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Abstract Software information sites such as StackOverflow and Freeecode

enable information sharing and communication for developers around the
world. To facilitate correct classification and efficient search, developers need
to provide tags for their postings. However, tagging is inherently an uncoor-
dinated process that depends not only on developers’ understanding of their
own postings but also on other factors, including developers’ English skills and
knowledge about existing postings. As a result, developers keep creating new
tags even though existing tags are sufficient. The net effect is an ever increasing
number of tags with severe redundancy along with more postings over time.
Any algorithms based on tags become less efficient and accurate. In this paper
we propose FastTagRec, an automated scalable tag recommendation method
using neural network-based classification. By learning existing postings and
their tags from existing information, FastTagRec is able to very accurately in-
fer tags for new postings. We have implemented a prototype tool and carried
out experiments on ten software information sites. Our results show that Fast-
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TagRec is not only more accurate but also three orders of magnitude faster
than the comparable state-of-the-art tool TagMulRec. In addition to empirical
evaluation, we have also conducted an user study which successfully confirms
the usefulness of of our approach.

Keywords Software Information Site · Software Object · Tag Recommenda-
tion ·

1 Introduction

Community-based Question Answering (cQA) services and Community-based
Open Source (cOS) services provide a valuable online resource for developer-
s around the world. These online platforms – called software information
sites (Xia et al 2013; Wang et al 2014; Zhou et al 2017) – help developer-
s on all kinds of issues across the whole life cycle of software developmen-
t. Well-known software information sites include StackOverflow (http://
www.stackoverflow.com) and Freecode (http://www.freecode.com). Due
to their importance, software information sites have attracted great attention
from both academia and industry (Treude and Robillard 2016; Robillard and Medvidović
2016; Fowkes and Sutton 2016; Michaud et al 2016; Xia et al 2014; Hou and Mo
2013). For example, there have been efforts to search duplicate postings (Hindle et al
2016; Thung et al 2014) and unsolved questions (Zhao et al 2015; Yang et al
2013).

The developer-generated content of these software information sites – such
as a question with answers in a developer Q&A site and a project in a develop-
er open source site – are termed software objects (Xia et al 2013; Wang et al
2014; Zhou et al 2017). A software object in a developer Q&A site, such as
StackOverflow, includes title, body, tags, comments, etc. Title and body give
concise and detailed descriptive information about a question. Figure 1 shows
a question in StackOverflow with title how to add pattern validation in

angular at the top, question description at the middle and five tags c#, html,

angularjs, asp.net-mvc, angularjs-directive at the bottom. The com-
ponent between title and tags is the body.

Similarly, an open source project in a developer open source site, such as
Freecode, includes a project name, project description, various tags, etc. Fig-
ure 2 shows an open source project shared in Freecode with project name
QuartzDesk at the top, project description in the middle, and four exam-
ple tags Quartz Scheduler, management, Monitoring, Web Application

at the bottom.
No matter if it is a developer Q&A site or a developer open source site,

a software information site usually requires developers to classify software
objects with multiple tags at the time of posting. These tags are regarded as
an efficient and lightweight computing mechanism in promoting developers’
communication, assiting in information finding, and helping reduce the gap
between social and technical aspects (Treude and Storey 2009). Tags provide
critical metadata to search, describe, identify, bookmark, classify, and organize
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Fig. 1: A question posted on StackOverflow

Fig. 2: An open source project shared on Freecode

software objects in these software information sites (Al-Kofahi et al (2010);
Zhou et al (2017)). Therefore, the overall quality and usefulness of software
information sites depends on high quality tags that concisely describe the
most important features of the hosted software objects.

