitigate the limitations imposed by app store policies
on providing updates for Ul adaptations, we can leverage tools such as Shorebird
or similar services to push over-the-air (OTA) updates to the app almost instantly.
This approach was explained by [D12] during our interview: "The only way you could
potentially do it and have the code somewhere else is, I don’t know if you’ve seen
"Shorebird’, it does over-the-air updates, so you release your app to the store, and then
you can do patches, and you don’t have to go through the store review process to get
the patch. So you could potentially have a modified version of Shorebird that allows
you to pull particular code for those data adaptations.”

3.2 Evaluation with seniors
3.2.1 Study protocol

We conducted a focus group study to gather feedback from participants. A
presentation-based approach was used to present the questions and demonstrate the
application using short video clips®. At the beginning of the session, a Flutter appli-
cation was shown to participants through a short video clip. The application itself is
open-source* and is a generic retail furniture app. The demonstration was originally
performed on an actual mobile device, where we screen-recorded a user logging in,
browsing furniture products, and navigating to a form page to add a shipping address.

The focus group session was structured around three types of adaptations: pre-
sentation, multi-modality, and navigation, with each section beginning with a video
demonstration. First, participants viewed the app in its original, non-adapted form
and provided feedback on usability and accessibility challenges. The second demon-
stration focused on presentation adaptations, applying AdaptForge to enhance text
size, input box borders, and contrast. Participants compared this adapted version with
the original. The third demonstration introduced multi-modality adaptations, adding
text-to-speech and speech-to-text features for the shipping address form. The fourth

Shttps://drive.google.com /drive/folders/1_Eooe_XxzAHi8cfUHfWHPS8WB4SyP55fs?usp=sharing
4https://github.com/adeeteya/FlutterFurnitureApp

29

https://drive.google.com/drive/folders/1_Eooe_XxzAHi8cfUHfWHP8WB4SyP55fs?usp=sharing
https://github.com/adeeteya/FlutterFurnitureApp

showcased a navigation adaptation, transforming the multi-field form into a step-by-
step wizard. The session concluded with a discussion on app run-time adaptations to
inform future work.

3.2.2 Participant recruitment

We recruited 22 senior participants from a University of the Third Age (U3A) chapter
in Australia. Each participant was gifted a 30 AUD voucher in a local supermarket
as a token of appreciation.

3.2.3 Data collection

We held three focus group sessions in person and each ran approximately for an hour.
Each session was audio recorded and then transcribed using Otter.ai. During data
collection, we inquired about any accessibility barriers or enablers that participants
encountered while using the prototype Uls.

3.2.4 Analysis

After carefully cleaning the qualitative data transcripts collected from the focus
groups, we conducted a thematic analysis. During the initial coding process, the data
revealed a diverse set of codes. Through an iterative refinement process, we organ-
ised these codes into three overarching root themes: (1) Enablers to Accessibility, (2)
Barriers to Accessibility, and (3) Factors Influencing Personalised User Experiences.

The first two themes effectively summarised the insights shared by our senior par-
ticipants regarding their current experiences with app Uls. These themes captured
whether participants found the proposed personalisation methods (demonstrated
through UT prototypes) useful and how they envisioned further enhancing their app
experiences.

In contrast, the third theme focused on how seniors perceive personalising their app
Uls through their own user agency. Within this theme, we further classified the codes
into enablers and disablers for personalisation, as well as explored seniors’ perceptions
of the methods through which they exercise their personalisation agency. However,
this paper reports only on the first two themes, as they focus on feedback about the
current version of our prototype, while the third theme will inform future work.

3.2.5 Participant information

The demographic information of the senior participants in our evaluation study is pro-
vided in Table 3. The mean age of the participants was 72.1 years and the median age
was 72 years. The majority were women (n=17, 77.3%), and most identified culturally
as Australians (n=14, 63.6%). Participants had a diverse range of prior occupations,
reflecting varied skills, experiences, and backgrounds.

Nearly all participants used spectacles as a visual aid (n=21, 95.5%), indicating
common age-related vision impairments. Additionally, all participants owned a mobile
device, with the majority also owning a tablet. The number of hours per week spent
using mobile apps varied, but half of the participants (n=11. 50%) reported using

30

them for more than 10 hours per week. Most participants (n=13, 59.1%) indicated
an average confidence level in using mobile apps, while only two participants (9.1%)
reported below-average confidence.

3.2.6 Results

Across all three focus groups, we received overwhelmingly positive feedback. Partic-
ipants strongly resonated with the adaptive enhancements we proposed to make the
demonstrated app more tailored to the senior population, particularly when compared
to the generic, non-adapted app instances used as a baseline. In the following para-
graphs, we summarise the findings regarding these enhanced features included in the
adapted Ul prototypes, categorised by their adaptation types: Presentation, Multi-
modality, and Navigation. A more detailed description of our findings can be found
in Wickramathilaka et al. [5].

