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Abstract  It is well recognized that traceability links between software artifacts provide 
crucial support in comprehension, efficient development, and effective management of a 
software system. However, automated traceability systems to date have been faced with 
two major open research challenges: how to extract traceability links with both high 
precision and high recall, and how to efficiently visualize links for complex systems 
because of scalability and visual clutter issues. To overcome the two challenges, we 
designed and developed a traceability system, DCTracVis. This system employs an 
approach that combines three supporting techniques, Regular Expressions, Key Phrases, 
and Clustering, with Information Retrieval (IR) models to improve the performance of 
automated traceability recovery between documents and source code. This combination 
approach takes advantage of the strengths of the three techniques to ameliorate 
limitations of IR models. Our experimental results show that our approach improves the 
performance of IR models, increases the precision of retrieved links, and recovers more 
correct links than IR alone. After having retrieved high-quality traceability links, 
DCTracVis then utilizes a new approach that combines treemap and hierarchical tree 
techniques to reduce visual clutter and to allow the visualization of the global structure of 
traces and a detailed overview of each trace, while still being highly scalable and 
interactive. Usability evaluation results show that our approach can effectively and 
efficiently help software developers comprehend, browse, and maintain large numbers of 
links. 
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1   Introduction 

It is well recognized that traceability links between artifacts play a critical role in 
program comprehension, maintenance, requirements tracing, impact analysis, reuse and 
management of a software system (Antoniol et al., 2000; Gotel and Finkelstein, 1994; 
Settimi et al., 2004; Watkins and Neal, 1994). Unfortunately, it is also painstaking, error-
prone, complex and time-consuming work to manually retrieve and maintain traceability 
links between artifacts. These efforts can be significantly reduced by applying traceability 
recovery approaches to automatically obtain high quality relationships and links between 
elements in one artifact and elements in another (Penta et al., 2002; Settimi et al., 2004; 
Spanoudakis and Zisman, 2005), and adopting traceability visualization techniques to 
represent these retrieved links in a natural and intuitive way (Asuncion et al., 2007; 
Roman and Cox, 1992). High quality links represent a link set containing as many as 
possible correct links and as few as possible incorrect links. Moreover, high quality links 
connect elements of different artifacts on a fine-grained level of detail e.g. part of a 
design document description and its related source code elements. 

Most automatic traceability recovery approaches (Antoniol et al., 2002; Cleland-
Huang et al., 2005; Hayes et al., 2003; Lucia et al., 2007; Marcus and Maletic; 2003; 
Wang et al., 2009) use Information Retrieval (IR) models to extract links between 
artifacts. IR is an area that studies the problem of finding relevant information in text 
collections based on user queries (Hayes et al., 2003; Spanoudakis and Zisman, 2005). In 
other words, IR models determine how relevant a piece of text is to a query that 
represents a user’s interest by computing a similarity value according to the frequency 
and distribution of keywords or terms in textual format document collections (Hayes et 
al., 2003; Spanoudakis and Zisman, 2005). The precision of the extracted traceability 
links heavily depends on a threshold that decides which links can be recovered. There are 
two ways to determine the threshold (Lucia et al., 2007; Marcus and Maletic; 2003). One 
way is to determine a threshold for the similarity value that identifies which documents 
are linked. Only links that have a similarity value greater than the threshold will be 
captured. Another way is to impose a threshold on the number of retrieved links, 
regardless of the actual similarity value. This means that the user can decide to retrieve 
the top ranked links among those that have a similarity value greater than the threshold. 
However, the lower the threshold is the greater the number of incorrect links that are 
retrieved. Conversely, the higher the threshold is the lesser the number of correct links 
that are retrieved. This means that many potentially useful and important links are missed 
at high thresholds. Similarly, many incorrect or unuseful links are extracted at low 
thresholds and may confuse developers. Furthermore, the same threshold may or may not 
be best suited for different systems. 

While traceability links between artifacts are captured by a traceability recovery 
technique, a remaining key issue is how to represent these retrieved links to assist 
software engineers to effectively and efficiently understand, browse, and maintain them. 
Adopting software visualization techniques (e.g. tree-based, graph-based, or 3D-based 
approaches) is a common way to display retrieved links (Asuncion et al., 2007; Roman 
and Cox, 1992). However, displaying a great many traceability links effectively and 
efficiently is a big challenge, because a software system with large numbers of artifacts, 
and thus very large numbers of traceability links between artifacts, quickly gives rise to 
scalability and visual clutter issues (Cornelissen et al., 2007; Holten, 2006; Merten et al., 



2011). Moreover, the efficient visualization of both the structure of the traced system and 
the enormous number of links between artifacts is a far from trivial problem (Cornelissen 
et al., 2007; Marcus et al., 2005). Many traceability visualization techniques (Cleland-
Huang and Habrat, 2007; Cornelissen et al., 2007; Merten et al., 2011; van Ravensteijn, 
2011; Zhou et al., 2008) have been designed and developed to represent traceability links. 
To date, however, no traceability visualization techniques can visualize a great many 
traceability links effectively and efficiently without scalability and visual clutter issues.  

In order to remedy these issues, we designed and developed a traceability system, 
called DCTracVis, to capture and visualize traceability links between artifacts efficiently 
and effectively. Our traceability system employs a new traceability recovery approach 
that can automatically recover high quality links between artifacts in the traced system at 
all cut points, and a new traceability visualization technique to visualize retrieved links in 
a natural and intuitive way.  

Our traceability recovery approach combines Information Retrieval (IR) models with 
three supporting techniques: Regular Expressions (RE), Key Phrases (KP), and 
Clustering. These particular techniques have quite different strengths and weaknesses and 
recover different sets of links due to their vastly different retrieval approaches. Our 
recovery approach attempts to take advantage of the different strengths of the three 
enhancement techniques to increase precision at low levels of threshold and recall at high 
levels of threshold of links recovered by IR. We have conducted a detailed experiment to 
evaluate our recovery approach by applying six IR models to four case studies varying in 
size and context. Analysis of the experimental results illustrates that a combination of the 
three enhancement techniques can be used effectively to improve precision and recall of 
links retrieved by IR at all thresholds. 

Our traceability visualization technique combines enclosure and node-link 
representations to reduce visual clutter and to allow the visualization of the global 
structure of traces and a detailed overview of each trace, while still being highly scalable 
and interactive. We have adopted two visualization techniques to achieve these goals: 
treemap and hierarchical tree. A treemap view displays a tree structure by means of 
enclosure and provides an overview of inter-relationships between artifacts. In order to 
reduce visual clutter, we employ colours to represent the relationship status of each node 
in the treemap, instead of directly drawing edges between related nodes on top of the 
treemap. We use two hierarchical trees that can be expanded and contracted to visualize 
links. One hierarchical tree visualization is used to illustrate detailed link information 
about each trace. The other is used to display the whole project under trace and 
traceability links in it to communicate the hierarchical structure of the project. Our 
traceability system also includes navigation, search, and filter functions to help engineers 
locate particular nodes and filter out uninteresting links. We have conducted a usability 
study to assess the usefulness of our traceability system for large traceability visualization 
problems. The results of this evaluation show that our system is both easy to use and can 
effectively and efficiently help software developers recover traceability links and 
comprehend, browse, and maintain large numbers of links. 

Our particular focus in this research is on traceability between classes in source code 
and sections in documents that are written in natural language and are produced during 
the software development process, e.g. requirements, design documents, tutorials, 
developer or user guides, and emails. The objective of our research is to provide software 



engineers with an effective visualization environment enabling them to retrieve, create, 
browse, edit, and maintain traceability links between artifacts effectively and efficiently. 
With this environment, engineers can trace relationships between various documents and 
source code, automatically recover traceability links at low cost and high accuracy, easily 
create and change links as well as conveniently browse and maintain links. In terms of 
size, we are interested in systems with potentially several hundreds to even thousands of 
classes, dozens if not hundreds of documents, and many tens of thousands to hundreds of 
thousands of traceability links between classes and document elements. 

The rest of this paper is organized as follows. Related work is discussed in Section 2. 
Section 3 describes approaches for retrieving traceability links and visualizing them. A 
description of our traceability system and its implementation are described in Sections 4 
and 5. Section 6 presents the evaluation results, followed by the analysis of these results 
in Section 7. Finally, we draw conclusions in Section 8. 

2   Related work 

Due to the importance of software traceability, extensive effort in the software 
engineering research community has been put into improving the precision and recall of 
recovered traceability links between artifacts through various traceability recovery 
techniques and the visualization of retrieved links in a natural and intuitive way through 
traceability visualization techniques.  

2.1 Traceability link recovery 

The most studied and often used techniques in automated traceability link recovery to 
date are Information Retrieval (IR) models (Antoniol et al., 2002; Cleland-Huang et al., 
2005; Marcus and Maletic, 2003; Settimi et al., 2004; Wang et al., 2009). Early IR 
systems were Boolean models which use a complex combination of Boolean ANDs, ORs, 
and NOTs to specify users’ needs (Hayes et al., 2003; Singhal, 2001). However, Boolean 
models are not very effective as they do not support ranked retrieval. Therefore, current 
IR models rank documents by their estimation of the relevance of a document for a query. 
Most of them assign a similarity value to every document and rank documents by this 
value. (Hayes et al., 2003; Singhal, 2001) 

Antoniol et al. (2002) applied two different IR models, Probabilistic Model (PM) and 
Vector Space Model (VSM), to extract links between code and documentation. Their 
results show that IR provides a practical solution for automated traceability recovery, and 
the two IR models have similar performance when terms in artifacts perform a 
preliminary morphological stemming. However, PM and VSM produce links at low 
levels of precision and reasonable levels of recall. Marcus and Maletic (2003) introduced 
Latent Semantic Indexing (LSI), an extension of the VSM, to recover links between 
documentation and source code. Their results show that although LSI achieves very good 
performance without the need for stemming, as required for PM and VSM, it suffers from 
the problem of low precision and high recall at low levels of thresholds or high precision 
and low recall at high levels of thresholds. 

