

In J. of Automated Software Engineering, Vol. 5, No. 1, January 1998.

Serendipity: integrated environment support for
process modelling, enactment and work coordination

JOHN C. GRUNDY1 AND JOHN G. HOSKING2
1Department of Computer Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand
Email: jgrundy@cs.waikato.ac.nz;
2Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
Email: john@cs.auckland.ac.nz

Abstract. Large cooperative work systems require work coordination, context awareness and process modelling and enactment
mechanisms to be effective. Support for process modelling and work coordination in such systems also needs to support
informal aspects of work which are difficult to codify. Computer-Supported Cooperative Work (CSCW) facilities, such as
inter-person communication and collaborative editing, also need to be well-integrated into both process-modelling tools and
tools used to perform work. Serendipity is an environment which provides high-level, visual process modelling and event-
handling languages, and diverse CSCW capabilities, and which can be integrated with a range of tools to coordinate
cooperative work. This paper describes Serendipity’s visual languages, support environment, architecture, and implementation,
together with experience using the environment and integrating it with other environments.

Keywords. Process modelling, process enactment, process-centered environments, work coordination, environment integration

1. Introduction

Most computerised or semi-computerised work systems have evolved informal or semi-formal process
models. These attempt to describe the use of different tools on a project, the interchange and modification
of work artefacts by tools and workers, and the flow of control and/or data. Workflow Management
Systems (WFMS) and Process-Centred Environments (PCEs) are examples of tools developed to assist in
the construction, use and evolution of formalised process models. While many of these systems support
modelling and enacting work processes well, they have some deficiencies. Some use low-level, textual
process models which are difficult for end-users to understand and modify (Swenson, 1993; Bogia and
Kaplan, 1995), some lack support for inter-person communication (Di Nitto et al., 1995; Ben-Shaul and
Kaiser, 1996; Tolone et al., 1995), and many provide either inflexible process models, which
inadequately handle exceptions and are difficult to change while in use (Swenson, 1994; Tolone et al.,
1995), or do not adequately support the more informal aspects of cooperative work (Kaplan et al., 1996;
Tolone et al., 1995).

Computer-Supported Cooperative Work (CSCW) systems provide communication and cooperative
editing tools to support collaborative work. These include synchronous editors and tools, such as shared
workspaces, telepointers and video conferencing, and asynchronous communication, such as email and
version control systems (Ellis et al., 1991). However, many of these systems focus on low-level
collaborative editing and/or person-to-person communication issues, and lack support for general work
process modelling (Krishnamurthy and Hill, 1995). Some systems, such as ConversationBuilder (Kaplan
et al., 1992a), SPADE/ImagineDesk (Di Nitto and Fuggetta, 1995), and Oz (Ben-Shaul and Kaiser,
1994a), attempt to bridge the gap between CSCW tools and process modelling tools but with limited
success. Others, such as wOrlds (Bogia and Kaplan, 1995), provide facilities for supporting the informal
aspects of work but do not adequately support codified, cooperative process models (Kaplan et al., 1996).
Most existing CSCW, WFMS and PCEs tend not to be well integrated with each other, nor with work

tools, such as document editors, CASE tools and programming environments (Tolone et al., 1995, Ben-
Shaul and Kaiser, 1996). This usually means custom-built systems must be developed which exhibit
CSCW behaviour, or existing tools modified to permit (often loose) integration with process modelling
tools.

We describe Serendipity, which integrates process modelling and cooperative work support for large
collaborative systems. Serendipity provides a novel graphical process modelling language which can be
sued to represent both general process models and plans for and histories of work. Another graphical
language specifies event handling for process model enactment and work artefact modification events.
We focus on the design of these languages and a supporting environment for them, together with our
experiences in integrating this environment with other systems, including both CSCW tools and tools for
performing work, such as CASE, programming environment, and office automation tools. Serendipity
provides a “work context” for these tools, and supports high-level work context awareness and work
coordination for them. Descriptions of work artefact changes from integrated tools are annotated with
work context information and stored by the current enacted process stage, along with process enactments,
forming work and enactment histories. Serendipity is integrated with existing tools via an event passing
system, necessitating no modifications to these tools. Serendipity has been used for collaborative process
modelling and work planning, process improvement, method engineering and office automation.

2. Problem Domain: Large Cooperative Work Systems

Tools that effectively support collaborative work in large problem domains, where several people, tools
and many work artefacts are involved, such as software development or office automation, have a number
of important requirements:

• Support for modelling work processes (Barghouti, 1992; Swenson et al., 1994; Tolone et al.,
1995). This allows cooperating people to more readily plan and coordinate their work on large
problems. Approaches to providing such process modelling range from precise, formal
languages (Barghouti, 1992; Ben-Shaul and Kaiser, 1994a; Bandinelli, et al., 1994) to more
high-level, graphical workflow languages (Medina-Mora et al., 1992; Swenson et al., 1994;
Baldi et al., 1994). Process models should ideally allow work processes to be enforced or used
as guidance, and should be readily understandable and modifiable by users.

• The ability to handle arbitary events relating to process model state changes, work artefact
updates or events in work tools (Bogia and Kaplan, 1995; Grundy et al., 1995a). When the state
of a process model or work artefact changes, interested collaborators may need to be informed,
or automatic responses carried out (Ben-Shaul and Kaiser, 1994a; Bogia and Kaplan, 1995).

• Effective inter-person communication and collaborative editing support is needed (Di Nitto and
Fuggetta, 1995; Ben-Shaul and Kaiser, 1996). With process models providing a high level of
“work context” information, keeping collaborators aware of each others’ work is necessary
(Bogia, 1995). Allowing people to intermittently join or leave cooperative work sessions, or to
review the reasons for artefact changes, requires annotated histories of work for process stages.

• Tools for performing work need to be well-integrated with the tools for communicating and
editing work artefacts (CSCW tools) and the process modelling tools (WFMS and PCEs) (Di
Nitto and Fuggetta, 1995; Ben-Shaul and Kaiser, 1996, Kaplan et al., 1996). This should allow:
CSCW tools to be utilised to discuss and annotate both work and process model artefacts; the
process modelling tools to control CSCW and work tool behaviour; work performed with the
work tools to be readily coordinated by the process modelling tools.

Start

Rejected

Designer

Design Changes

Coders

Code Changes

Tester

Test Changes

Proj. Manager

Approve Changes
C

T

C
D A A Approved

R

Figure 1. An example VPL process model.

As an example of a process modelling language and environment, consider Swenson’s Visual Planning
Language (Swenson, 1993), and its embodiment in support environments Regatta (Swenson et al., 1994)
and TeamFLOW (TeamWARE, 1996). Figure 1 shows a VPL model describing a process to modify a
software system. Ovals are process stages, hexagons start/stop states, and flows between stages represent
finishing states of one stage which enact the linked stages.

VPL has many advantages over comparable process modelling languages in that it is concise and
versatile. It can be used to both model processes and plan work on specific projects, and Regatta and
TeamFLOW allow its process models to be enacted by multiple collaborating users. However, VPL does
not adequately model work artefacts or tools, using only simple textual attributes of process stages to
indicate this information. It does not support the handling or arbitrary events from related process stages
nor tools and artefact updates. The integration of its supporting environments with tools for performing
work is limited. For example, TeamFLOW is unable to handle events from work tools or directly control
their usage, other than invoking them, when appropriate, from process model stages.

Some work has been done on integrating PCE/WFMS, CSCW and work tools. Examples include
ConversationBuilder (Kaplan et al., 1992a), wOrlds (Tolone et al., 1995), SPADE and ImagineDesk (Di
Nitto and Fuggetta, 1995), Marvel and ProcessWEAVER (Heineman and Kaiser, 1995), and Oz (Ben-
Shaul et al., 1994b; Ben-Shaul and Kaiser, 1996; Ben-Shaul and Kaiser, 1994a). These approaches have
produced useful environments with some integration of PCEs/WFMSs, CSCW tools and tools used to
perform work. However, this work has so far not produced the “ideal” integration of these technologies,
due to problems with adequately integrating disparate tools (Tolone et al., 1995; Valetto and Kaiser,
1995; Di Nitto and Fuggetta, 1995), or with limited scope of the software development and/or workflow
tools used (Kaplan et al., 1996, Di Nitto and Fuggetta, 1995).

Serendipity is our approach to solving these problems. It extends VPL to more completely describe work
processes, and adds a new visual language for specifying event handling. The next two sections describe
Serendipity's visual languages, and are followed by a description of the support environment. Section 6
describes integration of Serendipity with other tools, and is followed by a description of the architecture
and implementation. Section 8 describes experience using Serendipity, compares it with other languages
and systems, and discusses current and future work.

3. High-level Process Modelling and Work Planning

3.1. EXTENDED VISUAL PLANNING LANGUAGE

Figure 2. A simple software process model and subprocess model in Serendipity.

We have developed the Extended Visual Planning Language (EVPL), which preserves the notion of
simple “work plans” from VPL, but adds capabilities to support general process modelling. EVPL can
thus be used to both model generic, reusable work processes, and to model and record work plans and
histories for a particular project. New notational components in EVPL include: identifiers for process
stages, which allow stages to be more readily identified and referenced by other process models; role,
artefact and tool representations, so these aspects of the work context for a process stage can be specified;
“usage” connections between process stages and role, artefact and tool representations; and various
annotations on usage connections to indicate how these other parts of a work context are utilised by
process stages. Window “m1:model1-process” in Figure 2 uses EVPL to describe a simple software
process model for updating a software system. Figure 3 summarises the basic EVPL modelling
capabilities.

Notational Symbol Example Description
Stage ID:Role Name

Stage Name
1.1:designer

Design Changes
An EVPL Process stage. Stages have a unique ID, a role (person or people
who perform the stage tasks), and name. The ID is user-defined and used to
uniquely identify stages when they appear in multiple views of a process
model.

Stage ID:Role Name

Stage Name
1.2:coders

Modify Code
An EVPL stage the tasks of which are performed by multiple people (i.e.
several people are assigned to the role).

Start Stage start changes Start stage for an EVPL diagram. When a process is first enacted, an
enactment flow event will flow in from one of its start stages and onto the
connected process stage(s).