Presentation adaptations: When we presented app Ul instances with enhanced
visual elements to our senior participants, we received positive feedback. For example,
they expressed satisfaction with improvements to text readability, particularly the use
of bolder and larger fonts. Another widely appreciated enhancement across all three
focus groups (N=3) was the improved background-foreground contrast ratios. Beyond
general text enhancements, we applied Ul adaptations such as changing the app’s
colour theme to black-and-white and adding enhanced borders around buttons, input
fields, and dropdown menus. However, one concern that emerged was the trade-off
between text visibility and the amount of information displayed on a mobile screen.
Participants noted that this issue was not unique to our adaptations but was some-
thing they had encountered previously when adjusting text size either through their
mobile device’s global font settings or using zoom-in gestures.

Multi-modality adaptations: Our demonstrations on adapting app Uls with
embedded alternative input and output features (e.g., Figure 9) were received very
positively. Across all three focus groups, participants welcomed the option for seniors
to use an alternative input method, specifically speech-to-text, instead of the tra-
ditional on-screen keyboard. To a lesser extent (in two out of three focus groups),
participants also found text-to-speech features to be a helpful addition. Despite this
positive feedback, seniors expressed scepticism about the viability of speech-to-text
technology due to its limitations. A common theme across all focus groups was
their prior experiences with inaccurate voice input, often attributed to the diver-
sity in accents, dialects, intonations, and pronunciations. Additionally, the situational
appropriateness of alternative input/output modalities was a key concern raised by
the majority (two out of three focus groups). Participants noted that they would
feel uncomfortable using audio-based features in public settings due to both privacy
concerns and social etiquette.

Navigation adaptations: The adaptations we demonstrated, which transformed
a traditionally non-sequential, single-page form into a dynamic, wizard-pattern form,
were highly appreciated by participants. A recurring theme across all three focus
groups was that this approach made the presented information feel less overwhelming
for seniors. Participants expressed that succinctly displaying information on-screen,
combined with a logical and intuitive Ul flow similar to a wizard-pattern form, was

31

Apnjs a1y ur pajedmrred siotuss gg = N ‘uoljeurrojul oryderSowsp juedonred 1otueg € a[qe],

yStH ez 191qe], ‘ouoyd proipuy sosse[3 oAH Io3euew uo_:,WmH [S193008 W (93 zed
JuR)SISS®
a8erony >0C 19[qe], ‘DuoyJI sosse[3 aAf 901AI0G uRI[RIISIY q 9/, 12d
o8erony >00 191qe], ‘ouoyd proipuy sosse[3 oAF 101001Tp TeIoung ueIeIISNyY i 6L ocd
USTH e-7 ouoyd proipuy sosse[3 oAH JURAIOS OT[qnd [SH] ‘UeIeiisny N {9 61d
o3eIoAy 02-0T 191qe], ‘euoyd proipuy sosse[3 oA Surnjueg ueIeI)SNY A 0L Q1d
o3rIoAy 6T ouoyd proipuy sosse[8 oA I90JO Urupy uerpujy A - | 21d
1901]JO
juamIaSeuRUL
o8erony 05-0T 1o1qe], ‘ouoyd proipuy sosse[3 A5 TOI}eULIOJUT ueIeIISnyY q 19 | 91d
I0SS9SSY
MO[0} 98RIOAY 0Z-0T auoyJt sosse[3 oA ‘rourel], ueIRIISNY A 89 a1d
spre Surreoy
o8erony 1> 191qRe], ‘ouoyJI ‘sossers aAn sofes [errsnpuy URULIDD) W 08 | ¥1d
YSIH >0¢ 1o1qeL, ‘Puoydr sosse[S 9AH ueLIRIqI [ensen uerferysny Aq GL €Td
YSIH €-¢ | 3919%8L ‘duoyd proipuy e/u - esauIyp | 29 | eid
jroddns
o3rIoAy 02-0T ouoyd proipuy sosse[3 oA Ajrunwmo)) yomq A €9 11d
U31H >0% auoyJ1 sosse[3 oA SurjexreN ueIeI)SNy A 99 01d
spre Surrea
o3eIoAy 1> osuoyd proipuy ‘sosse[3 A5 IOUMO Ssoursng ueIRIISNY N €8 6d
o3eIoAy 02-0T 1[qR], ‘Puoydt sosse[8 oA 9sInN ueIReI)SNY A (93 Qd
o3eloAy >0% suoyd proipuy sosse[3 oA juRsIsse [ejua(] ueIRI)SNY A 69 Ld
ueLIRIqI]
U31y AT 6-F 1[qR], ‘Puoydt sosse[8 oA OTWOPROY ysisuy A 9 9d
oI pedy
o3eIoAy e-7 a[pury] ‘e1qeJ, ‘euoydr sosse[3 oA ‘109eONPH ueIpuj A 9. qd
o8rIoAy 6T ouoyd proipuy sosse[8 oA 9sINN uerel)sny A zL 7d
Y3 0201 19IqRL ‘Puoydt sosse[3 oAy - UelRIISNY N GL €d
spre Surreay
MOT KAIoA > - ‘sosse[3 oA I00uI3Uy o[suy N G zd
o8rIoAY 6 1o1qe], ‘ouoyd proipuy sosse[3 oAy JURAISS DT[N J uRI[RIISNY q ¥, T1d
19a9]
2ouUapyuod (c[eom
a8esn -1ad-sanoy) (xorad)
dde a[1qon a8esn ddvy o3esn a21A9p a[Iqouwt spre jo a3es) uorjednosoQ aanjmny Japuan) o3V aIl

32

a clear improvement over the traditional static form layout typically used for senior
end users.

