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Abstract Software-as-a-service (SaaS) multi-tenancy in cloud-based applica-
tions helps service providers to save cost, improve resource utilization, and
reduce service customization and maintenance time. This is achieved by shar-
ing of resources and service instances among multiple ”tenants” of the cloud-
hosted application. However, supporting multi-tenancy adds more complexity
to SaaS application’s required capabilities. Security is one of these key require-
ments that must be addressed when engineering multi-tenant SaaS applica-
tions. The sharing of resources among tenants i.e. multi-tenancy increases
tenants’ concerns about the security of their cloud-hosted assets. Compound-
ing this, existing traditional security engineering approaches do not fit well
with the multi-tenancy application model where tenants and their security
requirements often emerge after the applications and services were first de-
veloped. The resultant applications do not usually support diverse security
capabilities based on different tenants’ needs, some of which may change at
run-time i.e. after cloud application deployment. We introduce a novel model-
driven security engineering approach for multi-tenant, cloud-hosted SaaS ap-
plications. Our approach is based on externalizing security from the underlying
SaaS application, allowing both application and security to evolve at runtime.
Multiple security sets can be enforced on the same application instance based
on different tenants’ security requirements. We use abstract models to capture
service provider and multiple tenants’ security requirements and then gener-
ate security integration and configurations at runtime. We use dependency
injection and dynamic weaving via Aspect-Oriented Programming (AOP) to
integrate security within critical application entities at runtime. We explain
our approach, architecture and implementation details, discuss a usage exam-
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ple, and present an evaluation of our approach on a set of open source web
applications.

Keywords Software-as-a-Service · Model-driven Engineering · Adaptive-
Security · Security Engineering · Tenant-Oriented Security

1 Introduction

Software-as-a-service (SaaS) is one of the key service delivery models intro-
duced by the cloud computing model [3]. SaaS simplifies the software pro-
curement process to renting services instead of buying them and their underly-
ing infrastructure. Thus tenants can save infrastructure cost, software license,
system administration, and development staff. Tenants can also switch to dif-
ferent service providers. The SaaS model helps service providers to target the
small and medium enterprise markets by offering them a reasonable software
adoption cost model.

Multi-tenancy is a new SaaS architecture pattern where service tenants
share a single service instance. Multi-tenancy helps SaaS service providers to
focus on operating, customizing, maintaining, and upgrading a single instance.
On the other hand, multi-tenancy increases service tenants’ concerns about
the security of their outsourced cloud-hosted assets that are shared with other
tenants and who may be either competitors or malicious users. Supporting
multi-tenancy also adds more requirements on service providers as they have
to develop or reengineer their systems to support multi-tenancy and to ensure
tenants’ data isolation. In addition, actual SaaS application tenants often be-
come known only after applications have been delivered. Tenants usually have
different security requirements that emerge at runtime based on their current
business objectives and security risks.

Existing, traditional design-time security engineering approaches, such as
KAOS [17], UMLsec [15], secureUML [18], focus on how to identify, cap-
ture, and model system security objectives and requirements that need to be
enforced in the software under development. These approaches focus on map-
ping security requirements identified in the early-stage of security requirements
engineering on system design entities (components, classes, methods, and in-
teractions). Some of these efforts, such as UMLsec [15] support formal security
analysis to verify the satisfaction of the specified security properties. Few of
these [24] have toolsets that help, very limited, in generating security code or
configurations with the system source code based on using model-driven engi-
neering techniques. Most of these efforts [15], [18] do not address how these
security requirements are designed and implemented in these systems. Thus,
software developers will typically have to build these security requirements
together with the system business function implementations. For example,
a specified security property using UMLsec for example on a business func-
tion will be achieved by adding appropriate security code with the business
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function code. By its very nature, this leads quickly to systems with built-in
(hardcoded) security capabilities that are often hard to modify [19]. This ap-
proach also complicates the integration with third party security controls as
it often requires manual effort by security engineers. Hardcoding such secu-
rity within software systems limits the flexibility to adapt enforced security in
order to meet the new security challenges. Integrating systems with built-in
security with customers’ operational environment security management sys-
tems requires reengineering such systems to inject new security integration
code. When multi-tenant systems are considered, this hard-coded approach to
security further complicates update of security requirements which often differ
by tenant. While some techniques have been experimented to address this e.g.
using dynamic Aspect-oriented Programming to inject updated security code
[24], this is typically disconnected from the security requirements and design
models.
In the area of SaaS applications security engineering, we have determined two
key problems: maintaining isolation between different tenants’ data; and en-
forcing different tenants’ security requirements. The first problem can be easily
addressed at design-time as one of the key security requirements. However, the
later problem is hard to incorporate at design-time as software tenants and
their security requirements emerge at runtime. Thus, we claim that the solu-
tion to this problem requires a different security model as we introduce in this
paper.

Component-based (CBSE) and service-oriented (SOA) security engineer-
ing approaches [13][25] do support late security engineering (deployment time).
However, most of these approaches focus on generating security code, using
Aspect-oriented Programming (AOP). These approaches benefit from, but are
limited by, the underlying application architecture (CBSE, SOA) to deliver
flexible and adaptable security. Some adaptive security engineering approaches
have been investigated [14, 33, 10]. However most focus on low-level details or
limited to specific security attributes e.g. adaptive access control. These efforts
require preparing applications at design time to support runtime adaptation.
Thus, these efforts cannot be adapted to deliver multi-tenant SaaS application
security engineering. New research efforts in securing multi-tenant SaaS ap-
plications have focused on: (i) (re)engineering multi-tenant SaaS applications
to extend their security capabilities [8, 7]; (ii) maintaining isolation between
different tenants’ data at rest, at processing or at transmission [12, 29]; and
(iii) developing security controls and architectures that deliver SaaS applica-
tion security (e.g. access control) taking into account multi-tenancy dimension
[40, 38]. Most of those efforts depend on or lead to built-in, or predefined, se-
curity architectures for SaaS applications. Thus tackling the loss of control
concerns raised by cloud consumers – i.e. capturing and enforcing tenants’
security requirements, and integration of SaaS applications with tenants’ se-
curity infrastructure are not addressed before.

Furthermore, existing industrial security platforms such as the Java Secu-
rity Model, Spring Security Framework (acegi), and Microsoft WIF, provide a
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set of security mechanisms that help developers in securing their applications
and reducing number of errors that arise from using custom security func-
tions. Using these frameworks requires system engineers to write integration
code exposing platforms supported APIs at every critical application entity.
The resultant applications still have built-in security and are tightly coupled
with the adopted platform. Integration with third-party security controls re-
quires manual development and configuration changes.
A key gap in the multi-tenant application security area is that lack of adapt-
able security support as well as the lack of multi-tenant security engineering
support i.e. to support capturing and enforcing different tenants’ security
requirements at runtime without a need to conduct application maintenance.
We formulate this gap in the following research questions that we tackle in
this paper:

– How can we capture different tenants’ security requirements for different
application or service entities?

– How can we enforce different tenants’ security requirements on any arbi-
trary application or service entity?

– How can we verify that critical entities correctly enforce specified security
needs?

– How can we carry out these tasks at runtime, as tenants emerge after
application or service deployment?

In this paper, we introduce a novel approach called MDSE@R (Model-
Driven Security Engineering at Runtime) for multi-tenant cloud-based ap-
plications. MDSE@R supports capturing, enforcing, and verifying different
tenants’ and service providers’ security requirements at runtime without a
need to modify/customize the underlying application implementation i.e. it
works with both existing and new SaaS applications. Our approach is based on
promoting security engineering efforts to be conducted at runtime instead of
design time. This is facilitated by externalizing security from the target appli-
cation. Thus both application and security can evolve at runtime. On the other
hand, we automate the integration of whatever security requirements/controls
within any application entity that was marked as critical/secure. The list of
critical application entities emerge at runtime based on current risks.

