
Noname manuscript No.
(will be inserted by the editor)

RCM-Extractor: Automated Extraction of a Semi
Formal Representation Model from Natural Language
Requirements

Aya Zaki-Ismail · Mohamed Osama ·
Mohamed Abdelrazek · John Grundy ·
Amani Ibrahim

the date of receipt and acceptance should be inserted later

Abstract Most existing (semi-)automated requirements formalisation tech-
niques assume requirements to be specified in predefined templates. They
also employ template-specific transformation rules to provide the correspond-
ing formal representation. Hence, such techniques have limited expressiveness
and more importantly require system engineers to re-write their system re-
quirements following defined templates for maintenance and evolution. In this
paper, we introduce an automated requirements extraction technique (RCM-
Extractor) to automatically extract the key constructs of a comprehensive and
formalisable semi-formal representation model from textual requirements. This
avoids the expressiveness issues affecting the existing requirement specification
templates, and eliminates the need to rewriting the requirements to match the
structure of such templates. We evaluated RCM-Extractor on a dataset of 162
requirements curated from several papers in the literature. RCM-Extractor
achieved 87% precision, 98% recall, 92% F-measure, and 86% accuracy. In
addition, we evaluated the capabilities of RCM-Extractor to extract require-
ments on a dataset of 15,000 automatically synthesised requirements that are
constructed specifically to evaluate our approach. This dataset has a com-
plete coverage of the possible structures and arrangements of the properties
that can exist in system requirements. Our approach achieved 57%, 92% and
100% accuracy for un-corrected, partially-corrected and fully-corrected Stan-
ford typed-dependencies representations of the synthesised requirements, re-
spectively.
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1 Introduction

Formal verification techniques, such as model checking and theorem prov-
ing, are usually highly recommended – and in many cases mandatory – when
proving the correctness of critical systems [3]. To benefit from these formal
verification techniques, the systems under development need to be specified
in suitable formal notations, such as temporal logic [3] (e.g. LTL, MTL and
CTL). Nevertheless, most real-world systems are still specified in natural lan-
guage (NL) [25]. Formalising NL-requirement specifications – i.e. mapping
these requirements to formal notations – is usually done manually [22]. This
requires strong expertise in mathematics and in the target system domain to
correctly translate system requirements into formal notations while preserving
correct system semantics [2,22]. This manual process is time consuming and
highly susceptible to errors. Fully or partially automating the formalisation
process would reduce the prospect of having errors, in addition to increasing
the chances of using formal verification methods in a wider range of systems
[3]. The work in [34] provides an overview about requirements representation
in different levels of formality (i.e., informal, semi-formal and formal levels)
while highlighting the strengths and weaknesses of each level.

Almost all existing requirements formalisation techniques assume that the
source requirements are specified in some form of restrictive, predefined tem-
plates (e.g., patterns [14], boilerplates [21]), or structured, controlled and lim-
ited English [25]. Enforcing a predefined structure on the input requirements
has allowed researchers to develop parsing and transformation rules to map
the key constructs (with specific format and position in the input requirement
sentence) of a given well-formatted/well-structured requirement into formal
notations. However, these approaches suffer from several limitations includ-
ing: First, they add an overhead burden on the system engineers to re-write
their requirements to conform to the used template(s) even if the requirements
are well written (i.e., have no quality issues). Second, the user needs guidance
to phrase the requirements in compliance with the defined format(s). Third,
they reduce the expressiveness power of the writing. Finally, the format might
be so restricted that it becomes irritating to use.

According to recent reviews [2] and [4], there is still a critical need for
an approach that can automatically extract and transform existing textual
requirements written using different structures and formats – i.e. without pre-
defined templates – into formal notations. To achieve this goal, we developed
a two-stage approach [32,33] to first extract the key requirement properties
(we refer to them as requirement components and sub-components) from an
input textual requirement to be represented in a well-defined semi-formal rep-
resentation model - RCM. The RCMs are then mapped (using transformation
rules) into formal notations.

In [33], we presented a comprehensive semi-formal representation - RCM:
Requirement Capturing Model, based on reviewing: 1) several systems re-
quirements, 2) existing templates, constrained natural languages (CNLs) and
defined formats for expressing requirements, and 3) existing requirement for-
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malisation techniques. RCM defines a comprehensive list of requirement prop-
erties. The underlying structure of these properties encapsulates both the semi-
formal and formal semantics. In addition, RCM is automatically formalisable
into temporal logic using transformation rules [33].

In [32], we introduced an automated requirements extraction technique
(RCM-Extractor) that can process sentence-based textual requirements and
produce the corresponding RCMs, along with the breakdowns of these re-
quirements. We introduced: (1) ESSGA (Enhanced Simple Sentence Genera-
tion Algorithm) for extracting clauses from a sentence(each corresponding to
one RCM component) and (2) DSSAM (Deep Syntactic and Semantic Anal-
ysis) that extracts the breakdowns of the components from each clause (i.e.,
sub-components and arguments of a given component) using StanfordNLP
part-of-speech (POS) tagger. We evaluated our approach on a dataset of 162
requirements sentences curated from multiple papers in the literature and
from several online sources. The evaluation results showed that RCM extrac-
tor achieved 75% accuracy. The approach is insensitive to the RCM (sub-
)components count, type and order within the given requirement sentence.
In addition, It does not mandate requirements to follow any defined format
(e.g., CNL and patterns). However, DSSAM cannot extract clauses that do not
match any of the underlying POS analysis rules (a rule is a possible sequence
of the words types).

In this paper, we significantly extend our work in [32] by:
– Improving the performance of the RCM-Extractor by developing two mod-

ified extraction versions (Enhanced-DSSAM and Hybrid-DSSAM). We de-
veloped Enhanced-DSSAM (discussed in section 4.4) based on Typed-
dependencies (TDs) (i.e., the syntactic relations between the words in
the sentence) to overcome the mismatch of the POS rules in the original
DSSAM. Hybrid-DSSAM (discussed in section 4.5) avoids the drawbacks
of both DSSAM and Enhanced-DSSAM and achieves the best performance
(by combining both POS and TDs rules).

– Developing a new RCM-refinement process (discussed in section 5) that
associates formal-semantics to the extracted semi-formal semantics. This
results in producing a refined RCM (encapsulating both semi-formal and
formal semantics) for the given requirement. The refined RCMs allow the
generation of multiple formal notations from using our formalisation ap-
proach presented in [33].

– Extending the evaluation to cover all the mentioned techniques (compar-
ison of the original and modified versions) on the same dataset of 162
requirements [32]. Additionally, we also utilised a new dataset of 15,000
automatically synthesised requirements covering all the possible structures
of the requirement properties to assess the robustness of the developed ap-
proaches. The extended evaluation and comparison of the developed ver-
sions are discussed in section 6.2). Furthermore, we measured the average
time for extraction given the length of the input sentence (in section 6.1.2).
The remainder of this paper is organised as follows. Section 2 covers the

key related work. Section 3 provides an overview of the requirement capturing
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model - RCM. Section 4 introduces the details of the RCM-Extractor. Section
5 provides the details of the supplementary RCM-refinement process. Section 6
presents the evaluation experiments we conducted to evaluate the performance
of the RCM-Extractor. Section 7, discusses the key findings and limitations of
the approach. Finally, Section 8 concludes the paper.

2 Related Work

There is a rich and diverse body of research for formalising textual require-
ments into formal notations. The main paradigm is feeding a tool with re-
quirement sentences written in predefined format(s) [16,24,25,21,26,14,20,9].
The structure of the template is utilised to support the parsing of the input
NL requirements. The extraction of each technique differs slightly according
to the supported elements in the template. In contrast to this approach, our
technique aims to process NL requirements instead and thus eliminate the
overhead work of rewriting the requirements. In addition, it covers a wider
range of requirements structures (i.e., our approach is insensitive to the num-
ber, order, and types of the components constituting a requirement sentence).

Sturla [27] provides a two-phase approach to parse natural language sen-
tences into a logical format. The first phase parses English utterance, only in
the form of simple sentences, into a logical structure. The second phase as-
signs values to the discovered variables of functions and constants in phase one.
The approach achieved 38.16% accuracy on 76 sentences for both phases com-
bined, and 46% and 78% accuracy for the first and second phase, respectively.
Our RCM-Extractor approach processes more complex forms of requirements
sentences, and achieves far better accuracy.

Ghosh et al., in [10], proposed a framework called ARSENAL for translat-
ing natural language requirements into Linear Temporal Logic (LTL). ARSE-
NAL first reduces the complexity of the input sentence through term replace-
ment. Next, it creates an intermediate representation (IR) enriched with formal
information resulting from applying a set of hand crafted mapping rules on the
typed dependency of the input sentence. These rules are domain-specific and
limited to restricted scenarios. The constructed IR can be later converted into
LTL. The approach achieved 78% and 95% accuracy on two different datasets.
However, the accuracy of the second dataset is reduced from 95% to 65% by
perturbing "If A then B" to "B if A" (i.e., indicating that the approach is
order sensitive). In addition, it does not support requirements with temporal
information. In contrast, RCM-Extractor is insensitive to the components or-
der and is able to process time information missed by ARSENAL. However,
we still do not support coordinating relations. Nevertheless, we are aiming to
extend our extraction approach to address this issue.