Stop Stage finish changing
Stop stage for en EVPL diagram. When a finishing stage flows into a stop
stage, the EVPL process has completed.

Enactment Flow

 finished designing

1.1:designer

1.2:coders

Modify Code

Design Changes

An enactment event flow from one stage to another. The label on the
enactment flow is usually an indication of the finishing state of the process
stage from which the flow is from. In the example, if stage 1.1:Design
Changes finishes in state “finished designing”, stage 1.2:Modify Code is
enacted.

(OR stage)
1.1:designer

Design Changes

... ...

An OR stage. When an enactment event flows into an OR stage, the event
flows into all stages connected to the OR stage. This can be represented by
multiple enactment flows from one stage to several others, but using an OR
stage often makes diagrams more readable and more clearly indicates that
the connected stages can be enacted simultaneously. In the example, when
1.1:Design Changes completes, the two stages the OR flows into are both
enacted.

AND
(AND stage) AND

1.1:designer

Design Changes

... ...

An AND stage. If two or more enactment flows from different stages flow
into an AND stage, the AND stage ensures that the stage(s) into which it has
enactment event flows is not enacted until all stages flowing into the AND
complete. In the example, 1.1:Design Changes will not be enacted until both
stages flowing into the AND complete.

Stage ID:Role Name

Stage Name
1.1:designer

Design Changes
Underlining of a stage ID and role indicates the presence of one or more
expanded subprocess for the stage i.e. the tasks to perform for the stage are
described on one or more expanded EVPL diagrams.

Stage ID:Role Name

Stage Name
1.1:designer

Design Changes
Italicising the stage ID, role and name indicates the stage has been
instantiated from a reusable template. Any subprocesses defined for the
template are also copied and made subprocesses of the instantiated stage.

Figure 3. Basic modelling capabilities of EVPL.

The Figure 2 example would normally be part of a larger process, such as the ISPW-6 software process
example (Kellner et al., 1990). Several stages are shown, each describing part of the overall process.
Process stages “m1.1: design changes” and “m1.2: implement changes” have subprocess models. The
expanded subprocess model for “m1.1: design changes” is shown in the window on the right. Stages m1.5
and m1.6 in the subprocess model have been instantiated from templates.

The AND stage between m1.2, m1.3 and m1.4, implies stages m1.2 and m1.3 must both finish in the
given finishing states before m1.4 is enacted. This does not necessarily mean all subprocesses of m1.2 or
m1.3 need be finished, as they may have parallel flows which terminate with different finishing states at
differing times. However, at least one flow must terminate m1.2 and m1.3 in the specified finishing states
for m1.4 to be enacted. The OR stage (unlabelled circle) connecting m1.1.7, m1.1.8 and m.1.9, indicates
m1.1.9 is enacted when either m1.1.7 or m1.1.8 finish.

To use this process model, stages in the model are enacted. When a stage completes in a given state,
event flows with that state name (or no name) activate to enact linked stages; enacted stages and the
enactment event flows causing their enactment are highlighted. Enactments of each stage are recorded, as
are the work artefact changes made while a stage is the current enacted stage for a user (i.e. that user’s
work context). Section 5 further describes process enactment in Serendipity.

Empty, or leaf, stages have no definition of their work process. In addition, some process model data,
such as roles, may be abstract, requiring specification for a particular project the process is used on. Users
working on a particular project can define work plans for leaf stages, and extend models to more precisely
specify role, artefact and tool data. For example, the process model above indicates work plans are
defined for each “coder” for stage m1.2. The people filling these “coder” roles can define or modify these
work plans or have them defined by some other role (perhaps the “designer” or “project manager”).

Figure 4 shows the EVPL work plan definition for the “m1.2: implement changes” stage for coder “john”.
When this stage is enacted with “start coding”, “john” is to add a relational database table “address”,
modify a table “customer”, and then modify any forms and reports affected by these schema changes. If
the stage is enacted with “fix code”, “john” must locate the error and fix the schema, forms and reports.
Different work plans can be defined for other people filling the “coder” role. This illustrates the
versatility of EVPL for both defining work process models and planning the actual work to be done on a
particular project.

Note that there is a mapping from the “finished design” and “coding error” finishing states of m1.1 and
m.1.3 to the “start coding” and “fix code” starting state names of the subprocess model. This mapping is

specified in a dialog when adding each enactment event flow. Stages can be enacted in the same start
state by multiple event flows, such as stage m1.2.6 in Figure 4.

Figure 4. A work plan for coder “john”.

4.2. DESCRIBING PROCESS STAGE WORK CONTEXT INFORMATION

EVPL also extends VPL to permit capture of work context information in the form of tools and artefact
used in each stage, and coordination and communication needed between stage roles (Figure 5). Some,
but not all, of these additional modelling capabilities are found in process modelling languages developed
by other researchers (for examp, E3 PML (Baldi et al., 1994)).

Figure 6 shows a different perspective (view) of the process model of Figure 2. This retains the process
stages, but not the enactment event flows. Instead, usage flows describe the tools, artefacts and roles that
the stages use. For example, “m1.1:design changes” uses the “ER Modeller” tool and the “ER design”
artefact. The usage flow between “ER design” and “ER Modeller” specifies the latter is used to modify
the former. The usage connections to the “designer” role from m1.1 and m1.3 indicate coordination
between the m1.3 role (“tester”) and the m1.1 role (“designer”), in this case the roles must communicate
informally (“talks with”). Annotations on the usage flows indicate, for example, that the designer must
use the ER modeller to design changes (√), the ER design artefact is updated by m1.1:design changes (U),
the changes list artefact is created and/or updated by m1.1:design changes (CU), m1.2:implement changes
acecsses (but doesn’t update) the ER design (A), and process stages m1.2 and m1.3 cannot be enacted at
the same time as process stage m1.4 (¬).

Notational Symbol Example Description

artefact class
These describe the kinds of work artefacts used by process stages. Artefacts
can represent a general class of work artefact (e.g. “classes” in an OO
system), or specific instances of artefacts (e.g. “class ‘window’”).

ToolName ER Modeller

Tools are used to modify or view work artefacts. If a meta-process model is
being defined, tools may include the Serendipity environment itself, and
artefacts may include process model components.

RoleName john
Roles represent people or abstract roles associated with process stages, tools
or artefacts. Roles may refer to specific people (e.g. “john”), groups of
people (“coders”), or abstract roles (e.g. “designer”)

UsageFlowLabel

Usage connections indicate that an artefact, tool, role or process stage is
used by another. The flow is from the used process model component to the
using process model component.

(CAUD√¬)

Various annotations can be added to a usage flow: ‘C’ = using process
model component creates instances of used component; ‘A’ = using
component accesses used component; ‘U’ = using component updates used
component; and ‘D’ = using component deletes instances of used
component. C, U and D are generally only useful when the used component
is an artefact. √ specifies the using component must use the used
component, whereas ¬ specifies the using component must not use the used
component. For process stages, ¬ specifies non-concurrent enactment, √
concurrent enactment.

Figure 5. Extra modelling capabilities of EVPL to describe work contexts.

Figure 6. A data, tool and role-oriented perspective of the first process model (left) and a textual stage view (right).

3.3. TEXTUAL PROCESS INFORMATION

The graphical process model, work plan and work context views described above, can be supplemented
using textual representations of process stage, artefact, tool and role information. An example is given in
Figure 6. Extra information which can be specified includes: user-defined attributes for any kind of
process model component (for example, a “percent_complete” value for a process stage); user-defined
comments about process model component information; and bindings of abstract role to concrete role
(e.g. that “john” will fill the “designer” role).

4. Defining Event-Handling Filters and Actions

The process models described in the previous section are fairly static. Stage enactment flows are
described, which indicate the flow of enactment events between stages. Often, however, other types of
event handling are required, for example to specify: dependencies between process stages which belong
to different process model views; the handling of artefact update and/or tool events; automatically-applied

rules or constraints on process models, driven by event triggers; and the automatic invocation of inter-
person communication tools.

Few graphical process modelling languages support such capabilities. Most typically use some form of
textual specification of process model stage attributes to specify limited forms of event handling, or
utilise complex rule-based languages. Neither of these approaches capture and represent graphically the
kinds of events nor how they are handled. To this end we developed the Visual Event Processing
Language (VEPL), to permit visual specification of arbitrary event handling and event-triggered process
model rules.

4.1. BASIC EVENT-HANDLING

The basic VEPL constructs are filters and actions, which receive events from stages, artefacts, tools or
roles, or other filters and actions. Filters match received events against user-specified criteria, passing
them onto connected filters and actions if the match succeeds. When actions receive an event they carry
out one or more operations in response to the event. These operations update information and/or generate
new events, which may be detected and acted upon by other filters and actions. VEPL is fully integrated
with EVPL and thus provides a graphical, high-level specification of event handling for EVPL process
models and work plans.

Figure 7 shows the main components of VEPL. Some of these, such as enactment event flows and usage
connections, are derived from EVPL, but have different semantics when used with VEPL filters and
actions.

Notational Symbol Example Description
FilterName Made Current A filter definition. Filters receive events (from process stages, artefacts,

tools, roles, other filters or actions) and if the event matches the defined
selection criteria for the filter, the event is passed onto the connected filters
and/or actions. A filter or action reused from a template filter/action
definition has its name in italics.

ActionName

 Notify Role
An action definition. Actions receive events (from process stages, artefacts,
tools, roles, filters or other actions) and respond to the event by performing
some action (which often generates other events). Actions can pass on
events to other filters and/or actions.

EventFlowLabel

Made Current

Notify Role

An event flow into/from a filter or action. Events may be process stage
enactment events, artefact update events, tool events, some event caused by
a role (i.e . user), or an event generated by an action. For example, if Made
Current decides an enactment event flowing into it means a process stage
has been made the current enacted stage, then the Notify Role action is
invoked to notify another user about this event.

UsageFlowLabel

john

MadeBy

name

Usage flow into a filter or action. These specify parameters of the
filter/action. For example, the MadeBy filter is parameterised by a role name
which it uses to decide whether some event was caused by a particular role.
In the example, that role name is instantiated to "john" by the usage
connection to the role process model component.