Using MDSE@R, service providers deliver a service description model (SDM)
as a part of the application delivery package, details are discussed in Section
4. The SDM is a mega-model (a mega-model [35] is a model that contains a
set of models and a set of relations between these models) that contains de-
tails of the application features, architecture, classes, etc. Furthermore, they
deliver a security specification model (SSM). The SSM is a mega-model that
contains details of the security to be enforced on application entities (features,
components, etc.). Rather than the mandatory security controls (i.e. security
controls that cannot be replaced by tenants’), other security controls should
not be built-in the delivered application, they rather implemented and de-
ployed externally and weaved with the secured application entities at runtime.
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Thus such controls can be updated, replaced, or disabled at runtime without
modifying the target application. If this is not the case (i.e. the application
is developed with all security controls built-in), we can use our preprocessing
tool to disable such controls and deploy them externally [2]). Different sets of
security controls can also be enforced at runtime.

During the provisioning of new tenants, the service provider creates an
instance of the application or configures the shared instance to disable or
enable certain features for the new tenant. This is reflected in the tenant
copy of the application or the services description model. This SDM copy is
called tenant service description model (TSDM). Tenants can specify their
security details using their copy of the service SSM. This copy is called tenant
security specification model (TSSM). Tenants can add new security controls or
disable/replace/modify the existing security controls. At runtime, these models
may be updated to reflect new security needs. These updates are automatically
reflected on the target application using MDSE@R. The service provider can
specify certain security controls as mandatory (or develop them within the
application). This means that such controls cannot be disabled or modified by
the application or service tenants. This is very important in enforcing security
isolation controls, for example. Best practice patterns of common controls
and configurations can be reused for common security needs by either service
providers or service tenants.

Getting tenants involved in managing their asset security helps in reducing
the lack-of-trust and mitigating the loss-of-control problems that arise from the
adoption of cloud services. We have validated our approach on seven significant
open source applications. We have conducted a security features evaluation,
performance evaluation and user evaluation of our approach and prototype
platform . Below we summarize the key contributions of in this paper:

– Model to capture detailed security requirements for different tenants in
cloud application.

– Approach of linking security details to points of interest in target cloud
application at differing levels of abstraction.

– Approach to take this system and security model and use to enforce re-
quirements on running application.

– Demonstration of its ability to capture & enforce desired security on several
third-party applications.

Section 2 begins with a motivating example for our research and identi-
fies key challenges and requirements that must be satisfied by a multi-tenant
security engineering approach. Section 3 reviews key related work. Section 4
provides an overview of our MDSE@R approach. Section 5 describes a us-
age example of our MDSE@R framework and toolset. Section 6 describes our
framework architecture and implementation details. Section 7 presents our
evaluation results of MDSE@R. Section 8 discusses implications of our ap-
proach, key strengths and weaknesses, and areas for further research.
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2 Motivating Scenario

In this section, we introduce a simple and typical cloud scenario where a multi-
tenant service has been procured by different tenants. Each of them is worried
about the data security and has security requirements and controls that need
to be applied. Such scenario cannot be satisfied by the existing security mod-
els i.e. supporting different security requirements on the same service instance.

Scenario. Consider ”SwinSoft”, a well-known software house in devel-
oping business applications. Swinsoft has recently developed a new cloud-
based SaaS ERP solution called ”Galactic. Galactic is designed to support
both multi-tenant models including single-tenant, single-instance; and multi-
tenant, single-instance. SwinSoft hosts Galactic on a cloud platform deliv-
ered by GreenCloud (GC). During the development of Galactic, SwinSoft
used external services to speed up the application development. These ser-
vices include: Currency-Now and build workflow services to get up-to-date cur-
rency exchange rates and flexible workflow engine (developed and deployed on
GC); and Batch-MPRD to conduct transactions’ posting using the map-reduce
model that improves and parallelizes the batch posting operations (hosted in
BlueCloud - another cloud platform).

Fig. 1 Use case diagram for the motivating example

Swinburne University is going to purchase a new ERP solution in order to
automate its internal process. After investigation of available solutions, Swin-
burne has decided to go for Galactic ERP solution, to save upfront investment
required and keep infrastructure cost optimized. At the same time, ”Auck-
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land University has also decided to purchase the Galactic ERP application.
However, each of these Galactic service tenants have their own, quite differ-
ent, business functions and security objectives. Swinburne has special security
requirements because it is ISO27000 certified. Swinburne security architects
conduct periodic risk assessment. This may result in a requirement to recon-
figure the enforced applications security to block newly discovered threats.
It needs to maintain similar security policies on Galactic as those used in
their local environment. This includes using active directory to support Single
Sign-On (SSO), applying a role-based access control (RBAC) model on Galac-
tic, their access control policies should consider end-user location and request
time, integrity of data transmitted must be maintained, and confidentiality of
Swinburne data must be enforced. Auckland assigns high risk to Galactic main-
tained assets because they are outsourced for hosting on external third-party
cloud platform. Thus, they have strong security constraints that are different
from their local systems. This includes applying an attribute-based access con-
trol (ABAC) model for access control [37], use of a two-factor authentication
system, transaction accountability and audit-ability, and all data must be kept
confidential. Both organizations thus would like to use the multi-tenant Galac-
tic service while enforcing different security requirements and integrating with
different security services.

Key challenges. The analysis of the above scenario identifies the follow-
ing challenges: security requirements differ from one tenant to another; each
tenant’s security requirements may change over time based on current opera-
tional environment security and business objectives; Galactic security should
support integration with each tenant’s security controls in order to achieve co-
herent security solutions; and new security vulnerabilities may be discovered in
Galactic application at any time. Using traditional security engineering tech-
niques would require SwinSoft to conduct a lot of application maintenance
iterations to deliver application patches that block vulnerabilities and adapt
the application to every new customer needs. Multiple versions of the applica-
tion, one for each tenant and with substantial differing security enforcement
embedded in the application, would have to be maintained.

Key requirements. A new security engineering approach that addresses
these challenges is needed. It should enable each tenant to specify and enforce
their security requirements based on their current security needs. Security
should be applied to any arbitrary application entity. No predefined security
interception points specified at design time. It should support interception of
any applicable application method. Security specification should be supported
at different levels of abstraction based on the customers’ experience, scale
and engineers’ capabilities. Integration of security with application entities
should be supported at different levels of granularity, from the application as
one unit to a specific application method. The security engineering approach
should enable integration with third-party security controls. It should support



8 Mohamed Almorsy et al.

the application and security specifications to be reconfigured at both design
time and runtime.

3 Related Work

Existing academic security engineering efforts have focused on capturing and
enforcing security requirements at design time, supporting adaptive security,
and multi-tenant security engineering. On the other hand, most industrial
efforts have focused on delivering security platforms that can help software
developers in implementing their security requirements using readymade stan-
dard security algorithms and mechanisms.

3.1 Design Time Security Engineering

Software security engineering aims to develop secure systems that remain de-
pendable in the face of attacks [4]. Security engineering activities include:
identifying security objectives that systems should satisfy; identifying security
risks that threaten system operation; elicitation of security requirements that
should be enforced on the system to achieve the expected security level; devel-
oping security architectures and designs that deliver the security requirements
and integrates with the operational environment; and developing, deploying
and enforcing the developed or purchased security controls. These efforts can
be categorized as follows:

– Early-stage security engineering approaches focus only on security require-
ments elicitation and capturing at design time. KAOS [17] was extended to
capture security requirements in terms of obstacles to stakeholders’ goals.
Obstacles are defined in terms of conditions that when satisfied will prevent
certain goals from being achieved. Secure i* [18] focuses on identifying secu-
rity requirements through analysing relationships between users, attackers,
and agents of both parties. Secure Tropos [28] captures details about the
security requirements and trust goals, introducing two categories of goals:
hard goals that reflect system functional requirements and soft goals re-
flecting non-functional requirements (security).