4 Limitations and Future Work

4.1 Limitations
4.1.1 Limitations with AdaptForge

Apart from the weaknesses noted by our developer study participants, another limita-
tion of our current prototype is that the Adapt DSL is tightly coupled with Flutter’s
widget structure. To make the proposed approach more platform-agnostic, the Adapt
DSL would need to be more abstract in specifying adaptation operations. Addition-
ally, the code generation pipeline would have to be extended and rigorously tested
to ensure that the Ul adaptations align with the specific programming language or
framework in use, ensuring flexibility across different platforms.

Furthermore, more complex adaptation operations, such as senior requiring
changes to the UI workflow of an app, may necessitate further extensions beyond what
we have proposed. Seniors may have age-related needs that require adaptations to app
functionalities such as dynamic page routing, customised workflow patterns, contex-
tual help and guidance, multi-modal navigation support, and backward navigation or
undo functionality. Implementing such adaptations would require considerable mod-
ifications to the app’s source code, making it difficult to automate these operations
through DSL inputs in a platform- or framework-agnostic manner.

The issues mentioned above are further exacerbated by the inherent rigidity
of Model-Driven Engineering (MDE) approaches compared to traditional software
development tools. MDE pipelines are typically interconnected through multiple
model-to-model and model-to-text transformations. As a result, additional care must
be taken to ensure that these transformation processes are both flexible and robust,
in order to avoid excessive "round-trip maintenance.” Without careful design, this
could hinder the ability to efficiently modify models and regenerate code. Ensuring
flexibility in the transformation steps is critical to guarantee that the final output
generates executable applications or functional code stubs without frequent manual
intervention.

4.1.2 Limitations with user studies

Recruiting participants with at least six months of Flutter experience was challeng-
ing, likely due to Flutter’s relative novelty, with its 1.0 release in late 2018 [24].
Despite successfully recruiting 16 Flutter developers with varying experience levels,
two participants ([D2] and [D3]) had familiarity with Flutter but not in a professional
capacity. However, they were experts in developing software for seniors and well-versed
in state-of-the-art accessibility guidelines such as WCAG [10] and ATAG [34].
Furthermore, demonstrations were conducted via video recordings to reduce the
setup burden on our volunteer developer participants. Although the current prototype
of AdaptForge is functional, it has not yet been packaged as a streamlined Eclipse plu-
gin. Instead, it requires manual setup of the Eclipse IDE, installation of the necessary

33

Eclipse Modelling Framework (EMF) [23] dependencies, and additional configurations
for supporting tools such as Sirius [30], Xtext [33], Acceleo [30], and Xtend [33]. Given
this complexity, it would have been impractical to expect participants, especially those
unfamiliar with Eclipse, to spend potentially over an hour configuring the environ-
ment before even using the tool. This expectation would have posed a significant
barrier, considering their already demanding schedules as professional software devel-
opers. While the video demonstrations allowed us to communicate the key features
and workflows of AdaptForge, they may not have captured the full depth of participant
feedback. In particular, hands-on usage could have revealed nuanced insights regard-
ing the tool’s usability and areas for qualitative improvement in the overall developer
experience.

4.2 Future work

Our evaluation study with developers revealed many suggestions for improvements and
feature additions. Our next iteration of AdaptForge will especially focus on enhance-
ments to code generation-related tasks, where we want to make our generated code
more readable, maintainable, and reusable, mitigating the issues raised by our devel-
oper participants about the current prototype. In addition, many improvements were
also proposed regarding our two novel DSLs, such as metamodel enhancements and
model editor enhancements.

With these improvements, we can package AdaptForge as an Eclipse plugin with
a streamlined installation process, accompanied by a supporting wiki to assist with
configuration and setup. This enhancement would enable us to invite participants to
engage in hands-on experimentation with the tool, allowing them to perform a range
of tasks directly. Such an approach would facilitate the collection of richer, more
nuanced feedback during the evaluation phase of our user study.

Currently, we support only design-time Ul adaptations. The next step is to extend
these capabilities to enable user-requested run-time adaptations. Rather than pursuing
automated self-adaptation, as proposed by Yigitbas et al. [16], we focus on empowering
seniors to personalise their app Uls autonomously, ensuring the app does not dictate
their needs. Our focus group evaluation study has already explored the barriers and
enablers of run-time personalisation among seniors [5]. To achieve this, we consider
two approaches: a traditional accessibility settings-based method and a novel Large
Language Model (LLM)-based approach, where LLMs transform multimodal natural
language inputs into abstract DSL models, allowing us to reuse the MDE process in
AdaptForge to trigger app adaptations.