In order to improve the performance of IR models, many strategies have been 
developed. A traceability recovery tool based on PM was developed to explore how the 



retrieval performance can be improved by modeling programmer behavior (Antoniol et 
al., 2000). Their results show that improvement in recall is achieved (Antoniol et al., 
2000; Lucia et al., 2007). Cleland-Huang et al. (2005) proposed an approach to improve 
the performance of dynamic requirements traceability by incorporating three different 
strategies into PM, namely hierarchical modeling, logical clustering of artifacts, and 
semi-automated pruning of the probabilistic network. Their results indicate that the three 
strategies effectively improve trace retrieval performance. Nevertheless, the three 
strategies have varying abilities to enhance link retrieval and are unable to work in all 
cases. 

Settimi et al. (2004) investigated the effectiveness of VSM and VSM with a general 
thesaurus for generating links between requirements, code, and UML models. The 
comparison results show that precision and recall are not improved by the use of the 
general thesaurus. Hayes et al. (2003) used VSM but with a context-specific thesaurus 
that is established based on technical terms in requirement documents to recover links 
between requirements. The results show that improvements in recall and sometimes in 
precision are achieved. Nishikawa et al. (2015) proposed the Connecting Links Method 
(CLM) to recover transitive traceability links. This approach first employs VSM to 
extract links between X and Z and between Y and Z, then connects these links to recover 
links between X and Y. Their results show that CLM is more effective than VSM alone 
as CLM can recover links in cases where VSM does not.  

Wang et al. (2009) presented four enhanced strategies to improve LSI, namely, source 
code clustering, identifier classifying, similarity thesaurus, and hierarchical structure 
enhancement. Their comparison results indicate that this approach has higher precision 
than LSI and PM, but has lower recall. To improve IR-based traceability recovery, 
namely from the VSM, LSI and Jensen-Shannon models (JS), Lucia et al. (2013) applied 
a smoothing filter to remove “noise” from the textual corpus of artifacts. Their study 
indicates that a smoothing filter can remove “noise” that simple stop word filters cannot 
remove and can significantly improve the performances of traceability recovery. Falessi 
et al. (2017) proposed a new approach called ENRL which employs Machine Learning 
classifiers to estimate the number of remaining positive links in a ranked list of candidate 
traceability links produced by an NLP-based recovery approach (e.g. VSM, TF-IDF, or 
Latent Semantic Analysis etc.). Their results indicate that ENRL can provide accurate 
estimates of the number of remaining positive links but depends on the choice of the NLP 
technique. Kuang et al. (2017) combined IR techniques with closeness analysis to 
improve IR-based traceability recovery. The closeness analysis is to quantify the degree 
of interaction based on direct and indirect code dependencies among classes. Their results 
show that this approach outperforms IR-based approaches (e.g. VSM, JS, and LSI etc.). 

Although various strategies have been applied to enhance the performance of IR 
techniques, no approaches can significantly decrease incorrect (fault) links at low levels 
of threshold and significantly increase correct (true) links at high levels of threshold 
(Antoniol et al., 2002; Cleland-Huang et al., 2005; Marcus and Maletic, 2003; Settimi et 
al., 2004; Wang et al., 2009). Our hypothesis is that augmenting IR with several 
complementary techniques - Regular Expressions, Key Phrases and Clustering - will 
significantly enhance both precision and recall. 



2.2 Traceability link visualization 

Software engineers traditionally store or represent traceability links in tabular formats 
using a spread-sheet, matrix, cross-references, or a database. Matrix and cross-reference 
techniques are very common traditional methods of representing traceability links. A 
traceability matrix is easy to understand and provides a quick overview of relations 
between two artifacts if the set of artifacts is small (van Ravensteijn, 2011; Li and Maalej, 
2012). However, the matrix misses the inherent hierarchy and becomes unreadable when 
the set of artifacts becomes large (Voytek and Nunez, 2011). The cross-reference pattern 
is also easy to understand but cannot provide the overall structure of traces (van 
Ravensteijn, 2011). It is difficult to identify individual traceability links as they are lost in 
this table structure. The approach, therefore, does not scale to large numbers of classes 
and documents. 

More recently, research has focused on displaying links in a graph or tree due to the 
convenience and ease of browsing and understanding the links (Li and Maalej, 2012). 
Graph-based visualization techniques represent artifacts as nodes and traceability links 
between artifacts as edges to form a graph. Graphs can show the overall overview of 
relationships between artifacts and allows one to easily browse links. 

ADAMS (Lucia et al., 2004) supports specifying links between pairs of artifacts. 
Traceability links are organized in a graph where nodes are represented by the artifacts 
and edges are the traceability links. After users select a source artifact, the graph is built 
starting from a source artifact by finding all the dependencies of a specific type that 
involve the source artifact either as source or target artifact (ADAMS, 2009). Within the 
graph, users can identify traceability paths, i.e. sets of artifacts connected by traceability 
links. This graph performs very well in displaying all links of a selected source artifact. 
However, it fails to support the display of multiple artifacts’ links. Cleland-Huang and 
Habrat (2007) proposed a hierarchical graphical structure to visualize links, in which leaf 
nodes are represented by requirements while titles and other hierarchical information are 
represented as internal nodes. This graph visualization provides a birds-eye-view of the 
candidate links and their distribution across the set of traceable artifacts. It also allows the 
user to explore groups of candidate links that naturally occur together in the document’s 
hierarchy (Cleland-Huang and Habrat, 2007). Unfortunately, this visualization becomes 
very large as the data set gets bigger. Moreover, it uses the display space inefficiently. 
Zhou et al. (2008) developed ENVISION, adopting a hyperbolic tree view with the 
enhancement of a “focus+context” approach to facilitate software traceability 
understanding. The results of their empirical study show that this view allows users to 
maintain a global view of links as well as being able to dive deep into an interesting 
traceability path. However, this view is also not space-efficient. Kamalabalan et al. (2015) 
developed a tool that visualizes relationships as a graph with nodes and edges. This tool 
uses the Neo4j Graph Database for modeling relationships. It allows users to overview 
the overall structure and to get more in-depth details using cluster views of filtered 
artefacts or relationships. Though the cluster views reduce visual clutter, the overview 
graph is getting larger and more complex when displaying a larger volume of data. 
Nakagawa et al. (2017) visualized the traceability links between specifications and test 
case descriptions in macro and micro views. In the macro view, nodes correspond to 
specifications and edges represent relatively high similarities between two specifications. 
The size of a node represents the number of assigned test case descriptions. The micro 



view contains a specification list; each specification item is linked to a page that lists its 
related test case descriptions. However, the views have visual clutter issues. 

TBreq (LDRA, 2012), a commercial application, provides end-to-end traceability from 
requirements to design, code, and test. It lists artifacts horizontally and draws linear edges 
between related items of artifacts. It cannot provide the hierarchical structure and can 
quickly produce severe visual clutter for a system with medium to large numbers of 
artifacts. TraceVis (van Ravensteijn, 2011; van Amstel et Al., 2012), visualizes a 
dynamic list of hierarchies and adjacency relations. It uses icicle plots and hierarchical 
edge bundling (Holten, 2006) techniques to support the hierarchical structure and to 
reduce visual clutter. Icicle plots are used to represent hierarchies vertically. Adjacent 
relations are represented by drawing edges between related items. Edges are displayed 
using splines and are grouped using hierarchical edge bundling. TraceVis supports an 
overview of, as well as a detailed insight into, inter-related, hierarchically organized data. 
However, it uses space inefficiently and can result in visual clutter if the dataset is large 
or lateral relations are visualized (van Ravensteijn, 2011; van Amstel et Al., 2012). 
Rocco et al. (2013) used TraceVis to visualize the dependencies between artefacts and 
their related metamodel, and to help understanding how and where changes affect the 
system. 

Merten et al. (2011) utilized sunburst and netmap techniques to display traceability 
links between requirements knowledge elements. The sunburst visualizes the hierarchical 
structure of the project under trace. Nodes are arranged in a radial layout and are 
displayed on adjacent rings representing the tree structure. The netmap aims to represent 
links between requirements. The nodes in a netmap are in a circle and are segments of 
exactly one ring in the sunburst. Traceability links are drawn by using linear edges in the 
inner circle. Although the two techniques can visualize the overall hierarchical structure 
and can easily browse links, the graph can become very large, leading to visual clutter 
when dealing with a large number of traceability links. EXTRAVIS, developed by 
Cornelissen et al. (2007) employs a hierarchical edge bundling technique (Holten, 2006) 
that groups edges based on the structure of a hierarchy to reduce the visual clutter. Using 
a circular bundle view shows the structure of the system under trace and represents 
execution traces. The hierarchies are shown by using an icicle plot based on a mirrored 
layout. A global overview of traces is provided by a massive sequence view. However, 
when considering a large number of traces, it becomes difficult to discern the various 
colors and to prevent bundles overlapping. Multi-VisioTrace (Rodrigues et al., 2016) 
supports multiple visualization techniques: matrix view, tree view, sunburst and graph 
view. It allows users to choose the most appropriate to their tasks. This tool still leads to 
visual clutter when displaying a large volume of data. 