Nelken et al., in [22], proposed a formalisation method that converts con-
strained English utterances ("verb to be" based) into Action Computation
Tree Logic (ACTL). First, the approach converts the English utterances into
an intermediate representation called discourse representation structure (DRS)
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based on Kamp’s Discourse Representation Theory [15]. Then, the DRSs are
transformed into ACTL logical formulas. Although the requirements engineers
are required to specify the requirements in a precise and concrete language,
some tolerance is permitted in the use of multi-sentence in a requirement (e.g.,
pronominal anaphora and inter-sentential links).

Yan et al., in [30], presented an NLP-based technique for formalising re-
quirements into LTL. Similar to our approach, this technique identifies clauses
of a requirement and maps them to propositions in LTL. Although, this ap-
proach allows coordination between clauses, it is strictly limited to a predefined
clause structure only. The clause must contain a single-word noun as the sub-
ject and a "verb to be" based predicate. Moreover, complex cases of NL (e.g.,
relative clauses, imperative cases, and intermingled clauses) are not addressed.
Time scope and repetition properties are not considered as well. These lim-
itations are handled in our approach, in addition to covering a wider range
of complex formats for clauses containing noun phrases, compound nouns,
verb phrases with multiple complement and/or object, and multi-prepositional
phrases.

3 Requirement Capturing Model (RCM)

This is an overview of our target reference model – the RCM model, presented
in [33]. RCM is a semi-formal representation model that aggregates the key
requirements properties – components and sub-components – existing in the
literature and necessary to transform textual requirements into formal nota-
tions. It supports a wide range of requirements because the model adapts to
any permutation of its (sub-)components.

Fig. 1 shows a simplified representation of RCM. Each system requirement
may have one or more primitive requirements, each representing one sentence.
A primitive requirement can contain zero or more conditions, triggers, and
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Req-scopes, in addition to one or more actions. These components are defined
as follows:

– Trigger: is an event that automatically initiates/fires action(s) whenever
it occurs within the system life-cycle (e.g., "When it rains for 1 minute" in
R4 Fig. 2).

– Condition: represents the constraints that should be explicitly checked
by the system before executing actions (e.g., if the maximum deceleration
is [insufficient] in R3 Fig. 2).

– Req-scope: determines the operational context under which (i) condi-
tions and triggers can be valid – called "a pre-conditional scope", or (ii)
actions can occur – called "an action scope". The Scope may define a start
boundary (e.g., "after sailing termination"), an end boundary (e.g., "before
< B_sig > is [TRUE]" in R1 Fig. 2), or both (e.g., "while R is true" can
be expressed by after and until as "after R is true" and "until not R").

– Action: represents the task that should be executed by the system in
response to triggers and/or constrained by conditions (e.g., the inhibitor
shall transition to [true]" in R1 Fig. 2).

A component can be broken into sub-components. RCM uses the following
five types of sub-components:

– Core-Segment: expresses the core part of the component including: the
operands, the operator and the negation flag/property (e.g., in "In case of
<: A_sig > is [True]" the "<: A_sig >" and "[True]" are the operands
and "is" is the operator).

– Valid-Time: is an optional sub-component. It provides the valid period of
time for the component of interest including: the quantifying relation (e.g.,
"=","<",">", etc.), the time length, and the unit (e.g., in "the vehicle
warns the driver by acoustical signals < E > for 1 seconds" the action is
valid for 1 second length of time).

– Hidden constraint: is a constraint defined for a specific operand within
a component. For example, in "the high beam headlight that is activated is
reduced" in R2, the that is activated is a constraint defined for the operand
the high beam headlight.

– Pre-elapsed-time: can be found for action and condition components.
This indicates the length of time from an offset point before the action
can begin or the condition can be checked (e.g., "the wipers are activated
within 30 seconds" in R4).

– In-between-time: is attachable to action and trigger components. It is
used to reflect the elapsed time between two consecutive occurrences of the
event in case of repetition (e.g., "the vehicle warns the driver by acoustical
signals <E> for 1 seconds every 2 seconds" in R3).

The underlying internal structures of components and sub-components are
Predicate and Time structures that encapsulate both the semi-formal and
formal semantics.
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4 Approach: RCM-Extractor

RCM-Extractor is responsible for extracting the semi-formal breakdowns of
components and sub-components of RCM from NL requirements. It consists
of five main phases as shown in Fig. 2.(b). The set of five input requirements are
shown in Fig. 2.(a) and the RCM representation of requirement "R1" is shown
in Fig. 2.(c). Fig. 2.(d) provides the TL formula produced by the formalisation
rules applied on the extracted RCM of R1. The proposition variables B, C,
S, and A correspond to "sailing termination being happened", "<cal: A_sig>
is [True]", "< B_sig > is [TRUE]", and "the inhibitor shall transition to
[true]", respectively (i.e., <cal: A_sig> and < B_sig > are domain technical
variables referring to signal A and signal B, respectively). RCM-Extractor
utilises StanfordNLP, the most widely used NLP-tool [35], to get Part-of-
Speech (POS) tags, Typed-Dependencies (TDs) relations, and parse tree (PT)
of the input sentences. It also uses WordNet as the most widely used NLP-
resource [35]. RCM-Extractor accepts the following as input:

– Requirements document: a file of system requirements (each requirement
can be one or more sentences) written in natural language (i.e., English).

– Technical terms: a file containing domain-specific terms expressed in En-
glish. Such terms may introduce non-finite clauses to the requirement sen-
tence (e.g., "if the acceleration requested by the driver exceeds 20", the
underlined text is a domain term with non-finite format).

– Configuration: a file containing a set of configurations for the requirements
(e.g., (1) non-English words format like technical variables, (2) overloaded-
English words like technical values, and (3) requirements separators).

(c) RCM of R1
Req-Scope
vPre-conditional Scope
ØScopeType = StartUpPhase
ØTimekeyword = after
ØPredicate
üpredicateText = “After every sailing 
termination ” 
üRelation = equals
üOp1 
qText = sailing termination

üOp2 
qText = RCMVAL_TRUE

üneg_flag = false 

Req-Scope
vAction-Scope
ØScopeType = EndUpPhase
ØTimekeyword = before
ØPredicate
üpredicateText = “before 
RCMVAR_B_sig is RCMVAL_TRUE” 
üRelation = is
üOp1 
qText = RCMVAR_B_sig

üOp2 
qText = RCMVAL_TRUE

üneg_flag = false

Conditions
vPredicate
üpredicateText = “If RCMVAR_A_sig is 
RCMVAL_TRUE” 
üRelation = is
üOp1 
qText = RCMVAR_A_sig

üOp2 
qText = RCMVAL_TRUE 

üneg_flag = false

Action
vPredicate
üpredicateText = “the inhibitor shall 
transition to RCMVAL_TRUE”
üRelation = shall transition to 
üOp1 
qText = the inhibitor

üOp2 
qText = RCMVAL_TRUE

üneg_flag = false

(b) RCM-Extractor

(P
1)

(a) Requirements Document

R2:  if the camera recognizes the lights of an advancing vehicle, the high 
beam headlight that is activated is reduced to low beam headlight within 
5 seconds.
R3: if the maximum deceleration is [insufficient] before a collision with 
the vehicle ahead, the vehicle warns the driver by acoustical signals <E> 
for 1 seconds every 2 seconds. The maximum deceleration is 5.
R4: When it rains for 1 minute, the wipers are activated within 30 seconds 
before the windscreen is dry.
R5: the fuel display blinks while the fuel level is low.

R1: In case of <cal: A_sig> after sailing termination is [TRUE], the inhibitor 
shall transition to [true] before <B_sig> is [TRUE].

(c) RCM of R1
Req-Scope
vPre-conditional Scope
ØScopeType = StartUpPhase
ØTimekeyword = after
ØPredicate
üpredicateText = “After sailing 
termination ” 
üRelation = equals
üOp1 = sailing termination
üOp2 = RCMVAL_TRUE
üneg_flag = false 

Req-Scope
vAction-Scope
ØScopeType = EndUpPhase
ØTimekeyword = before
ØPredicate
üpredicateText = “before 
RCMVAR_B_sig is RCMVAL_TRUE” 
üRelation = is
üOp1 = RCMVAR_B_sig
üOp2 = RCMVAL_TRUE
üneg_flag = false

Conditions
vPredicate
üpredicateText = “If
RCMVAR_A_sig is 
RCMVAL_TRUE” 
üRelation = is
üOp1 = RCMVAR_A_sig
üOp2 = RCMVAL_TRUE 
üneg_flag = false

Action
vPredicate
üpredicateText = “the inhibitor 
shall transition to RCMVAL_TRUE”
üRelation = shall transition to 
üOp1 = the inhibitor
üOp2 = RCMVAL_TRUE
üneg_flag = false
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Fig. 2: Textual Requirement Extraction Flow
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4.1 RCM-Extractor Phase 1: Requirements pre-processing

Requirements specifications are usually written in long sentences (e.g., R3 in
Fig. 2) and comprise a more restricted vocabulary, where 62% of the used words
do not appear in generic text [7] (e.g., the word "< cal : A_sig >" in R1 in Fig.
2). Hence, the existing NLP tools (StanfordNLP in our case), that are trained
on generic text, will not provide a reliable performance on requirements. To
avoid this problem, we pre-process the requirements to eliminate the defective
and unnecessary elements and adjust the incomprehensible and overloaded
words in the input sentences. The steps for this process are as follows:

1. Requirements cleaning: multiple spaces and incorrect ones (i.e., at the
beginning or at the end of the sentence) are removed. Other styling formats
are also considered (e.g., "-" is replaced with "_").