Figure 7. Basic modelling capabilities of VEPL.

Figure 8 shows a simple event-handling view which extends the process model from Figure 2, illustating
use of VEPL for inter-stage work coordination. In this example, testing of software (stage m1.3) can be
carried out while further design and/or coding takes place. To coordinate the people associated with the
“designer”, “coders” and “tester” roles, Figure 8 specifies when notifications are sent to coders that
testing has been completed or is in progress.

The lefthand event flow from m1.3 specifies that all enactment events on m1.3 should flow into the filter
“Made Current”. This checks if the received event shows the stage has been made the user's current
enacted stage (i.e. the user is now working on this stage) and, if so, the event flows into the OR stage and
on to “Not Completed”; otherwise event propagation stops. “Not Completed” is parameterised by a stage

id, instantiated in this case to stage m1.2. This filter checks its stage parameter is either enacted or able to
be restarted (not yet completed) and, if so, passes received event flows into action “Notify Role”. This
action, parameterised by a role, informs the person or people filling that role (in this example, the
“coders” of m1.2), that testing has started or finished. Notification is, by default, via an e-mail like
message, but users can specify, via dialogue box, they wish to be informed in other ways, sych as by
opening a dialog on the coders' screen, shading the “m1.2:implement changes” stage icon to indicate
presence of a message, etc (Grundy et al., 1996a). The righthand event flow from m1.3 notifies coders if
testing has finished in either the “fix code”, “fix design” or “finished testing” states. The coders are again
only notified if the m1.2 stage has not completed.

“Notify Role”, “Made Current” and “Not Complete” are reusable (system defined) filters/actions while
“finished testing” is specific to this particular process model. Filters are defined by a pattern-matching
language (for simple filters), instantiation of a reusable template (via a forms interface), or use of an API
to Sernipity's implementation language (see later in this section).

Figure 8. An example of process stage event filtering.

4.2. HANDLING ARTEFACT, HIERARCHICAL AND MULTIPLE EVENTS

To allow different processing based on the kinds or numbers of events, VEPL allows users to: distinguish
between enactment and tool/artefact update events; specify if subprocess component events are handled;
and specify that a filter/action is to handle sequences of, rather than individual, events. Figure 9 shows
these additional modelling capabilities.

Notational Symbol Example Description

(Æ)

FilterName

(Æ)

1.1:designer

Design Changes

The filter or action is informed of any artefact update (or tool/role) events,
rather than enactment events. In the example, FilterName is informed
whenever an artefact update event occurs and process stage 1.1 is the current
enacted stage (i.e. the stage on which the user is currently working). If the Æ
was not present, the filter is only be informed whenever stage 1.1. is enacted
or de-enacted.

∑

FilterName

1.1:designer

Design Changes

∑

The filter or action is informed when stage 1.1. or any of its subprocess
stages are enacted or de-enacted. In the example, FilterName is informed
whenever an enactment event occurs for stage 1.1 or any of its subprocess
stages. If Æ and ∑ are combined, the filter is informed of any artefact
update events made when stage 1.1. or any of its subprocess stages are the
current enacted stage.

(*)

FilterName

1.1:designer

Design Changes

(*)

The filter or action is informed of a series of events from the connected
process stage (or artefact, tool or role), as opposed to being informed of
single events. In the example, several enactment or deenactment events may
occur, all of which are sent to FilterName and it will decide on the action it
will take based on this sequence of events, not just as each event is received.
The * is often combined with ∑ and Æ annotations.

Figure 9. Extended modelling capabilities of VEPL.

As an example, figure 10 specifies that the “designer” associated with “m1.1:design changes” is to be
notified of any schema updates made by “coders” associated with “m1.2:implement changes”. Artefact
updates (indicated by the Æ) made by any user filling the “coder” role while working on m1.2, or any of
its subprocesses (indicated by the ∑), flow into a filter (“RDB table change”), which checks if the change
is to a table. If so, the “designer” is notified of the event. “RDB table change” can be defined in two
ways: as a large list of artefact change event patterns which indicate the change is to a table, or by
determining if the event originated from the RDB table designer tool.

Figure 10. An example of artefact change event filtering.

Roles, tools and artefacts used in a VEPL specification act as filters, if events flow into them from other
process model components. For example, Figure 11 specifies that “rick” is interested in any changes
“john” makes to the “customer” table, and “rick” is to be informed asynchronously of these changes by
storing them in a change list. Changes from m1.2 flow to the “customer table” artefact, which here acts as
a filter, only passing on change events for this artefact. Filter “Made By” checks the changes were made

by user “john”, and action “Store Event” records the event in a change list, named "john's changes"
owned by “rick”. Artefact update events can also be filtered through roles and tools. The m1.2 stage can
be removed from the example in figure 11, and the flow from artefact “customer table” annotated with Æ.
This would then specify that any change at all to “customer table”, made by “john”, should be stored for
“rick”, regardless of the plan stage it was made in.

Figure 11. An example of complex filtering and actions.

Event flows annotated with a * indicate multiple events from a stage, artefact, tool or role are to be
processed. The attached filter/actions receive multiple events before deactivation, allowing them to
recognise and process complex event sequences, and maintain state between the individual events. They
can thus act as semi-autonomous agents. Such filter/actions reset their state after receiving the sequence
of events they are interested in. For example, in Figure 12 the “Add Entity & Rel/Roles” filter recognises
a sequence of ER updates (addition of a new entity, relationship, roles and attributes) and notifies coders
of the entire table update using a single abstract message, rather than via a long list of messages
describing each discrete change made. In this case, the filter accepts ER modeller artefact update events
until it recognises an unrelated artefact (e.g. a different table) is being modified. It then passes on a single
event to “Notify Schema Affected” and resets its state.

Figure 12. Multiple event processing, stage coordination and external process interfacing.

Another example of a complex filter/action is the “SynchronousEdits” action, used in figure 12 to specify
how work is to be coordinated between people filling the roles for two concurrently enacted stages. In this
case, if the m1.1 and m1.2 stages are concurrently enacted and the roles involved both use the “RDB
Table Designer” tool, they must use the synchronous editing mode of that tool to ensure schema changes
they are making do not conflict. The “Seek Client Approval” action models a non-computerised process,
asking the “project manager” to liaise with the customer and gain approval for the new system changes
made.

4.3. DEFINING FILTERS AND ACTIONS

Template
Filter/Action

Kind Parameters Description

Enacted filter On receipt of an event, checks if this event is a “start” (i.e. stage enactment) event.

Deenacted filter On receipt of an event, checks if this event is a “finish” (i.e. stage deenactment)
event.

Made Current filter On receipt of an event, checks if this event is a “made_current” (i.e. stage made the
current enacted stage) event.

Finished Current filter On receipt of an event, checks if this event is a “finished_current” (i.e. stage
finished being the current enacted stage) event.

Not Complete filter stage On receipt of an event, passes on event if the given stage has not been completed
(i.e. stage’s “completed” flag not set).

Complete filter stage On receipt of an event, passes on event if the given stage has been completed (i.e.
stage’s “completed” flag is set).

Made By filter role On receipt of an event, checks the event was caused by the specified role(s).

Edited By filter tool On receipt of an artefact update event, checks the event was caused by editing using
the specified tool(s).

Notify Role action role On receipt of an event, notifies the people filling the role of the connected process
stage(s) that the event has occured.

Store Event action update list Stores the event received in an “updates list” artefact (a list of event record
descriptions).

Wait action On receipt of event, queues the event and does not forward it to connected stages,
filters or actions until the user-specified period to wait has completed. Multiple
events can be queued using the * annotation on the event flow.

LaunchApp action tool Launches the specified tool.

CreateDoc action tool, artefact Instructs the specified tool to create a new artefact of the specified type & name.

OpenDoc action tool, artefact Launches the specified tool (if not already running) and instructs it to open the
specified artefact(s).

SaveDoc action tool, artefact Instructs the specified tool to save the specified artefact(s).

CloseDoc action tool, artefact Instructs the specified tool to close (i.e. stop working with) the specified artefact.

QuitApp action tool Instructs the specified tool to quit.

Figure 13. Some of the template filters and actions provided by Serendipity.

Some of the filters and actions shown in the preceeding examples are reusable library templates, some are
user-defined by simple specification of patterns to match, some are defined by subprocess models, and
others utilise an API interface to the implementation language of Serendipity. Examples of commonly-
used template filters and actions are shown in Figure 13. Users can extend the library by adding their own
filters and actions.

VEPL filter/actions can be defined using VEPL itself by expanding a subprocess, parameterised by start
and finish stages, similar to EVPL stage subprocesses. The filter or action icon is then connected to
appropriate process model components, and when it receives an event its subprocess is used to determine
the response to the event. Figure 14 is a generic filter/action “update data model”, which checks if a
change to a given “entity” artefact is an entity rename or attribute modification (add, delete, rename or
change type), and, if so, stores the artefact change event in an “updates list” specified. The finish stage
“update” represents an output from this filter/action, allowing the event to be flowed onto other
filters/actions. This filter/action is reused by adding an action icon “update data model” to a process
model view. The user then specifies an event flow from an entity artefact into “update data model”, and a

usage flow into “update data model” from an “updates list” arterfact. The event flow out of “update data
model” can optionally be used, as required.

Figure 14. A parameterised filter/action.

Figure 15. Example of specifying detailed filter and action information.

Filters and actions can also be implemented via a Prolog-based API to Serendipity's implementation.
Pattern-matching on input event representations is used to differentiate between different event types.
Uing the API, filters or actions may call internal functions or access the internal data structures of
Serendipity to implement complex filtering operations, or actions.

Figure 15 shows the specification of filter “finished testing”. Names and ids are specified in the top three
fields. Flags are set to specify the types of event the filter is interested in. The filter call field is either
blank (if the filter action is copied from a template or has a subprocess model), or contains Prolog calls.
The “&=“ operator used in “finished testing” compares an enactment event received by the filter
(indicated by “+event”) with the given pattern. In this example, the filter responds to finish events in the
states 'done testing' 'design error', or 'coding error'. Various other operators and values can be used when
specifying the filter/action API call(s), such as the $= operator which compares artefact events to a
pattern, the +self value (the object ID of the filter/action receiving the event), and the +from value (the
object ID of the model component the event is from). Any parameter inputs to the filter/action specified
by usage connections are referred to by +UsageFlowName, where UsageFlowName is specified in a
dialog for the usage connection when it is added.