In addition to traditional approaches and the various graph representations similar to 
those reviewed above, there are several other approaches that have been used to visualize 
traceability links. Poirot (Cleland-Huang and Habrat, 2007; Cleland-Huang et al., 2007) 
displays trace results in a textual format. It uses confidence levels, user feedback 
checkboxes, and tabs separating likely and unlikely links to assist the analyst in 
evaluating candidate links. However, it cannot visualize overall structure. TraceViz 
(Marcus et al., 2005) employs a map consisting of coloured and labeled squares to 
display traceability links for a specific source or target artifact. It allows users to clearly 
visualize all links of a selected source artifact or a chosen target artifact. Unfortunately, it 



is unable to display links for multiple artifacts at the same time. LeanArt (Grechanik et al., 
2007) utilizes an intuitive point-and-click graphical interface to enable users to navigate 
to program entities linked to elements of UCDs by selecting these elements, and to 
navigate to elements of UCDs by selecting program entities to which these elements are 
linked. The characteristic of LeanArt is to select a source, and it then displays targets 
linked to this source. It also fails to present all links at the same time. A 3D approach 
(Pilgrim et al., 2008) is introduced to enhance traceability visualization between UML 
diagrams. Artifacts are projected on layered planes. Traces between different levels of 
abstraction are visualized by using edges between planes. Although presenting more 
content at once and grouping related information together, the 3D approach adds more 
complexity to the graph, and still leads to visual clutter when the data set becomes large.  

To varying degrees, none of the traceability visualization techniques developed so far 
can visualize a great many traceability links effectively and efficiently without scalability 
and visual clutter issues. Users of such link visualizations not only need scalable, 
effective representations, but must also be able to navigate complex software systems and 
their documentation to help them recover, browse, and maintain inter-relationships 
between artifacts in a natural and intuitive way (Cornelissen et al., 2007; Holten, 2006; 
Marcus et al., 2005; Merten et al., 2011).  

These issues motivated us to develop a visualization technique to enable engineers to 
recover, browse, modify, and maintain links effectively and efficiently. The discussion 
above on visualization techniques showed that combining different visualization 
approaches can display elements efficiently. For example, combining node-link 
representations and enclosure offers a trade-off between an intuitive display and efficient 
space usage for visualizing large numbers of artifacts in a system (Graham and Kennedy, 
2010; Holten, 2006; Shneiderman, 1992); node-link representations (e.g. the hierarchical 
tree) that communicate structure readily, and the enclosure layout (e.g. the treemap) 
which is very effective for displaying large numbers of elements. Similar to our approach 
of combining several traceability recovery techniques to mitigate each other’s 
weaknesses, our visualization approach combines several visualization techniques to 
provide more effective and efficient link visualization. 

3   Our approach 

We have developed a traceability system, called DCTracVis, to support software 
engineers to recover, browse, understand, and maintain links efficiently and effectively. 
Our traceability system employs a new traceability recovery technique to retrieve 
traceability links between artifacts and a new traceability visualization technique to 
display these retrieved links. Section 3.1 describes our traceability recovery technique. 
Section 3.2 presents our traceability visualization technique. Other functions provided in 
the DCTracVis are described in Section 3.3  

3.1 Traceability link recovery 

In order to improve the accuracy of retrieved traceability links to a reasonably high level 
at all levels of threshold, we have been exploring a new approach combining Regular 
Expressions (RE), Key Phrases (KP), and Clustering techniques with IR models to 



recover links between sections in documents and class entities. In our previous work 
(Chen and Grundy, 2011), we focused on generating traceability links by combining the 
Vector Space Model (VSM) with RE, KP and Clustering techniques. We showed that this 
combination approach provided better performance than VSM alone. In this paper, we 
broaden our previous work to investigate whether IR models can recover traceability 
links with high precision and recall at any level of threshold by combining a range of 
different IR models with these three enhancement techniques. 

Our basic retrieval technique uses different IR models to recover links between class 
entities and sections. Table 1 shows the six IR models used in this paper: VSM (Chen and 
Grundy, 2011), TF_IDF, PL2, BM25, DLH, and IFB2. (For more details on the other five 
IR models, we refer the reader to work on the Terrier tool (Terrier IR platform, 2010).) 
Table 1 A Description of IR Retrieval Models 

IR models Description 
VSM Vector space model by constructing vector representations for documents 
TF_IDF The tf*idf weighting function, where tf is given by Robertson's tf and idf is given by the 

standard Sparck Jones' idf. 
PL2 Poisson estimation for randomness, Laplace succession for first normalization, and 

Normalization 2 for term frequency normalization. 
BM25 The BM25 probabilistic model ranks documents based on query terms appearing in each 

document, regardless of the interrelationship between query terms within a document. 
DLH The DLH hyper-geometric Divergence From Randomness (DFR) model, parameter-free 

weighting model. 
IFB2 Inverse Term Frequency model for randomness, the ratio of two Bernoulli's processes for 

first normalization, and Normalization 2 for term frequency normalization. 

As many papers have extensively discussed these IR models (Antoniol et al., 2002; 
Cleland-Huang et al., 2005; Hayes et al., 2003; Lucia et al., 2007; Marcus and Maletic; 
2003; Wang et al., 2009), we only briefly describe how IR queries are built. IR queries, to 
find text relevant to a class name, include class names and their constituent words if a 
class name is formed by compound words. A class name (or identifier) composed of two 
or more words is split into separate words. An IR query string is established by using the 
OR operator to combine the name and the separate words. For example, PrinterName is 
split into the words printer and name, then the query string is “PrinterName OR printer 
name OR printer OR name”. The query is case-insensitive. IR extracts from a collection a 
subset of sections that are deemed relevant to a given query and assigns a similarity score 
(0 ≤ similarity score ≤ 1) to each retrieved section based on frequency and distribution of 
key words in the query. This can result in some accurate links having a very low 
similarity score (Antoniol et al., 2002; Cleland-Huang et al., 2005; Hayes et al., 2003; 
Lucia et al., 2007; Marcus and Maletic; 2003; Wang et al., 2009). The lower the threshold 
that is used, the more possible links are retrieved but the more fault links are captured as 
well. In other words, at a high threshold, IR captures few links with few positive links. 

In order for us to augment the number of retrieved links at high threshold levels, the 
RE technique is used to find all of the occurrences of class names in documents. It uses 
two regular expressions (using the class “Control” for the example): (.*)(^a-zA-Z0-9\-
)<C-?o-?n-?t-?r-?o-?l>(^a-zA-Z0-9\-)(.*) for matching class names in documents; 
(.*)(^a-zA-Z0-9\-)<each part of package name>(^a-zA-Z0-9\-)(.*) for matching each part 
of package names. The two REs are automatically built to tailor the different data sets. 
We use the KP technique to extract key words (or key phrases) from comments of code to 



provide a brief summary of each class’s description comment and add these to IR queries 
to augment our IR model link recovery. We utilize the Clustering technique to reduce 
fault links by using the inherent hierarchical structure in documents. We modify the K-
mean clustering algorithm (MacQueen, 1967) to discard links that are not assigned in 
clusters. For a detailed discussion of the three enhancement techniques, please refer to 
Chen and Grundy (2011). 

Our approach is intended to overcome the limitations of IR techniques by taking 
advantage of the strengths of RE, KP, and Clustering. Combining RE with IR models 
allows extraction of more correct links at high thresholds. As long as class names are 
retrieved correctly and refined regular expressions are built, RE can retrieve all possible 
links that are related to these class names and return few incorrect links as well. Adding 
KP enables IR to generate all potential links by extending the IR queries to include key 
phrases from comments in the source code. If source code is well documented, KP can 
extract key phrases from comments closely related to classes. The majority of incorrect 
links at low thresholds are discarded by adopting Clustering, which takes advantage of 
the inherent hierarchical structure of documents to cluster links retrieved by IR models, 
RE, and KP. Therefore, our combination approach increases the number of correct links 
at high thresholds and reduces the number of incorrect links at any threshold. 

3.2 Traceability link visualization 

In order to provide efficient traceability visualization, we have explored an approach of 
combining enclosure and node-link representations to display the overall structure of 
traceability links and provide a detailed overview of each link while still being highly 
scalable and interactive. We utilize two visualization techniques to achieve these goals: 
treemap and hierarchical tree. The treemap view is adopted to display the structure of the 
system under trace and the overall overview of links. We utilize colours to differentiate 
the relationship status of each node in the treemap instead of drawing edges directly over 
the treemap. The latter approach quickly leads to visual clutter. We adopt two 
hierarchical trees that can be expanded and contracted to visualize links. A whole 
hierarchical tree (the whole HT) is used to display the whole system and links in it to 
communicate the hierarchical structure of the system. When an item is selected in the 
treemap view or the whole HT, a detail hierarchical tree (the detail HT) is built to provide 
the detailed dependency information of the selected item. The detailed HT is treated as a 
supplement to the treemap and the whole HT. Any change to links made in the treemap is 
reflected in the two hierarchical trees, and vice versa. The previous work presented in 
Chen et al. (2012) focused on visualizing links using Treemaps and Hierarchical trees. In 
this paper, we extend our previous prototype to include three more functions: Navigator, 
Search and Filter. Navigator and Search functions are provided to assist users to find a 
specific node. For the filter function, four methods are used to filter out traceability links: 
IR model, combined traceability recovery approach, the similarity score level, and the 
number of links level. The following sections describe the visualization techniques and 
how we support editing of links. 



3.2.1 Treemap view 

The treemap technique adopts a space-filling layout technique to represent a tree structure 
by means of enclosure, which places child nodes within the boundaries of their parent 
nodes and encloses each group of siblings by a margin (Shneiderman, 1992). This layout 
makes it an ideal technique for displaying a large tree and using display space effectively 
(Graham and Kennedy, 2010; Holten, 2006; Shneiderman, 1992). Although the treemap 
technique cannot communicate the hierarchical structure very well, it can convey the 
high-level, global structure of a system under trace. It is also effective in helping to 
answer questions such as what artifacts the system has, how many items each artifact has, 
which artifact contains the most numbers of items, and how artifacts are organized. 