2. Requirements conciseness: because the requirements are written in
NL, the users may use appositives to link a technical term to its represent-
ing technical variable (e.g., "If the fuel amount exceeds F_min_thr , the
fuel minimum threshold, the fuel level is set to HIGH" – the technical term
is underlined and the technical variable is in bold). In this step, appositive
cases are extracted and stored aside to prevent loss of information. This
makes requirement sentences shorter and simpler to analyse.

3. Requirements configuration: for each system, a specific format is utilised
to write the technical variables and values (e.g., writing technical variables
between "<>" and the values between "[]"). In most cases, such variables
and values either have no meaning in English (non-English words) or have
a different meaning from the intended one (overloaded English words). For
example, in the action "turn < btn_1 > to [on]", the "< btn_1 >" is a
non-English word and "[on]" is an overloaded English word because it acts
as a value in the action although it is commonly used as a preposition in
English. RCM-Extractor detects such formats, according to the configura-
tion file, and then transforms them into an internal format (by adding a
suitable prefix "RCMVAR_...", "RCMVAL_..." – e.g., "< cal : A_sig >"
in Fig. 2 is replaced with "RCMV AR_A_sig" in Fig. 3). Similarly, the
input technical terms are detected in the requirements and transformed to
an internal format (e.g., the term is concatenated with "_" and the prefix
"RCMTERM_" is added). Finally, the input requirements are separated
based on the separation format in the configuration file.

4. Foreign words substitution: to overcome the issue of StanfordNLP han-
dling restricted words in requirements (non-English words and domain-
specific words), we replace the identified non-English/overloaded words in
the requirement configuration step(e.g. technical variables, technical terms
and technical values) with placeholder English words representing them
(e.g., variable, term and value). The original words are restored again after
the application of the StanfordNLP analysis.

5. Closed words unification: English has closed word classes [17]. Each
class contains a finite set of words with a defined grammatical function
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(e.g., conjunctions, subordinating conditional keyword, timing keyword,
instant timing keyword). In this step, all English words holding the same
function are unified and converted to a single unique word, selected from
the class to be its representative within our approach (e.g., all subordi-
nating instant-timing keywords {whenever, once, .etc} are replaced with
"when").This simplifies the extraction while covering various alternatives
of the text. For example, "In case of" in Fig. 2. is replaced with "if" in Fig.
3.

6. Ambiguity Resolution: to overcome ambiguity issues, we utilise our am-
biguity detection and resolution approach, proposed in [23]. This approach
provides feedback to the user when it detects multiple interpretations of the
same sentence with a recommendation of the most likely correct interpre-
tations to select one from them. After that, each requirement is attached
with the selected interpretation and the corresponding TDs, PT and POS
as well. We base our extraction approach on the provided unambiguous
versions of requirements and their attached TDs, POS and PT.

4.2 RCM-Extractor Phase 2: Requirement Components Extraction

In this process, we extract the RCM components (action, Req-scope, trigger
and condition) from each NL requirement sentence. We base our enhanced
component extraction algorithm (ESSGA) on the original SSGA proposed
in [5]. SSGA generates simple sentences, each representing one clause, from a
complex/compound sentence through analysing the TDs of the input sentence.
The TDs are a set of mentions, each representing a syntactic relation between
two words (e.g., nsubj(equals-14, X-13) means "X" is subject to the verb
"equals").

SSGA suffers from two major limitations. First, it fails to identify im-
perative clauses within sentences. This is because the algorithm is only able
to generate declarative sentences by locating the existing subjects/passive-
subjects (considered as the starting points of the simple sentences). Second,
SSGA does not keep any information reflecting the semantic relations of the
generated simple sentences. For example, in the sentence "if X is ON, Z shall
be set to True", SSGA produces the sentences "X is on" and "Z shall be set to
True" while neglecting the implication logical relation connecting them (loss
of information).

ESSGA constructs clauses starting from the verb (because it is a manda-
tory component) instead of the subject in both the imperative and declara-
tive types. Furthermore, ESSGA keeps the semantic relations because they
represent important domain characteristics forming the type of each compo-
nent (e.g., subordinating head "If" in the previous example reflects a Condi-
tion type). ESSGA is developed based on the automated NLP analysis types
provided by StanfordNLP: (i) TDs (i.e., words relations), and (ii) POS (i.e.,
grammatical type of each word like noun, verb, adj, .etc), in addition to the
manually annotated POS tags provided by WordNet.



10 Aya Zaki-Ismail et al.

Fig. 3 outlines the steps used to extract the clauses of requirement R1
in Fig. 2. In step1, the elements identifying the clauses -verbs in our case-
are marked. First, we get the POS of the given sentence using StanfordNLP
and then highlight the main verbs. We confirm the correctness of the high-
lighted verbs using the POS of WordNet (defective cases "not a verb" are
removed). In step2, we get the TDs of the input sentence using StnafordNLP.
In step3, we break the connection between the clauses by removing the same
TDs mentions, used by SSGA, that connect them. However, we exclude the
mentions reflecting important domain relations (e.g., "mark", "ccomp", "ref",
"dep"). The removed mentions are marked with "✗" in Fig. 2. In step4, all the
mentions having direct or indirect connections are grouped. Finally, in step5,
the distinct words within each group are sorted according to their occurrence
indices in the original sentence forming one component.

Step 2, 3

1. mark(value-7, If-1)
2. nsubj(value-7, Variable-2)
3. case(termination-5, after-3)
4. compound(termination-5, sailing-4)
5. nmod(Variable-2, termination-5)
6. cop(value-7, is-6)
7. advcl(transition-12, value-7)          ✗
8. det(inhibitor-10, the-9)
9. nsubj(transition-12, inhibitor-10)
10. aux(transition-12, shall-11)
11. root(ROOT-0, transition-12)
12. case(value-14, to-13)
13. nmod(transition-12, value-14)
14. mark(value-18, before-15)
15. nsubj(value-18, variable-16)
16. cop(value-18, is-17)
17. advcl(transition-12, value-18)       ✗

Step 4
Group1: {1,2,3,4,5,6}
Group2: {8,9,10,11,12,13}
Group3: {14,15,16}

Step 5
Comp1:
•Sorted Distinct words: {If-1, Variable-2, after-
3, sailing-4, termination-5, is-6, value-7}
•Substitute and rewrite: If RCMVAR_A_sig
after sailing termination is [TRUE]

Comp2:
•Sorted Distinct words: {the-9, inhibitor-10, 
shall-11, transition-12, to-13, value-14}
•Substitute and rewrite: the inhibitor shall 
transition to RCMVAL_TRUE

Comp3:
•Sorted Distinct words: {before-15, variable-
16, is-17, value-18}
•Substitute and rewrite: before 
RCMVAR_B_sig is RCMVAL_TRUE

Input= “If RCMVAR_A_sig after sailing termination is RCMVAL_TRUE, the inhibitor shall 
transition to RCMVAL_true before RCMVAR_B_sig is RCMVAL_TRUE.”

Processed Input = “If variable after sailing termination is value, the inhibitor shall transition to 
value, before variable is value.”

Step 1
POS = If/IN Variable/NNP after/IN sailing/NN termination/NN is/VBZ value/NN ,/, 
the/DT inhibitor/NN shall/MD transition/VB to/TO value/NN before/IN variable/NN 
is/VBZ value/NN

Fig. 3: Components Extraction Example

ESSGA handles several complex challenges for processing and extracting
the requirements specified in NL. First, the requirement components may exist
in any order in the sentence (e.g., R3.S1 and R4 in Fig. 2 show alternative
orders). Second, the components may also be intermingled (e.g., "In case of
< cal : A_sig > after sailing termination is [TRUE]" in R1, the two compo-
nents "In case of < cal : A_sig > is [TRUE]" and "after sailing termination"
are mixed up). Third, a requirement sentence may be expressed in differ-
ent structures (e.g., simple sentence, compound sentence, complex sentence or
compound complex sentence) with different types of clauses (e.g., imperative



Title Suppressed Due to Excessive Length 11

and declarative) and different voice (e.g., active and passive). Our ESSGA al-
gorithm overcomes these challenges by breaking the connections between the
clauses and reforming each clause on its own as a component, in step3 and
step4. This separation makes the approach insensitive to intermingling compo-
nents, their order, and the sentence structure. In addition, step1 handles both
the imperative and declarative types by considering the verb as the starting
point.

A component may be expressed by an incomplete clause following a correct
syntax and hold implicit meaning (e.g., "after sailing termination" in R1 im-
plicitly means that the "sailing termination" has already happened). This case
is only eligible to adverbal clauses [12], where the clause involves a time-related
conditional keyword that corresponds to the Req-scope component type. This
incompleteness may cause the components to be merged, especially if the miss-
ing part is the verb (e.g., before termination). However, this merge is resolved
later in following phases.

4.3 Deep Syntactic and Semantic Analysis (DSSAM)

Our Deep Syntactic and Semantic Analysis (DSSAM) is responsible for deeply
understanding each component to complete its extraction. It consists of the
remaining three phases: sub-components extraction, classification, and argu-
ments extraction.

4.3.1 RCM-Extractor Phase 3: Sub-components Extraction

In Phase 3, each component is processed to extract the sub-components con-
stituting it. Fig. 4 shows two extracted sub-components (S[1] and S[2]) for the
obtained component "C1" in Fig. 3.