– Later-stage security engineering approaches typically focus on security en-
gineering during system design. Misuse cases [34] capture use cases that
the system should not allow and may harm the system operation or secu-
rity. UMLsec [15] extends UML with a profile that provides stereotypes
to be used in annotating design elements with security intentions and
requirements. UMLsec provides a comprehensive UML profile. However,
it was originally developed for use during the design phase. UMLsec has
stereotypes for predefined security requirements only (secrecy, secure de-
pendency, critical,), , though it is possible to define extensions. Some exten-
sions and applicatons of UMLsec enable it to be used to support later tasks



Adaptive, Model-driven Security Engineering for SaaS Cloud-based Applications 9

of software development e.g. security testing and verification [16? ] and
runtime verification of history-based properties [5]. A limitation we have
found with UMLsec is that it mixes security with system entities at design
time, which we have found complicates modifications of system security
capabilities especially when they are applied at runtime. SecureUML [19]
provides a meta-model to design RBAC policies of target systems. Both
approaches are tightly coupled with system design models. Both early and
later stage approaches lack a complete security model that captures secu-
rity details and abstraction levels. Both do not support generating security
code that realizes the specified security requirements.

– Security engineering processes include SQUARE [20], SREP [21] and Mi-
crosoft SDL. Such processes specify the steps to follow when capturing,
modelling, and coding system security requirements. Such processes are
aligned with system development processes. Most security approaches and
processes focus on engineering security at design time. They often make
assumptions about the security of the environments in which an applica-
tion will operate. It is often difficult to integrate system’s security with
the operational environment security as software systems depend on their
built-in security controls.

3.2 Adaptive Application Security

Several research efforts try to enable systems to adapt their security capabil-
ities at runtime. Extensible Security Infrastructure [14] is a framework that
enables systems to support adaptive authorization enforcement through up-
dating in memory authorization policy objects with new low level C code
policies. It requires developing wrappers for every system resource that catch
calls to such resource and check authorization policies. Strata Security API
[33] where systems are hosted on a strata virtual machine which enables inter-
ception of system execution at instruction level based on user security policies.
The framework does not support securing distributed systems and it focuses
on low level policies specified in C code.

Serenity [32] enables provisioning of appropriate security and dependability
mechanisms for ambient/intelligence systems at runtime. Security attributes
are specified on system components at design time. At runtime the framework
links such Serenity-aware systems to the appropriate security and dependabil-
ity patterns. Serenity does not support dynamic or runtime adaptation for
new unanticipated security requirements.

Morin et al. [26] propose a security-driven and model-based dynamic adap-
tation approach enabling adapting applications to reflect defined context-
aware access control (AC) policies. Engineers define security policies that take
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into consideration context information. Whenever the system context changes,
the proposed approach updates the system architecture to enforce the suitable
security policies. Mouelhi et [27] introduce a model-driven security engineering
approach to specify and enforce system access control policies at design time
based on AOP-static weaving. These adaptive approaches require design time
preparation (to manually write integration code or to use specific platform or
architecture). They support limited security objectives such as AC. Unantici-
pated security requirements are not supported. No validation that the target
system (after adaptation) correctly enforces security as specified.

3.3 Multi-tenancy security Engineering

The area of multi-tenant SaaS applications’ security is relatively new. Possi-
ble solutions to multi-tenancy security are still under development by both
industry and academia. Michael et al [6] discuss the limitations of security
solutions proposed by different commercial cloud platforms. SalesForce [1] has
introduced a simplified solution to support their CRM integration with ten-
ants’ security solutions. They focus on the Identity and Access Management
(IAM) security content only. Tenants who are interested in integrating with
SalesForce have to implement web services with a predefined signature.

Enabling applications to support multi-tenancy either during application
development or by adapting existing web applications to support multi-tenancy
has been investigated by [9, 23, 36, 39]. Cai et al [8, 7] propose an approach to
transform existing web applications into multi-tenant SaaS applications. They
focus on the isolation problem by analysing applications and identifying the
required isolation points that should be handled by the application developers.
Guo et al [12] developed a multi-tenancy enabling framework. The framework
supports a set of common services that provide security isolation, performance
isolation, etc. Their security isolation pattern considers the case of different se-
curity requirements of different tenants while still using a predefined, built-in,
security controls .It depends on the tenants administration staff to manually
configure security policies and map their users and roles to the application
predefined roles.

Pervez et al [30] developed a SaaS architecture that supports multi-tenancy,
security and load dissemination. The architecture is based on a set of services
that provide routing, logging, security. Their proposed security service deliv-
ers predefined authentication and authorization mechanisms. No control by
service consumers of the security mechanisms is supported and no isolation
is provided between the authentication and authorization of data of different
tenants. Xu et al [38] proposed a new hierarchical access control model for the
SaaS model. Their model adds higher levels to the access control policy hier-
archy to be able to capture new roles such as service providers’ administrators
(super and regional) and tenants’ administrators. Service provider administra-
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tors delegate the authorization to the tenants’ administrators to grant access
rights to their corresponding resources.

Zhong et al. [40] propose a framework that tackles the trust problem be-
tween service consumers, service providers and cloud providers on being able
to inspect or modify data under processing in memory. Their framework de-
livers a trusted execution environment based on encrypting and decrypting
data before and after processing inside the execution environment while pro-
tecting the computing module from being access from outside the execution
environment. Menzel et al [22] propose a model-driven platform to compose
services that represent the SaaS application. Their approach focuses on en-
abling cloud consumers to compose their system instances while defining their
security requirements to be enforced on the composed web services. These
security requirements are transformed into WS-policies-alike, applied on the
resulting application, and deployed on a separate VM. The limitation of this
approach is that it depends on building separate instances for each consumer.
There is no means to update or reconfigure the defined security requirements
or to extend the enforced security using third party security controls. These
efforts we have surveyed deliver security using specific solutions and architec-
tures.

3.4 Industrial Security Platforms

Existing industrial platforms including the Java Security Model, Spring Secu-
rity Framework (acegi), and Microsoft Windows Identify Foundations (WIF),
all help in securing systems by providing a set of security functions and mech-
anisms. However they usually require developers involvement in writing in-
tegration code with such platforms. Thus the resultant systems are tightly
coupled with these platforms’ capabilities and mechanisms. In addition, using
third-party controls requires updating the system source code. Compared to
existing efforts, MDSE@R does not assume specific system architecture or a
security platform; no security code is required and no developers’ involvement
in integrating security controls; provides a comprehensive and extensible se-
curity model; and third-party security controls can be easily integrated with
the target system.

4 MDSE@R

Our model-driven security engineering at runtime (MDSE@R) approach en-
ables service tenants to be involved in securing their cloud hosted assets. As
a consequence of tenants’ involvement, a single service need to support cap-
turing and enforcing different sets of security requirements of different tenants
that become known at runtime. We name this as ”Tenant-oriented Security”
compared to the traditional security-oriented security where a service instance



12 Mohamed Almorsy et al.

Fig. 2 Process flow of MDSE@R

Fig. 3 Overview of MDSE@R approach

reflects only one set of security controls captured by the service provider at de-
sign time. Tenant-oriented security may require integrating cloud services with
security controls selected by tenants and deployed on or out of the cloud plat-
form. We base our MDSE@R on two key concepts: (i) externalizing security
management and enforcement tasks from the application to be secured while
being able to wrap the application and intercept calls to any arbitrary critical
application entity at runtime using dynamic weaving AOP; and (ii) Model-
Driven Engineering (MDE), using Domain-Specific Visual Language (DSVL)
models to capture application and security attributes at different levels of ab-
straction. We automate the generation of security controls integration code
rather than using hand-coding of bespoke solutions.

Fig. 2 shows the basic flow of MDSE@R to support multi-tenant security
engineering. Service providers develop a detailed service description model
(SDM). Then, they develop a security specification model (SSM) capturing
all security details they deliver in their cloud service. Once a service tenant
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registers to use the service, they will get a copy of the service SDM and SSM.
Tenants can then use these models to manage (updated, delete, add) their
instances and develop their security needs. Tenants can modify their security
requirements and MDSE@R will then automatically update the enforced secu-
rity on the running application to meet the tenant’s new security requirements.