  
(a) Linear edges (b) Curved edges 

  
(c) Bundled edges (d) Bundled edges 

Figure 1 Displaying Traceability Links between Nodes Using (a) Straight/linear edges; (b) Curved link 
edges; (c) and (d) Edges grouped by Hierarchical Edge Bundling. (Holten, 2006) 

In order to display traceability links between artifacts in a treemap, the straightforward 
way is to add relationships between related nodes as edges over the treemap, as in 
(Holten, 2006) (see Figure 1). Figure 1a shows straight and linear edges between related 
nodes on top of the treemap. Figure 1b uses curved link edges. These two approaches 
quickly lead to visual clutter if large numbers of edges are displayed. Using a hierarchical 
edge bundling technique can alleviate this issue. Figure 1c and d group edges based on 
the structure of a hierarchy (Holten, 2006). However, hierarchical edge bundling can 
cause bundles to overlap along the collinearity axes (see the encircled region in Figure 1d) 
if dealing with a large number of collinear nodes in the treemap. All these approaches 
have difficulty discerning the source and target items of a link if not using other 
enhancement techniques, e.g. a “focus+context” technique. For example, it is hard to 
know that edges circled (1 and 2) in Figure 1c are from where to where. Moreover, it is 



hard to discern the structure of the system conveyed in the treemap because of the edges 
drawn on top of the treemap. In addition, it is easy for it to become overcrowded when 
considering large numbers of links. 

In order to ameliorate these issues, we introduce colours to show the relationship 
status of each node, instead of drawing edges over the treemap. The relationship status of 
each node describes whether the node has links and how many links it has. We use three 
colour ranges to show the status of each node (see Table 2 and its application in Figure 4). 
They are arbitrarily chosen. If a node has fewer than six links, yellow-based colours are 
used. If the number of links is fewer than 16 but more than 5, gray-based colours are used. 
Otherwise, we use green-based colours. For each colour range, the shading of the colour 
indicates intermediate values (lighter implies fewer links, darker more links). Based on 
the colours of each node without the distraction of the edges on top of the treemap, it is 
easy to discern the structure of the traced system and an overall overview of the scale of 
traceability links at the expense of understanding the connectivities.  

 

Table 2 Three Colour Ranges Indicating the Number of Links Each Node has 

1. 0 ≤ No. of links < 6: Yellow-based  à  
     

2. 6 ≤ No. of links < 16: Gray-based       à  
     

3. No. of links ≥ 16: Green-based       à  
 

3.2.2 Hierarchical tree views 

The hierarchical tree is an intuitive node-link based representation that uses lines to 
connect parent and child nodes to depict the relationship between them (Graham & 
Kennedy, 2010; Holten, 2006). This representation is easy to understand, even to a lay-
person, and it communicates hierarchical structure very well (Jackson & Wilkerson, 2016; 
Graham & Kennedy, 2010; Holten, 2006). There are two approaches to visualize 
traceability links using the hierarchical tree view. The first approach is to draw edges 
between related children nodes (see Figure 2a). Edges can be grouped using the 
hierarchical edge bundling technique. However, the approach suffers from overlapping 
bundles along the collinearity axes (see the encircled region in Figure 2a) and hence 
visual clutter if dealing with rather large numbers of traceability links (Holten, 2006). 
The second approach is to directly add traceability links as children of leaf nodes (see 
Figure 2b). In other words, the original leaf nodes (green circle nodes in Figure 2b) in the 
hierarchical tree become inner nodes and parents of traceability links (gray rectangle 
nodes in Figure 2b). For example, if a child node is related to three other nodes, we 
additionally add the three nodes under the child node. The second approach can 
ameliorate problems with the first approach. 
 



 
 

(a) Links as edges between nodes (b) Links as children of nodes 

Figure 2 Showing Traceability Links in the Hierarchical Tree Layout: (a) Links as edges between nodes 
(Holten, 2006), (b) Links as children of nodes 

As the connectivity in the treemap is difficult to perceive, we supplement it with a left-
to-right hierarchical tree (the whole HT) that can be expanded and contracted to display 
the whole system under trace (see Figure 5 top). We use this approach to display 
traceability links as children of artifacts in the system. We also employ the three colour 
ranges in Table 2 to differentiate the relationship status of each node; whether the node 
has links and how many it has. However, for nodes with no links (No. of links = 0), they 
are coloured white to distinguish them from other nodes that have at least one link. 

A second left-to-right hierarchical tree layout (“the detail HT”) shows detailed 
information of a single item once the item is selected in the treemap or the whole HT (see 
bottom of Figures 4 or 5). This further approach is adopted to display traceability links 
for the selected item. It illustrates two levels of dependency information. The first level 
contains artifacts that are related to the selected item. The second level contains other 
artifacts that are dependent on the artifacts shown in the first level. This view shows not 
only artifacts related to the item but also dependency information for these artifacts. 
Moreover, we use red-based colours to show the similarity score levels of links. The 
darker the colour the higher the similarity score a link has. In addition, providing the 
hierarchical tree with an ability to expand and contract makes it space-efficient. 

Figure 3 shows a sequence diagram describing the visualization of links between 
artifacts in a traced project. When a user clicks the traced project, links between artifacts 
are recovered. A new visualization view is then created to display retrieved links in the 
treemap and the whole HT. When the user clicks a node in the treemap or the whole HT, 
a new detail view is created to display the detailed link information of the selected node 
in the detail HT. 

3.2.3 Editing Traceability Links 

We allow end users of DCTracVis to delete incorrect links and to add correct links 
when required, recognizing that the heuristics used to construct the links can be usefully 
supplemented with other information. When a node is selected in the treemap or in the 
whole HT, its related nodes are highlighted and a detail HT is built starting from the 
selected node and connecting to nodes related to it and all dependencies of these nodes. 
Users are then able to edit links in the treemap, the whole HT, and the detail HT views. 
DCTracVis provides a popup menu allowing users to delete or change existing 



traceability links, add a new traceability link, and change the similarity scores (0 ≤ 
similarity score ≤ 1) of existing links. 

 
Figure 3 the Sequence Diagram for Visualizing Links in a Project 

A changed link or a newly added link is assigned the highest similarity score (=1). The 
three views dynamically update: any change made in one view is reflected in the other 
two views and is saved. For instance, if an existing link is deleted in the treemap, it is 
deleted in the whole HT and detail HT as well, and it is not re-added if the end user runs 
the link extraction process again. In order to assist users in editing traceability links, we 
provide the full name or the similarity value when users hover the mouse over a node and 
the detailed content of a node when users click “Show Content” in the popup menu. 

3.3 Other Functionality 

Additional functionality in DCTracVis includes navigation, search, and filter support. All 
artifacts in the traced system are indented when listed in the navigator. This allows users 
to browse the list to find a specific artifact and then to locate this artifact in the treemap 
and the whole HT and display the detailed link information of this artifact in a detail HT. 
The search function enables users to use key words to find a particular node in the 
treemap and the whole HT. There are three methods to filter traceability links. First, users 
select different traceability recovery techniques to retrieve links. Second, users choose a 
threshold or cut point level to filter out uninteresting links. Only links that have a 
similarity score greater than or equal to the threshold are visualized. Third, our 
visualization tool allows users to filter out some uninteresting artifacts according to the 
number of links. Only artifacts that have more than or equal to the number of links are 
highlighted. 

4   Usage Example 

Figure 4 shows an example of the user interface of our DCTracVis prototype. Before 
tracing relationships between artifacts in a system and visualizing retrieved links, the 
DCTracVis plug-in must be installed in Eclipse, and then artifacts in the system must be 



imported into Eclipse. In the “Traceability perspective”, users select the project in the 
“Navigation view” and click the “Start Traceability” button in the popup menu to start 
recovering links and then visualizing them. This screen dump (Figure 4) shows an 
example of retrieving and visualizing traceability links between 249 classes and 182 
documentation sections in the JDK1.5 (Chen et al., 2013). Our traceability perspective 
includes three parts: navigation view, edit area, and traceability view. The left part is the 
navigation view, which displays details of a project under trace, e.g. headings inside PDF 
documents in the JDK1.5. The top right area is the edit area that shows java files or 
documents and allows users to edit them using functions provided by Eclipse IDE. The 
bottom right area is the traceability view that visualizes extracted links. Our visualization 
prototype can provide software engineers with both IDE and traceability support. 
 
 

 
Figure 4 The User Interface of DCTracVis Using the Treemap 

The traceability view includes four parts (see Figure 5). The top left area is the 
Navigator that lists classes and documents in the traced project in indented form to help 
users to find a specific item by browsing through the lists. Once an item is selected in the 
Navigator, its related artifacts are highlighted in the treemap and hierarchical trees. The 
bottom left area is the Function Panel that includes Search and Filter functions. The 
search function allows users to search for a specific item by key words. In Filter, users 
can decide whether to use the IR model alone or to combine other techniques (e.g. RE, 
KP and Clustering) with the IR model to capture links. Users can also select a similarity 
score level and a number of links level to filter out unwanted links. The top right area is 
the treemap view (see Figure 4) or the whole HT view (see Figure 5). The bottom right 
area is the detail HT view that displays the detailed information of the selected node in 
the treemap or the whole HT. For example, in Figure 4, a node named “Binding” with 
cyan colour in “javax.naming” package is selected. All related nodes are coloured 

Edit area Navigation view Traceability view 

Packages Documents 

Description area Selected node: Binding Nodes related to the selected one 



magenta in the treemap. Detailed link information is displayed in a detail HT. 
Simultaneously the node “Binding” in the whole HT (see Figure 5) is highlighted. Its 
links are shown as children of this node. 

The treemap in Figure 4 is divided into two parts: one for packages and the other for 
documents. Classes are displayed in the packages part and sections are in the documents 
part. Each node is coloured using the three colour ranges (discussed in Section 3.2) 
according to the number of traceability links they have. When a user hovers the mouse 
over a node, the name of the node is described in the “Description area” at the bottom of 
the treemap, and all related nodes are highlighted using magenta. If the node is clicked, it 
is highlighted with cyan and a detail HT showing its detailed dependency information is 
built. For example, in Figure 4, the node “Binding” and coloured cyan in the 
“javax.naming” package is selected, and all related nodes are coloured magenta. Detailed 
link information is displayed in a detail HT (see Figure 6). 