Processed Component C[1]
Internal Pre-
processing  of 
C[1]

Text If variable after sailing termination is value
POS IN, NN, IN, NN, NN, VBZ, NN

Component 
abstraction

Text If [variable] after [sailing termination] [is] [value] 

POS IN, basicNP, IN, basicNP, basicVP, basicNP
Extracted Sub-
components

S[1] S[2]
[If] [variable] [is] [value ] èCore-segment
POS= [[’IN’],[’basicNP’], [’basicVP’],[’basicNP’]]

[After] [sailing termination] [] [] è Core-segment
POS= [[’IN’],[’basicNP’],[],[]]

Fig. 4: Sub-component extraction example for component "C1" in Fig. 3

This phase consists of two steps: (1) abstracting the input component, and
(2) identifying the boundaries of each sub-component. First, the initial POS
tags of all the tokens within a component are scanned to identify noun and verb
phrases. For each identified phrase, the POS tags of its tokens are replaced
with a single tag as in the example in Fig. 4 ("basicNP" for noun phrases
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and "basicVP" for verb phrases). This is carried out via regular expressions
that match the POS tags of the component against a set of hand-crafted
patterns covering the possible structures of noun and verb phrases in the
English language.

Second, the boundaries of each sub-component are identified by locating
the head (starting word) and the most suitable body (the next set of words to
fulfil a correct grammatical structure for the sub-component) as in Fig. 5. Some
sub-components (like the core-segment in condition, trigger, and Req-scope)
have a known head keyword as a result of the unification step in pre-processing
(e.g., the head of a trigger is "when"). The heads of other sub-components
(i.e., pre-elapsed-time, valid-time, in-between-time, hidden constraint) have
exclusive POS tags (e.g., the hidden constraint starts with a relative pronoun
having the POS tag "WP$" or "WDT").

H1 I1
If variable after [sailing termination] is value 

H1 I1 H2 I2
If variable after [sailing termination] is value 

I2 E2

H1 I1 H2 E2
If variable after [sailing termination] is value 

I1 E1

✓

✗

✓

✓H1 I1 H2

If variable after [sailing termination] is value 

↑

↑

Hi : Head Ii : Intermediate Ei : End ✓: syntactically correct ✗: syntactically in correct

1-

2-

Fig. 5: Best suitable sub-components decomposition for "C1"

Identifying the body of a sub-component is more challenging than the
head identification because of the various possible structures. To overcome
this, we created a set of hand-crafted reasoning POS-based rules representing
the possible structures of each sub-component (i.e., relative clauses, adver-
bal clauses, subordinating clauses, declarative clauses, and time prepositional
phrase). Fig. 6 provides the alternative structures for adverbal clauses. We also
developed a recursive technique to determine the most suitable body struc-
ture for an intended sub-component while taking into account the remaining
sub-components. For example, the second sub-component in Fig. 5 starting at
"H2" conforms to two possible structures, but only one of them will prevent
the other sub-component from being grammatically incorrect. The reasoning
rules were developed using Prolog to benefit from its built-in matching and
backtracking inference engine.

Adverbal
Clause

Head Head: Start with (while, After, Before) -Before x transitions to true
-Before terminating the IDC
-Before the window start moving
-Before IDC termination

Body ü NP Verb (NP?)
ü Verb (NP?)
ü NP Verb
ü NP

Fig. 6: Alternative structures of Adverbal clause
Note: the verb itself has various structures conforming to the tense, person, voice, etc; the

same applies on NP
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4.3.2 RCM-Extractor Phase 4: Classification

The aim of this phase is assigning labels (e.g., Trigger, condition, action,
Req-scope and Factual Rule) to each of the extracted components, and to
the extracted sub-components as well (e.g., pre-elapsed-time, valid-time, in-
between-time and hidden constraints). The classifier assigns types by applying
two-levels of checking on the obtained sub-components. The first level, as in-
dicated in Fig. 7, identifies types based on three attributes: (1) the head of the
given sub-component, (2) comp count: the total count of the extracted compo-
nents of the current primitive requirement, and (3) the count of the extracted
core-segments sub-components from the given component. It is worth noting
that the sub-components heads are unified in step3:closed words unification in
the pre-processing phase. In addition, the classification is done in compliance
with the types of clauses discussed in [12], where (1) independent clauses are
identified through "No Head", (2) subordinating clauses are identified through:
"conditional, instant-conditional, and time-conditional heads", and (3) relative
clauses are identified through "Relative head". The coordinating clause is first
adjusted to one of the other types (i.e., independent, subordinating or relative)
based on its main attached clause (e.g., "if X is True or Y is True" −→ "if X
is True, or if Y is True"), then it becomes ready for the classification process.
In this level, the merged components, in the components extraction phase, if
any, are detected based on the obtained core-segments count as indicated in
Fig. 7 and are separated as in Fig. 8.

Su
b-C

om
po

ne
nt

Checking Attributes
• Head
• Comp Count
• Core-segments 

count

• No head
• comp Count == 1
• Core-segment count == 1

• No head
• comp Count > 1

• Conditional Head

• Instant Conditional Head

• Timing Conditional Head
• Core-segment count == 1

• Pre-elapsed-time Prep 
Head

• Valid-time Prep Head

• In-between-time Prep 
Head

Main Comp 
Type

Sub-Comp to 
Main Comp

Split Comp• Timing Conditional Head
• Core-segment count > 1

Req-scope

Pre-elapsed 
Time

In-between 
Time

Valid
Time

Factual Rule

Condition

Trigger

Classification RoleDecision Criteria

Action

Req-scope

Fig. 7: Classification Checking

In the second level, Req-scope component type is further classified to either
"action scope" or "pre-conditional scope". The type is identified based on the
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Classification of the sub-components of C[1]
S[1]: core-segment 
conditional head

S[2]: core-segment
Timing Conditional Head

Level-1 Component è Condition Component è Req-Scope 
(split into separate component)

Level-2 Pre-conditional Scope

Fig. 8: Classification of the obtained sub-components in Fig. 4

surrounding components. If a Req-scope is found in a merged component, its
type will be identified based on the component merged with it (i.e., if action
=> action scope, else ==> Pre-conditional scope). Otherwise, we rely on the
nearest non-Req-scope component within the primitive requirement sentence.

4.3.3 RCM-Extractor Phase 5: Arguments Extraction

This process identifies the complete arguments of a given sub-component.
To achieve this, we benefit from the sub-component extraction process by
constructing an initial argument decomposition within each identified sub-
component. Each sub-component contains two lists. The first list contains
the text of the sub-component, initially broken down into separate argu-
ments. The second list contains the corresponding POS tags of each argu-
ment in the first list. For example, the second sub-component in Fig. 4 is rep-
resented with: (1) text=[[’After’],[’sailing_termination’],[],[]] and (2) POS=
[[’IN’],[’basicNP’],[],[]]. Both lists are constructed with the same static length
that is determined based on the most complete possible version of the sub-
component (i.e., the case where all the elements of the sub-component are
present), as follows:

• Core-segment: the adopted structure consists of head keyword, subj,
verb, complement. This sub-component type can represent:
1. Condition case: conditional keyword, subj, verb, complement (e.g., [If]

[X] [exceeds] [Y])
2. Trigger case: conditional keyword, subj, verb, complement (e.g., [when]

[X] [exceeds] [Y])
3. Action case: empty-item, subj, verb, complement (e.g., [x] [shall be set

to] [True)]
4. Req-scope: timing conditional keyword, subj, verb, obj (e.g., [After] [X]

[transitions to] [True])
• Hidden constraint: relative noun, relative pronoun, subj, verb, obj (e.g.,

[X] [that] [is] [larger than] [2])
• Time: time head, quantifying relation, value, unit (e.g., [for] [at most]

[2] [seconds]). This applies to pre-elapsed-time, valid-time and in-between-
time sub-components.

The role of each argument is defined based on the argument location in
the list. In case of missing element(s), the corresponding location of such el-
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ement(s) is(are) left empty to maintain the proper ordering and roles of the
expected elements within the lists.

Further processing is applied on the initial arguments to: (1) identify more
arguments, if possible, and (2) provide artificial arguments when needed. As
discussed earlier, a sub-component may eventually be mapped to either time or
predicate structure in RCM. For sub-components that are eventually mapped
to predicate structure, they may have two or more operands (e.g., X exceeds
Y with 2). In this case, technically, the complement part of the sentence
may be decomposed into a set of operands. The determinant factor in the
decomposition is detecting the engendered nouns in the complement attached
to the predicate verb. Algorithm 1 shows our technique for identifying these
engendered nouns. Fig. 9 shows an example of applying this to a requirement.

Algorithm 1 Extracting Verb Operands
Input: Sub-Comp(text, POS-List)
Output: verb operands list
procedure

Step 1: get Typed-Dependency of the Sub-component text.
Step 2: extract the main verb of the Sub-component text.
Step 3: get all mentions with the functionality (object|noun-modification) that con-

nect "the extracted main verb" with "a word of the type noun".
Step 4: extract all engendered nouns from the filtered mentions in Step 3.
Step 5: divide the complement into set of noun phrases each starts with an engendered

noun obtained in Step 4.
end procedure

Input = “If X exceeds Y, set the entry of the vector to 3”

Typed-Dependency:
mark(exceeds-3, If-1)
nsubj(exceeds-3, X-2)
root(ROOT-0, exceeds-3) 
dobj(exceeds-3, Y-4)            ✓
acl(Y-4, set-6) 
det(entry-8, the-7) 
dobj(set-6, entry-8) ✓
case(vector-11, of-9) 
det(vector-11, the-10) 
nmod(entry-8, vector-11) 
case(3-13, to-12) 
nmod(set-6, 3-13) ✓

Output
Exceeds:
Has complement with one 
operand 
{Y}

Set:
Has complement with two 
operands 
{the entry of the vector, 3}

Fig. 9: Example illustrating Operands extraction of a verb

An RCM model may be populated with semantically incomplete but syn-
tactically valid sub-components. For example, "After sailing termination" is
a syntactically valid NL predicate but is incomplete because it has only one
argument "termination". Thus it is corrected to "After sailing termination
equals true" with the underlined artificial argument for completeness. We ad-
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dress these incompleteness issues by attaching proper artificial arguments as
in Fig. 10. Artificial arguments are provided to incomplete predicates that
have one or two arguments at maximum (i.e., a complete predicate should
have at least three arguments constituting the LHS, RHS and operator con-
necting them in the formal form of a predicate). In case of one argument, the
argument is either noun or verb (e.g., before termination or after starting up).
Arguments of the other case consist of noun and verb (e.g., subj+verb "If the
fuel display blinks" or verb+subj "integrate X"). Table 1 illustrates how the
proposed approach handles these cases.