16 Meriton P1, Clayton South

5 Related Work

Our study is primarily inspired by Yigitbas et al’s [16] work on an MDE-based
approach for self-adaptive Uls, which also proposes two DSLs conceptually simi-
lar to ours. Their ContextML DSL models a user’s context-of-use parameters, while
AdaptML functions as a rules engine for conditionally applying UI changes. A key
methodological difference is how UI changes are applied: while we modify the source

34

code directly, Yigitbas et al. [16] adopt an abstract Ul model defined with the Inter-
active Flow Modelling Language (IFML) [22]. One limitation of their approach is
the depth of modelling in their DSLs; for instance, ContextML lacks comprehensive
support for age-related needs, such as Ul preferences, and hearing and mobility impair-
ments. Nonetheless, their study remains one of the most mature implementations in
the MDE + Adaptive Ul subdomain so far. We also appreciate that it is evaluated
with real end-users, though it does not consider developers’ feedback — a crucial fac-
tor in understanding the enablers and barriers to real-world adoption by the software
development community.

Another important study is by Bendaly Hlaoui et al. [13], who propose an MDE
approach for design-time UI adaptations tailored to disabled users. They achieve this
transformation through two models: (1) an accessibility ontological instance repre-
senting an end user’s context-of-use parameters and (2) a UI model reverse-engineered
from an existing non-adapted UI. These models serve as inputs to an adaptation
process that applies adaptation rules to transform the non-adapted model into an
adapted one, which is then converted into the final UI. Their context-of-use modelling
depth is well-developed and has informed the level of comprehensiveness needed for
our study. However, it is unclear whether they produced an MDE prototype, as the
authors mention the final transformation from an adapted abstract Ul model to an
executable Ul as future work. Without this detail and a subsequent proof-of-concept
evaluation, assessing the effectiveness of their reverse engineering approach remains
challenging, particularly in terms of its compatibility with modern development tools
and frameworks such as Flutter or React Native.

Minon et al. [31] propose an approach similar to ours, incorporating both context-
of-use modelling and adaptation rules. Their tool, the Adaptation Integration System
(AIS), automatically tailors Uls to meet the accessibility requirements of user groups
with visual, hearing, and cognitive impairments at both runtime and design time.
AITS includes a compilation of UI adaptation rules designed for these user groups. At
design time, the MDE UI tool designer manually inputs a Ul model at any abstrac-
tion level of the CAMELEON framework [26], along with parameters indicating the
user’s disability. The system then generates an adapted Ul model accordingly. How-
ever, the paper lacks detailed information about its metamodels, making it difficult to
assess the depth of AIS’s modelling capabilities. The provided evidence, such as pro-
totype applications and model examples, suggests that their proof-of-concept is less
detailed than both ours and that of Yigitbas et al. [16]. Additionally, unlike the stud-
ies mentioned above, Minon et al. [31] do not include any user or developer evaluation,
limiting insights into its practical effectiveness.

A fundamentally different paradigm is proposed by Akiki et al. [15] for MDE-
based adaptive UI generation. They adopt a Role-Based UI adaptation mechanism
that provides end-users with a minimal feature set and an optimal layout based on
their context-of-use scenarios. In this approach, Ul elements and adaptation rules are
treated as accessibility resources and assigned to user accounts as ‘roles.” At design
time, a user’s account is allocated roles linked to context-of-use factors such as disabil-
ities and culture. However, their modelling approach lacks sufficient depth to address
the needs of seniors, as the metamodels support only graphical/layout adaptations

35

and do not include multi-modality features such as text-to-speech or speech-to-text.
While their evaluation included eight participants over the age of 50 (out of N=23),
they did not explore the impact of age-related impairments or user preferences on end-
user satisfaction. This omission raises doubts about the applicability of this approach
in addressing the diverse and highly personalised accessibility needs of seniors.

In conclusion, almost all existing studies lack the modelling depth necessary to cap-
ture the Ul accessibility and adaptation needs of seniors at the metamodel layer, with
the exception of Bendaly Hlaoui et al. [13]. However, even in that case, the comprehen-
siveness of the models does not necessarily translate to their usability, as evidenced by
our experience with developer user studies. For instance, when examining the DSLs
and their examples, several key questions arose. To name a few: Are they intuitive for
developers? Do they allow developers to embed metadata, such as references to acces-
sibility guidelines and explanations of model functionality? Do they provide flexibility
in modelling groups of users via personas rather than individual users? Unfortunately,
in most cases, these questions remained unanswered due to the absence of concrete
proof-of-concept implementations in the existing studies. Only Yigitbas et al. [16]
had such a prototype, but this ties into another major limitation: the lack of evalua-
tion studies capturing insights from software developers on the usability of DSLs and
MDE processes. Without such insights, it is difficult to assess how these proposed
approaches can be effectively adopted by real-world software developers.

6 Contributions

6.1 Contributions to Low-Code Tool Development Community
6.1.1 DSL metamodel contributions

We made both iterative and novel contributions to existing metamodels within the
MDE adaptive Ul domain. Key elements of these contributions are discussed below.

Context DSL:

e Context DSL introduces iterative improvements to existing metamodels in the
well-established context-of-use modelling approaches within the MDE adaptive Ul
domain.