The whole Hierarchical Tree (HT) shows the whole project under trace and links in it 
(See Figure 5). Artifacts are displayed based on the hierarchical structure of the traced 
project. Classes and sections are coloured with the three colour ranges (discussed in 
Section 3.2) based on the number of links they have. Nodes with no links are white, to 
distinguish them from other nodes. The hovered-over or selected node’s name is shown 
in the “Description area” at the bottom of the whole HT. Traceability links of each node 
become their children nodes. Links are composed of two parts: the first part is names of 
artifacts and the second is names of items in corresponding artifacts. For example, in 
Figure 5, a class “Binding” in the “javax.naming” package is selected, its links are shown 
directly after this node and are also displayed in a detail HT (see Figure 6). Each link 
starts with the document’s name followed by the section’s name. 

When a node is selected in the treemap or the whole HT, a detail HT is established to 
display detailed link information for this node (see Figure 6). The detail HT can be 
expanded to show link information of nodes related to the selected node (see Figure 7). 
Figure 7 shows that the first level is sections related to the “Binding” class, and the 
second level is other classes dependent on these sections. These related sections and 
classes are coloured to differentiate their similarity value levels. The lighter the colour the 
lower the similarity score a node has. When a mouse hovers over the node, its similarity 
score is shown. In Figure 6, the similarity value of “2.5.2 Resolving Though a Context” is 
0.4. In Figure 7, the similarity score of “InitialContext” at the second level is 0.8. 

Once a node is clicked in the treemap, a user can edit its links in both views. In the 
treemap, existing related nodes can be deleted and new nodes can be added. To prevent 
unwanted structural changes, names of nodes related to the selected node cannot be 
edited in the treemap. However, they are editable in the whole and detail hierarchical 
trees (see the popup menu in Figure 6); the name of an existing related node can be 
changed to become a new node, and their similarity scores can be changed. In all three 
views, we provide the contents of nodes to assist comprehension. When “Show Content” 
in the popup menus is selected, the file related to the node is opened in the edit area. If 
the node is a section, a content window is also opened to display the contents of the 
section. Moreover, both views are interactive; changes made in one view are reflected in 
the other view. For example, if an existing related node is deleted in the treemap, it is 
deleted in the hierarchical tree too. 



 
Figure 5 The User Interface of DCTracVis Using the Whole HT 

 

 
Figure 6 The Detail HT Contracted 

 
 
 

Figure 7 The Detail HT Expanded 

5   Implementation 

A prototype of DCTracVis has been developed. This prototype is seamlessly embedded 
within the Eclipse integrated development environment (IDE). It automatically extracts 
traceability links between sections in documents and classes in source code and visualizes 
these retrieved links using the treemap and the hierarchical trees.  
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Links of the selected class 

Description area 

First level Second level 

Navigator Whole HT view 

Detail HT view 

Function Panel 



 
 

 
Figure 8 Architecture of DCTracVis 

Figure 8 illustrates the architecture of our traceability system, DCTracVis. First, a 
project under trace needs to be imported into Eclipse. If documents in the project under 
trace contain sections, they need to be divided into smaller documents based on headings 
or sections. For example, if a PDF document contains 10 headings, it is split into 10 sub-
documents; the contents of each are the text between its heading and the following one. 
Next, source code and these smaller documents are passed to our automated traceability 
recovery engine (1). This engine retrieves traceability links between classes and sections 
using a composite set of traceability recovery techniques (2).  

These retrieved traceability links are then input into our traceability visualization 
system. They are filtered based on: (a) a threshold level, where only links with a 
similarity score larger than the threshold are shown to users, and (b) the number of links 
level, where only nodes having greater than or equal to the specified number of links are 
shown to users (3). After filtering, the candidate traceability links and the structure 
information of the project are visualized using the treemap and hierarchical tree 
techniques (4). Our visualization is implemented using the Prefuse Information 
Visualization Toolkit (Prefuse, 2011). Prefuse is an open source toolkit written in Java 
and supports a rich set of features for data modeling, visualization, and interaction 
(Prefuse, 2011). We employ Prefuse to display artifacts and links in the treemap and the 
hierarchical tree (5). Navigator and search functions are provided to assist users in 
finding a specific node. 

6   Evaluation 

We have conducted two evaluations to assess DCTracVis’s usability and effectiveness in 
comprehending, recovering, browsing, and maintaining traceability links in a traced 
system. Section 6.1 describes the first evaluation using four case studies and six different 
IR models to validate the effectiveness of our traceability recovery technique. Section 6.2 
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discusses the second evaluation, usability evaluation, to learn whether our traceability 
system supports the comprehension, browsing, and maintenance of traceability links in a 
system. 

6.1 Evaluation for our recovery approach 

6.1.1 Test cases 

To validate the effectiveness of the three enhancement techniques we added to the IR 
models, namely Regular Expression (RE), Key Phrases (KP), and Clustering, we have set 
up four case studies based on four unrelated software systems: JDK1.5, ArgoUML, 
Freenet, and JMeter. We adopted rigorous manual identification and verification 
strategies (Chen and Grundy, 2011; Chen et al., 2013) to build a JDK1.5 oracle 
traceability link set that contains 760 correct links between classes and sections in 
documents. Table 3 describes the packages in JDK 1.5 and their corresponding PDF 
documents used in this study, as well as the number of Java classes and the number of 
sections in them. We divided these PDF files into sections based on their headings. The 
traceability benchmarks of ArgoUML, Freenet, and JMeter were kindly provided by 
Alberto Bacchelli (2010) comprising the three systems, their email archives, and their 
oracle traceability link sets that include correct links between classes and emails (Chen 
and Grundy, 2011). These emails were extracted from active development mailing lists of 
each project. Table 4 provides details of the four case studies. Here, “sections” is used for 
JDK1.5 and “emails” for other three cases. 
Table 3 JDK1.5 Packages and Documents 

JDK 1.5 #Classes / Sections 
Java packages java.awt, javax.naming, and javax.print packages 249 
PDF files JPS_PDF.pdf: JavaTM Print Service API User Guide 68 

dnd1.pdf: Drag and Drop subsystem for the Java 
Foundation Classes 

41 

jndispi.pdf: Java Naming and Directory InterfaceTM 
Service Provider Interface (JNDI SPI) 

73 

Total sections: 182 
 

Table 4 Classes, Lines of Code, Sections/Emails, Size for Documents and Total True Links Per System 

System Classes Lines of 
Code 

Sections/
Emails 

Size for 
Sections/Emails (MB) 

Total true/correct 
links 

JDK1.5 249 59,219 182 0.97 760 
ArgoUML 423 417,811 378 1.8 308 

Freenet 517 177,742 372 1.9 516 
JMeter 372 172,131 348 1.7 563 

 



  
  

  
  

  
  

  
Figure 9 Comparison Results between IR Only and IR+RE+KP+Clustering 

(a) JDK1.5 

(b) ArgoUML 

(c) Freenet 

(d) JMeter 



6.1.2 Evaluation results 

We evaluated the performance of our traceability recovery technique employing two IR 
engines, Apache Lucene and the Terrier IR platform. Apache Lucence uses the VSM to 
extract traceability links between classes and sections/emails. We also recovered links 
using five additional IR models, TF-IDF, BM25, DLH, PL2, and IFB2, supported by the 
Terrier IR platform. We applied two standard metrics – precision and recall - to measure 
the quality of IR models. Precision measures number of correct links over total links 
retrieved. Recall measures number of correct link received over total correct links. 

Figure 9 illustrates the comparative results among IR models and among the 
combination approach (IR+RE+KP+Clustering) using different IR models in each case. 
We employ the same threshold scale in Chen and Grundy (2011) to illustrate precision 
and recall results. It contains 10 thresholds: 0, 0.02, 0.04, 0.06, 0.08, 0.1, 0.3, 0.5, 0.7, 
and 0.9. A threshold < 0.3 is defined to be a low threshold in the following discussion; 
otherwise, it is a high threshold. The factor of using this threshold scale is to illustrate 
changes of precision and recall results in detail between 0 and 0.1 cut points. 

Figure 9a shows that when using IR only to extract links in JDK1.5, VSM has much 
better performance than the other five IR models except that BM25 achieves higher 
precision than VSM at the 0.7 and 0.9 thresholds. The other five IR models have very 
similar results. However, after incorporating the three supporting techniques, RE, KP, 
and Clustering, with the six IR models, they produce very similar results. Precision is 
between 28% and 94% and recall is between 82% and 90% at all thresholds. Our 
combination approach using the six different IR models can achieve a very high recall 
(>82%) at all thresholds. 

In Figure 9b, all six IR models have similar results when applying IR only to capture 
links in ArgoUML; low precision at low thresholds and low recall at high thresholds. 
However, VSM has much lower recall than the other five IR models at high thresholds. 
Precision and recall are changed dramatically after adding RE, KP, and Clustering to the 
six IR models. The precision values at all thresholds are between 19% and 59%, and 
recall is between 62% and 74%. Although VSM+RE+KP+Clustering achieves much 
better precision results (53%-58% at all thresholds), it has lower recall (around 62% at all 
thresholds). 

For Freenet, the six IR models have similar results when retrieving links (see Figure 
9c). However, VSM has lower recall than the other five IR models at high thresholds. 
Our combination approaches (IR+RE+KP+Clustering) using different basic retrieval IR 
models produce very close results. They improve precision and recall but especially 
recall; the recall values are between 68% and 81% at all thresholds. 

When using the six IR models to extract links in JMeter, their performances are very 
similar; low precision at low thresholds and low recall at high thresholds (see Figure 9d). 
After combining RE, KP, and Clustering, their performances are very close; precision is 
between 10% and 54% and recall is between 72% and 80% at all thresholds. 