Table 1: Handling Incomplete Predicates

Exist
Args

Taken Action Added
Args

Example

0ne (1) make it Op1 Rel="equal" - old = "After termina-
tion"

(2) add two argument (Rel and Op2) &
Op2="True"

- new = "After termi-
nation equals True"

Two (1) make the noun Op1 Rel="be" - old = "integrate X"
(2) Make the verb Op2 (as a status to Op1).
(3) add one argument (Rel)

- new = "(X) (shall be)
(integrated)"

Extracted 
Arguments

S[1] S[2]
-Cond-keyword = if
-OP1 = RCMCAL_A_sig
-OP2 = RCMVAL_TRUE
-Relation = is

-Time cond-keyword = after
-OP1 = sailing_termination
Created Artificial arguments
-OP2 = RCMVAL_TRUE

-Relation = equals

Fig. 10: Arguments Extraction Example for Component "C1" in Fig. 3

4.4 Enhanced-DSSAM

Although DSSAM shows very good performance when analysing components
based on clause-structure, it is not efficient for handling clauses whose gram-
matical structures do not match any of the variations supported by the POS
sequences in phase3 (sub-components extraction phase). We overcome this
limitation in the Enhanced-DSSAM version by extracting any sub-component
based on the syntactic relations (TDs) between the words instead of their POS
sequences.

Instead of scanning and chunking the given POS sequence of the com-
ponent text into information composing the corresponding sub-components
and arguments, the sub-components are extracted from the given text using
its internal connecting relation (TDs). This extraction approach shows better
performance because it locates the relations of interest relevant to any sub-
component without being affected by excess words (i.e., word(s) whose exis-
tence/disappearance does not affect the formal semantics of the requirement
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but breaks the POS sequences in DSSAM). Table 2 highlights the differences
and similarities between the DSSAM versions.

Table 2: DSSAM vs Enhanced-DSSAM

DSSAM Enhanced-DSSAM
Difference The sub-components extraction is

POS-Tagging analysis based
The sub-components extraction is
Typed-dependencies analysis based

Similarity Classification and Arguments extraction (Phase 4&5)

Pros/Cons -Affected by the excess words
-An input may have no output

-Is not affected by excess word(s)
-Every input has output

I1:

I2:

Informa+on of interest

Excess words

DSSAM Enhanced DSSAM

✓ ✓
✗ ✓

The modified phase (sub-components extraction) has two steps: (1) ab-
stracting the input component, and (2) identifying each sub-component util-
ising TD-based extraction rules (available online 1). In step1, the TDs of the
input components are computed. Within these TDs, mentions forming phrases
(noun phrases and verb phrases) are aggregated according to the rules illus-
trated in Table 3.

Table 3: Enhanced-DSSAM Entities and Relations Extraction rules

Process
1- Identify TDs relations of interest
2- Extract and aggregate the corresponding elements
3- Update all typed dependencies to contain the aggregated elements
4- Remove unwanted TDs
Element TD relations Example

Compound Noun Determinants,
compound, amod

IN: det(frequency-2,the-1) nsubj(consistent-13,frequency-2)
OUT: nsubj(consistent-13, the-1 frequency-2)

Noun phrase nmod, case IN: case(Engine-4 Control-5 System-6 inspection-7,of-3)
nmod(the-1 frequency-2,Engine-4 Control-5 System-6 inspection-7)
nsubj(consistent− 13, thefrequency − 2)
OUT: nsubj(consistent-13, the frequency-2 of-3 Engine-4 Control-5
System-6 inspection-7)

Verb Phrase Aux, auxpass,
cop

IN: aux(consistent-13, shall-11) cop(consistent-13, be-12)
nsubj(consistent-13, the frequency-2 of-3 Engine-4 Control-5 System-6
inspection-7)
OUT: nsubj(shall-11 be-12 consistent-13, the frequency-2 of-3 Engine-4
Control-5 System-6 inspection-7)

In Step2, the abstracted TDs are scanned to extract the sub-components
in type-based order (i.e., time, hidden-constraint, core-segment). The TDs are
iteratively scanned, producing one sub-component at a time until no further

1Enhanced-DSSAM TDs Rules: https://github.com/ABC-7/RequirementsExtraction/
blob/main/EnDSSAMRules.pdf

https://github.com/ABC-7/RequirementsExtraction/blob/main/EnDSSAMRules.pdf
https://github.com/ABC-7/RequirementsExtraction/blob/main/EnDSSAMRules.pdf
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matching is found. The sub-component, whose breakdown relations exist, is
extracted and its corresponding TDs are removed.

We modified the first component of R1 to "If RCMVAR_A_sig just after
sailing termination equals [TRUE]" by adding an excess word "just". Then,
we fed the component to both DSSAM versions. Fig. 11 shows the step by step
execution of both version highlighting the capability of Enhanced-DSSAM in
overcoming excess words.

Processing C[1] by Enhanced-DSSAM Processing C[1] by DSSAM

Original text If RCMVAR_A_sig just after sailing termination equals [TRUE] Original text If RCMVAR_A_sig just after sailing
termination equals [TRUE]

Internal Pre-
processing  of 
C[1]

Text If variable after sailing termination equals value Internal Pre-
processing  
of C[1]

Text If variable after sailing termination 
equals valueTD 1. mark(equals-7, If-1) 

2. nsubj(equals-7, variable-2) 
3. advmod(variable-2, just-3) 
4. case(termination-6, after-4) 
5. compound(termination-6, sailing-5)   
6. nmod(equals-7, termination-6) 
7. root(ROOT-0, equals-7) 
8. obj(equals-7, value-8)

POS IN, NN, IN, NN, NN, VBZ, NN

Component 
abstraction

Text If variable just after [sailing termination] equals value Component 
abstraction

Text If [variable] just after [sailing 
termination] [equals] [value] TD 1. mark(equals-7, If-1) 

2. nsubj(equals-7, variable-2) 
3. advmod(variable-2, just-3) 
4. case(sailing termination-6, after-4) 
5. nmod (equals-7, sailing termination-6) 
6. root(ROOT-0, equals-7) 
7. obj(equals-7, value-8)

POS IN, basicNP, RB, IN, basicNP, 
basicVP, basicNP

Extracted 
Sub-
components

S[1] S[2] Extracted 
Sub-
components

No output (no decomposition matches 
syntactic variations)[If] [variable] [equals] 

[value ] èCore-segment
Matched TD:  [1,2,7]
• mark(equals-7, If-1) 
• nsubj(equals-7, 

variable-2) 
• obj(equals-7, value-8)

[After] [sailing termination] [] []
è Core-segment
Matched TD:  [4,5]
• case(sailing termination-6, 

after-4)
• nmod (equals-7, sailing 

termination-6) 

Classification Component è Condition Component è Req-Scope (split) 
è Pre-conditional Scope

Classification Suspended phases

Extracted 
Arguments

-Cond-keyword = if
-OP1 = RCMCAL_A_sig
-OP2 = RCMVAL_TRUE
-Relation = equals

-Time cond-keyword = after
Created Artificial arguments

-OP1 = sailing_termination
-OP2 = RCMVAL_TRUE
-Relation = equals

Extracted 
Arguments

Fig. 11: DSSAM vs Enhanced-DSSAM execution of Modified C[1]

4.5 Hybrid DSSAM

DSSAM may show better performance than Enhanced-DSSAM in "require-
ments with no excess words", because Stanford-POS has better accuracy than
Stanford-TDs. However, Enhanced-DSSAM is capable of producing (partially-
)correct output for requirements with excess words (DSSAM fails to extract
these requirements). To achieve even better extraction performance, we ag-
gregated both version as one extraction process. A given component is fed to
phase 3 in DSSAM, and in case of extraction failure, it is re-fed into phase 3
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in Enhanced-DSSAM. And then phase 4 and phase 5 are applied as indicated
in Fig. 12.

Textual 
component

Sub-components Extraction 
DSSAM

(Phase 3)

Sub-components Extraction 
Enhanced-DSSAM

(Phase 3)

Classification
(Phase 4)

Arguments Extraction
(Phase 5)

Passed

Failed Component’s 
breakdowns

Fig. 12: Hybrid-DSSAM Flow

5 RCM Refinement

RCM refinement is responsible for associating the RCM’s formal semantics
to the extracted semi-formal one, in addition to unifying the requirements. It
consists of two phases: breaking dependencies and formal-semantics mapping.

5.1 Breaking Dependencies

There are two types of dependencies that we aim to resolve in this phase:
(1) local dependencies and (2) global dependencies. The former relates to de-
pendencies within the same requirement. Local dependency may be within
the same sentence (primitive requirement) or among multiple sentences of the
same requirement (primitive requirements in one RCM) (e.g., referenced pro-
nouns). The Later type of dependency relates to dependencies within multiple
requirements, each represented with one RCM (e.g., multiple English terms,
each in a different requirement, referring to the same system entity).