Unfortunately, tagging software objects by developers is inherently a dis-
tributed and uncoordinated process. Most software information sites allow de-
velopers to tag their software objects with their own words. Because of the free-
dom, tags can be idiosyncratic due to developer’s understanding of their soft-
ware objects, English skills and preferences. For example, in StackOverflow

the tags oop, oo, ood, object-orientation and several other words are all
used to describe object-oriented programming. This phenomenon is called tag
synonyms (Xia et al 2013; Wang et al 2014). In addition, each software object
is usually accompanied by multiple tags. For example, developers are asked
to label at least 3 and no more than 5 tags per posting in StackOverflow.
Freecode allows developers to attach more than ten tags per sharing. As a re-
sult the number of different tags grows rapidly along with continuous addition
of software objects. So far, StackOverflow has more than 20 million ques-
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tions and 46 thousand tags. If software information sites continue the current
practice of free tag choices by developers, the number of tags will continue to
grow. With such a large number of tags, tagging eventually loses its capability
to help maintain a useful software information site.

In order to better tag new content, effectively reuse existing tags, and effi-
ciently manage the growth of tags in a software information site, we propose a
new automated tag recommendation tool called FastTagRec. The assumption
is that for a mature and large software information site, the topics of a newly
posted software objects are very likely to be covered by the vast number of ex-
isting software objects. However, this fact is largely ignored because it is easier
for developers to create their own tags than to browse and select existing tags.
For example, a developer is likely to create a tag oo for a software object relat-
ed to object-oriented programming rather than to make an effort on searching
for tags that have already been used for this topic. FastTagRec learns from
existing software objects and their tags, and recommends appropriate tags for
new software objects. The learning is based on natural language descriptions of
each software object and the tags that are associated with the software object.
In order to make FastTagRec scalable, we exploit a neural network approach
that is based on single-hidden layer neural network and the rank constrain-
t of word. FastTagRec significantly improves the state-of-the-art comparable
tool TagMulRec (Zhou et al 2017). FastTagRec achieves the same goal with
a completely different algorithm. Compared with TagMulRec, FastTagRec is
not only more accurate but also three orders of magnitude faster. In order to
evaluate FastTagRec in a realistic setting, five developers are first asked to
compare the recommended tags with the ground truth on StackOverflow over
100 postings. Then, we ask five developer to tag 150 popular GitHub projects
and rate the usefulness of using FastTagRec to tag these projects. The user
study confirms that FastTagRec is a valuable tool and can provide more useful
tags for developers.

This paper makes the following two key novel contributions.

– We propose a new tag recommendation approach that learns from existing
text descriptions and tags of existing software objects. Our algorithm is
scalable enough to handle very large software information sites.

– We have implemented FastTagRec and conducted experiments on ten soft-
ware information sites. The experiments show that FastTagRec significant-
ly outperforms the state-of-the-art tool TagMulRec in terms of both accu-
racy and efficiency.

The rest of this paper is organized as follows: Section 2 presents the mo-
tivation to our work. The technical details of FastTagRec are described in
section 3, followed by experimental evaluation and the user study in Section 4.
In Section 5, we share some of the important lessons that we learned in imple-
menting our work, and discuss threats to the validity of our study. Section 6
reviews the related work. Finally Section 7 concludes the paper.
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2 Motivation

Our work is motivated from two perspectives: services for developers and ser-
vices for software information sites.

Fig. 3: Tag synonyms in StackOverflow.

2.1 Services For Developers

Since developers are free to choose tags, the words used for tags are often
very arbitrary. Even for the words that represent the same meaning, there are
differences such as spaces vs. no spaces, upper case vs. lower case, acronym or
partial acronym vs. full spelling, hyphens vs. no hyphens, etc. Such phenomena
makes it difficult for software developers to search for existing tags and thus
they become more likely to use their own wording. This leads to more synony-
mous tags with different spelling (Beyer and Pinzger 2015). Figure 3 gives a
small portion of the tag synonymous list in StackOverflow that contains 3429
tags. In the synonymous tag list, the master tag has a higher frequency of use
than its synonymous tags, accordingly, the master tag has higher probability
of being recommended to developers than its synonymous tags. So, our auto-
mated tag recommendation tool can alleviate the problem of tag synonyms.
The synonymous tag list is maintained manually in StackOverflow, which is
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very time consuming. There are some recent works on how to identify these
synonymous tags in information sites(Beyer and Pinzger 2015, 2016). We can
add a pre-processing step which can identify all these synonymous tags and re-
move them in our future work. For a new developer-generated software object,
FastTagRec recommends a master tag that is widely used.