Fig. 3 gives an overview (covering main artifacts developed, key stakehold-
ers, and key interactions) of the MDSE@R approach to support multi-tenant
security engineering and tenants’ security management at runtime. After cap-
turing application and security models, the MDSE@R platform realizes such
modeled changes using interceptors and AOP approach that injects security
handlers into the target (secured) application entities (components, classes,
and methods) as follows.

4.1 Modeling Service and Security Details

In this phase, stakeholders, from both the service providers and tenants, de-
velop different models that capture details of the service, tenant instance,
service security, and tenants’ security details as follows:

4.1.1 Build Service Description Model (SDM)

A detailed service description model is delivered by the service provider (an
example is shown in Fig. 7). This SDM captures various details of the target
application including system features (using use case diagrams), system ar-
chitecture (using component diagrams), system classes (using class diagrams),
system behavior (using sequence diagrams), and system deployment (using
deployment diagrams). These models cover most of the perspectives that may
be required in securing a given system. Not all these models are mandatory.
Tenant security engineers may need to specify security on system entities (us-
ing system components and/or classes models), on system status (using sys-
tem behavior model), on hosting nodes (using system deployment model),
or on external system interactions (using system context model). They may
specify their security requirements on a coarse-grained level (using system
features and components models), or on a fine-grained (using system class di-
agrams). The service SDMs can be synchronized with the running instance
using models@runtime synchronization techniques [11], or manually by the
service provider (models@runtime (reflection) research efforts enable manage-
ment of consistency between system models and running software instances at
runtime by reflecting any software changes to system models and vice versa).
This also helps in supporting dynamic adaptation i.e. how to develop adaptive
systems where system updates are applied on system models and then realized
on system instances.

Some of the application or service description details, specifically the sys-
tem class diagrams, can be reverse-engineered, if not available, from the target
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application. We developed a new UML profile to extend UML models with at-
tributes that help in: (i) capturing relations between different system entities
in different models e.g. a feature entity in a feature model with its related
components in the component model and a component entity with its related
classes in the class diagram; and (ii) capturing security concepts/attributes
(requirements, controls, etc.) mapped to the SDM entities e.g. security re-
quirements specified on a given system feature or component. This helps in
security enforcement and models weaving as we discuss later.

4.1.2 Build Service Security Specification Model (SSM)

A set of models developed and managed by the service provider security engi-
neers to specify the security requirements/controls that the service providers
enforce on their services (an example is shown in Fig. 8). It covers the details
required during the security engineering process including: security goals and
objectives, security risks and threats, security requirements, security architec-
ture for the operational environment, and security controls to be enforced.
These models capture different levels of abstractions. The key mandatory
model in the security specification models set is the security controls model. It
is required for generating the security integration required code (as described
below).

4.1.3 Manage Tenant Service Description Model (TSDM)

This model describes system features, architecture and classes available for
tenant T. It is usually different from one tenant to another. It depends on the
multi-tenancy model adopted by the service provider in customizing tenant
instance or configuring a single shared service instance. At tenant provisioning
time, an initial TSDM is created as a copy from the system SDM. Then TSDM
is updated to reflect current tenant’s service instance details. Tenant system
administrator can use this model later to turn features on/off at runtime. The
TSDM helps in two scenarios: (i) to customize or configure the system based
on tenant requirements e.g. tenant T is permitted to use certain features that
he registered for. The service provider uses the tenant initial TSDM and delete
other system features that are not required. The same approach can be used in
both cases either the tenant has a separate instance or share the same instance
with other tenants. Still the model@runtime synchronization techniques can
be used to keep the TSDM synchronized with the running tenant instance;
and (ii) to capture tenants’ security requirements on their instance scope i.e.
their features, components, methods, etc.

4.1.4 Manage Tenant Security Specification Model (TSSM)

This model is the tenant copy of the service SSM. It describes security objec-
tives, requirements, architecture, design, and controls that the service tenants
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have and want to enforce on their cloud-hosted assets. This may include au-
thentication, authorization, auditing, encryption controls that tenants use in
their internal sites or even from other security vendors. Tenants may decide
to continue using the same security provided by the service provider or rather
prefer to use their security controls. However, tenants will not be able to dis-
able security controls that the service provider has marked as mandatory in
the service SSM. This helps to avoid disabling critical security controls such
as tenants’ data isolation control provided by the service provider. This model
can be used by tenants to manage security of multiple cloud-hosted applica-
tions i.e. single security model to manage all enterprise outsourced assets.

4.2 Weaving Service and Security Models into a Secure-Service Model

MDSE@R has two mapping levels. First, mapping SSM entities to service SDM
entities. This mapping is developed and managed by the service providers
at design time, deployment time, or even at runtime. Whenever the service
provider discovers a security problem or has a new security requirement, they
can directly apply it on the service security specification model and then map
it to the service description model. Such a mapping is directly reflected on the
tenants’ models. Second, mapping TSSM entities to service TSDM entities.
This mapping is developed and managed by the service tenant at runtime.
Both mappings can be modified at runtime to reflect new needs.

Fig. 4 Possible Weavings of service and security models

MDSE@R supports many-to-many mapping between the (tenant) service
description model entities and (tenant) security specification model (SSM) en-
tities, as shown in Fig.4. This is supported by our UML profile which extends
every service description concept i.e. feature, component, class, method, host,
connection, etc. with a set of security attributes i.e. security objectives, re-
quirements, services and controls (see Fig. 11 for UML profile diagram). Using
drag-and-drop between the SSM and SDM entities, SSM entity will be added
as an attribute value, based on the dragged SSM entity, to the selected SDM
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entity. One or more security entities (security objective, requirement and/or
control) can be mapped to one or more service model entity (feature, com-
ponent, class or method). Mapping a security concept on an abstract service
entity e.g. a system feature - implies a delegation of the same security con-
cept to the concrete entities e.g. the feature realization classes and methods.
This is facilitated using our UML profile, which helps in managing traceability
between application entities. Mapping an abstract security concept e.g. a se-
curity objective to a service entity - e.g. a class - implies mapping all security
requirements, services, and controls that realize this security objective to that
class. Any application entity that has a security mapping is called a critical
application entity.

4.3 Enforcing Specified Security on Target Application Entities

In the previous steps, both security details and critical application entities
emerge at runtime. MDSE@R automates the realization of the specified se-
curity on the critical application entities without the involvement of security
or application engineers. This helps both parties to easily update their ap-
plication and security capabilities to meet their needs. This helps in avoiding
inconsistency problems that usually arise from the need to maintain both mod-
els and realizations, which force administrators and developers to update the
security realizations directly.

Whenever the service provider or service tenant develops a new mapping
or updates an existing mapping between an SSM entity and an SDM entity,
the underlying MDSE@R platform propagates these changes as follows:

– Update Live Service Interceptors’ Document (Fig.3-5). This document main-
tains the list of critical application entities (CP -an application entity that
has security attributes mapped on it) where security controls should be
weaved or integrated. Equation 1 states that the critical service entities -
CP(s) - are the union of all tenants’ critical points - CP (Ti) where To is
the service provider.

CP (s) =

i=n⋃
i=1

CP (Ti) (1)

– Update Live Security Specification Document (Fig.3-6). This document
maintains the list of security controls to be applied at every critical system
entity. This may be defined by the service provider or by the service tenant.
In this case we have to mark the service provider security controls as they
should be enforced/applied first before any request to this critical system
entity.

– Update the System Container (Fig.3-7). The container is responsible for
intercepting system calls to critical system entities at runtime and delegat-
ing such requests to the default handler, the ”Security Enforcement Point.
Update Tenant Accessible Resources Document. This document maintains
a list of system resources that should not be accessible for each tenant e.g.
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if Swinburne did not buy the Customer Management module, they should
not be able to access webpages or functionalities provided in this module.
Equation 2 is used in specifying the tenant’s inaccessible resources. The
prohibited resources list for tenant Ti is the difference between the service
SDM resources and the tenant Ti TSDM resources.