5.1.1 Global Dependency:

In this type of dependency, we first build an entities map (EM) to aggre-
gate the entities within all the requirements (EM is used later in breaking
global dependencies). This map is easier to be built after extraction because
all the arguments are identified. Second, we utilize EM in breaking global de-
pendencies. The map groups synonyms of each entity together and assigns a
unique code to non-correlated entities as indicated in Fig. 13. Synonym enti-
ties come from: (1) appositives in the prepossessing conciseness step, and (2)
factual rules (acting as descriptive requirements) incorporating entities only
(e.g., "R1: < EM_State > indicates the elevator motion status", where, (i)
"indicates" is a descriptive verb, and (ii) < EM_State > and "the elevator
motion status" are entities). Second, we iterate over the RCMs to unify all
the fuzzy/descriptive entities with the technical ones (i.e., un-mapped descrip-
tive entities can be listed for the users for optional mapping according to their
preference).
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R1: <EM_State> indicates the elevator motion status.
R2: When <D_State>, the direction, is [Idle], the elevator motion 
status shall be [Idle] 
R3: The elevator motion status shall be [Down] when the 
direction is [Down]. It shall be [UP] when the direction is [UP]"

R2: When <D_State> is [Idle], <EM_State> shall be [Idle]. 
R3: <EM_State> shall be [Down] when <D_State> is 
[Down]. It shall be [UP] when <D_State> is [UP]”.

Entity Map (EM)

TechCode Domain-Variable Descriptive Entities

E1 <EM_State> {the elevator motion status}

E2 <D_State> {the direction status}

EM 
Construction

Global Dependency 
Breaking

StanfordNLP Chain-Coreference
R2 None
R3 CHAIN4-["the <EM_State>" in 

sentence 1, "It" in sentence 2]
R3: <EM_State> shall be [Down] when <D_State> is 
[Down]. <EM_State> shall be [UP] when <D_State> is [UP]”.

Local Dependency 
Breaking

Descriptive 
requirement Appositive

Fig. 13: Global and Local Dependency Breaking Example

5.1.2 Local dependencies

We resolve local dependencies with the support of StanfordNLP as in Algo-
rithm 2. We get the candidate terms referencing the same entity in a given
requirement by StanfordNLP co-reference chain. It provides us with the list
of candidates (each is a series of co-references for one entity as in Fig. 13).
For each candidate (if any), we get –for all co-references– the corresponding
component and operand in RCM. Finally, we unify all co-references with the
technical entity (i.e., the operand that have a technical code in EM as in Fig.
13) in case of having one, otherwise with the first co-reference in the series.

Algorithm 2 Breaking Local Dependency
L1, Correlated entities candidates
EM, Unified Entities Map
procedure

for all R ∈ RCMLis do
RText ← R.Text
L1 ← Stanford.corefrenceChain(RText)
for all Cand ∈ L1 do

opList ← Locate the operands for all references in Cand
UnifiedEntity ← OP[1]
for all OP ∈ opList do

if OP.TechCode ̸= ϕ then
UnifiedEntity ← EM[OP.TechCode].TechEntity
break;

end if
end for
for all OP ∈ opList do

OP ← UnifiedEntity
end for

end for
end for

end procedure
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5.2 Formal-semantics Mapping

This phase formulates the formal semantics at the predicate level by locating
the left hand side (LHS), the right hand side (RHS) and the operator [33].
Mapping a grammatical English role to a static formal semantics is not always
correct (e.g., assuming the subject is always placed in the LHS of the formula)
because it depends on the semantics of the used verb. Fig. 14 illustrates how
LHS matches different grammatical roles.

LHS       RHS
X shall be set to True X     =  True
X shall be stored in Y Y     =   X

Fig. 14: Same grammatical role "X" have different formal semantic role

A rigorous repository is needed to be responsible for playing the role of
formal semantics assignment. We provide a database-based repository (called
VerbFrame-DB) for mapping any frame into the standard formal semantics
"<LHS, RHS, OP>". VerbFrame is easy to extend with non-mathematical-
expert users on the run or pre-execution. This allows the requirements writer
to use the language that is most appropriate to the domain, while at the same
time declare in precise terms how the writing should be interpreted. Verb-
frame has the structure "frameName(Arg1,Arg2,..Argn)" – each argument has
a defined formal semantics based on its position in the list. VerbFrame-DB
supports three forms of formal semantics proposed in RCM [33] as indicated
in Table 4.

Table 4: VerbFrame to RCM Mapping

Input-Frame Signature VerbFrame to RCM Mapping RCM formal-semantic output

frameName(OP1,..OPn) Process:
– frameName ==> processName
– frameOperands ==> ProcessOperands

ProcessName(OP1,OP2,..OPn)

Relational with Plain RHS:
– LHS ==> OPi

– RHS ==> OPj

– rel {=, ̸=, >,<,≤,≥}

LHS rel RHS

Relational with Aggregated RHS:
– LHS ==> OPi

– RHS. fun ==> user_defined
– RHS. ArgList ==> {OP1,..OPn} - {OPi}
– rel {=, ̸=, >,<,≤,≥}

LHS rel fun(ArgList)

Fig. 15 shows the RCM components of R1, each enriched with formal se-
mantics after applying Verb-Frame mapping.
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VerbFrame-DB

Frame1 English format
üverbStem : be
üNum of elments : 2
üFrameFormat: X1 be X2

Technical Mapping
üLHS: X1 //mainArgument
üRHS: X2 //value
üOperator: “=“

Frame2 English format
üverbStem : equal
üNum of elments : 2
üFrameFormat: X1 equal X2

Technical Mapping
üLHS: X1 //mainArgument
üRHS: X2 //value
üOperator: “=“

Frame3 English format
üverbStem : transition
üNum of elments : 2
üFrameFormat: transition X1 to X2

Technical Mapping
üLHS: X1 //mainArgument
üRHS: X2 //value
üOperator: “=“

RCM

C[1.1] Condition
Text: “If RCMVAR_A_sig is RCMVAL_TRUE” 
Relation = is
Op1 = RCMVAR_A_sig
Op2 = RCMVAL_TRUE

Formal Semantic
LHS: RCMVAR_A_sig
RHS: RCMVAL_TRUE
Operation: “=”

C[3] Action-Scope
Text = “before RCMVAR_B_sig is RCMVAL_TRUE” 
Relation = is
Op1 = RCMVAR_B_sig
Op2 = RCMVAL_TRUE

Formal Semantic
LHS: RCMVAR_B_sig
RHS: RCMVAL_TRUE
Operation: “=”

C[1.2] Pre-conditional Scope
Text = “After sailing termination ” 
Relation = equals
Op1 = sailing termination
Op2 = RCMVAL_TRUE

Formal Semantic
LHS: sailing termination
RHS: RCMVAL_TRUE
Operation: “=”

C[2] Action
Text = “the inhibitor shall transition to RCMVAL_TRUE”
Relation = shall transition to 
Op1  = the inhibitor
Op2 = RCMVAL_TRUE

Formal Semantic
LHS: inhibitor
RHS: RCMVAL_TRUE
Operation: “=”

frame

üverbStem : be
üNum of elments : 2
üFrameFormat: X1 be X2
üX1è OP[1] & X2 è OP[2]

frame

üverbStem : transition
üNum of elments : 2
üFrameFormat: transition X1 to X2
üX1è OP[1] & X2 è OP[2]

Extract 
frame

Extract 
frame

Fetch 
frame

Fetch 
frame

Return corresponding technical mapping

Return corresponding technical mapping

frame

üverbStem : equal
üNum of elments : 2
üFrameFormat: X1 equal X2
üX1è OP[1] & X2 è OP[2]

Return corresponding technical mapping

Extract 
frame

Fetch 
frame

Fig. 15: Formal Semantics association for the RCM output of R1 in Fig. 2.c

6 Evaluation

We evaluated the performance of our RCM-Extraction technique from two
perspectives. First, we measure the performance on real requirements (162 re-
quirements sentences). Second, we evaluate the capabilities of the proposed
extraction approach on 15,000 natural language requirements sentences auto-
matically synthesised in a controlled manner to cover the complete possible
combinations and permutations of the components and sub-components. The
key advantages of the complete coverage evaluation are: (1) considering many
cases that are not included in the curated requirements, and (2) robust mea-
surements (i.e., the data used for the evaluation is not biased towards a specific
pattern causing unreal measurements).

6.1 Experiment-1 Benchmark Dataset

We evaluated the performance of our RCM-Extractor technique in addition to
the processing time on 162 behavioral requirements sentences (found in2) of
critical systems, curated from existing case studies in the literature. 89 of these
requirements are used for expressing CNLs, templates and defined formats for
representing requirements in different domains considering different writing

2Datasets of 162 requirements and the corresponding RCM-Extractor output https:
//github.com/ABC-7/RequirementsExtraction/tree/main/RealRequirement-Experiment

https://github.com/ABC-7/RequirementsExtraction/tree/main/RealRequirement-Experiment
https://github.com/ABC-7/RequirementsExtraction/tree/main/RealRequirement-Experiment
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styles in [14] [13][29], [8], [18], [6], [1], [28], [19], [21], [25]. An additional 28
requirements were used for evaluating formalisation approaches in [10,30]. The
remaining 45 requirements were extracted from an online available critical-
system requirements that are not tweaked for any special use in [11]. These
requirements do not contain coordinating relations (i.e, and/or) as we currently
do not support coordination in RCM-extractor. However, they cover the entire
components and sub-components types –proposed by RCM– with different
writing styles and structures. The detailed description of these requirements
are presented in Table 5 showing that the source natural language requirements
exhibit a wide range of grammatical structures.