Overall, our combination approach (IR+RE+KP+Clustering) can improve the 
performance of the six IR models; precision is increased at low thresholds and recall is 
significantly increased at high thresholds. Moreover, our approach can narrow the gap 
between the results of applying different IR models. 

Table 5 reports the differences between the precision and recall values and the 
differences of the number of incorrect links (false positives) achieved with using VSM 



alone versus using our approach (VSM+RE+KP+Clustering) at different levels of 
threshold. The results showed in Table 5 highlight that precision and recall percentages 
are improved at positive thresholds while recall has a slight decrease at very low 
thresholds. Our approach removes around 92-99% of false positives at the threshold of 0, 
e.g. 34604 (99%) incorrect links are reduced in ArgoUML.  
Table 5 Improvement of precision, recall and reduction of number of false positives (FP) at different levels 
of threshold when using VSM alone versus using VSM+RE+KP+Clustering. 

Improvement Threshold 0 Threshold 0.5 Threshold 0.9 
Precision

% 
Recall

% 
FP Precision

% 
Recall 

% 
FP Precision

% 
Recall 

% 
FP 

JDK1.5 +37.79 -8.29 -9960 +8.55 +57.5 +11 +5.95 +78.29 +37 

ArgoUML +52.49 -32.79 -34604 +26.78 +52.59 +78 +10.26 +58.76 +128 

Freenet +5.24 -6.98 -22385 +42.12 +61.43 +72 +38.41 +67.24 +163 

JMeter +8.06 -8.52 -20111 +0.99 +61.1 +302 +13.14 +71.4 +352 

 
We measure average precision to see whether our recovery approach has better 

performance than LSI. The results in Table 6 demonstrate that the precision value 
improves on average when compared to LSI results. It is noticeable that VSM 
outperforms LSI. These results are consistent with earlier findings (Abadi et al., 2008; 
Aswani and Srinivas, 2009). One possible reason for this is that there are high degrees of 
term overlap between queries formed by class names and relevant documents in the four 
cases, JDK1.5, ArgoUML, Freenet and JMeter. VSM handles well the relevant 
documents with high number of terms matching query terms, leaving little room for LSI 
to improve. However, LSI can improve relevant documents for a query with little or no 
term overlap. (Aswani and Srinivas, 2009) 
Table 6 Average precision results for IR-alone and VSM+RE+KP+Clustering. 

Average Precision (%) JDK1.5 ArgoUML Freenet JMeter 

LSI 14.87 0.31 0.25 4.93 

VSM 69.21 20.22 16.59 30.21 

VSM+RE+KP+Clustering 91.07 58.15 60.18 50.80 

 

6.1.3 Comparison results 

To find out whether our combination approach outperforms other approaches proposed in 
the literature, we compared our results to those produced in Bacchelli et al. (2010), Lucia 
et al. (2013), and Nishikawa et al. (2015). As ArgoUML, Freenet and JMeter have been 
used by Bacchelli et al. (2010), we compare our recovery approach with their light-
weight methods, which are based on regular expressions. Table 7 shows that our 
approach provides better results than light-weight methods overall. Light-weight with an 
entity name that matches class entity names in emails tends to provide higher recall, 
light-weight with mixed approach that is matching the class file and package names in 
emails has higher precision, whereas our approach tends to find a better balance between 
precision and recall in all cases. 



Table 7 Comparison results between light-weight methods in Bacchelli et al. (2010) and our combination 
approach at threshold 0.9. 

Case Recovery Approach Precision (%) Recall (%) F-measure (%) 

ArgoUML 
Light-weight – Entity name 27 68 38 

Light-weight – Mixed approach 64 61 63 
VSM+RE+KP+Clustering 58 62 60 

Freenet 
Light-weight – Entity name 17 70 27 

Light-weight – Mixed approach 59 59 59 
VSM+RE+KP+Clustering 67 68 68 

JMeter 
Light-weight – Entity name 15 73 25 

Light-weight – Mixed approach 59 65 62 
VSM+RE+KP+Clustering 53 72 61 

 

  
(a) EasyClinic: CC-TC (Smoothing Filter vs Our 

Approach) 
(b) EasyClinic:  CC-UC (Smoothing Filter vs Our 

Approach) 

 
(c) EasyClinic:  CLM (CC-TC(ID)) vs Our Approach (CC-TC) 

Figure 10 Comparison between our Approach, the Smoothing Filter in Lucia et al. (2013), and CLM in 
Nishikawa et al. (2015).  

To compare between our approach, the smoothing filter used in Lucia et al. (2013), 
and CLM used in Nishikawa et al. (2015), we use EasyClinic as the test case. EasyClinic 
is a software system to manage a medical doctor’s office, containing four artifacts: use 
cases (UC), test cases (TC), code classes (CC), and UML interaction diagrams (ID). 
Figure 10a compares precision/recall results between our approach and a smoothing filter 



by using LSI to retrieve links between CC and TC in EasyClinic. Thisshows that our 
approach provides better precision and recall than the smoothing filter. Figure 10b is for 
using VSM to recover links between CC and UC; our approach produces better recall 
though the smoothing filter has higher precision. Figure 10c is the comparison between 
our approach and CLM. The result indicates that our approach outperforms CLM, 
producing higher recall. In summary, our approach can provide better recall than the 
smoothing filter and CLM. 

6.2 Usability evaluation 

We undertook a usability study of DCTracVis to answer the question: whether our 
approach of combining treemap and hierarchical tree views help to support the 
comprehension, browsing, and maintenance of traceability links in a system. The case 
used in this study is the JDK1.5 (see Tables 3 and 4), which contains 760 true links 
between 249 classes and 182 sections/emails. 

6.2.1 Study design 

To answer the question, this study contained two parts. Part 1 was using Eclipse and the 
PDF Reader tool to complete three tasks. Part 2 was to employ our tool (DCTracVis) to 
complete the same three tasks. The three tasks were: 1) to understand the JDK1.5 system; 
the structure of the system and the overview of links between artifacts in the system. 2) to 
understand how an artifact works; how a class works in order to fix a bug related to it, 
where the documentation of this class can be found, and what other classes are related to 
this class. 3) to modify traceability links of an artifact; links of a class retrieved by IR 
recovery techniques may contain incorrect links or may miss correct links or may have 
low similarity scores for correct links; these retrieved traceability links of the class need 
to be edited to contain only correct links by deleting incorrect links or adding missing 
links. During each part, a brief introduction and a demonstration were provided to help 
participants to gain familiarity with Eclipse, the PDF reader and our tool at the beginning. 
The participants then performed the three tasks. In Part 2, after completion of the study 
tasks, our participants also needed to answer questions that were designed to reflect user 
perceptions of our tool. 

6.2.2 Study participants 

We recruited 40 participants for the evaluation of DCTracVis. We randomly divided 
them into two groups: a control group for Part 1 and an experimental group for Part 2. In 
the experimental group, the participants were 13 university students and 2 academics and 
5 from industry (see Figure 11a). The Control group has more academics (5) and industry 
(7) but less students (8). Figure 11b shows the software development experience each 
participant had. Among 20 participants in the experimental group, 3 had more than 10 
years of development experience, 7 had fewer than 10 years but more than 5 years, 8 had 
fewer than 5 years but more than 1 year, and 2 had less than 1 year. But the majority of 
participants in the control group have more than 5 years of development experience. All 
participants in the experimental group had at least some experience with the use of 
Eclipse for programming Java systems (see Figure 11c). Among them, 3 always used 



Eclipse for software development, 5 usually used Eclipse, 8 sometimes used it, and 4 
rarely used it. For the control group, most of them were familiar with Eclipse. In the 
experimental group, only one participant usually applied traceability tools to assist in 
comprehending or maintaining or programming software systems (See Figure 11d). This 
was also the case in the control group. 
 

 

  
(a) Participants position (b) Software development experience 

  
(c) Frequency of using Eclipse for programming (d) Frequency of using other traceability tools 

 
Figure 11 The Background Information of Participants 

6.2.3 Study results 

Table 8 summarizes what features were used by participants to complete each task. The 
first interesting result was revealed when performing the first task (understanding the 
JDK1.5 system). In the experimental group, 13 of the 20 participants completed this in 
less than 1 minute, 4 spent 2 minutes, 1 spent 3 minutes, 1 spent 4 minutes, and the 
longest took 9 minutes to complete this task. Based on our observations, the participant 
who took 9 minutes spent most of their time gaining familiar with our tool as they had 
done little practice before performing the three tasks. However, they strongly agreed that 
DCTracVis clearly illustrated the hierarchical structure of the system and provided a 
good overview of links in the system. They accomplished this task by using the navigator, 
filter, treemap, and/or whole hierarchical tree functions (See Table 8). In the control 
group, the participants spent around 7 minutes on average to complete the first task. Each 



participant used navigator, search and code reading and documents to understand the 
JDK1.5 system. 
Table 8 Features usage statistics in experimental and control groups 

Function Group Task1 Task2 Task3 

Navigator Experimental 9 12 12 
Control 20 20 20 

Search Experimental 0 6 8 
Control 20 20 20 

Filter Experimental 20 0 0 
Control / / / 

Class contents Experimental 0 20 10 
Control 20 20 20 

PDF contents Experimental 0 20 12 
Control 20 20 20 

Treemap Experimental 6 1 4 
Control / / / 

Whole hierarchical tree Experimental 10 1 3 
Control / / / 

Detail hierarchical tree Experimental 0 20 18 
Control / / / 

 
All participants of the experimental group completed the second task (bug fixing) with 

times varying from 1 minute to 5 minutes, whereas, in the control group, participants 
took 4 to 13 minutes to complete. We noticed that participants in the control group took 
great effort in detecting links by taking notes and frequently switching between Eclipse 
and PDF reader to understand code and PDF contents. On the contrary, all participants in 
the experimental group completed this task quickly and easily. 12 participants used the 
navigator function to find a specific node, 6 used the search function, 1 directly located 
the node in the treemap, and 1 used the whole hierarchical tree (see Table 8). All 
participants used the show class and PDF content function to help them understand links 
and utilized the detail hierarchical tree to accomplish this task. They agreed that the 
detailed dependency information provided in the detail hierarchical tree view was a good 
supplement to both the treemap view and the whole hierarchical tree view while 
performing the second task. 