PR(Ti) = R(SDM) −R(TSDM(Ti)) (2)

This list of tenant’s prohibited resources is used by the MDSE@R to deny
access to any of them for any given request submitted by one of the tenant’s
users. The application or service is now ready to enforce security specified by
tenants and service providers based on the woven secure-service model. This
update is conducted in parallel with the application or service operation. Thus
it does not incur any further performance overhead.

4.4 Security Services

A key objective of MDSE@R is to avoid being tightly coupled with specific
security controls, specific vendor, or specific security platform (Java security
manager, spring acegi framework, Microsoft Windows Identity Foundations,
etc.). in addition to keeping developers and administrators away from being
deeply involved in integrating security controls with a target system which
usually result in inconsistent security being enforced on different systems. We
developed a common security interface for every security attribute (authenti-
cation, authorization). This interface, shown in Fig.5, specifies functions and
signatures that each security control expects/requires in order to perform their
tasks e.g. user identity, credentials, roles, permissions, claims, etc. A security
control or service vendor must implement this interface in their connector or
adapter to support integration with MDSE@R. This helps security vendors
develop one connector that – using MDSE@R – can be integrated with all
target applications/services.

4.5 Security Enforcement Point - SEP

So far we have prepared the system to intercept requests to critical methods
via the system container and have prepared security controls to be communi-
cated using the common security interface. The Security Enforcement Point
(SEP) works as a bridge between the system container and the deployed secu-
rity controls. SEP queries the security specification document for controls to
enforce at every intercepted request. It then initiates calls (using the common
security interface) to the designated security controls’ clients or connectors.
The SEP assigns results returned by such controls to the system context e.g.
an authentication control returns userID of the requesting user after being au-
thenticated. The SEP creates an Identity object from this userID and assigns
it to the current thread’ user identity attribute. Thus a secured application
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Fig. 5 MDSE@R simplified common security interface

can work normally as if it has authenticated the user by itself. An application
may use such information in its operations e.g. to insert a record in the DB,
it uses the user identity to set the ”enteredBy” DB field.

4.6 Testing the System-Security Integration

Before allowing the developed specifications and mappings to be applied to
the live application or service, MDSE@R uses a security testing service to ver-
ify that the target application is now correctly enforcing the specified security
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needs. We assume that security controls are already tested by the security ven-
dors. Thus, our testing task should focus on verifying that security controls
are correctly integrated within specified critical system entities. To automate
this step, we use the live interceptors’ document and the security specification
document to generate a set of test cases (scripts) for each critical entity i.e.
each critical entity will have a set of test cases according to the security spec-
ified on it (from the security specification document). Each test case verifies
that a security control C is correctly integrated within the critical entity E.
To test the correct integration, we simulate requests to E and check the resul-
tant system security context (after calls - actual results) against the expected
results e.g. user identity is correctly set, permissions are set as specified, etc.
Finally, we generate a log of the test cases firing results to the tenant/service
provider security engineers showing the failed test cases, the critical entities,
and the failed to integrate security controls.

Fig. 6 Sequence diagram of a user request to critical application entity

Fig. 6 shows a sequence diagram describing a user requesting resource X,
from a service operated by MDSE@R. In this scenario we have several inter-
acting entities including user, webserver, MDSE@R system container, SEP,
security services and the application resource. Once the web server receives
a request submitted by the user to access resource X (1), it delegates the re-
quest to the system container along with the user’s tenantID T (2). The system
container queries the live service interceptors’ document (3) to decide if the
resource requested is marked as ”critical” or not either by the tenant or by the
service provider. If the resource is critical (4), the system container delegates
the request to the security enforcement point (5). The SEP queries the secu-
rity specification document for the required security controls to be enforced
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on the requested resource by the user’s tenant or by the service provider (6).
This is an ordered list of security controls to be activated by the SEP. The
SEP loops on the retrieved security controls list. Using the common security
interface, the SEP generates requests to security controls required according
to their type/family (7). After each security control call, the SEP updates the
current threat security context (8). Finally, the SEP returns to the system
container a recommendation to either proceed with the request or to deny
it (9). If appropriate, the system container then forwards the request to the
target resource or else returns an appropriate security exception to the caller.

5 Usage Example

The key objective of this usage example is to show how the service provider and
tenants can collaborate together using MDSE@R and our platform toolsets to
manage security of their services at runtime. We highlight the key stakeholders
involved in the security engineering process along with their responsibilities
and their expected outcomes of every step. We use the motivating example
from Section 2, Galactic application developed by SwinSoft and procured by
Swinburne and Auckland. SwinSoft wants to adapt its application security at
runtime to block security holes and vulnerabilities that have been discovered
at runtime. Two tenants using Galactic are worried about the security of their
assets and have their own, different security requirements to be enforced on
their Galactic ERP application instance(s). The examples of models in the
Figures are taken from our prototype DSVL tool in use for this scenario.

5.1 Model Galactic System Description

This task is done during or after the system is developed. SwinSoft, the service
provider, decides the level of application details to provide to their tenants in
Galactic SDM. Fig. 7-A shows that SwinSoft SDM captures the description of
system features including customer, employee and order management features
(Fig. 7), system architecture details including Presentation Layer, Business
Logic Layer (BLL) and Data Access Layer (DAL) (Fig. 7-B), system classes
including CustomerBLL, OrderBLL, EmployeeBLL (Fig. 7-C), and system de-
ployment including web server, application server, and data access server (Fig.
7-D). SwinSoft uses our UML profile (Fig. 13) to capture dependencies and re-
lationships between system features and components, and system components
and classes. This model is used as a reference by SwinSoft system and security
engineers. No tenant is allowed to have write access to the Galactic SDM or
its details.



Adaptive, Model-driven Security Engineering for SaaS Cloud-based Applications 21

5.2 Model SwinSoft Security Details

This task is conducted by SwinSoft (service provider) security engineers at the
system deployment phase. This model is usually updated during their repeti-
tive security management process to reflect new risks. In this scenario, Swin-
Soft security engineers document SwinSoft security objectives that must be
satisfied by Galactic system (Fig. 8-A) including data integrity with medium
importance, confidentiality with high importance, accountability with low im-
portance. This model should be repeatedly revised to incorporate emerging
changes in SwinSoft security objectives. Security engineers then refine these
security objectives in terms of security requirements that must be implemented
by the Galactic system, developing a security requirements model. A part of it
is shown in Fig. 8-B including authentication requirements. This model keeps
track of the security requirements and their links back to the high level security
objectives. In this example, we show that the AuthenticateUser requirement
is to be enforced on Galactic along with its detailed sub-requirements.

SwinSoft security engineers next develop a detailed security architecture
including services and security mechanisms to be used in securing Galactic
(Fig. 8-C). In this example, we show the different security zones (big boxes -
Fig. 8-C) that cover SwinSoft network and the allocation of IT systems, in-
cluding Galactic. The security architecture also shows the security services,
security mechanisms and standards that should be deployed. SwinSoft secu-
rity engineers finally specify the security controls (i.e. the real implementa-
tions) for the security services modelled in the security architecture model
(Fig. 8-D). This includes SwinValidator, ESAPI.AccessController, and Securi-
tyIsolator security controls. Each security control entity defined in the security
controls model specifies its family (authentication, authorization, audit, etc.)
and the deployment URL of its connector. Each security specification model
maintains traceability information to parent model entities. In Fig. 8-d, we
specify that SecurityIsolator realizes the ”TenantsDataIsolation” requirement.
Whenever MDSE@R finds a system entity with a mapped security require-
ment TenantsDataIsolation it adds SecurityIsolator as its realization control
i.e. an SecurityIsolator check will run before the entity is accessed e.g. before
a method is called or a module loaded. SwinSoft security engineers have to
mark mandatory security controls that their tenants cannot modify or disable.
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Fig. 7 Examples of the Galactic system description model
A

B

D
C
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Fig. 8 Examples of SwinSoft Security Specification Models
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Fig. 9 Examples of the interceptors and security specification files

5.3 Weave System SDM and Security SSM

After the development of the Galactic SDMs and the security SSMs by Swin-
Soft security engineers, the SwinSoft security engineers map security attributes
(in terms of objectives, requirements and controls) to Galactic system specifi-
cation details (in terms of features, components, classes). This is achieved by
drag and drop of security attributes to system entities. Thus, system feature,
structure, or behaviour can dynamically and at runtime reflect different lev-
els of security based on the currently mapped security attributes on it. Fig.
8-E shows a part of Galactic component diagram where PresentationLayer,
a UML component entity, is extended with security objectives, requirements
and controls compartments. In this example the security engineers have spec-
ified TenantsDataIsolation as one of the security requirement to be enforced
on the PresentationLayer component (1). Such a requirement is achieved indi-
rectly using SecurityIsolator control (2). MDSE@R uses the security attributes
mapped to system entities to generate the full set of interceptors for system
method calls , as in Fig. 9-1 (system interceptors document), and applica-
tion entities’ required security controls, as in Fig. 9.2 (security specification
document).