¢ We propose that meta-classes related to user preferences, such as text, colour, mul-
timedia, privacy, voiceover, touch, and language, be explicitly integrated into the
UserContext meta-class in future Context-of-Use DSL implementations.

e Additional improvements include extending the PlatformContext meta-class with
support for assistive technology-related hardware and software features, along with
their attributes (e.g., screen readers, voice input, switch control devices, voice
controls, screen magnifiers, eye trackers, hearing aids, and wearables), as these
technologies are becoming increasingly common in the accessibility landscape.

* Furthermore, with the growing adoption of alternative input/output modalities
through assistive technologies, we propose extending context-of-use metamodels to
map the availability of these modalities to a user or their device by introducing
dedicated meta-class extensions to the PlatformContext meta-class.

36

Adapt DSL:

The Adapt DSL introduces several significant improvements to existing metamodels
dedicated to defining adaptation operations within the MDE adaptive Ul domain.
We propose a richer set of metadata definition classes, including structured comment
attributes that allow developers to annotate each rule with contextual informa-
tion such as the underlying problem, proposed solution, associated advantages, and
potential trade-offs. Notably, we also support explicit references to accessibility
resources that informed a given rule, such as specific criteria from the Web Content
Accessibility Guidelines (WCAG).

We demonstrate that it is both possible and practical to connect abstract app adap-
tation logic directly with the widget structure of a complex, industry-standard UI
framework such as Flutter, at the DSL metamodel level. This approach leverages
developers’ existing familiarity with the framework’s Ul components, their proper-
ties, and behaviours, making the DSL easier to learn and more likely to be adopted
in real-world projects.

6.1.2 AdaptForge prototype implementation

Overall, our DSL implementations and the accompanying MDE workflow represent a
significant contribution to the MDE-based Ul adaptation domain, as they constitute
one of the most mature implementations and evaluations currently available within
this space. While Yigitbas et al. [16] present a similarly advanced approach, their work
focuses primarily on self-adaptive applications, whereas our contribution is oriented
toward design-time adaptation through a developer-focused tool.

We demonstrate that Context DSL can be implemented as a semi-graphical, tree-
structured modelling tool to represent the context-of-use parameters for individual
seniors or groups of seniors. Compared to existing approaches, we provide empirical
evidence that developers find this semi-graphical model both familiar and intuitive
due to its resemblance to commonly encountered structures, such as file hierarchies
in IDEs and operating systems.

Our implementation of adaptation rules via Adapt DSL highlights the flexibility
of the tool in defining both the type and granularity of adaptations. For example,
developers can use the DSL to apply a change to a single Text widget at the deepest
level of the app’s abstract syntax tree or modify all Text widgets within the UI (or
target any level of specificity in between the two extremes). While the current pro-
totype supports adaptations for a dozen or so common widget types, the approach
is inherently extensible and can be expanded to include the entire Flutter widget
set.

Another novel contribution lies in the emphasis on metadata during the DSL defini-
tion stage, which is preserved and embedded directly into the source code through
the MDE process. This feature enhances the explainability and maintainability of
the adapted codebase, thereby improving developer experience and supporting the
long-term sustainability of low-code projects.

Finally, AdaptForge’s ability to integrate any Flutter application into the MDE
pipeline with minimal integration-related code modifications is a key contribution.

37

For instance, if a developer wishes to increase the text size of specific text wid-
gets, they only need to assign a unique key attribute to those widgets. Once an
adaptation rule targeting this key is defined in the Adapt DSL editor, executing
the rule automatically applies the corresponding modifications to the source code.
This automation is achieved by analysing the Dart abstract syntax tree (AST) to
locate the correct insertion points. While reverse-engineering approaches have been
explored in related work [13], our approach is, to our knowledge, the most concrete
and the only one applied to a complex UI framework such as Flutter within the
MDE-based adaptive Ul domain.

6.2 Contributions for Software Engineering Community

¢ Unlike much of the related work, where evaluation is often treated as secondary, we
adopted a human-centred methodology from the outset and concluded this devel-
opment cycle with a comprehensive evaluation study. The primary focus of these
user studies was on professional software developers, the intended users of Adapt-
Forge, to understand their perceptions of the tool’s practicality and usefulness. At
the same time, we considered the end-user perspective, recognising that developers
ultimately build applications for others to use.

— Developer feedback indicated a strong willingness to adopt AdaptForge in real-
world software projects. Importantly, criticisms were constructive and focused
on suggestions for improvement rather than questioning the tool’s overall value.
Based on our analysis, these suggestions are actionable and inform the path
toward a future open-source release, contingent upon addressing concerns related
to integration throughout different stages of the software development lifecycle.

e Based on these findings, we conclude that the software engineering community is
likely to find MDE-based UI adaptation approaches such as AdaptForge to be both
practical and viable for developing more accessible and personalised applications
for seniors and other similarly disadvantaged user groups. We believe that such
solutions will become increasingly essential in the future, particularly as policy-
driven initiatives similar to the European Accessibility Act (EAA) [35] incentivise
software developers to adopt accessible development practices and tools.