The third task (link modification) was completed within 2 and 6 minutes for the 
experimental group, while the control group took 5 to 15 minutes. In the experimental 
group, 12 participants located a node using the navigator function, and 8 used the search 
function (see Table 8). The majority of participants (18 of 20) undertook the modification 
of traceability links of a node using the detail hierarchical tree view. Because they 
thought this view was more intuitive and straight-forward for this task. 2 used either the 
treemap or the whole hierarchical tree to modify links of a node. 3 participants edited 
links of a node in the treemap and the detail hierarchical tree, and 2 completed the link 
modification in the whole hierarchical tree and the detail hierarchical tree. 12 participants 
used the show content function to support them in comprehending the modified links. 19 
participants could quickly modify links. However, one participant looked frustrated and 
stressed while doing the link modification. They complained that the edit menu was not 
easy to use. This tough situation happened to all participants in the control group because 
they had to go through all PDF files to locate the correct links. 



In the experimental group, most participants used the navigator function to seek a 
specific node in the second and third tasks as they thought it was easier and more natural 
to browse artifacts in the navigator to find the node they were interested in. We noticed 
that the participants encountered difficulties in directly finding a specific node in the 
treemap. However, with the support of the navigator and search functions, they easily and 
quickly found an item they were interested in. Our observation also indicated that three 
participants felt confused after applying the filter. They suggested it would be better to 
provide a summary of how many links were recovered and how many links filtered out 
after using the filter. In the control group, participants had to put in more effort to 
accomplish the three tasks. They used navigator in Eclipse to find classes, used the search 
function to find links in PDF documents, and had to read code and documents to edit 
links, which is a time-consuming and inefficient process. They commented that for 
“tedious tasks, tool support would be so so good.” 

6.2.4 Information load results 

Information load refers to the amount of information available for judgement; 
participants can view the information in one interface or in more than one interface 
(Kardes et al., 2004). We compared the information load of the two groups from two 
factors: information density and context switching. 
 

  
(a) Task 1 (b) Task 2 

 
(c) Task 3 

 
Figure 12 Average Participant Actions for Various Features in Experimental and Control Group  



Information density examines the compactness of an interface in terms of the amount 
of information conveyed (Woodruff and Stonebraker, 1997). We observed that 
participants using our tool took less actions in performing the three tasks compared to 
participants using Eclipse and PDF reader. Figure 12 shows the average number of 
actions participants took during the completion of the three tasks. The results indicate that 
participants took less actions hence less effort with our tool. Our tool can provide higher 
volumes of information effectively in a single view. 

Context switching involves storing the old state and retrieving the new state, switching 
from one interface to another (Li et al., 2007). To complete the three tasks, all 
participants in the control group frequently switched between Eclipse and PDF reader to 
read code and documents. Participants in the experimental group just stayed in our tool to 
view links and the content of code and documents. We also noticed that all participants in 
the control group had to take notes to keep a mental track of all links they found. By 
comparison, participants in the experimental group could browse links in the treemap or 
the hierarchical tree easily. Moreover, participants in the control group spent more time 
and cognitive efforts in finding correct links. However participants in the experimental 
group could find and edit links quickly and easily. Most participants in the control group 
commented that it would be good to have an automatic traceability tool to help in easy 
link maintenance. 

6.2.5 Questions results 

The main results analysis performed after this evaluation was on the set of questions 
answered by participants based on their experiences of using DCTracVis in comparison 
to other software tools that they have used. We start with the analysis of the evaluation in 
the functionality of DCTracVis. The results can be seen in Figure 13. The diagram shows 
the seven questions (effective link recovery, easy to extract links, easy to maintain (add, 
delete, edit) links, easy to browse links, easy to find links, support comprehension, and 
support maintenance/development) on the x-axis. The y-axis shows the number of 
participants; how much they agreed (strongly agree, agree, or neutral, disagree, or 
strongly disagree) that our tool helped recover, browse, and maintain traceability links in 
a system and supported users in comprehending, maintaining, or developing the system.  

No participant gave a negative response to any of the seven questions. All participants 
strongly agreed or agreed that our tool was easy to use to extract traceability links, easy 
to browse links, and easy to find links. 19 participants (strongly) agreed that it helped 
them more effective in extracting links between artifacts within systems. Results in Chen 
et al. (2013) concerning manually building the oracle link set further reinforce the claim 
that our tool can effectively and easily extract links. Our tool only takes up to 3.5 minutes 
to recover links between 249 classes and 182 sections in JDK1.5 when running on an 
iMac with a 2.4GHz Intel Core Duo processor and 3GB of RAM, and combining 
different IR models. Our tool achieves high recall, between 82% and 90%, at all 
thresholds (See Figure 9). However, when we manually built the JDK1.5 benchmark, 
every participant spent one hour to identify the related sections for 50 classes on average 
during the link recovery. Furthermore, it took a longer time to do the link verification 
than the link recovery on average. (Chen et al. 2013)  

For link maintenance, 18 (strongly) agreed that our tool was easy to maintain links. 18 
participants (strongly) agreed that it was useful to support them in the comprehension and 



maintenance/development of a system. Several participants gave a neutral answer to 
questions for effective link recovery, link maintenance, comprehension, and maintenance 
and development. They responded this way because they could not undertake the 
comparison as they had never used other traceability tools. 

 

 
Figure 13 Results of the Evaluation in the Functionality of DCTracVis 

Next, we analyzed the evaluation of the overall performance of DCTracVis. Figure 14 
shows the evaluation results. The x-axis displays the eight questions (functions well 
integrated, functions all present, user friendly, easy to use, learn quickly, easy to learn, 
like to use it in the future, and recommend to friends) concerning our tool’s overall 
performance. The y-axis, as previously, shows the number of participants and their 
agreement level.  

 

 
Figure 14 Results of the Evaluation in the Overall Performance of DCTracVis 



One participant disagreed that the various functions in our tool were well integrated 
and easy to find. They found it was a little difficult to modify links of a node using the 
edit menu. 19 participants (strongly) agreed that they learned to use our tool quickly, it 
was easy to learn how to use it, and they would recommend it to friends. 18 of them 
(strongly) agreed that our tool was user friendly, and they would like to use it in the 
future. 17 participants (strongly) agreed that it was easy to use, and functions in it were 
well integrated and easy to find. 11 agreed that all the functions they expected were all 
present, but 9 participants gave a neutral answer to this question. 5 participants thought 
that there was room to improve although expected functions were all present. 4 
participants responded this way because they could not undertake the comparison as they 
had never used other traceability tools. Several participants provided a neutral feedback 
to the other seven questions. They commented that they were unable to conduct the 
comparison because they had no experience of using other traceability tools. 

The participants also reported many valuable comments about our tool via the 
questionnaire’s open answer questions. These comments include the following:  

• Browsing and Maintenance: In terms of colors, one participant pointed out that 
it was not feasible for colour-blind users to discern nodes if we adopted 
inappropriate colours to represent the number of links that each node has in the 
treemap or the whole hierarchical tree and to differentiate the similarity value 
level of each link in the detail hierarchical tree. Five participants also commented 
that colours used to identify the number of links in the treemap might confuse 
users, and it was hard to remember them. One participant suggested that the 
treemap should be divided into two sections using different colours. Moreover, 
two participants commented that it was not easy to quickly notice the selected 
node and its related nodes. In terms of other representations, five participants 
commented that it would have a better visual effect if the zooming was improved, 
and the tool made use of a large screen or large view windows, or allowed view 
windows to be editable. Five participants suggested that it would be helpful to use 
different sizes of nodes to represent the number of links that each node has, or to 
reflect the sizes of classes and sections in the system, or to differentiate the 
similarity score levels. Two participants commented that it needed to be more 
user friendly or fancier. 

• Comprehension: Two participants suggested that words related to a selected 
node should be highlighted when showing the contents of the related node. Two 
participants thought that it would be helpful to provide summary documents about 
the meta-data of the traced system, such as how many packages, documents, 
classes, retrieved links, related links of each node, and so on. 

 
Finally, we wanted to learn which visualization view the participants preferred with 

regard to browsing links, maintaining links, and supporting them in the comprehension 
and maintenance and development of a system. Figure 15 shows the evaluation results of 
a comparison made between the treemap view and the whole hierarchical tree view. More 
participants preferred the whole hierarchical tree to the treemap in browsing links (12 vs. 
8). 11 participants preferred the treemap to maintain links and to support them in 
understanding the traced system, but 9 participants preferred the whole hierarchical tree. 
For the support of maintenance and development of a system, 10 preferred the treemap 



and the others preferred the hierarchical tree. Overall, 12 participants selected treemap as 
the best visualization, while the others (8) preferred the hierarchical tree. 
 

 
Figure 15 Results of Comparison among the Two Visualization Views 

The main reasons that the participants thought the treemap was the best visualization 
view included the following. 

• Browsing and Maintenance: 4 participants pointed out that the detail 
hierarchical tree was a good supplement to the treemap, and their combination 
was easy to use. 2 participants also reasoned that the treemap was easy to move 
around and easy to map the relationships between documents and classes. 2 
participants ranked the treemap as the best based on colour and overall view, and 
it was more useful for maintaining as well as browsing than the whole 
hierarchical tree. 

• Comprehension: 2 participants commented that the treemap presented more 
information than the whole hierarchical tree without being as cluttered as the tree 
view, and that it showed the complete system and allowed them to look into 
details. 