A developer may want to utilize existing tags. However, due to the fact
that the number of tags in mature software information sites is very large,
it is very difficult for developers who are not familiar with existing tags to
select appropriate ones to label a new software object. FastTagRec alleviates
this issue by searching existing tags for developers based on natural language-
based descriptions of the new software object.

2.2 Services For Software Information Sites

For software information sites, tags are used to identify, classify, and organize
software objects in these platforms. If developers label software objects with
similar concerns, goals, subjects or functions with different tags, the manage-
ment of the software information sites become less efficient and less accurate.
For an evolving large-scale software information site such as StackOverflow,
the organization of software objects is crucial to the search speed. If we can
ideally multi-classify the posted contents or shared projects, the management
of software information sites will be more efficient and the response time to
developers’ inquires will be significantly improved.

3 Our Approach For Automated Tag Recommdation

3.1 Problem Formulation

A software information site is a set S = {o1, . . . , on}, where oi(1 ≤ i ≤ n)
denotes a software object. For a developer Q&A site, the attributes of oi
include an identifier oi.id, a body oi.b, a title oi.tt, and a set of tags oi.T . For
a developer open source site, the attribute of oi include project name oi.n,
project description oi.b and a set of tags oi.T . If we treat the combination of
the title oi.tt and the body oi.b of a software object in a developer Q&A site as
a project description oi.d, we can assume that any software object oi contain
a description oi.d and a set of tags oi.T . The tags in a software information
site S is a set T A = {t1, . . . , tm} and the tags associated with an object oi,
i.e. oi.T , is a subset of T A.

The key research question we try to answer in this paper is the following:
Given a large set of existing software objects that are tagged, how

can we automatically recommend a set of appropriate tags for a new

software object oi?
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3.2 Approach Overview

Figure 4 depicts the overall tag recommendation architecture of FastTagRec
that consists of three layers: input layer, hidden layer and output layer. This ar-
chitecture is similar to the continuous bag of words model (CBOW) (Mikolov et al
2013).

In the input layer, there are N n-gram features (f1, . . . , fN ) that are used
to represent the text description oi.d of a software element. A feature in a text
description can be a word in the text. For example, the two 2-gram features of
the sentence“Jack loves Jane” is f1 =(Jack loves) and f2 =(loves Jane). In the
hidden layer, these n-gram features (f1, . . . , fN ) are converted to (x1, . . . , xN )
and averaged to form the hidden variable Xh. Last, we use the softmax func-
tion (Bishop 2006) to compute the probability distribution p(ti|oi.d) over the
existing tags. For a set |S| of tagged software objects in a software information
site, this maximizes the log-likelihood over their tags:

ℓ =

∑|s|
i=1

∑|oi.T |
j=1 log p(tj |oi.d)

|S|
(1)

where tj is a tag of software object oi and oi.d is the text description of
software object oi. Below we describe each layer of our approach in detail.

Fig. 4: The Overall Architecture of FastTagRec.
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3.3 Input Layer

Given a textual, natural language-based description of a software object, a
common representation for text processing and analyzing is the bag of words
model (BoW) (Behley et al 2013). However, the BoW model does not consider
word order. On the other hand, if we consider word order, the bag of words
model is too expensive. In this paper, we use a bag of n-grams as additional
features to capture partial information about the local word order.

Consider two sentences ’Jack loves Jane’ and ’Jane loves Jack’. The features
given by BoW model of are the same (’Jack’, ’loves’, ’Jane’), and thus the
two sentence cannot be distinguished by the BoW model. But for a bag of bi-
grams, the features of the first and the second sentences are (’Jack loves’, ’loves
Jane’) and (’Jane loves’, ’loves Jack’), respectively. Thus the two sentences
can be easily distinguished. This achieves comparable results to methods that
explicitly use the local word order (Wang and Manning 2012). To maintain a
fast and memory efficient mapping of the n-grams, we use the hashing trick
that is similar to the hash function proposed by Mikolov et. al. (Mikolov et al
2011).