7 Summary

Senior citizens are a crucial part of our society, yet they continue to experience
accessibility barriers in apps. The root cause of this issue lies with us, the soft-
ware practitioners, making it our responsibility to identify solutions that address the
age-related accessibility and adaptation needs of seniors. This requires strategies to
overcome challenges such as limited time and resources, which are common in real-
world software development. In this study, we propose one such strategy: AdaptForge,
a Model-Driven Engineering (MDE) approach that enables developers to automate
the generation of adaptive Flutter app instances based on DSL models that define the
accessibility-adaptation needs of senior users.

38

This paper presents the overall architecture, design, and implementation of Adapt-
Forge. We also describe two user studies conducted with 18 software developers and
22 senior end-users to evaluate the strengths and weaknesses of the current iteration
of our tool prototype.

Additionally, we elaborate on the key research contributions of this work. 1) We
introduce two novel DSLs that, together, capture age-related accessibility and per-
sonalisation needs of senior users. These DSLs are designed to be both comprehensive
in their modelling capabilities and accessible to software developers. 2) We propose a
novel MDE approach that leverages these DSLs to perform a wide range of source code
adaptations in any Flutter application, while integrating seamlessly with existing tools
and processes to enhance the developer experience. 3) We conduct a thorough eval-
uation involving both software developers and senior end-users, providing real-world
insights into the design and development of adaptive applications. This evaluation
demonstrates the viability and practicality of the approach as a form of developer
support tool within the software industry.

Finally, we outline several directions for future work to extend our contributions.
These include iteratively improving AdaptForge based on key suggestions received
during the evaluation; enabling hands-on experimentation in future studies by offering
an installable prototype instead of relying solely on video demonstrations; expanding
the existing design-time adaptation workflow to support user-driven, multimodal run-
time adaptations; and enhancing the tool to provide contextual privacy information
to end-users.

Acknowledgements. Authors are supported by Australian Research Council
(ARC) Laureate Fellowship FL.190100035. Our sincere gratitude goes to the partici-
pants who took part in the user study.

Author Contribution

Shavindra Wickramathilaka: Conceptualisation, Software Development, User Study
Conduction, Writing - Original Draft, Review & Editing. John Grundy: Conceptu-
alisation, Supervision, Writing - Review & Editing. Kashumi Madampe: Conceptu-
alisation, Supervision, User Study Conduction, Writing - Review & Editing. Omar
Haggag: Conceptualisation, Supervision, Writing - Review & Editing.

References

[1] organization: Ageing and health — who.int. https://www.who.int/news-room/
fact-sheets/detail /ageing-and-health. [Accessed 22-08-2024]

[2] Diaz-Bossini, J.-M., Moreno, L.: Accessibility to mobile interfaces for older
people. Procedia Computer Science 27, 57-66 (2014)

[3] Elguera Paez, L., Zapata Del Rio, C.: Elderly users and their main challenges

usability with mobile applications: a systematic review. In: International Confer-
ence on Human-Computer Interaction, pp. 423-438. Springer, Orlando, FL, USA

39

https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

[4]

[10]

[11]

[12]

[13]

[14]

(2019). Springer

Dodd, C.T., Athauda, R.I., Adam, M.T.P.: Designing user interfaces for the
elderly: A systematic literature review. In: Australasian Conference on Informa-
tion Systems (ACIS 2017). Association for Information Systems (AIS), Hobart,
Australia (2017). https://api.semanticscholar.org/CorpusID:209410212

Wickramathilaka, S., Grundy, J., Madampe, K., Haggag, O.: Accessibility Rec-
ommendations for Designing Better Mobile Application User Interfaces for
Seniors (2025). https://arxiv.org/abs/2504.12690

Johnson, J., Finn, K.: Designing User Interfaces for an Aging Population:
Towards Universal Design. Morgan Kaufmann, 50 Hampshire Street, 5th Floor,
Cambridge, MA 02139, United States. (2017)

Shamsujjoha, M., Grundy, J., Khalajzadeh, H., Lu, Q., Li, L.: Developer and
end-user perspectives on addressing human aspects in mobile ehealth apps.
Information and Software Technology 166, 107353 (2024)

Czaja, S.J., Lee, C.C.: The impact of aging on access to technology. Universal
access in the information society 5, 341-349 (2007)

Akiki, P.A., Bandara, A.K., Yu, Y.: Adaptive model-driven user interface
development systems. ACM Computing Surveys (CSUR) 47(1), 1-33 (2014)

W3C: Web Content Accessibility Guidelines (WCAG) 2.2 (2024). https://www.
w3.org/TR/WCAG22/

Standardization, I.O.: Ergonomics of Human System Interaction - Part 171: Guid-
ance on Software Accessibility, Iso 9241-171:2008 edn. International Organization
for Standardization, Geneva, Switzerland (2008). https://www.iso.org/standard/
39080.html

Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice: Second Edition, 2nd edn. Springer, Gewerbestrasse 11, Cham, Ch 6330,
Switzerland. (2017). https://doi.org/10.1007/978-3-031-02549-5

Yousra, B., Zouhaier, L., Ben Ayed, L.: Model driven approach for adapt-
ing user interfaces to the context of accessibility: case of visually impaired
users. Journal on Multimodal User Interfaces 13 (2018) https://doi.org/10.1007/
s12193-018-0277-z

Ghaibi, N., Daassi, O., Ayed, L.J.B.: A tool support for the adaptation
of user interfaces based on a business rules management system. In: Pro-
ceedings of the 29th Australian Conference on Computer-Human Interaction.
OZCHI ’17, pp. 162-169. Association for Computing Machinery, New York,
NY, USA (2017). https://doi.org/10.1145/3152771.3152789 . https://doi.org/10.