The bottom edit box (“Enter filter attribute/values:”) is used to specify state information for a filter/action.
This is usually used to constrain or modify filter/action behaviour. For example, for the “Notify Role”
action, this has the value “(notify_method=message)”, specifying that for this instantiation of the Notify
Role template action, coders should be notified by a message (using an email-like messaging system
described in Section 5). Other values of this notify_method attribute include: “open_dialog”, to notify
users via a dialogue; “highlight”, via highlighting a process stage icon; or “broadcast”, via a broadcast
message appearing at the bottom of the other users’ screens.

5. The Serendipity Environment

We have developed an environment for Serendipity supporting EVPL and VEPL. This provides multiple
views of process models, allows processes to be enacted, supports process improvement and reuse, and
allows meta-process models to be defined to describe and control the process modelling task itself.

5.1. MULTIPLE PROCESS MODEL VIEWS

EVPL and VEPL process model descriptions are produced using the same editing tool. Several views of
the same process model can be defined, each adding more information about the model as a whole. For
example, Figure 3 is a process model for software system enhancement, Figure 6 describes the artefacts,
tools and roles used this process model, and the figures in the previous section associate filters/actions
with these stages, artefacts, tools and roles. Textual views of process stages are also available (Figure 6).
Serendipity keeps all views of a process model consistent under change, or at least, in an known state of
inconsistency (Grundy et al., 1995a).

5.2. PROCESS ENACTMENT

A Serendipity process model can be enacted by users for a particular project at any time. Enacted
processes can be modified at any time to extend and improve the process specification, more precisely
define the work to be done, or rewrite the history of work done to assist in process improvement and work
documentation.

A process model is enacted by selecting the stage to enact and selecting a menu option. The user also
specifies a reason for the enactment and, if the stage has subprocess models defined, a start stage to
commence in. An enactment event is then sent to the process stage, and start stage (if specified). The start
stage immediately sends enactment events to all stages connected to it. As work on a stage is completed
or a subprocess completes (a finish event flows into a finish stage), finish events flow into connected
stage(s), enacting them. AND stages wait for all stages which flow into them to complete; OR stages
enact all stages they flow into upon receipt of a finished event from any input stages. Users can manually
complete enacted stages (if no actions prevent this) by supplying a finish state for them.

Figure 16 shows an enacted process model. Enacted stages (ie those started and not yet finished) are
shaded. Event flow(s) which have activated a stage are also highlighted. The user's current enacted stage
(the stage that user is currently working on) is bold highlighted. Users can select any enacted stage they
fill the role of to be their current enacted stage. Users can view a list of their enacted stages, also shown in
the figure, and this can function as a “to-do” list for that user.

When a stage is enacted, finished, or made/unmade current, it records this event in an enactment history.
A reason is also stored specifying when and why the event occurred and which user or stage caused the
event. A modification history describing changes to each stage and view is also stored, allowing users to
review the evolution of process models. Figure 16 illustrates these two histories for stage m1.1.

“EXCEPTION” actions can be defined for process models. These have no input event flows, but are
automatically invoked when a stage, action or filter finishes in a state not handled by the process model
i.e. no output event flows match the finishing state name. This usually indicates an error in the process
model. “EXCEPTION” actions reduce the complexity of process models by eliminating many error-
handling actions and event flows. Multiple “EXCEPTION” actions can be defined for a process model
with filters used to determine which one handles a particular exception. If not defined for a model a
default handler informs the user of a process model exception (via a change description in a dialog). The
user can then handle the exception manually, or extend the model to take the exception into account.

Figure 16. Enactment and modification histories for a stage, and a user’s to-do list.

5.3. COLLABORATIVE PROCESS MODELLING AND WORK PLANNING

Serendipity process model views may be shared amongst developers and synchronously, semi-
synchronously or asynchronously edited. Serendipity has also been integrated with several small CSCW
tools which provide work context-dependent notes, messaging and text chats to facilitate inter-person
communication (Grundy et al., 1996b).

To collaborate effectively on a large project, users need higher-level awareness support in addition to the
low-level messaging, communication and view editing mechanisms (Grundy et al., 1996b). Serendipity
provides information about the work contexts’ of their collaborators in a high-level, synchronous way as
shown in Figure 17, by highlighting and colouring collaborators enacted stages. Actions can also be
specified to highlight artefacts currently being modified by other users, such as the “changes list” in

Figure 17. Users may have more than one EVPL view open, with enacted and current enacted stages
highlighted.

5.4. PROCESS IMPROVEMENT, REUSE AND META-PROCESS MODELS

Process model often need modification during or after use, as exceptions or unforseen events arise, and
may evolve as users become more proficient at describing their work processes, or because details of a
process used varies between projects. Serendipity allows process models to be modified at any time:
before, during or after use.

Figure 17. An example of highlighting another user’s current process stage and artefacts.

To aid in model evolution, Serendipity can provide statistics about the complexity (number of substages,
event/usage flows, etc.) of subprocess models, the number of enactments a stage or subprocess model has
had, the amount of time each stage has been the current enacted stage, the number of modifications made
to models, and the number of work artefact changes made while a stage or its subprocesses were the
current enacted stage (Grundy et al., 1996b).

Process stages or filter/actions can be abstracted into process templates. Users can view and edit template
models but templates cannot, however, be enacted. Templates are abstract and must first be instantiated
(copied) by adding a stage to a process model, specifying it is based on a template.

To guide the process modelling, enactment and improvement process itself, meta-process models can be
defined as EVPL and VEPL models. These are also useful for coordinating the modelling activity
between multiple collaborators. An added advantage is that changes made to process models can be
recorded against the current enacted stage for the meta-process model, allowing collaborators to track
reasons for process model changes. Meta-process models also allow users to specify event handling and
rules for the EVPL and VEPL notations themselves, by specifying filters and actions on artefact events
for process models (i.e. handling events from process model artefacts and tools). Examples of such event

handling/rules include specifying ownership and access privileges for process models, controlling when
and how process models can be updated, and specifying default exception handling approaches.

6. Using Serendipity with Other Tools

Serendipity provides more than a process modelling and management environment. Used with other tools
it specifies the context of work for multiple collaborators, facilitating activities such as collaborative
software development, method engineering and office automation.

A user's current enacted stage defines the work context for that user. Any work artefact changes made
using other tools are assumed by Serendipity to be part of the work associated with this stage. Changing
the current enacted stage changes the context of work. To illustrate the benefits of this, we briefly
describe how Serendipity provides a process modelling tool for an integrated Information Systems
Engineering Environment (ISEE) (Grundy et al., 1996c). This environment includes the SPE object-
oriented software development environment (Grundy et al., 1995b), an ER modelling tool (MViewsER)
(Grundy and Venable, 1995a), a form/report building tool (MViewsDP) (Grundy et al., 1996d), and a
NIAM modelling tool (MViewsNIAM) (Venable and Grundy, 1995).

Serendipity does more than just define the work context for a user. As shown in Section 5, stages record
their enactment and modification histories. They also record the work artefact updates made while the
stage is the current enacted stage, thus documenting the history of work for this work context. Figure 18
shows an example of changes made to an MViewsER view stored for the “m1.2.10:modify customer
table” stage for coder “john”.

Figure 18. A work artefact change history in Serendipity and work artefact modification history in MViewsER.

In addition to recording work artefact updates in Serendipity stages, work artefact change descriptions
stored by the tools themselves are augmented with information about the work context they were made in.
Users of these tools can review work artefact modification histories to determine the changes made, who
made them, and when and why they were made (i.e. the work context they were made in). Figure 18
shows an example of a modification history for the “customer” entity/schema from the MViewsER
modelling tool. The augmented change descriptions for “customer” are also shown in its schema view,
“customer - schema”. Note that the changes shown in the “Updates on: customer” dialog and “customer -
schema” view are customer artefact updates. Those shown in the “Artefact updates for: m1.2.10:modify
customer table” are changes made to the “customer - ERD” view. The user can access the artefact-level
updates made in response to these view changes via the “View” button.

While Serendipity highlights process stages, usage connections and artefact and tool icons in use by
another developer, as shown in Figure 17, it also allows actions to be specified which highlight work
artefacts in integrated tool views (Grundy et al., 1996b). Filter/actions defined by a developer can
detected work artefact changes made in an integrated tool by someone else, and send messages to the tool
of the developer to highlight these icons. Due to this degree of integration of Serendipity and our ISEE,
users can also undo or redo work artefact changes within Serendipity or the tools which generated them.
Users can also select a work artefact change and request a list of all views of the artefact in the available
tool(s). In a tool, users can request a list of views of the appropriate work context of a selected change
description.

Serendipity actions can be used to constrain some of the integrated tools' functionality, facilitating
“Method Engineering” within our integrated environment. Most software development notations and
methodologies are designed to be generic across all problem domains. Research indicates, however, that
configuring notations and methodologies to the needs of the particular project results in more appropriate
tools and techniques (Harmsen and Brinkkemper, 1995). Computer-aided Method Engineering (CAME)
tools support this by allowing system developers to specify which notations (or parts of notations) and
methodologies (or parts of methodologies) are to be used for a particular project (Harmsen and
Brinkkemper, 1995). We have used Serendipity to support Method Engineering for our ISEE (Grundy et
al., 1996c). Serendipity EVPL views specify tool usage and process models (“methodology steps”).
VEPL views specify rules and event handling which restrict the use of certain tools and guide or enforce
the methodology processes.

Serendipity has also been used to support process modelling for a suite of office automation programs,
ncluding Macintosh versions of Microsoft Word™, Microsoft Excel™, the GlobalFax™ fax/OCR
application, and the Eudora™ email utility.

7. Architecture and Implementation

Serendipity and the tools that we have integrated to make up the ISEE described in Section 6 are
implemented using the MViews architecture for developing ISDEs. Integration of Serendipty and these
tools, athough all independently developed, has proved very successful, due to the component and event-
based nature of MViews. The integration between Serendipity and the Office Automation tools was more
limited, due to the more limited interface provided by these tools.