FastTagRec first constructs a dictionary D that contains all words appear-
ing in the description of software objects in a given software information site.
It then constructs a look-up table TL to store the m dimension feature vectors
of n-grams. The size of the look-up table is |D|n in theory, where |D| is the size
of D. But, many n-grams which are the combination of n words don’t appear
in the software information site. The hashing trick is introduced in our ap-
proach. We first scan the software information site and all n-grams appearing
in the software information site is assigned a m dimension feature vector in
TL. For each n-gram in TL, we randomly initialize m dimension feature vector
and can locate a n-gram by index index(n-gram) = hashcode(n-gram). Using
a hash function, we can quickly find the feature vector fti of a n-gram feature
fi and use less memory. To avoid the disadvantages of TagMulRec’s approach,
which have been discussed in the related work, a shared weight matrix A is
constructed in FastTagRec. Finally, the feature vector xi of the n-gram feature
fi can be obtained by Equation 2:

xi = A× TL(hashcode(fi)) ∈ Rm (2)

In summary, given the text description of a software object, FastTagRec
constructs N n-gram feature (f1, . . . , fN ). For each n-gram feature fi, the
feature vector fti can be obtained by using a look-up table TL. With the help
of the shared parameter of the weight matrix A, FastTagRec finally gets the n-
gram feature vectors (x1, . . . , xN ) that are used to represent a text description
in the input layer.
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3.4 Hidden Layer

In the hidden layer, FastTagRec computes the average of n-gram feature vec-
tors (x1, . . . , xN ) to get the hidden variable Xh using Equation 3. Xh is used
to represent a text description in the hidden layer.

Xh =

∑N
i=1 xi

N
∈ Rm (3)

3.5 Output Layer

In the output layer, we use the softmax function (Bishop 2006) to compute
a probability distribution over the predefined tags. When the number of tags
is large, computing the linear classifier is expensive. The computational com-
plexity is O(km), where k is the number of tags and m is the dimension of the
hidden layer. In order to improve the performance of FastTagRec, we use a
hierarchical softmax function (Goodman 2001) based on Huffman coding tree
(Mikolov et al 2013), which reduces the complexity to O(m log2(k)) during
training.

The output layer corresponds to a binary tree. The leaf nodes denote the
tags in a software information site. The weight of a leaf node represents the
frequency of its tag. The number of the leaf nodes is k, and the number of
non-leaf nodes is (k−1). In the following we explain the notations used in our
algorithm.

– pt denotes the path from the root node to the leaf node corresponding to
tag t.

– lt denotes the number of nodes in the path pt.
– pt1, p

t
2, . . . , p

t
lt denote the lt nodes in the path pt. pt1 is the root node and

ptlt is the leaf node corresponding to tag t.
– [ct2, c

t
3, . . . , c

t
lt ](c

t
i ∈ {0, 1}) denotes the Huffman coding of tag t. The coding

consists of lt − 1 bit. cti denotes the encoding of i-th node in the path pt.
Root node does not have encoding.

– θt1, θ
t
2, . . . , θ

t
lt−1(θ

t
i ∈ Rm) denote the vector of non-leaf nodes in the path

pt. θti denotes the vector of i-th non-leaf node in the path pt.

Based on the Huffman tree, we first construct the probability distribution
p(t|Xh)(Xh ∈ Rm) over tags. For a leaf node t, the number of branches in
the path pt is lt − 1. Each branch in the path can be regarded as a binary
classification process. For each non-leaf node, we need to specify the categories
for the left and right children. Except the root node, each node in the Huffman
tree corresponds to a Huffman code of 0 or 1. In this paper, a node with coding
0 is defined as a positive class, otherwise is defined as a negative class. The
relationship is defined in Equation 4.

Category(pti) = 1− cti, i = 2, 3, . . . , lt (4)
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Based on the softmax function, the probability that a node is classified as
a positive class can be computed by Equation 5.