The main reasons that the participants disliked the treemap included the following:  
• Browsing and Maintenance: 1 participant mentioned that the treemap was a 

quite good-looking, rich-user-experience but it was not easy to perform tasks such 
as navigating to a class, or editing or deleting a link. 

• Comprehension: 1 participant commented that the treemap was compact but 
class names were not shown inside the map, and also the maps for the packages 
and document were identical, making it difficult to remember which map was for 
packages or documents. 

The reasons that participants preferred the whole hierarchical tree included:  
• Browsing and Maintenance: 4 participants commented that the whole 

hierarchical tree was easier to use and easy to browse links.  



• Comprehension: 2 participants thought that the whole hierarchical tree was more 
intuitive and comprehensive than others.  

One participant commented that a disadvantage of the whole hierarchical tree was that 
users had to browse through the hierarchical tree step-by-step to find a node. Overall, 
both the treemap and the whole hierarchical tree have their strengths and weaknesses. 6 
participants suggested that there was room to improve the visualization view to be fancier 
and to provide more animations. One participant also commented that software 
developers preferred to use a class diagram as it was the traditional way for developers to 
understand the system, and it was easy to make sense of relationships between classes. 

7   Discussion 

According to the evaluation results, the three enhancement techniques demonstrate the 
capability of improving the performance of IR models. The most obvious observations 
from the all of the case studies are: precision at low thresholds is increased, recall is 
significantly improved at high thresholds, and the results of applying different IR models 
become less differentiated. Our approach produces a much better result than an IR model 
alone but it takes a longer time to process. We ran our approach on an iMac with a 2.4 
GHz Intel Core Duo processor and 3GB of RAM. Our approach took up to 5 minutes to 
execute on each case with different IR models. Around 80% of the time is spent on Key 
Phrases extraction. This is because KEA, the Key Phrases processor in our approach, uses 
an expensive machine learning algorithm for training and key phrase extraction (Witten 
et al., 1999). Our approach is much faster than manually capturing links: when building 
the oracle link set for JDK1.5, participants spent one hour to identify related sections of 
50 classes on average (Chen and Grundy, 2011; Chen et al., 2013). 

Our usability evaluation of DCTracVis obtained positive results. The participants 
could recover traceability links in a traced system effectively and efficiently. The 
participants also could easily browse links and find a specific node. Furthermore, the 
participants could easily and conveniently modify links of a node. In addition, our tool 
supported the comprehension of links.  

The usability evaluation showed that each of the treemap and the hierarchical tree 
have their advantages and disadvantages. 12 participants were satisfied with the 
performance of the treemap. 8 thought that the hierarchical tree outperformed the treemap. 
We combined the treemap and the hierarchical tree to visualize links in the system and 
adopted another hierarchical tree to display the detailed link information of a node. Our 
visualization approach took advantage of the strengths of each of them to ameliorate 
limitations of each of them. Our tool provided multiple approaches to visualize links to 
meet different participants’ needs. Our tool allowed the participants to easily gain the 
structure of the traced system and the overall overview of links in it.  

However, the usability evaluation exposed some weaknesses with our tool. We 
propose some possible solutions and improvements for these weaknesses.  

• Browsing and Maintenance: 4 participants had trouble in 
recognizing/remembering colors used in the detail hierarchical tree. It would be 
more intuitive to employ different font sizes and/or colors of nodes in the detail 
hierarchical tree to display their similarity value levels and to make the important 



links more visible. 2 participants felt that the selected node and its related links 
were not noticeable. This could be addressed by enlarging selected node and their 
related nodes to make them stand out from other nodes in the treemap. 2 
participants also felt that contents in the content window were hard to read. 
Highlighting words that are related to the selected node could address this. 
Moreover, 6 participants encountered difficulty remembering colors that 
differentiated the number of links level. To apply or combine other methods to 
represent the relationship status of each node in the treemap and the whole 
hierarchical tree would make the view more intuitive. In addition, 11 participants 
appeared to have high expectations regarding the ability to edit using the windows 
of the navigator, the filter, the treemap, the whole hierarchical tree, and the detail 
hierarchical tree, and the ability to move them around. It would be more visually 
effective to separate them into different independent and editable view windows. 

• Comprehension: 2 participants appeared to be disappointed that our tool didn’t 
provide a summary report about the traced system after adopting the filter. It 
would be more understandable to supply a summary report to briefly introduce the 
traced system whenever the filter is used. 

These propositions all represent potential future work for refining our tool. Some other 
interesting future work includes the following: (1) In order to retrieve more correct links 
and fewer fault links, allow users to edit the regular expressions used to match words in 
documents; (2) Allow users to add new key phrases or edit/delete existing key phrases to 
refine extracted key phrases to recover more related links; (3) Include a history 
navigation, which allows users to learn the history of their movements and activities and 
to undo or redo previous activities. (4) Allow modifications made to traceability links to 
be saved. (5) Examine other key phrase extraction techniques to improve execution time. 
(6) Other enhancement techniques to improve precision and recall of IR models. (7) Use 
other IR models to evaluate and validate our recovery approach to improve the 
performance of IR models. 

There are four main limitations of our tool. (1) The size of each node in the treemap 
becomes small in order to display a system with large numbers of artifacts in one screen. 
(2) The three color ranges used in the treemap and the whole hierarchical tree may need 
to be extended to clearly distinguish nodes if the range of numbers of links that nodes 
have becomes large. Allowing user configuration of colours and colour gradients may be 
helpful, especially for colour-blind users. (3) Some correct links are discarded after 
adding clustering because correct links that are not included in clusters are cut out (Chen 
and Grundy, 2011). 

8   Threats to Validity 

There are some threats that could affect the validity of the evaluation of our traceability 
link recovery approach and the usability study of our tool, DCTracVis. 

For the evaluation of our link recovery technique, there are two threats. First, we relied 
on human judgment to build the oracle link set and thus this set might not 100% correct. 
To alleviate this, in the case of the JDK1.5 oracle, we applied a very rigorous manual 
verification strategy to analyze every true link, which were verified by at least 2 analysts 



(Chen et al., 2013). The other three benchmarks, ArgoUML, Freenet and JMeter, have 
been used by other authors (Bacchelli et al., 2010). Second, our traceability recovery 
technique may show different results when applied to other software systems with other 
types of documents. To alleviate this, we chose 4 unrelated open-source systems. These 
systems vary in the size of the systems, the types of documents, the structures of 
documents, and the availability of comments in source code. However, we cannot 
confirm that our results are similar in closed-source systems. 

For the usability study of DCTracVis, we used only one system, JDK1.5. Hence, we 
cannot claim that these results would work for all systems. To mitigate this threat, we 
made sure we used an open source, widely used system. The second threat is our 
participants were limited to a small subset of students and developers who volunteered, 
and therefore might be biased towards assessing DCTracVis. However, we made sure to 
recruit participants who had different experience and familiarity in traceability and 
software development. We also recruited participants from industry and academia, since 
practices in the system development and maintenance may vary from those used by 
students. The final threat to validity is caused by using participants that were unfamiliar 
with the JDK1.5 and the concept of traceability. However, in a real-world scenario, 
system maintenance is often performed by developers who are not as familiar with the 
system as the original developer. To resolve this, at the beginning of the study we gave a 
detailed description about the JDK1.5 and traceability, provided a demo and 
demonstrated our tool, and gave participants sufficient time to be familiar with JDK1.5, 
traceability and our tool. 

9   Conclusions 

It is a major challenge for automated IR traceability recovery techniques to extract links 
between artifacts of a system at high-levels of precision and recall no matter which 
threshold is chosen. The shortcoming of commonly used IR models is their low precision 
with high recall at low thresholds or high precision with low recall at high thresholds. We 
have developed a new recovery approach by incorporating three enhancement techniques, 
RE, KP, and Clustering, with IR to extract links between documents and class entities. 
Our approach ameliorates the limitations of IR by taking advantage of the strenghs of 
these three enhancement techniques. Our experimental results based on four case studies 
and applying six different IR models provides a demonstration that the limitations of IR 
can be effectively mitigated by combining these three enhancement techniques. Our 
approach provides reasonble precision and high recall at all thresholds. 

After capturing traceability links, it is a large challenge to visualize them effectively 
and efficiently because of scalability and visual clutter issues. We present an approach 
that integrates enclosure and node-link visualization representations to support the overall 
overview of traceability in the system and the detailed overview of each link while still 
being highly scalable and interactive. The treemap and hierarchical tree visualization 
techniques are applied to display traceability links in a system. The treemap view 
provides the overall structure of the system and the overall overview of traceability links. 
Our approach reduces visual clutter through adopting colors to represent the relationship 
status of each node instead of directly drawing edges between related nodes on top of the 
treemap. Two hierarchical trees are employed to visualize links. The whole HT view is to 



represent the whole system under trace and links in it to communicate the hierarchical 
structure of the system. The detail HT view can be treated as a supplement to the treemap 
and the whole HT. When a node is selected in the treemap or the whole HT, the detail HT 
view displays all nodes that are related to the selected node and other dependency 
information of these nodes. These traceability links can be modified (add, delete, edit) 
and their similarity scores can also be changed. The three views are dynamically updated, 
changes made in one view are reflected in the other two views, and vice versa.  

We adopted this composite recovery approach and composite visualization approach 
to build a novel link traceability system, DCTracVis. This provides support including 
navigation, search, and filter functions to assist users in locating a specific node or 
filtering out some uninteresting links. Our usability study shows that our traceability 
system performed well and was both helpful and useful. Our system was able to extract 
traceability links in a system easily and effectively. Our system also allowed users to 
easily browse links and to quickly locate a specific link. Moreover, it allowed users to 
easily and conveniently maintain links. In addition, it supported the comprehension of 
links and provided the hierarchical structure of the system and the overall overview of 
links.  
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