7.1. MVIEWS

MViews is a framework of object-oriented classes which provides abstractions for implementing ISDEs
(Grundy and Hosking, 1996; Grundy and Hosking, 1993; Grundy et al., 1996d). New environments are
constructed by specialising classes to describe the ISDE repository and view representations. Software
system data is described by a graph-based structure, with graph components (nodes) specifying e.g.
classes, entities, attributes and methods, and relationships (edges) linking these components to form the

system structure. Multiple views of this repository are defined using the same graph-based structure.
These views are rendered and manipulated in concrete textual and graphical forms. External tools not
built using MViews can be interfaced to the integrated environment by using “external view” data and
event translators. Figure 19 shows an example of the MViewsER Entity-Relationship and relational
schema modelling tool developed using MViews (Grundy et al., 1995b). The repository describes entities,
relationships and attributes, entity-relationship connections, and schema text. The multiple views
provided by MViewsER include graphical ER views and textual schema and documentation views.

MViews uses an event-based software architecture. This supports inter-component consistency
management by generating, propagating and responding to change descriptions whenever a component is
modified. A change description documents the exact change in the state of a component. It is propagated
to all relationships the component participates in. Receiving relationships can respond to a change
description by applying operations to themselves or other components, forwarding the change description
to related components, or ignoring the change. This technique supports a wide variety of consistency
management facilities used by ISDE environments, including multiple view consistency, inter-component
constraints, efficient incremental attribute recalculation, undo/redo, and version control and collaborative
facilities (Grundy et al., 1996d).

MViews is implemented in Snart, an object-oriented extension to Prolog. Environment implementers
specialise Snart classes to define new environment data dictionaries, multiple views, and view renderings
and editors (Grundy et al., 1996d). Snart is a persistent language, with repository and view objects
dynamically saved and loaded to a persistent object store.

entity_icon

external_entity

External Interface
(Data/Event interchange)

External
Tool

...

feature

view rel. view rel.view rel. view rel.

Repository

Multiple Views
of Repository

Renderings/
Editors for Views

...

component

relationship

attribute

... ...

Key:

attrs

con_glue

rel_icon

customer

inv-of

entity_text

entity

rel

con

customer

inv-of

Figure 19. Example of implementing MViewsER using MViews.

7.2. INDIVIDUAL MODELLING TOOLS

We have built many ISDEs using MViews including SPE (Snart Programming Environment),
MViewsER, MViewsNIAM and MViewsDP, the tools integrated into the ISEE. Integration of these tools
was achieved using integrated, hierarchical repositories (Grundy and Venable, 1995a; Grundy and

Venable, 1995b). This involves either defining integrated repositories which represent, for example,
OOA, NIAM and ER data in a common representation, or linking individual repository items with
MViews inter-repository relationships, such as between MViewsER schema fields and MViewsDP form
components. Inter-repository links keep data in different repositories consistent under change in a similar
manner to the view relationships described above.

7.3. THE SERENDIPITY ENVIRONMENT

Serendipity was built by specialising MViews classes for representing repository components and
relationships, view icons, glue and textual components, and view editors. Constructing EVPL and VEPL
diagrams using Serendipity view editors results in construction of repository-level components and
relationships describing a process model.

When a process model is used, process model component state variables are modified to indicate receipt
of enactment events. Enactment events are simply represented as MViews change descriptions. These are
propagated along event connections, with stages interpreting event change descriptions they receive
(AND, OR, and start/stop stages interpret these in a special way). Filters and actions interpret change
descriptions by comparing the event change descriptions to a filter pattern, running a Prolog predicate
which accesses MViews data (i.e. the API interface), or enacting a subprocess model.

Process stage enactment and modification histories are provided by MViews. Artefact modification
histories are constructed as stages receive artefact change descriptions from other MViews environments,
or from components which interface to applications not built using MViews and which translate external
tool events into MViews change descriptions.

7.4. INTEGRATING SERENDIPITY WITH OTHER ENVIRONMENTS

Figure 20 shows the way Serendipity interfaces with other MViews ISDEs and external tools. If a change
is made to a view-level ISDE tool item (1), this is propagated to a repository (“base view”) level item
change, and the change description generated by this repository-level item change propagated to the ISDE
base view component (2). The base view adds artefact, tool and user information to the change
description, and broadcasting of this modified change description is detected by the Serendipity
environment base view (3), which then forwards the change description to the user's current enacted stage
(4). This, in turn stores the change in its artefact modification history (5) and forwards it to any
filters/actions it is linked to by artefact update event connections (6). The process stage attaches “work
context” information to the artefact change description (primarily information about the stage itself),
sends it back to the Serendipity base view (7), which returns it to the ISDE tool base view (8). The ISDE
base view returns the augmented change description to the work artefact which generated it (9), which
stores it in its own modification history (10). View updates are sent to Serendipity in the same manner,
with the updated view component sending a change description to the view (11), which forwards it to its
base view (12), with the base view forwarding the change description to Serendipity and receiving an
augmented change description as before. Any change to the enactment status of Serendipity base process
model components (17) is detected by their view components (18), which are rerendered to reflect the
change.

External tools, such as Microsoft Word™ or Excel™, can also use Serendipity to provide a process
modelling and work context environment. Events from such external tools (Apple Events) are sent to a
small translator program (13), which forwards them to Serendipity for processing (14). Serendipity events
can be sent to the external tools via the translator (15, 16). These might request the external tool be
launched, ask it to save, open or close files, or ask it to carry out some other task (such as send a fax or an
email message).

Serendipity
Repository (Base View)

ISDE (e.g. SPE)
Repository (Base View)

repository
component

view
component

ISDE View

current
active stage

artefact
modification

history

External Tool

Translator
(Psuedo-Base View)

filter/actions

1.

2.

3.

4.

5.
6.

7.

8.

9.
modification

history

10. 13.

14.

15.

16.

11.

12.

Serendipity View

view component
(e.g. process stage)

17.

18.

Figure 20. Integrating Serendipity with integrated tool views.

Serendipity's collaborative editing facilities are provided by the C-MViews extensions to MViews
(Grundy et al., 1995c). Filters and actions specified on process models work as expected if synchronous
editing is used as all collaborators share the same process model data. Asynchronous editing implies
collaborators have different process model versions which they edit and enact independently, with other
collaborators not being aware of these events. Semi-synchronous editing propagates editing, enactment
and artefact update events between the environments of collaborators who express interest in these
changes for particular process stages, tools, artefacts or roles. C-MViews base views have been extended
to incorporate a notion of monitors which detect events of interest to collaborating users. Users request,
via the C-MViews server, other collaborators’ environments to establish monitors on items of interest.
Events are then propagated semi-synchronously, via the server, to the interested user’s environment for
presentation and/or actioning.

The CSCW messaging and note annotation tools provided by Serendipity are separately-developed tools
which can be used with any MViews environment. The context-sensitive messages store information
about the MViews component(s) they are related to, and notes are connected to specified components by
relationships. The high-level highlighting of Serendipity process model stages enacted by other users is
implemented by having the central C-MViews server broadcast all enactment events to each user’s
environment. This then records which stages other users have enacted or deenacted, and highlights these
on visible process model views (if requested by the user). We slightly modified these tools to utilise
information about the current enacted Serendipity process stage for users when storing notes, sending
messages or sending text chat lines, thus supplying work context information for inter-person
communication and notes.

8. Discussion

Our work has made four main contributions to Process Technology. EVPL provides an expressive,
graphical process modelling and work planning language, which can be animated to support both high-
level and low-level work context awareness during cooperative work. VEPL is a novel, graphical event
handling language that is both accessible for simple use by inexperienced process modellers, and yet
expressive enough for experienced process modellers and environment implementers to build
sophisticated event handling systems. The Serendipity environment provides multiple view support for
building, enacting, reusing and improving EVPL and VEPL process models, and includes a range of
cooperative work capabilities. Our integration of Serendipity with other tools, particularly software
development and CSCW tools, provides novel user interface capabilities, with Serendipity allowing
EVPL and VEPL to utilise events from these integrated tools in various ways.

8.1. EXPERIENCE WITH SERENDIPITY

Serendipity has been applied to a range of small to medium process modelling, work planning and
coordination, and tool integration problems. The authors have built a number of process models
describing: software processes; coordination of collaborative software development; coordination of use
of disparate office automation applications; general work processes for academics, students and business
people; and for meta-models for method engineering and process improvement. Serendipity has also been
used by colleagues and students to describe: software processes; steps in different Information Systems
methodologies; and general work processes. The largest process model so far developed has over 200
process stages, artefacts, tools and roles, with over 60 process model and filter/action views. A project is
currently in progress to more formally compare Serendipity’s languages to other workflow and process
modelling languages and to evaluate the Serendipity environment facilities against those of other
workflow management systems and process-centred environments.

Serendipity environment performance over the above range of tasks has generally been good, but with
some deficiencies, elaborated below. The asynchronous and semi-synchronous CSCW tools and editing
capabilities are quite usable in our current implementation, but the synchronous tools have prohibitive
performance problems (Grundy et al., 1995c). Processing stages with several filters and actions also cause
performance problems, particularly with hierarchical filters (∑ annotation on event flows), which must
receive events from all subprocess components. Users can request that filters and actions be actioned
semi-synchronously and that the environment process filters for specified stages in idle time. These
techniques improve performance with the drawback that enforcement strategies are applied some time
after enactments or artefact changes have been made, necessitating occasional roll-back of artefact
changes.

Integration of Serendipity with other, independently developed, MViews tools has been successful,
producing tightly-integrated environments. Serendipity actions can send events to other MViews tools to
perform almost any operation, and any tool event can be detected and acted upon by Serendipity filters.
This is due to the component and event-based architecture of MViews systems, and the common
implementation language and view and repository representation techniques. Integration with
heterogeneous tools not implemented with MViews has resulted in more limited forms of integration.
Serendipity actions can be defined to communicate with these tools but for significant levels of
integration, this requires extensive coding and still results in less than complete integration. Serendipity
currently runs on the Macintosh only. While we have integrated it in a limited way with a number of
commonly-available Macintosh applications, it is much more difficult to communicate with applications
on other platforms.