σ(X⊤
h θ) =

1

1 + e−X⊤
h θ

, (5)

where θ is a vector of node. The probability that a node is classified as a
negative class is 1− σ(X⊤

h θ).
For each tag t in a software information site, there is a path pt from the

root to the leaf. In the Huffman tree. there are lt − 1 branches in the path.
Because each branch can be regarded as a binary classification process and
each classification produces a probability of p(cti|Xh, θ

t
i−1), we can get the

probability of p(t|Xh) by the product of the probabilities p(cti|Xh, θ
t
i−1)(2 6

i 6 lt). Equation 6 describes the relationship.

p(t|Xh) =

lt∏
i=2

p(cti|Xh, θ
t
i−1), (6)

where p(cti|Xh, θ
t
i−1) can be obtained by Equation 7 or Equation 7. If the

Huffman code of the next node of the i−1-th node in the path pt is 0 (cti = 0),
p(cti|Xh, θ

t
i−1) = σ(X⊤

h θti−1). If the next node of the i− 1-th node in the path
pt is negative class (cti = 1), p(cti|Xh, θ

t
i−1) = 1− σ(X⊤

h θti−1).

(((((((((((((((((((hhhhhhhhhhhhhhhhhhh
p(cti|Xh, θ

t
i−1) =

{
σ(X⊤

h θti−1), c
t
i = 0;

1− σ(X⊤
h θti−1), c

t
i = 1;

(7)

p(cti|Xh, θ
t
i−1) = [σ(X⊤

h θti−1)]
1−cti • [1− σ(X⊤

h θti−1)]
cti (7)

For each sample oi.d with tag: oi.t, we maximize log-likelihood equation 8
over the tags. Equation 8 is a sub-item of equation 1. We can maximize equa-
tion 1 by maximizing equation 8 for each sample (oi.d, oi.t) in S.

ζ =
∑
t∈T A

log p(t|oi.d) =
∑
t∈T A

log p(t|Xh) (8)

Equation 8 can be converted to Equation 9 by Equation 6.

ζ =
∑
t∈T A

lt∑
i=2

{(1− cti) • log[σ(X⊤
h θti−1)] + cti • log[1− σ(X⊤

h θti−1)]} (9)

Equation 9 is the objective function of the model. We can maximize the
object function by using stochastic gradient decent and a linearly decaying
learning rate η. When a sample oi.d with tag oi.t is trained on the model,
the training can be done by using stochastic gradient decent and a linearly
decaying learning rate η on multiple CPUs simultaneously. We update all
related parameters, including the shared parameters weight matrix A and the
matrix B = {θt1, θt2, . . . , θtlt−1}, (θti ∈ Rm).



FastTagRec: Fast Tag Recommendation for Software Information Sites 11

The softmax function based on Huffman tree is efficient in searching for the
most likely tag. Each node is associated with a probability of the path from the
root node to itself. For the node t at depth lt with parent nodes pt1, p

t
2, . . . , p

t
lt ,

its probability can be obtained by Equation 6. This means that the probability
of a node is always lower than the one of its parents. Exploring the Huffman
tree with a depth first search and tracking the maximum probability among
the leaves allow us to discard any branch associated with a small probability.
In practice, we observe a reduction of the complexity to O(m log2(k)). This
method can be extended to compute the Top-K tags at the cost of O(log2(k)),
using a binary heap.

4 Experiments and Results

In this section, we first evaluate the performance of our proposed FastTagRec
automated tag recommender tool. All of these experiments were conducted
on a 64-bit Intel Core i7 3.6G desktop computer with 64G RAM running
Ubuntu 16.04. Then, we conduct a user study to evaluate the usefulness of our
approach.

4.1 Benchmarks

We define a site as a large-scale site if the number of software objects in the site
is more then 1 million, as a medium-scale site if the number of software objects
in the site is between 100k to 1 million, and as a small-scale site if the number of
software objects in the site is less than 100k. We have evaluated FastTagRec on
one large-scale software information site StackOverflow, 3 medium-scale soft-
ware information sites Askubuntu, Serverfault, Unix and 6 small-scale sites
Codereview, Freecode, Database Administrator, Wordpress, AskDifferent
and Software Engineering.