Table 5: Dataset Description

Syntactic Characteristics Count RCM Properties Count
Requirements 149 Actions 162
requirement sentences 162 Triggers 44
clauses 337 Conditions 68
-Relative clauses 6 Req-Scope 69
-Subordinating clauses 169 - Pre-conditional Scope 19
-Independent clauses 162 -Action Scope 50
passive voice clauses 105 Valid time 37
imperative clauses 16 -Action Valid time 16
Merged clauses 21 -Condition Valid time 10
-Interleaved clauses 3 -Trigger Valid time 3
-Type-Merged clauses 18 -Action scope Valid time 4
Transitive verbs with one object 114 -Preconditional scope Valid time 4
Transitive verbs with multiple object 16 Condition-Pre-elapsed time 2
Intransitive verbs 107 Action-Pre-elapsed time 16
Time phrases 60 Action-In-between time 5
Fed Technical terms 31 Trigger-In-between time 2
Noun entities 283 Hidden Constraint 6

6.1.1 RCM-Extractor performance

We first processed the 162 requirements with RCM-Extractor (the datasets,
DSSAM extraction output, and EnhancedDSSAM extraction output attached
with the formal semantics and the automatically generated Metric temporal
logic (MTL) formal notation can be found in3). Then, we assessed the per-
formance of each process/step of RCM-Extractor as well as the final results
against the expected outcomes of the manual extraction (conducted and vali-
dated by the authors, where each requirement sentence has a unique extraction
ground truth –the manual assessment can be found in3). Table 6 presents the
manual evaluation measures (Manual-Ev) and the computed measures for the
extraction (Recall, Precision, F-measure and Accuracy) on the dataset. We
also report the number of true positives (TP), false positives (FP), and false
negatives (FN).

3DSSAM, EnhancedDSSAM, and HybridDSSAM conducted evalua-
tion sheet https://github.com/ABC-7/RequirementsExtraction/blob/main/
RCM-ExtractorEvaluation-OnRealDatasets.xlsx

https://github.com/ABC-7/RequirementsExtraction/blob/main/RCM-ExtractorEvaluation-OnRealDatasets.xlsx
https://github.com/ABC-7/RequirementsExtraction/blob/main/RCM-ExtractorEvaluation-OnRealDatasets.xlsx


24 Aya Zaki-Ismail et al.

Table 6: Measured performance of the RCM-Extractor technique

Technique Criteria Manual-Ev TP FP FN Recall Precision F-measure Accuracy
ESSGA Initial components 331 317 5 14 96% 98% 97% 94%

DSSAM

Final components 366 347 3 19 95% 99% 97% 94%
Rel(sub-components) 407 318 8 89 78% 98% 87% 77%
Rel(Arguments) 326 318 8 0 100% 98% 99% 98%
Entire Prim Require-
ment

162 122 7 33 79% 95% 86% 75%

Enhanced-
DSSAM

Final components 366 355 4 11 97% 99% 98% 96%
Rel(sub-components) 407 374 27 33 92% 93% 93% 86%
Rel(Arguments) 401 374 27 0 100% 93% 97% 93%
Entire Prim Require-
ment

162 135 22 5 96% 86% 91% 83%

Hybrid-
DSSAM

Final components 366 359 5 7 98% 99% 98% 97%
Rel(sub-components) 407 382 22 25 94% 95% 94% 89%
Rel(Arguments) 404 382 22 0 100% 95% 97% 95%
Entire Prim Require-
ment

162 139 20 3 98% 87% 92% 86%

For each requirement sentence, we compute the following:
– Initial components: are the initial set of components extracted by our ES-

SGA algorithm. As seen in the table, 317 and 14 components out of the ex-
pected 331 are correctly extracted and missed by the ESSGA algorithm, re-
spectively. In addition, the five FP components have: 1) incomplete text, 2)
excess text, or 3) composition of two components (i.e., incorrectly merged).
The main cause for the missed and the wrongly produced components is
the incorrect interpretations of StanfordNLP. It is also worth noting that
the 14 missed components (FN) also include the five incorrectly extracted
ones (i.e., some components are counted as both FP and FN because the
extracted component parts are incorrect and the actual component is not
extracted).

– Final components: are the final components of the given requirement sen-
tence obtained by our DSSAM versions (after resolving merged cases).
RCM-Extractor succeeded in splitting the merged cases (discussed in Sec.4.3.1)
and hence increased the initial components to 347, 355, and 359 final com-
ponents by DSSAM, Enhanced-DSSAM and Hybrid-DSSAM, respectively.

– Rel(sub-components): are the sub-components extracted by Phase 3 in
the DSSAM versions, given the extracted components by ESSGA that
are provided as input (i.e., the missed components by ESSGA are ex-
cluded). DSSAM correctly extracted 318 sub-components out of the 407
ones identified within the correctly extracted 347 components. DSSAM
produced eight incomplete sub-components (FP) and failed to produce
82 ones. Enhanced-DSSAM correctly extracted 374 sub-components and
missed 33 ones. However, it produced more incomplete sub-components
(27 FP). Hybrid-DSSAM has the best performance by extracting 382 cor-
rect sub-components, 22 incomplete and just 25 missed ones.

– Rel(Arguments): are the sub-components with correctly extracted argu-
ments by Phase 5 of our DSSAM versions, given the extracted sub-components
by Phase 3 (i.e, the missed sub-components are excluded). The correctness
of an extracted sub-component indicates the correctness of its initially ex-
tracted arguments according to the described process in Sec.4.3.3. Thus,
the correctly extracted 318, 374, and 382 sub-components in DSSAM,
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Enhanced-DSSAM and Hybrid-DSSAM, respectively, are correctly decom-
posed into arguments. Nine within the 318 sub-components, containing
transitive verbs with multiple objects, in addition to seven sub-components,
provided with artificial arguments through the supplementary process, are
all decomposed correctly.

– Entire Primitive Requirement: are the extracted primitive requirements
reflecting the performance of the entire pipeline (i.e., ESSGA and one
DSSAM version). In DSSAM, 122 requirement sentences are correctly ex-
tracted, in addition to seven sentences (FP) produced with missing ar-
guments. Another 33 requirement sentences were missed because of the
failure of DSSAM at one of its phases. It is also worth noting that the
failed sentences contain components and/or sub-components processable
by RCM-Extractor. However, the failure in decomposing a given com-
ponent in the entire requirement into (partially-)correct sub-components
by DSSAM causes failure to the entire requirement sentence. Enhanced-
DSSAM achieved a better performance by correctly extracting 135 require-
ment sentences and missing just five sentences. However, it suffers from a
larger number of the partially extracted requirements (22 FP). Hybrid-
DSSAM achieved the best performance, as expected, by correctly extract-
ing 139 requirements sentences, partially extracting 20 requirements, and
missing only three.
Overall, RCM-Extractor achieved 94% accuracy for extracting the initial

requirements components by ESSGA and 94%, 96% and 97% for the final com-
ponents extraction by DSSAM, Enhanced-DSSAM and Hybrid-DSSAM, re-
spectively. In addition, DSSAM achieved 77% accuracy in Rel(Sub-components),
98% accuracy in Rel(Arguments) and 75% accuracy for the entire primitive
requirement extraction. Enhanced-DSSAM achieved better accuracy
than DSSAM with 86% Rel(Sub-components) and 83% in the entire
primitive requirement extraction. Hybrid-DSSAM showed the best
performance achieving 89% Rel(Sub-components) and 86% in the
entire primitive requirement extraction.

DSSAM missed 17 primitive requirements because of the approach lim-
itation in handling excess words. It also partially extracted eight primitive
requirements and an additional 16 primitive requirements are also missed be-
cause of the StanfordNLP accuracy for POS. In the Enhanced-DSSAM and
Hybrid-DSSAM approaches, the failure is because of the accuracy of the Stan-
ford parser. ≈ 5%, ≈ 14%, and ≈ 12% of the extracted requirement sentences
by DSSAM, Enhanced-DSSAM, and Hybrid-DSSAM, respectively, are par-
tially correct.

6.1.2 RCM-Extractor Processing-Time:

RCM-Extractor consumes on average half a second for processing one require-
ment sentence (on a machine with 2.6 GHz Intel Core i7 8th generation, and
16GB of 2400 MHz DDR4 RAM). Fig. 16 shows the consumed time for pro-
cessing the 162 requirements sentences. The X-axis and the Y-axis represent
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the word count per requirement sentence and the consumed time by the RCM-
Extractor in seconds, respectively. The figure shows the time range for pro-
cessing requirements sentences with the same count of words. In addition, the
black line indicates the mean value of the consumed extraction time.

Word Count per Requirement Sentence
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Fig. 16: Extraction time Performance

6.2 Experiment-2 Robust Evaluation

In this experiment, we aim to evaluate the performance of the proposed extrac-
tion approach including the different versions of DSSAM to ensure: (1) insensi-
tivity to the count/types of the contributing components and sub-components,
and (2) insensitivity to the order (of the sub-components within the same com-
ponent and the components within the requirement sentence. We fed RCM-
Extractor with 15,000 synthesised requirements, representing the complete set
of automatically generated requirements based on three parameters: (1) the
count of the contributing components and sub-components, (2) their types,
and (3) the order (of the sub-components within the same component and
the components within the primitive requirement). To compute the minimum
required number of requirements sentences covering all the valid cases con-
sidering the count, the type and the order we applied two steps. First, we
computed the possible combinations of the components and sub-components
using the combination equation nC0 + nC1 + nC2+ ... + nCn = 2n. Second,
we computed the permutations of each combination using nPr = n!