8.2. COMPARISON TO OTHER LANGUAGES AND SYSTEMS

Process modelling languages need to support the description of stages in the process, the data used by
process model stages, and the handling of events related to stages, work artefacts and tools. Many process
modelling languages use only textual languages to codify tasks and their data. Examples include those of
Marvel (Heineman et al., 1992), Adele (Belkhatir et al., 1994), ConversationBuilder (Kaplan et al.,
1992a; Kaplan et al., 1992b), Oz (Ben-Shaul and Kaiser, 1994a) and EPOS (Jaccheri and Conradi, 1993;
Conradi et al., 1994). Work artefacts are usually coded as types, for example in EPOS these are
“dataentitiy” specialisations and in Adele they are aggregate type relations. Steps in a process model are
usually encoded as rules, for example in EPOS as task types and Adele as event triggers. While these
languages allow users to precisely specify process model data and activities, they are difficult for many
users to understand and modify (Baldi et al., 1994; Bogia and Kaplan, 1995; Swenson et al., 1994), and
cannot readily be utilised for high-level work context awareness, such as via animation. Our EVPL and
VEPL process modelling languages have the same expressive power as these textual languages, but use a
primarily graphical approach to visualising process model activities and data (with detailed process stage,

artefact, tool and role characteristics specified in forms and textual views). EVPL diagrams provide
significantly clearer representations of process model structure than their textual counterparts, as process
modellers can see multiple levels of abstraction using EVPL diagrams. VEPL provides a graphical
approach to expressing event handling, allowing process modellers to better visualise event flow and
handling than a comparative textual encoding.

A variety of graphical process modelling languages have been developed for use by process-centred
environments and workflow management systems. Examples include E3 p-draw’s E3 PML (Baldi et al.,
1994), SPADE’s SLANG (Bandinelli et al., 1994; Bandinelli et al., 1993; Bandinelli et al., 1996),
ProcessWEAVER’s transition nets (Fernström, 1993), Action Workflow’s loops (Medina-Mora et al.,
1992), Regatta and TeamFLOW’s Visual Planning Language (VPL) (Swenson, 1993), and wOrlds’s
obligation nets (Bogia and Kaplan, 1995). Graphical modelling capabilities of some of these systems,
such as VPL, SLANG and wOrlds, is limited to specificatiuon of the stages in a process and the
“enactment flow” between these stages. For example, SLANG encodes activity structure as a form of
petri-net, but textually encodes activity artefacts and tools as process types and transitions as guards and
actions; VPL represents process stages graphically with interconnecting flows, but lacks representations
of stage data and enactment rules; and wOrlds represents aspects of social structure graphically, including
obligations between “process stages”, but provides only a simplistic graphical representation of process
data and obligation rules. Our work, and work with E3 PML, ProcessWEAVER and Action Workflow,
has found graphical modelling of process stage data (artefacts, tools and roles), and the visualisation data
shared by multiple process stages, to be very important when using complex process models. E3 PML
uses an object-oriented process modelling notation, with a variety of representations (stages, artefacts,
tools), and interconnections (task decomposition, inheritance, control flow). E3 PML represents task
decomposition on the same diagram, whereas EVPL utilises multiple overlapping and hierarchical views,
making decomposition easier to manage and resulting in clearer process models. E3 PML also lacks the
range of usage connections and annotations of EVPL, making it less expressive. ProcessWEAVER
(Fernström, 1993) uses a transition net (a form of petri-net) to model cooperative procedures via tasks and
subtasks, with token flow driving enacted process advancement. The transition nets do not explicitly
represent artefacts, tools and roles, but nodes can be defined which correspond to the manipulation of
them. ProcessWEAVER nets thus do not make clear the roles involved in stages of a process, nor the
artefacts and tools, nor do they indicate usage of this work context information, as in EVPL. Action
Workflow (Medina-Mora et al., 1992) uses a document flow model to represent work processes, which
has been found to be deficient for many process modelling situations (Swenson et al., 1994). EVPL uses a
more flexible and expressive state-transition model, as do VPL, ProcessWEAVER and SPADE, with
EVPL processes driven by the propagation of enactment events. This notion of explicit enactment events
in EVPL, rather than state transition by token propagation in SPADE and ProcessWEAVER or the use of
speech acts in VPL, is important, as it is utilised by VEPL to handle enactment, artefact update and tool
events in a homogeneous fashion.

The event-handling of most graphical process modelling languages is codified graphically for
“enactment” events (state transitions), but textually for stage guards and actions, and for coding
interaction with people or other tools. Most workflow management systems, such as Action Workflow,
Regatta and TeamFLOW, provide a limited range of “interesting events”, supporting interaction with
other tools and some forms of notification and work coordination based on event occurrence. These are
usually codified using a form-based approach where modellers specify simple actions to carry out based
on a range of possible events. VEPL provides a more powerful, clearer and extensible event-handling
language than this approach. VEPL filter/actions can handle more complex events, provide a wider range
of actions, be extended by building hierarchical models (or using an API), and have graphical
representations which more clearly show event flow in a process model. Most process modelling
languages use textual rules with guard predicates and executable actions to specify how events are
handled. ProcessWEAVER provides a textual co-shell language which allows users to specify actions for
process model nodes when fired by input tokens. SLANG uses textual specifications of guards and
actions for nodes in a state transition network. Marvel and Oz use guarded rules specified over data types.

Adele provides an activity manager, which uses a textual language to specify database-related event
handling for process models. These approaches all use textual languages, and hence complex rules suffer
from the same problems as when presenting other process model structures textually. The relationships
between different stages, tools and artefacts are expressed in a linear, textual fashion, unlike graphical
VEPL event handling models where event flows and process model artefacts are more clearly represented
in graph form. This is a particular problem for rules which span multiple process stages, as understanding
rule behaviour requires several textual data and task specifications to be viewed. VEPL permits
specification of both simple and very complex event handling graphically, resulting in high-level
visualisations of event handling behaviour. For example, the specification of a simple work coordination
mechanism where a user is notified whenever another user modifies a particular work artefact, shown in
Figure 11, results in an intuitive event handling model which is relatively easy for users to understand and
modify. By allowing previously-defined filter/action templates to be composed using the same event
propagation notation, VEPL supports reuse of a wide range of event handling behaviour. In contrast,
approaches which use textual codification to handle these kinds of events, produce event handlers that are
less clear and generally less reusable than those of VEPL. Visual dataflow-based languages, such as
Fabrik (Ingalls et al., 1988) and Prograph (Cox et al., 1989), provide graphical dataflow models which are
similar in nature to VEPL, but use dataflow rather than event-flow, which is less appropriate in a process
modelling domain. Some visual languages, such as ViTABaL (Grundy and Hosking, 1995), utilise an
event-driven model but lack the equivalent of Serendipity's filters, actions, and interest specification
capabilities. Because of their general-purpose nature, these visual programming languages lack specific
process modelling capabilities, and thus can not express and represent process model event-handling and
work coordination tasks as effectively as EVPL and VEPL.

Most process modelling languages are supported by their own PCE or Workflow Management System
(WFMS). For example E3 PML is supported by the E3 p-draw tool (Jaccheri and Gai, 1992), SLANG is
supported by the SPADE PCE (Bandinelli et al., 1994; Bandinelli et al., 1993; Bandinelli et al., 1996),
VPL by the Regatta (Swenson et al., 1994) and TeamFLOW (TeamWARE, 1996) WFMSs, and
obligation nets by the wOrlds CSCW environment (Bogia and Kaplan, 1995). These environments
typically allow process models to be enacted and advanced as users complete work on tasks and subtasks.
Environments utilising textual languages are limited in how they can inform users of the state of enacted
process models. Most avoid using the textual codification of the process model to visualise their state. In
contrast, EVPL process models are animated to give users feedback on process model enactment and
other users’ work. Action Workflow, wOrlds, Regatta and TeamFlow also use highlighting of enacted
process models. However in Serendipity, we have gone further than these systems, and highlight stages as
they are enacted/deenacted, highlight stages of cooperating users, and highlight artefacts, tools and roles
currently being used by an enacted process stage (Grundy et al., 1996b).

Most recent Computer Supported Cooperative Work (CSCW) research has focused on low-level
interaction mechanisms, such as synchronous and asynchronous editing. Examples include most
Groupware systems (Ellis et al., 1991), GroupKit (Roseman and Greenberg, 1996), Mjølner (Magnusson
et al., 1993), C-MViews (Grundy et al., 1995c), and Rendezvous (Hill et al., 1994). These systems lack
information about the “work context” changes have been carried out in, whereas Serendipity makes this
information readily accessible to users. There is some work on providing higher-level process modelling
and coordination facilities, such as workflow configuration (Medina-Mora et al., 1992), obligations
(Kaplan et al., 1992b, Bogia and Kaplan, 1995), and shared workspace awareness (Roseman and
Greenberg, 1996), but these systems are generally separate from the work artefacts or editing tools, and
are not used to provide work context information. In Serendipity the text chats and note annotation
CSCW tools incorporate information from the enacted process models, as do other tools integrated with
Serendipity. This provides users with more context awareness capabilities than are supported by other
CSCW and process modelling systems.

Oz (Ben-Shaul and Kaiser, 1994a) enables the definition of high-level work coordination capabilities,
such as summits and treaties, utilising extensions to the Marvel rule-based model (Heineman et al., 1992),

and supports cooperative transactions for itself and integrated tools (such as ProcessWEAVER) via an
external concurrency control architecture (Heineman and Kaiser, 1995). TeamFLOW, wOrlds and
ConversationBuilder use obligations between process stages to enable enactment events to be propagated
between process stages from different diagrams. ProcessWEAVER (Fernström, 1993) uses transition
networks to model synchronisation of concurrent activities by cooperative agents, but like wOrlds these
deal mainly with “enactment”-style events. VEPL supports the definition of complex work coordination
by using EVPL constructs in its event-handling models. We have used VEPL to build a variety of low-
level concurrency control mechanisms, typically supported by groupware tools. We have also used it to
build higher-level work coordination models similar to those used by ProcessWEAVER and wOrlds
(Grundy et al., 1996b). Serendipity uses both a shared server to broadcast events and share data, and a
repository storing local process model and work artefacts. This allows it to support Oz-style summits,
with process model enactment events generated by multiple users broadcast via the shared server. VEPL
models can handle and constrain data sharing, in a similar manner to the “diplomats” utilised by Oz
treaties, and can also support concurrent transactions by having actions store sequences of artefact
changes and undo them if multiple transaction conflicts arise.