For the 3 medium-scale and 6 small-scale software information sites, we
considered all of the software objects posted to the site before Dec 31st, 2016.
For StackOverflow, we selected all of the software objects posted before July
1st, 2014, the same date set as in the prior work (Zhou et al 2017) to facilitate
comparison in this empirical study. The code of FastTagRec and all of the data
sets in our experiments described below can be accessed via the link https://

pan.baidu.com/s/1slujtU1.
Before conducting experiments on these data sets we needed to remove

rare tags and software objects. We define a tag to be rare if its number of
appearances is less than or equal to a predefined threshold ts. A rare tag
appears in a mature software information site under two scenarios. The first
scenario is that the rare tag represents a rarely discussed topic. In this case,
developers have yet to agree the tag is appropriate for the topic and thus they
should be encouraged to create their own tags. The second scenario is that
the tag is inappropriate, e.g. with spelling errors, for a popular topic. In either
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scenario, rare tags should not be recommended. In the data pre-processing
stage, we remove these rare tags from the software object. A software object
is removed if all its tags are rare.

Table 1 summarizes the number of tags and software objects after removing
the rare ones under different threshold values. We set the value of ts to 1, 50
and 10000 for StackOverflow and to 1 and 50 for 3 medium-scale and 6 small-
scale software information sites. Threshold values ts 50 have been used in prior
works (Xia et al 2013; Wang et al 2014; Zhou et al 2017).

For these software objects in Table 1, we further removed code snippets
and screenshots from their descriptions. As code snippets are placed in specific
HTML element components (<code>...<\code>). Code snippets can easily be
removed through regular expression. That is, only the text in the description
is preserved. It can be observed from Table 1 that the number of software
objects ranges from about 40k to a quarter million for the small-scale software
information sites and more than ten million for the large one.

For these sites StackOverflow, Askubuntu, Serverfault, Unix, Codereview,
Freecode, Database Administrator, Wordpress, AskDifferent and Software
Engineering, the average number of tags per software objects are 2.96, 2.69,
2.88, 2.78, 2.94, 3.48, 2.71, 2.43, 2.82 and 2.71 respectively.

It can be observed that many programmers prefer to give three tags for
each posting. We also used a log function to linearly fit the frequency of tags
and the number of tags with the same frequency. The schematic diagrams
are depicted in Figures 5[a-j] respectively. The coefficient of the determination
R2 of the linear regression fitting are 0.6459, 0.666, 0.6751, 0.7153, 0.6459,
0.5666, 0.666, 0.5614, 0.6349 and 0.7262 respectively. The tags distribution in
these data sets is a near power-law distribution. A similar conclusion was also
obtained in related work by Beyer and Pinzger 2015.

In our experiments, we randomly selected 10,000 software objects and
treated them as our test set V . The remaining software objects in the given
software information site were used to recommend tags for the 10,000 selected
ones. For each software object oi ∈ V , we recommend k tags to form a tag
set TRk

i . We repeat the process ten times and compare FastTagRec against
TagMulRec (Zhou et al 2017), a state-of-the-art tag recommendation method
for these data sets. Because the other key related approach, EnTagRec is not
scalable enough, as discussed in our related work section below, we were not
able to use EnTagRec for comparison.

4.2 Evaluation Metrics

We use the same evaluation metrics as used for TagMulRec to facilitate com-
parison of the approaches. In the following we first define these evaluation
metrics that are widely used in evaluating recommendation systems (Xia et al
2016a,b,c, 2015).

– Top-k prediction recall, denoted as Recall@k, is the percentage of top
k recommend tags that are actually used by software objects. Given a
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(a) Stackoverflow (b) Askubuntu

(c) Serverfault (d) Unix

(e) Codereview (f) Freecode

(g) DatabaseAdministrator (h) Wordpress

(i) Askdifferent (j) Software Engineering

Fig. 5: Distribution of the usage of tags (postcount) on these datasets.
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software object oi and its tags oi.T , Recall@ki is computed by Equation
10, where TRk

i is the top k tags recommended by FastTagRec for oi. For
example, if four out of top five recommended tags are actually used by a
software object, the recall value is 80%. However, recall value favors small
k. If only the first recommended tag is correct and all the rest are wrong,
the recall value is still 100% if k = 1. This problem is addressed by the
precision value below.