Adaptive, Model-driven Security Engineering for SaaS Cloud-based Applications 25

Fig. 10 MDSE@R samples of the generated security integration test cases

5.4 Testing Galactic Security

Once security has been specified and interceptors and configurations generated,
MDSE@R verifies that the system is correctly enforcing security as specified.
MDSE@R generates and fires a set of required security integration test cases.
Our test case generator uses the system interceptors and security specifica-
tion documents to generate a set of unit test cases for each method listed
in the interception document. The live systems interceptor document repre-
sents the source of system points we need to test for security integration.
The live security specification document represents the source of security con-
trols that we need to test their integration with the critical system points. The
MDSE@R testing service has a set of predefined security control unit test tem-
plates for each security control attributes e.g. authentication, authorization,
input validation, etc., including tests for successful and unsuccessful security
enforcement. These unit test templates are used to generate test cases by re-
placing tags with specific security control names and critical point names.
These generated tests are then run against the application and the results
inspected to determine pass/failure. An example of a generated test case is
shown in Fig10. This contains a set of security assertions (one for each secu-
rity attribute specified on a given system entity). During the firing phase, the
security enforcement point is instrumented with logging transactions to reflect
the calling method, called security control, and the returned values. Security
engineers should check the security test cases firing log to verify that no er-
rors introduced during the security controls integration with Galactic entities.
After SwinSoft security engineers have checked the MDSE@R Security testing
service log files and make sure that no integration errors have been introduced,
they can publish their updated Galactic security model for their tenants.
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5.5 On-boarding Swinburne and Auckland Tenants

During tenants on-boarding process (preparing the service to be used by the
new tenant), SwinSoft system engineers/admins start to customize/configure
Galactic instance for tenant based on their requirements and purchased mod-
ules. Depending on the adopted multi-tenancy model, they may register new
features or components as well. The final Swinburne or Auckland TSDM looks
like the Galactic SDM in Fig.7. Swinburne and Auckland system adminis-
trators can update their own tenants TSDMs to reflect any further system
customization, such as enabling or disabling sub-features such as calculate
overtime, nightshifts, and vacations in the Employee Management module.
This TSDM is used by the Swinburne security engineers to define required
security on it. The updates done by SwinSoft or Swinburne on the TSDM are
reflected on the prohibited resources list (Eq.2)

5.6 Swinburne and Auckland Manage their TSDMs and TSSM

Swinburne and Auckland security engineers go through the same process as
SwinSoft did when specifying their security requirements and controls. Each
tenant can customize their TSSM as far as they want and as frequent as
required. For example, in Fig. 11 Swinburne engineers have specified that
LDAP ”realizes the AuthenticateUser requirement. Whenever MDSE@R finds
a system entity with a mapped security requirement AuthenticateUser it adds
LDAP as its realization control i.e. an LDAP authentication check will run be-
fore the entity is accessed - e.g. before a method is called or a module loaded.
This applies to the CustomerBLL class methods, Fig11-(1). However, Swin-
burne security engineers have a different requirement for the GetCustomers
method - the requester should be authenticated using Forms-based authen-
tication as well, Fig11-(2). Auckland can specify their specific requirements,
context, and security controls based on their specific needs. This results in
quite different generated security enforcement controls. Both Swinburne and
Auckland security engineers can modify the security specifications while their
Galactic application is in use. MDSE@R framework updates interceptors in
the target systems and enforces changes to the security specification for each
system as required. For example, the Swinburne Galactic security model can be
updated with a Shibboleth single sign-on 1security authentication component
and these updates applied to the running Galactic deployment.

6 MDSE@R Platform Architecture and Implementation

The architecture of MDSE@R platform is shown in Fig. 12. This is designed
to support managing multiple SaaS applications hosted on a cloud platform.
MDSE@R consists of system and security specification modellers, models and

1 http://shibboleth.net/



Adaptive, Model-driven Security Engineering for SaaS Cloud-based Applications 27

Fig. 11 Examples of Swinburne Security Specification Models

security controls specifications repositories, system container to intercept re-
quest, testing services and security enforcement point.

Our System Description Modeller (1) was developed as an extension of Mi-
crosoft Visual Studio 2010 modeller with an UML profile (Fig. 13) to enable
system engineers modelling their systems’ details with different perspectives
including system features, components, deployment, and classes. The UML
profile, as shown in Fig. 13, defines stereotypes and attributes to maintain the
track back and forward relations between entities from different models. A set
of security attributes to maintain the security concepts (objectives, require-
ments and controls) mapped to every system entity (Fig.7). The minimum
level of details expected from the system provider is the system deployment
model. MDSE@R can use this model to reverse engineer system classes and
methods using .NET Reflection (in case of system binaries only available). We
use .NET parsers to extract classes and methods from the system source code
by analysing the generated Abstract Syntax Tree (AST) files by .NET parsers.

Our Security Specification Modeler (2) was developed as a Microsoft Vi-
sual Studio 2010 plug-in. It enables service providers and tenants, represented
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Fig. 12 MDSE@R platform architecture

by their security engineers, to specify the security attributes and capabilities
that must be enforced on the service and/or its operational environment. The
security modeler delivers a set of complete security DSVLs. Fig. 14 shows the
meta-model of the MDSE@R security DSVL 2. The security-objectives DSL
captures customers security objectives and the relationships between them.
Each objective has a criticality level and the defence strategy to be followed:
preventive, detective or recovery. The Security requirements DSL captures
customer’s security requirements and relationships between requirements in-
cluding composition and referencing relations. The Security Architecture DSL
captures security architectures and designs of the customer operational envi-
ronment in terms of security zones and security level for each zone; security
objectives, requirements and controls to be enforced in each zone; components
and systems to be hosted in each zone; security services, mechanisms and stan-
dards to be deployed in each zone or referenced from other zones. The Security
Controls DSL captures details of security controls that are registered and de-

2 http://www.ict.swin.edu.au/personal/malmorsy/Pubs/TR002.pdf
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Fig. 13 MDSE@R system description model UML profile

Fig. 14 MDSE@R security meta-model
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ployed in the customer environment and relationships between these and the
security requirements they cover.

Models Repository (3): Both modeling tools use a shared repository to
maintain models developed either by the system engineers or the security en-
gineers. This repository also maintains the live system interceptors’ document
and security specification document. An example of these documents is shown
in Fig 9. This example shows a sample of the Galactic interceptors document
generated from the specified security-system mapping. It informs the system
container to intercept GetCstomerByName and GetCustomers methods (1);
a sample of Swinburne security specification file defining the security controls
to be enforced on every intercepted point (2); and a sample of the security
enforcement point API that injects the necessary security control calls before
and after application code is run (3).