40

https://api.semanticscholar.org/CorpusID:209410212
https://arxiv.org/abs/2504.12690
https://www.w3.org/TR/WCAG22/
https://www.w3.org/TR/WCAG22/
https://www.iso.org/standard/39080.html
https://www.iso.org/standard/39080.html
https://doi.org/10.1007/978-3-031-02549-5
https://doi.org/10.1007/s12193-018-0277-z
https://doi.org/10.1007/s12193-018-0277-z
https://doi.org/10.1145/3152771.3152789
https://doi.org/10.1145/3152771.3152789
https://doi.org/10.1145/3152771.3152789

[15]

[16]

[17]

[18]

[20]

[21]

[22]

[23]

[24]

1145/3152771.3152789

Akiki, P., Bandara, A., Yu, Y.: Engineering adaptive model-driven user interfaces.
IEEE Transactions on Software Engineering 42(12), 1118-1147 (2016) https://
doi.org/10.1109/TSE.2016.2553035

Yigitbas, E., Jovanovikj, 1., Biermeier, K., Sauer, S., Engels, G.: Integrated
model-driven development of self-adaptive user interfaces. Software and Systems
Modeling 19(5), 1-25 (2020) https://doi.org/10.1007/s10270-020-00777-7

Wickramathilaka, S., Mueller, I.: Addressing age-related accessibility needs of
senior users through model-driven engineering. In: 2023 IEEE/ACM 16th Inter-
national Conference on Cooperative and Human Aspects of Software Engineering
(CHASE), pp. 121-126. IEEE, Melbourne, Australia (2023). https://doi.org/10.
1109/CHASE58964.2023.00021

Ahmad, B., Richardson, I., Beecham, S.: A multi-method approach for require-
ments elicitation for the design and development of smartphone applications
for older adults. In: 2020 IEEE First International Workshop on Requirements
Engineering for Well-Being, Aging, and Health (REWBAH), pp. 25-34. IEEE,
Zurich, Switzerland; Online (2020). https://doi.org/10.1109/REWBAH51211.
2020.00010

Harte, R., Quinlan, L.R., Glynn, L., Rodriguez-Molinero, A., Baker, P.M., Scharf,
T., Olaighin, G.: Human-centered design study: Enhancing the usability of a
mobile phone app in an integrated falls risk detection system for use by older
adult users. JMIR mHealth and uHealth 5(5), 71 (2017) https://doi.org/10.2196/
mhealth.7046

Morey, S.A., Stuck, R.E., Chong, A.W., Barg-Walkow, L.H., Mitzner, T.L.,
Rogers, W.A.: Mobile health apps: Improving usability for older adult
users. Ergonomics in Design 27(4), 4-13 (2019) https://doi.org/10.1177/
1064804619840731 https://doi.org/10.1177/1064804619840731

Watkins, 1., Kules, B., Yuan, X., Xie, B.: Heuristic evaluation of healthy eating
apps for older adults. Journal of Consumer Health on the Internet 18(2), 105-127
(2014) https://doi.org/10.1080/15398285.2014.902267

Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language: Model-Driven
UI Engineering of Web and Mobile Apps with IFML, 1st edn. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2014)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Model-
ing Framework, 2nd revised edn. The Eclipse Series. Addison-Wesley, 221 River
Street, Hoboken, NJ (2009)

Google: Flutter - Build apps for any screen — flutter.dev. https://flutter.dev/.

41

https://doi.org/10.1145/3152771.3152789
https://doi.org/10.1145/3152771.3152789
https://doi.org/10.1109/TSE.2016.2553035
https://doi.org/10.1109/TSE.2016.2553035
https://doi.org/10.1007/s10270-020-00777-7
https://doi.org/10.1109/CHASE58964.2023.00021
https://doi.org/10.1109/CHASE58964.2023.00021
https://doi.org/10.1109/REWBAH51211.2020.00010
https://doi.org/10.1109/REWBAH51211.2020.00010
https://doi.org/10.2196/mhealth.7046
https://doi.org/10.2196/mhealth.7046
https://doi.org/10.1177/1064804619840731
https://doi.org/10.1177/1064804619840731
https://arxiv.org/abs/https://doi.org/10.1177/1064804619840731
https://doi.org/10.1080/15398285.2014.902267
https://flutter.dev/

[25]

[26]

[28]

[29]

[30]

[Accessed 22-08-2024]