(n−r)! = n!,
where n = r. Using these computations, we concluded that 14288 requirement
sentences can cover the possible cases. We generated these requirements us-
ing the synthesised requirements generator proposed in [31], where it provides
the generated requirements along with their breakdowns (e.g., components,
sub-components and arguments).
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6.2.1 Experiment Setup

We fed RCM-Extractor with these synthesised requirements files to assess the
extraction performance of ESSGA, DSSAM, Enhanced-DSSAM and Hybrid-
DSSAM (i.e., the generated requirements in addition to the corresponding ex-
traction output of DSSAM, EnhancedDSSAM and HybridDSSAM are found
in 4). First, the synthesised requirements along with their breakdowns are pop-
ulated in RCMs. Then, the text of each synthesised requirement sentence is
passed as input to the RCM-Extractor. Next, the constructed RCMs resulting
from the different DSSAM extraction versions are automatically compared to
the populated RCM from the synthesised breakdowns. In the automatic com-
parison, the text of the automatically extracted components, sub-components
and arguments are checked for equality against the generated ones.

To assess the capabilities of our approach independent of the StanfordNLP
limitations, we fed the extraction approach with the normal Stanford typed-
dependencies, partially-corrected ones, and fully-corrected ones, each in a sep-
arate trial (i.e., the evaluation results are available online in5:-
– First trial: the extraction approach is directly fed with the obtained TDs

by StanfordNLP.
– Second Trial: a partial correction is applied to the Stanford Typed depen-

dency. Instead of feeding the entire sentence to StanfordNLP, the text slots
of the generated components of a sentence are fed in sequence to Stanford,
then their corresponding typed dependencies are aggregated to construct
a better interpretation (i.e., the accuracy of StanfordNLP increases by de-
creasing the length of the input text).

– Third Trial: a full correction is obtained for the typed dependency by feed-
ing StanfordNLP with the sub-components’ text slots of the generated
sentence in sequence, then their corresponding typed dependencies are ag-
gregated to construct correct interpretations.

6.2.2 Experiment Result

Table 7 shows the performance of the ESSGA, DSSAM, Enhanced-DSSAM
and Hybrid-DSSAM on the three trials each with our 15,000 synthesised re-
quirements. The table shows that by feeding the extraction approach with
correct analysis (typed-dependency), it achieves 100% accuracy which means
that the approach is insensitive to the count, types and order of the contribut-
ing components and/or sub-components. It can also be seen that the over-
all performance improved by enhancing the quality of the input analysis. In
the second trial, DSSAM, Enhanced-DSSAM and Hybrid-DSSAM
achieved 83%, 84%, and 92%, respectively, on the entire requirement

4Synthesised requirements and the corresponding RCM-Extraction output: https://
github.com/ABC-7/RequirementsExtraction/tree/main/Synthesised-Experiment

5Synthesised requirements results: https://github.com/ABC-7/
RequirementsExtraction/blob/main/RCM-ExtractorEvaluation-OnSynthesiedDatasets.
xlsx

https://github.com/ABC-7/RequirementsExtraction/tree/main/Synthesised-Experiment
https://github.com/ABC-7/RequirementsExtraction/tree/main/Synthesised-Experiment
https://github.com/ABC-7/RequirementsExtraction/blob/main/RCM-ExtractorEvaluation-OnSynthesiedDatasets.xlsx
https://github.com/ABC-7/RequirementsExtraction/blob/main/RCM-ExtractorEvaluation-OnSynthesiedDatasets.xlsx
https://github.com/ABC-7/RequirementsExtraction/blob/main/RCM-ExtractorEvaluation-OnSynthesiedDatasets.xlsx
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extraction which is better than the first trial (where they achieved
54%, 54%, and 57%, respectively). The third trial is the best where
a score of 100% is achieved for all the versions.

RCM-Extractor still performs well with the direct StanfordNLP analy-
sis by achieving 70% in the initial components extraction by ESSGA and
64%, 69% and 72% in the sub-components extraction by DSSAM, Enhanced-
DSSAM and Hybrid-DSSAM, respectively. The DSSAM versions also achieved
54%, 54% and 57% for the entire requirements sentences extraction, respec-
tively. In which, Enhanced-DSSAM extracts 36 more requirement sen-
tences than DSSAM. In addition, by merging both techniques, Hybrid-
DSSAM shows the best results with difference around 3% indicating
that DSSAM is not fully replaceable by EnhancedDSSAM, as each
may outperform the other in some scenarios, but both together can
achieve the best results.

Table 7: Measured performance of the RCM-Extractor technique

Perspective Criteria Total T F Accuracy

N
o

C
or

re
ct

io
n

ESSGA Extracted Components 46269 32366 13903 70%

DSSAM

Abs(sub-components) 111961 71722 40239 64%
Abs(Arguments) 424149 269228 154921 63%
Entire Prim Requirement 15000 8086 6914 54%

Enhanced-DSSAM

Abs(sub-components) 111961 77160 34801 69%
Abs(Arguments) 424149 289316 134833 68%
Entire Prim Requirement 15000 8122 6878 54%

Hybrid-DSSAM

Abs(sub-components) 111961 80227 31734 72%
Abs(Arguments) 424149 299563 124586 71%
Entire Prim Requirement 15000 8493 6507 57%

P
ar

ti
al

C
or

re
ct

io
n

ESSGA Extracted Components 46269 43659 2610 94%

DSSAM
Abs(sub-components) 111961 103117 8844 92%
Abs(Arguments) 424149 390640 33509 92%
Entire Prim Requirement 15000 12521 2479 83%

Enhanced-DSSAM
Abs(sub-components) 111961 107112 4849 96%
Abs(Arguments) 424149 406396 17753 96%
Entire Prim Requirement 15000 12527 2473 84%

Hybrid-DSSAM

Abs(sub-components) 111961 108971 2990 97%
Abs(Arguments) 424149 413525 10624 97%
Entire Prim Requirement 15000 13833 1167 92%

Fu
ll

C
or

re
ct

io
n

ESSGA Initial components 46269 46269 0 100%

DSSAM
Abs(sub-components) 111961 111961 0 100%
Abs(Arguments) 424149 424149 0 100%
Entire Prim Requirement 15000 15000 0 100%

Enhanced-DSSAM
Abs(sub-components) 111961 111961 0 100%
Abs(Arguments) 424149 424149 0 100%
Entire Prim Requirement 15000 15000 0 100%

Hybrid-DSSAM
Abs(sub-components) 111961 111961 0 100%
Abs(Arguments) 424149 424149 0 100%
Entire Prim Requirement 15000 15000 0 100%
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6.3 Discussion

Efficient requirements formalisation: our RCM-Extractor approach can
reduce the overhead effort and time needed to formalise NL requirements. It
is not affected by the ordering of the key elements of interest nor their count.
The approach can also handle a comprehensive range of various requirements
structures compared to the other existing approaches. As it is also domain
independent, it can be augmented with any domain knowledge (i.e., additional
domain words).

Extraction limitation: RCM-Extractor can only support the timing spec-
ified as prepositional phrases with closed structures of quantifying relations.
In addition, it currently does not support the coordination relation (e.g., "If
the Status attribute of the Lower Desired Temperature or the Upper Desired
Temperature equals Invalid, the Regulator Interface Failure shall be set to
True" [10]). We are planning on extending the approach to support this rela-
tion.
Extraction accuracy depends on the quality of StanfordNLP: Stan-
fordNLP is a statistical-based approach. A common issue with a statistical
NLP approach is the prospect of producing incorrect results (e.g., the sen-
tence "the display elements glow" is analysed by StanfordNLP as NP). Con-
sequently, it is possible to have a sentence incorrectly parsed and analysed in
the proposed approach.

Within the conducted experiments, we discovered that, StanfordNLP is
not only sensitive to the length of the input text being analysed (a widely
known problem), but it is also sensitive to the order of the clauses in case
of a complex sentence type. For example, StanfordNLP correctly analysed
the requirement sentence "when the sailing request whose index exceeds 9 is
above the standstill request flag, the standstill request flag shall be sent to the
engine error within 25 seconds every 4 seconds". However, it provides incorrect
analysis for the same sentence just by reordering the clauses as "the standstill
request flag shall be sent to the engine error within 25 seconds every 4 seconds
when the sailing request whose index exceeds 9 is above the standstill request
flag".

7 Conclusion

In this paper, we introduced RCM-Extractor - an automated approach to
extract and transform textual requirements into intermediate representation,
RCM, which is expressive enough to be transformed into formal notations. Our
approach is domain independent and insensitive to the structure and format of
the input textual requirements. We evaluated our approach on 162 real require-
ments sentences achieving rates of 87% precision, 98% recall, 92% F-measure
and 86% accuracy. Additionally, we utilised 15,000 synthesised requirements
comprising the possible combinations and arrangements of the requirements
properties and the approach achieved 57% accuracy (the drop in accuracy is
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mainly because of the StanfordNLP analysis issues as indicated in the eval-
uation section). However, RCM-Extractor achieved 100% accuracy when the
StanfordNLP analysis are fully-corrected showing the capabilities of the ap-
proach in processing requirements with any count/type of the properties in
any of the possible arrangements.
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