Security Controls Database (4) is a database of the available and registered
security patterns and controls. It can be extended by the service providers or
by a third party security provider. A security control must implement cer-
tain APIs defined by the security enforcement point in order to be able to
integrate with the target system security standard interface. Having a sin-
gle enforcement point with a predefined security interface for each security
controls family enables security providers to integrate with systems without
having to redevelop adopters for every system. We adopted OWASP Enter-
prise Security API (ESAPI) library 3 as our security controls database. It
provides a set of authentication, authorization, encryption, etc. controls that
we used in testing our approach.

System Container (5): To support run-time security enforcement, MDSE@R
uses a combined dependency injection and dynamic-weaving AOP approach.
Whenever a client or application component sends a request to any critical sys-
tem component method, this request is intercepted by the system container.
The system container supports wrapping of both new developments and ex-
isting systems. For new development, Swinsoft system engineers should use
the Unity application block delivered by Microsoft PnP team 4 to support
intercepting any arbitrary class entity. Unity supports dynamic runtime injec-
tion of interceptors on methods, attributes and class constructors. For existing
systems we adopted Yiihaw AOP [31] , where we can modify application bina-
ries (dll and exe files) to add security aspects at any arbitrary system method
(we add a call to our security enforcement point). For component level inter-
ception, we can use httpModules to add our interceptor on the component
level.

Our Security Test Case Generator (6) uses the NUnit testing framework
5 to partially automate security controls and system integration testing. We
developed a test case generator library that generates a set of security test
cases for authentication, authorization, input validation, and cryptography for

3 https://www.owasp.org/index.php
4 http://pnp.azurewebsites.net/en-us/
5 http://www.nunit.org/
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every enforcement point defined in the interceptors document. MDSE@R uses
NUnit library to fire the generated test cases and notifies security engineers
via test case execution result logs.

At runtime, whenever a request for a system resource is received (7), the
system container checks for the requested method in the live interceptors’
document. If a matching found, the system container delegates this request
with the given parameters to the security enforcement point (8). Security En-
forcement Point (9) is a class library that is developed to act as the default
interception handler and the mediator between the system and the security
controls. Whenever a request for a target application operation is received,
it checks the system security specification document to enforce the particu-
lar system security controls required. It then invokes such security controls
through APIs published in the security control database (4). The security
enforcement point validates a request via the appropriate security control(s)
specified, e.g. imposes authentication, authorization, encryption or decryption
of message contents. The validated request is then propagated to the target
system method for execution (10).

7 Evaluation

In this section we summarize some of the experiments we have performed to
assess the capabilities and scalability of our MDSE@R approach in:

– Capturing descriptions of different real systems and different security de-
tails for both service providers and tenants;

– Propagating security attributes on different system entities (features, com-
ponents, classes, and methods);

– Enforcing unanticipated security requirements including authentication,
authorization, auditing, etc. at runtime with an acceptable performance
overhead;

– Validating that security controls are correctly integrated with the target
entities.

7.1 Bechmark applications setup

We have selected a set of seven web-based, real-world, large, widely-used, and
commercial open source web applications developed using ASP.Net (currently
we have a .NET parser only) as our benchmark to evaluate MDSE@R. These
applications cover a wide business spectrum. We divided the evaluation set into
two groups: Group-1 (G-1) has two applications including Galactic (an ERP
system developed internally in our group for testing purposes) and PetShop (a
well-known reference e-Commerce application). Both applications have been
modified to adopt the Unity application block as the system container. Group-
2 (G-2) has five third-party web applications. SplendidCRM is an open source
CRM that is developed to with the same capabilities of the well-known open
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source SugarCRM system. It has been downloaded more than 400 times. Sug-
arCRM has a commercial and community version. KOOBOO is an open source
enterprise CMS used in developing websites. It has been downloaded more than
2000 times. BlogEngine is an open source ASP.NET 4.0 blogging engine. It has
been downloaded more than 46000 times. BugTracer is an open-source, web-
based bug tracking and general purpose issue tracking application. It has been
downloaded more than 500 times. NopCommerce is an open-source eCommerce
solution. It has more than 10 releases. For this group we use Yiihaw framework
as the system container to inject interceptors into system binaries. Except for
Galactic, we do not have any previous experience with these applications. Ta-
ble 1 shows some statistics about the selected set of applications including
Lines of codes in (KLOC), No. of files, No. of components, No. of classes, and
No. of methods included. It is clear that benchmark applications vary from
large-scale systems such as SplendidCRM, KOOBOO, and NopCommerce to
small scale such as PetShop.

Table 1 Benchmark applications statistics

Benchmark KLOC Files Components Classes Methods

Galactic 16.2 99 7 101 473

PetShop 7.8 15 5 25 256

SplendidCRM 245 816 28 6177 6107

KOOBOO 112 1178 34 7851 5083

NopCommerce 442 3781 45 5127 9110

BlogEngine 25.7 151 4 258 616

BugTracer 10 19 2 298 223

Table 2 Security controls used by service provider, Swinburne, Auckland

Sec. Attribute SwinSoft Ctls Swinburne Ctls Auckland Ctls

Authn. ESAPI Forms-based LDAP

Authz. ESAPI Forms-based LDAP

I/P santization ESAPI - -

Audit ESAPI PrivateAuditor PrivateAuditor

Cryptography ESAPI DES AES

Sec. Isolation ESAPI - -

7.2 Experimental setup

Using MDSE@R, we developed three security specification models (SSM) with
security objectives, requirements, and controls as in Fig. 7. One model for ser-
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vice provider and two other models were copied from it and modified to reflect
two security requirements sets. We specified security requirements and controls
for authentication, authorization, input validation, logging and cryptography
as shown in Table 2. We used MDSE@R to model the system description
(SDMs) for applications in Group-1, as we know the details of these systems.
For Group-2, we used system deployment diagram for these applications and
used MDSE@R to reverse engineer systems’ class diagram from there binaries.
Thus for applications in Group-1 we should be able to map security to system
features, components, classes, methods. However, in Group-2 we should be
able to specify security on component, class, and method levels only.

7.3 Evaluation results

Table 3 shows security attributes that MDSE@R succeeds in capturing and en-
forcing at runtime, including authentication, authorization, input sanitization,
auditing and cryptography. This represents most common security attributes.
Table 3 also shows that MSDE@R succeeded in mapping and enforcing these
security attributes on all systems in both Group-1 and Group-2 with differ-
ent levels of system abstractions (F: feature, C: component, S: class, and M:
method). Note that for Group-2 applications we do not have a system fea-
ture model to map and enforce security on this level. The enforcement of
cryptography has a limitation with Group-2 applications especially when se-
curing methods. This is because it requires that the caller and callee expect
parameters of type String. To address this problem, we used format-preserving
encryption (FPE) techniques. The output of these techniques is in the same
format (type) of the input - i.e. if the input to encrypt is of type integer then
the output is of the same type.

Table 3 Results of validating MDSE@R against Group-1 and Group-2 applications

Benchmark App.
Security Attributes

Sec. Isolation Authn. Authz. Input Sanitization Audit Cryptography

Group-1
Galactic F, C, S, M F, C, S, M F, C, S, M F, C, S, M F, C, S, M F, C, S, M

PetShop F, C, S, M F, C, S, M F, C, S, M F, C, S, M F, C, S, M F, C, S, M

Group-2

Splendid C, S, M C, S, M C, S, M C, S, M C, S, M (C, S, M)*

KOOBOO C, S, M C, S, M C, S, M C, S, M C, S, M (C, S, M)*

NopCommerce C, S, M C, S, M C, S, M C, S, M C, S, M (C, S, M)*

BlogEngine C, S, M C, S, M C, S, M C, S, M C, S, M (C, S, M)*

BugTracer C, S, M C, S, M C, S, M C, S, M C, S, M (C, S, M)*

7.4 User evaluation

We carried out a preliminary user evaluation of our tools and platform to as-
sess MDSE@R approach and platform usability. We had seven post-graduate
researchers, not involved in the development of the approach, use our devel-
oped tools and platform after receiving an hour training session on the tool
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Fig. 15 Level of agreement of usability factors (1: Strongly disagree ... 5: Strongly agree)

and platform features. We asked them to explore several MDSE@R system
and security DSVL specifications of the PetShop and Galactic applications.
Then we asked them to perform updates on these models and to modify the
security specification models at run-time. We conducted a basic usability sur-
vey to gain their feedback on our DSVL, modelling tools, and the security
enforcement platform. The results show that they successfully understood and
updated security models for the target systems. They gave positive feedback
about the overall approach and the tool usability, and the capabilities in man-
aging system security, as shown in Fig. 15 (1: Strongly disagree to 5: Strongly
agree). A key recommendation was to use more expressive icons in the security
DSVL rather than just boxes.