Stephanidis, C., Akoumianakis, D., Antona, M., Bannon, L.: User Interfaces for
All: Concepts, Methods, and Tools, 1st edn. Human factors and ergonomics, vol.
1. CRC Press, Boca Raton (2001)

Calvary, G., Coutaz, J., Bouillon, L., Florins, M., Limbourg, Q., Marucci, L.,
Paterno, F., Santoro, C., Souchon, N., Thevenin, D., Vanderdonckt, J.: The
cameleon reference framework. Technical report, CAMELEON Project (2002)

Braham, A., Khemaja, M., Buendia, F., Gargouri, F.: Towards a model-driven
ontology-based architecture for generating adaptive user interfaces. In: Novais,
P., Carneiro, J., Chamoso, P. (eds.) Ambient Intelligence — Software and Appli-
cations — 12th International Symposium on Ambient Intelligence, pp. 139-148.
Springer, Gewerbestrasse 11, Cham, Ch 6330, Switzerland. (2022). https://doi.
org/10.1007/978-3-031-06894-2_13

Bacha, F., Oliveira, K., Abed, M.: A model driven architecture approach for user
interface generation focused on content personalization. In: 2011 FIFTH INTER-
NATIONAL CONFERENCE ON RESEARCH CHALLENGES IN INFORMA-
TION SCIENCE, pp. 1-6 (2011). https://doi.org/10.1109/RCIS.2011.6006839

Bongartz, S., Jin, Y., Paterno, F., Rett, J., Santoro, C., Spano, L.D.: Adaptive
user interfaces for smart environments with the support of model-based lan-
guages. In: Paterno, F., Ruyter, B., Markopoulos, P., Santoro, C., Loenen, E.,
Luyten, K. (eds.) Ambient Intelligence, pp. 33-48. Springer, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34898-3_3

Viyovié¢, V., Maksimovi¢, M., Perisi¢, B.: Sirius: A rapid development of dsm
graphical editor. In: IEEE 18th International Conference on Intelligent Engineer-
ing Systems INES 2014, pp. 233-238 (2014). https://doi.org/10.1109/INES.2014.
6909375

Minén, R., Paterno, F., Arrue, M., Abascal, J.: Integrating adaptation rules
for people with special needs in model-based ui development process. Univer-
sal Access in the Information Society 15(1), 153-168 (2015) https://doi.org/10.
1007/s10209-015-0406-3

Foundation, E.: Acceleo. Last accessed 20 November 2024. https://www.eclipse.
org/acceleo/

Bettini, L.: Implementing Domain-specific Languages with Xtext and Xtend.
Packt Publishing Ltd, Livery Place, 35 Livery Street, Birmingham B3 2PB, UK
(2016)

W3C: Authoring Tool Accessibility Guidelines (ATAG) 2.0 (2015). https://www.
w3.org/TR/ATAG20/

42

https://doi.org/10.1007/978-3-031-06894-2_13
https://doi.org/10.1007/978-3-031-06894-2_13
https://doi.org/10.1109/RCIS.2011.6006839
https://doi.org/10.1007/978-3-642-34898-3_3
https://doi.org/10.1109/INES.2014.6909375
https://doi.org/10.1109/INES.2014.6909375
https://doi.org/10.1007/s10209-015-0406-3
https://doi.org/10.1007/s10209-015-0406-3
https://www.eclipse.org/acceleo/
https://www.eclipse.org/acceleo/
https://www.w3.org/TR/ATAG20/
https://www.w3.org/TR/ATAG20/

[35] European Union: Directive (EU) 2019/882 of the European Parliament and of
the Council of 17 April 2019 on the accessibility requirements for products and
services (Text with EEA relevance). PE/81/2018/REV/1, OJ L 151, 7.6.2019,
pp. 70-115 (2019). http://data.europa.eu/eli/dir/2019/882/0j

43

http://data.europa.eu/eli/dir/2019/882/oj

	Introduction
	Our Approach
	Research methods
	Phase 1: Problem exploration
	Phase 2.1: DSL design and development
	Phase 2.2: MDE based Flutter prototype development
	Phase 3: Evaluation

	Overview of AdaptForge
	AdaptForge architectural components
	AdaptForge workflow in a real-world scenario

	AdaptForge Domain Specific Languages
	Context DSL
	Adapt DSL

	MDE-based Adaptive user interface modification
	An Example Usage
	Presentation adaptation
	Multi-modality adaptation
	Navigation adaptation
	Comment generation

	Implementation

	Evaluation
	Evaluation with developers
	Study protocol
	Participant recruitment
	Data collection
	Data analysis
	Participant information
	Results

	Evaluation with seniors
	Study protocol
	Participant recruitment
	Data collection
	Analysis
	Participant information
	Results

	Limitations and Future Work
	Limitations
	Limitations with AdaptForge
	Limitations with user studies

	Future work

	Related Work
	Contributions
	Contributions to Low-Code Tool Development Community
	DSL metamodel contributions
	AdaptForge prototype implementation

	Contributions for Software Engineering Community

	Summary
	Acknowledgements