There have been several attempts at integrating CSCW, ISDEs and workflow/PCEs, including
ConversationBuilder (Kaplan et al., 1992b), MultiviewMerlin (Marlin et al., 1993), wOrlds (Bogia and
Kaplan, 1995), SPADE/ImagineDesk (Di Nitto and Fuggetta, 1995; Bandinelli et al., 1996),
ProcessWEAVER and Oz (Heineman and Kaiser, 1995), and various groupware tools and Oz (Ben-Shaul
et al., 1994b; Ben-Shaul and Kaiser, 1996). Many of these, such as MultiviewMerlin,
SPADE/ImagineDesk and wOrlds, have produced environments with a high degree of integration.
However none have produced environments which capture detailed information about enacted process
models and present this “work context” information using the integrated tools themselves, nor do they
allow information from the integrated tools to be utilised in the process modelling environment exactly as
though the tools were part of that environment. In contrast in our integrated environment the boundaries
of the two systems, from a user's perspective, have disappeared, despite there being no modifications to
the underlying architectures of either system. The augmentation of SPE and CSCW tool data with
Serendipity process model information, and the highlighting of in-use SPE artefacts by Serendipity,
allows users to remain aware of when and why other users have made artefact changes or caused tool
events to occur. Similarly, SPE artefacts (classes, diagrams etc.) and tools (OOA/D editor, text editor,
debugger etc.) can be represented in Serendipity as EVPL artefacts and tools, and VEPL filter/actions can
use these artefacts and tools as both producers of events and as event filters. Serendipity process stages
can also store work histories using the event descriptions generated by the integrated tools. This provides
closer user interface integration between process modelling tool, CSCW tools and work tools than do
these other PCE, CSCW environment and work tool integration efforts.

Our integration of Serendipity, MViews CSCW tools, and an ISEE has been very successful, due to the
event-driven and component-based natures of these environments and their common implementation
platform. We have achieved a much lesser degree of integration of Serendipity with third-party tools,
because of limitations in the interfaces provided to the tool data and control functions. Recent work on
integrating such hetrogeneous software development, CSCW and process modelling environments has
focused on data aspects (e.g. federated approaches to tool integration (Bounab and Godart, 1995)), control
integration via enveloping (e.g. between Oz and third party tools (Valetto and Kaiser, 1995)), and process
integration (e.g. coordinating tool usage via PCEs (Marlin et al., 1993; Di Nitto and Fuggetta, 1995;
Bandinelli et al., 1996)). Serendipity provides, via MViews and VEPL, an event-driven interface which
supports control and process integration with disparate tools. At present, Serendipity utilises a repository
which stores process model data in the form of Prolog terms. While Serendipity actions can be defined to
facilitate import/export of this data with heterogeneous tools, this does involve more work than utilised in
federated approaches to tool integration via distributed data management (Bounab and Godart, 1995;
Valetto and Kaiser, 1995).

 8.3. CURRENT AND FUTURE WORK WITH SERENDIPITY

The experience of the authors and other users of Serendipity to date has been generally positive, but a
number of desirable improvements to the languages and environment have been identified. The EVPL
and VEPL languages have proved concise and yet expressive for a large range of process modelling and
work coordination/event-handling problems. There is a need, however, to support better artefact
structuring and repository querying facilities for users. To this end we are currently developing a third
visual notation for Serendipity, the Visual Query Language (VQL). This will allow users to specify the
structure of artefacts using an MViews-style component and relationship model. Users will also be able to
define complex, graphical queries over MViews (and other tool) environment repositories. Triggering of
filters and actions will then be possible over the query result, which will be incrementally updated as data
is modified.

We have been working on filters and actions which allow work contexts to be determined dynamically, in
addition to being specified using artefact, role and tool representations. This will allow Serendipity to
determine changes of context (i.e. change of current enacted process stage) automatically, rather than
requiring users to do this manually, as at present. Actions will utilise the history of work context
information for stages to determine such context changes. Visualisation techniques allowing users to view
summaries of inter-related changes made in different contexts are also being developed. These facilities
will, we believe, assist Serendipity in better supporting more informal aspects of work, which is currently
poorly supported by existing workflow and PCEs (Kaplan et al., 1996).

We are currently porting Serendipity to Java and are utilising a Web-based interface to the modelling
language views (Grundy et al., 1997). This will improve the portability of our environment. More
significantly, this will enable us to provide better integration with hetrogeneous tools, or at least utilise
the now commonly-understood “plug-in” and “helper application” model of loose integration employed
by browser-style applications. Another advantage will be the ability to reuse other people’s CSCW and
work tools, in the form of Java applets, plug-ins or helper applications. We have found that systems built
on event-based architectures, such as those of MViews, are much more amenable to tool integration, and
plan to use Serendipity’s event-handling language in conjunction with such systems to better facilitate
their integration with Serendipity.

9. Summary

Our work with Serendipity makes a number of new contributions to research into process technology.
EVPL, while having some similarities to other graphical process modelling languages, utilises a versatile
enactment event-based execution model. EVPL is used for generic process modelling, meta-process
modelling and detailed work planning, and supports process stage work context modelling via
representations of artefacts, tools, role communication and various kinds of inter-component usage
relationships. VEPL is a novel event-handling notation which utilises EVPL model components, as well
as introducing filters and actions, to handle enactment, artefact update, tool-induced and role-induced
events. EVPL and VEPL together allow process modellers to specify arbitrary event-handling for process
models, which includes specifying a large variety of work coordination strategies, automatic process
model rule application, and propagation and storage of events between stages, artefacts, tools and roles.

Serendipity provides a support environment for EVPL and VEPL which includes multiple views of
process models and event handling specifications. Enactment of process models utilises highlighting of
enacted stages, event flows and artefact, tool and role representations, helping multiple users to keep
aware of others’ work contexts. Collaborative editing of process models is supported, along with CSCW
tools for annotating, messaging and talking about models. Integration of Serendipity and MViews-based
tools for performing work results in environments with highly integrated user interfaces. Descriptions of
changes made in other tools are annotated with work context (i.e. process stage) information, process

stages store lists of changes made while they are enacted (forming histories of work), and icons in both
Serendipity and the integrated tools are hightlighted to facilitate group awareness. Such tight user
interface integration is not supported by most other PCE/workflow and work tool integration efforts.
Serendipity utilises a component, event-based architecture. A hybrid technique is used to store process
model information in local repositories for speed of access, and a central repository used to enable
sharing of versions and broadcasting of enactment, artefact and tool events.

Serendipity is being extended to incorporate a flexible Visual Query Language, which will double as a
tool repository query and data visualisation language, and a more flexible artefact data specification for
use by VEPL filters and actions. We are currently porting MViews to Java and will also port Serendipity
and the MViews suite of software development tools, to improve their accessibility, performance, and
ability to integrate existing tools. Filters and actions are currently interpreted, but will be compiled to Java
to improve their performance.

Acknowledgments

The authors gratefully acknowledge the many helpful comments of the anonymous reviewers on earlier
drafts of this paper.

References
Baldi, M., Gai, S., Jaccheri, M.L., and Lago, P. 1994. Object Oriented Software Process Design in E3. In Software Process

Modelling & Technology, eds. A. Finkelstein and J. Kramer and B. Nuseibeh, Research Studies Press, 1994.
Bandinelli, S., Fuggetta, A., and Ghezzi, C. 1993. Process model evolution in the SPADE environment. IEEE Transactions on

Software Engineering, vol. 19, no. 12, pp. 1128-1144.
Bandinelli, S., Fuggetta, A., Ghezzi, C., and Lavazza, L. 1994. SPADE: an environment for software process analysis, design

and enactment. In Software Process Modelling & Technology, eds. A. Finkelstein and J. Kramer and B. Nuseibeh, Research
Studies Press, 1994.

Bandinelli, S., Di Nitto, E., and Fuggetta, A. 1996. Supporting cooperation in the SPADE-1 environment, IEEE Transactions
on Software Engineering, vol. 22, no. 12.

Barghouti, N.S. 1992. Supporting Cooperation in the Marvel Process-Centred SDE. In Proceedings of the 1992 ACM
Symposium on Software Development Environments, ACM Press, 1992, pp. 21-31.

Belkhatir, N., Estublier, J., and Melo, W.L. 1994. The Adele/Tempo Experience. In Software Process Modelling &
Technology, eds. A. Finkelstein and J. Kramer and B. Nuseibeh, Research Studies Press, 1994.

Ben-Shaul, I.Z. and Kaiser, G.E. 1994a. A Paradigm for Decentralized Process Modeling and its Realization in the Oz
Environment. In Sixteenth International Conference on Software Engineering, IEEE CS Press, pp. 179-188.

Ben-Shaul, I.Z., Heineman, G.T., Popovich, S.S., Skopp, P.D. amd Tong, A.Z., and Valetto, G. 1994b. Integrating Groupware
and Process Technologies in the Oz Environment. In 9th International Software Process Workshop:The Role of Humans in
the Process, Ghezzi, C., IEEE CS Press, Airlie, VA, October 1994, pp. 114-116.

Ben-Shaul, I.Z. and Kaiser, G.E. 1996. Integrating Groupware Activities into Workflow Management Systems. In 7th Israeli
Conference on Computer Based Systems and Software Engineering, Tel Aviv, Israel, June 1996, pp. 140-149.

Bogia, D.P. and Kaplan, S.M., Flexibility and Control for Dynamic Workflows in the wOrlds Environment. In Proceedings of
the Conference on Organisational Computing Systems, ACM Press, Milpitas, CA, November 1995.

Bounab, M. and Godart, C. 1995. A Federated Approach to Tool Integration. In Proceedings of CAiSE'95, Springer-Verlag,
LNCS 932, Finland, June 13-16 1995, pp. 269-282.