7.5 Performance evaluation

In this section, we discuss the performance evaluation of our MDSE@R plat-
form in both runtime performance overhead ad offline adaptation overhead.

7.5.1 Runtime performance overhead

The runtime performance overhead of MDSE@R equals time incurred inter-
cepting requests, plus time spent by the security enforcement module in query-
ing the security requirements repository to be enforced on the intercepted
point, plus time spent in calling the security controls specified. Time spent by
the security controls themselves we do not factor in, as this needs to be spent
whether using our approach or traditional hard-coded security solutions. Ar-
guably, traditional approaches may incur some of these other time penalties
as well e.g. checking authenticated user access controls or generating audit
checkpoint information to log. Fig. 16 shows the time required (in msec) by
MDSE@R to process a request for systems with different numbers of concur-
rent users and different number of system entities that have been marked as
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Fig. 16 Average performance overhead of MDSE@R platform

critical. Experiments were conducted on a Core2Duo desktop PC with 4GB
Memory. The max performance overhead we got for a system with 10000 CPs
defined and having 100 users concurrently sending requests equals 140msec.
This performance considers efficient memory utilization as interceptors and
security specification documents are loaded as needed. Significantly better
performance could probably be achieved by caching these MDSE@R models
in memory and using a hash table data structure to enable faster search. Us-
ing replicas of the MDSE@R platform on different servers and for different
applications will result in further improvement of its performance overhead.

7.5.2 Security adaptation overhead

We have measured the adaptation delay incurred by MDSE@R in order to real-
ize a single simple mapping between a security entity and a system entity e.g.
system methods. This overhead equals on average 3 seconds. This represents
the time taken to update the security interceptors and security specification
documents and time to generate and fire the required integration test case(s).
This is an offline task and so does not impact the performance of the system
running instance.

8 Discussion

Our MDSE@R approach promotes multi-tenancy security engineering from
design time to runtime. This is based on externalizing security engineering
activities including capturing objectives, requirements controls, and realiza-
tion from the target system implementation. This permits both security to
be enforced and critical system entities to be secured to evolve at runtime
(supporting adaptive security at runtime). It enables enforcing different se-
curity requirements sets for different tenants who are not known at design
time. We name this as ”Tenant-oriented security” compared to the traditional
service-oriented security where a service can reflect only one set of security
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requirements usually captured by service provider at design time. Finally, a
key benefit reaped from MDSE@R approach is to the support model-based
security management. Tenant security requirements, architecture and controls
are maintained and enforced through a set of centralized TSSMs instead of low
level scattered configurations and code that lack consistency and are difficult
to modify. A tenant can have a single TSSM for all of their IT systems that
captures all of their security specifications and can be updated anytime to re-
flect his new configurations. Thus any update to their TSSM will be reflected
on all IT systems that use MDSE@R platform.

In our evaluation we developed one security model and used it with dif-
ferent systems. Each system enforces the security mapped to its entities. Any
update to the security model results in updating all systems linked to it. This
is a key issue in environments where multiple applications must enforce the
same security requirements. Having one place to manage security reduces the
probability of errors, delays, and inconsistencies. Automating the propagation
of security changes to underlying systems simplifies the enterprise security
management process. The multi-tenancy security engineering of existing ser-
vices (extending system security capabilities) has three possible scenarios: (i)
for systems that already have their SDMs, we can use MDSE@R directly to
specify and enforce multi-tenant security at runtime; (ii) for systems without
SDMs, we can reverse engineer parts of the required system models (specif-
ically the class diagram) using MDSE@R (if these binaries can be read and
not obfuscated). Then we can use MDSE@R to engineer required system secu-
rity; (iii) for systems with built-in security, we can use MDSE@R to add new
security capabilities only. MDSE@R cannot itself help modifying or disabling
existing security. However, we have been working on extending our approach to
support deletion of existing security methods and partial code using modified
AOP techniques [2]

The selection of the level of details to apply security on depends on the
criticality of the system. In some situations, we may intercept calls to the pre-
sentation layer only (webserver) while considering the other layers secured by
default (not publicly accessible). In other cases, such as integration with a cer-
tain web service or using third party component, we may need to have security
enforced at the method level (for certain methods only). Security and perfor-
mance trade-off is another dilemma to consider. The more security validations
and checks the more resources required. This impacts application performance.
This should be included as a part of the Service Level Agreement (SLA) with
the tenants. We plan to extend our generated test cases to include performance
tests in the near future, allowing MDSE@R provider to assess the overhead of
new security configurations in terms of cost and to help both providers and
tenants to optimize the security level enforced. MDSE@R helps in engineering
security into systems at runtime, while the security controls configuration and
administration should be managed by security administrators. MDSE@R does
not support defining business rules at runtime e.g. an employee should not be
able to retrieve a customer’s records if customer is of type VIP. The target
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system should have this rule while MDSE@R will provide the current user
roles/permissions as returned by the tenant security control.

Security isolation between different tenants’ data is a very critical require-
ment in engineering security of a multi-tenant SaaS application. In MDSE@R,
we consider security isolation as one of the security controls that simply per-
forms authorization of the tenants supplied inputs before proceeding with the
requests. Thus no tenant can access other tenants data by providing malicious
inputs. However, the service providers have to perform the data filtration when
loading/storing data from/to the application database. One may argue that
our approach may lead to a more open and vulnerable system as we did not
consider security engineering during design time. Our argument is that at de-
sign time security engineering is often done by security non-experts and this is
a key reason why we still discover a lot of vulnerabilities in deployed systems.
However, service providers can still perform security engineering during design
time using MDSE@R. The service provider delivers both the SDM and SSM
to their tenants for further customization. This also helps small tenants or
tenants who are satisfied with the delivered security.

9 Summary

MDSE@R is a new model-driven approach to dynamically engineering secu-
rity for multi-tenant SaaS applications at runtime. Our approach is based on
using a set of multi-level service description models (SDM), developed by ser-
vice providers, to describe different perspectives of their applications; a set
of security specification models (SSM), developed by the service provider, to
capture security objectives, requirements and environment security controls
using Domain-Specific Visual Languages. Then, tenants can customize their
copies of the SDM and SSM to reflect their application and security con-
figurations. MDSE@R then bridges the gap between these two specifications
through merging of the service and security models for both service provider
and service tenants into a joint service security model.

MDSE@R uses dynamic injection of security enforcement interceptors and
code into the target application to enforce the security specified. Security
specifications are thus externalized and loosely coupled with application spec-
ifications, enabling both the application and security specification to evolve.
It also allows sharing of security specification models among different applica-
tions ”model-based security management”. Security controls can be integrated
with MDSE@R (which was implicitly integrated with the tenant service) by
implementing a common security interface that we have introduced.

We have developed a set of modeling tools and a prototype of MDSE@R.
We have successfully validated our approach by applying it to seven web-based
applications, most of them open source, successfully modeling and enforcing
a range of security needs on these applications. We performed a preliminary
user evaluation of our toolset that demonstrates that it is readily usable by a
technical audience but with little security engineering background. We assessed
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the performance overheads of using our current prototype of MDSE@R. It has
a performance overhead ranging from 0.13msec up to 140msec per request
for each critical application entity. MDSE@R has adaptation delay of 3sec for
each simple mapping between SSM and SDM. This represents time to update
interceptors and security specification documents as well as generating and
firing security test cases.
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