Conradi, R., Hagaseth, M., Larsen, J., Nguyen, M.N., Munch, B.P., Westby, P.H., Zhu, W., Liu, C. 1994. EPOS: Object
Oriented Coopeartive Process Modeling. In Software Process Modelling & Technology, eds. A. Finkelstein and J. Kramer
and B. Nuseibeh, Research Studies Press, 1994.

Cox, P.T., Giles, F.R., and Pietrzykowski, T. 1989. Prograph: a step towards liberating programming from textual
conditioning, , IEEE Computer Society Press. In Proceedings of the 1989 IEEE Workshop on Visual Languages, 1989, pp.
150-156.

Di Nitto, E. and Fuggetta, A. 1995. Integrating process technology and CSCW. In Proceedings of IV European Workshop on
Software Process Technology, LNCS, Springer-Verlag, Leiden, The Nederlands, April 1995.

Ellis, C.A., Gibbs, S.J., and Rein, G.L. 1991. Groupware: Some Issues and Experiences,Communications of the ACM, vol. 34,
no. 1, 38-58, January 1991.

Fernström, C. 1993. ProcessWEAVER: Adding process support to UNIX. In 2nd International Conference on the Software
Process: Continuous Software Process Improvement, IEEE CS Press, Berlin, Germany, February 1993, pp. 12-26.

Grundy, J.C. and Hosking, J.G. 1993. A framework for building visusal programming environments. In Proceedings of the
1993 IEEE Symposium on Visual Languages, IEEE Computer Society Press, 1993, pp. 220-224.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Apperley, M.D. 1995a. Coordinating, capturing and presenting work
contexts in CSCW systems. In Proceedings of OZCHI'95, Wollongong, Australia, Nov 28-30 1995, pp. 146-151.

Grundy, J.C., Hosking, J.G., Fenwick, S., and Mugridge, W.B. 1995b.Connecting the pieces, In Visual Object-Oriented
Programming, eds. M. Burnett, A. Goldberg, T. Lewis, Manning/Prentice-Hall, 1995.

the 6th European Workshop on Next Generation of CASE Tools, Finland, June 1995, pp. 109-116.
Grundy, J.C., Mugridge, W.B., Hosking, J.G., and Amor, R. 1995c. Support for Collaborative. Integrated Software

Development. In Proceeding of the 7th Conference on Software Engineering Environments, IEEE CS Press, April 5-7 1995,
pp. 84-94.

Grundy, J.C. and Hosking, J.G. 1995. ViTABaL: A Visual Language Supporting Design By Tool Abstraction. In Proceedings
of the 1995 IEEE Symposium on Visual Languages, IEEE CS Press, Darmsdart, Germany, September 1995, pp. 53-60.

Grundy, J.C. and Venable, J.R. 1995a. Providing Integrated Support for Multiple Development Notations. In Proceedings of
CAiSE'95, Springer-Verlag, LNCS 932, Finland, June 1995, pp. 255-268.

Grundy, J.C., and Venable, J.R. 1995b. Developing CASE tools that support integrated design notations. In Proceedings of
Grundy, J.C., Hosking, J.G., and Mugridge, W.B. 1996a. Towards a Unified Event-based Software Architecture. In Joint
Proceedings of the SIGSOFT'96 Workshops, eds. L. Vidal, A. Finkelstein, G. Spanoudakis, and A.L. Wolf, ACM Press,
October 14-15 1996, pp. 121-125.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B. 1996b. Low-level and high-level CSCW in the Serendipity process
modelling environment. In Proceedings of OZCHI'96, IEEE CS Press, Hamilton, New Zealand, Nov 24-27 1996.

Grundy, J.C., Venable, J.R., Hosking, J.G., and Mugridge, W.B. 1996c. Coordinating collaborative work in an integrated
Information Systems engineering environment. In Proceedings of the 7th Workshop on the Next Generation of CASE tools,
Crete, 20-21 May 1996.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B. 1996d) Supporting flexible consistency management via discrete change
description propagation, Software - Practice & Experience, vol. 26, no. 9, 1053-1083, September 1996.

Grundy, J.C., Mugridge, W.B., and Hosking, J.G. 1996e. A Java-based toolkit for the construction of multi-view editing
systems. In Proceedings of the Second Component Users Conference, Munich, July 14-18 1997.

Grundy, J.C. and Hosking, J.G. 1996. Constructing Integrated Software Development Environments with MViews,
International Journal of Applied Software Technology, vol. 2, no. 3-4, pp. 133-160.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B. 1997. A Visual, Java-based Componentware Environment for Constructing
Multi-view Editing Systems, In Proceedings of 2nd Component Users Conference, Munich, July 1997.

Harmsen, F., and Brinkkemper, S., 1995. Design and Implementation of a Method Base Management System for a Situational
CASE Environment. In Proceedings of the 2nd Asia-Pacific Software Engineering Conference, IEEE CS Press, Brisbane,
December 1995, pp. 430-438.

Heineman, G.T., Kaiser, G.E., Barghouti, N.S., and Ben-Shaul, I.Z. 1992. Rule Chaining in Marvel: Dynamic Binding of
Parameters, IEEE Expert, vol. 7, no. 6, 26-32, December 1992.

Heineman, G.T. and Kaiser, G.E. 1995. An Architecture for Integrating Concurrency Control into Environment Frameworks.
In Proceedings of the 17th International Conference on Software Engineering, IEEE CS Press, Seattle, Washington, April
1995, pp. 305-313.

Hill, R.D., Brinck, T., Rohall, S.L., Patterson, J.F., and Wilner, W. 1994. The Rendezvous Architecture and Language for
Constructing Multi-User Applications, ACM Transactions on Computer-Human Interaction, vol. 1, no. 2, June 1994, 85-
125.

Ingalls, D., Wallace, S., Chow, Y.Y., Ludolph, F., and Doyle, K. 1988. Fabrik: A Visual Programming Environment. In
Proceedings of OOPSLA ‘88, ACM Press, pp. 176-189.

Jaccheri, M.L. and , Gai, S. 1992. Initial Requirements for E3: an Environment for Experimenting and Evolving Software
Processes. In Proceedings of EWSPT'92, Trondheim, Norway, September 1992, pp. 99-102.

Jaccheri, M.L. and Conradi, R. 1993. Techniques for Process Model Evolution in EPOS, IEEE Transaction on Software
Engineering: Special issue on Software Process Evolution, vol. 19, no. 12, 1145--1156, December 1993.

Kaplan, S.M., Tolone, W.J., Carroll, A.M., Bogia, D.P., and Bignoli, C. 1992a. Supporting Collaborative Software
Development with ConversationBuilder. In Proceedings of the 1992 ACM Symposium on Software Development
Environments, ACM Press, pp. 11-20.

Kaplan, S.M., Tolone, W.J., Bogia, D.P., and Bignoli, C. 1992b. Flexible, Active Support for Collaborative Work with
ConversationBuilder. In 1992 ACM Conference on Computer-Supported Cooperative Work, ACM Press, pp. 378-385.

Kaplan, S.M., Fitzpatrick, G., Mansfield, T., and Tolone, W.J. 1996. Shooting into Orbit. In Proceedings of Oz-CSCW'96,
DSTC Technical Workshop Series, University of Queensland, Brisbane, Australia, August 1996, pp. 38-48.

Kellner, M.I., Feiler, P.H., Finkelstein, A., Katayama, T., Osterweil, L.J., Penedo, M.H., and Rombach, H.D. 1990. Software
Process Modelling Example Problem. In Proceedings of the 6th International Software Process Workshop, IEEE CS Press,
Hokkaido, Japan, 28-31 October 1990.

Krishnamurthy, B. and Hill, M. 1994. CSCW'94 Workshop to Explore Relationships between Research in Computer
Supported Cooperative Work & Software Process. In Proceedings of CSCW'94, ACM Press, pp. 34-35.

Magnusson, B., Asklund, U., and Minör, S. 1993. Fine-grained Revision Control for Collaborative Software Development . In
Proceedings of the1993 ACM SIGSOFT Conference on Foundations of Software Engineering, Los Angeles CA, December
1993, pp. 7-10.

Marlin, C., Peuschel, B., McCarthy, M., and Harvey, J. 1993. MultiView-Merlin: An Experiment in Tool Integration. In
Proceedings of the 6th Conference on Software Engineering Environments, IEEE CS Press.

Medina-Mora, R., Winograd, T., Flores, R., and F., Flores. 1992. The Action Workflow Approach to Workflow Management
Technology. In Proceedings of CSCW'92, ACM Press, pp. 281-288.

Roseman, M. and Greenberg, S. 1996. Building Real Time Groupware with GroupKit, A Groupware Toolkit, ACM
Transactions on Computer-Human Interaction, Vol 3, No. 1, March 1996, 1-37.

Swenson, K.D. 1993. A Visual Language to Describe Collaborative Work. In Proceedings of the 1993 IEEE Symposium on
Visual Languages, IEEE CS Press, 1993, pp. 298-303.

Swenson, K.D., Maxwell, R.J., Matsumoto, T., Saghari, B., and Irwin, K. 1994. A Business Process Environment Supporting
Collaborative Planning, Journal of Collaborative Computing, vol. 1, no. 1.

TeamWARE, Inc. 1996. TeamWARE Flow, http://www.teamware.us.com/products/flow/.
Tolone, W.J., Kaplan, S.M., and Fitzpatrick, G. 1995. Specifying DynamicSupport for Collaborative Work within wOrlds. In

Proceedings of the 1995 ACM Conference on Organizational Computing Systems, Milpitas, CA, August 1995, pp. 55-65.
Valetto, G. and Kaiser, G.E. 1995. Enveloping Sophisticated Tools into Computer-Aided Software Engineering Environments.

In IEEE Seventh International Workshop on Computer-Aided Software Engineering, July 1995, pp. 40-48.
Venable, J.R. and Grundy, J.C. 1995. Integrating and Supporting Entity Relationship and Object Role Models. In Proceedings

of the 14th Object-Oriented and Entity Relationship Modelling Conferece, Springer-Verlag, LNCS 1021, Gold Coast,
Australia, 1995.