Recall@ki =

{ |TRk
i ∩oi.T |
k , | oi.T |> k.

|TRk
i ∩oi.T |
|oi.T | , | oi.T |≤ k.

(10)

Finally, given a set V of software objects , Recall@k is defined by Equation
11.

Recall@k =

∑|V |
i=1 Recall@ki

| V |
(11)

– Top-k prediction precision, denoted as Precision@k, is the percentage of
the tags used by software objects that are among the top k recommended
tags. TRk

i . Given a software object oi, Precision@ki for this particular
software object is defined by Equation 12. The k value indicates the number
of tags that we want to recommend to the developer. The Precision@ki is
inversely proportional to the k value. For example, if a software object has
two tags and they are both among the top five tags recommended to the
developer (namely the k value is 5), the precision value is 40%. However,
if the k value increases to 10, then the precision value will only be 20%.
Clearly, a good precision rate in our work indicates a reasonable number
of tags recommended to the developer. Note that if k is extremely large,
the precision value can be very low. This is not true for recall.

Precision@ki =
| TRk

i ∩ oi.T |
k

(12)

Given a set V of software objects, Precision@k is computed by Equation
13.

Precision@k =

∑|V |
i=1 Precision@ki

| V |
(13)

– Top-k Prediction F1-score, denoted as F1-score@k, combines Top-k predic-
tion recall and Top-k prediction precision. Equation 14 gives the definition
of F1-score@ki for software object oi.

F1− score@ki = 2 · Precision@ki ·Recall@ki
Precision@ki +Recall@ki

(14)

Given a set V of software objects, F1-score@k is defined by Equation 15.

F1− score@k =

∑|V |
i=1 F1− score@ki

| V |
(15)
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We also compared the efficiency of the two methods. FastTagRec running
time includes the training time and the prediction time. We use the average
prediction time to evaluate the efficiency of FastTagRec as its training time
is a one-off, off-line time cost. TagMulRec running time includes the time
of constructing the candidate set and the time to recommend tags. Because
TagMulRec constructs candidate sets dynamically, we use the average running
time of tag recommendation to evaluate the efficiency of TagMulRec.

4.3 Experimental Results

In order to evaluate our FastTagRec and compare it with the state-of-the-
art approach in a comprehensive way, we have conducted three groups of
experiments to answer the following three questions.

1. RQ1: Compared with the existing state-of-the-art approach, how effective
is FastTagRec?

2. RQ2: Compared with the existing state-of-the-art approach, how efficient
is FastTagRec?

3. RQ3: Does the value of the rare tag threshold affect the performance of
FastTagRec?

4.3.1 Results for RQ1

In this group of experiments we compare FastTagRec against TagMulRec on
software information sites of different scales. Our experimental results are given
in Table 2. In Table 2, Column 1 lists the names of the software information
sites and Column 2 gives the threshold value 50. Tag threshold value ts 50 has
been used in prior works (Xia et al 2013; Wang et al 2014; Zhou et al 2017).
The rest of the columns compare FastTagRec with TagMulRec using the three
metrics Recall@k, Precision@k and F1-score@k. The top half and the bottom
half of the table show the results when k = 5 and k = 10, respectively. The
bold font in the table indicates the better results. The standard deviation is
reported in brackets.

It can be observed that FastTagRec achieves better performance than Tag-
MulRec in terms of Recall@k, Precision@k, F1-score@k on all the k settings
on one large-scale and three medium-scale software information sites.

For the six small-scale software information sites, FastTagRec achieves bet-
ter performance than TagMulRec on 3 sites in terms ofRecall@5, Precision@5,
F1-score@5, and 4 sites in terms of Recall@10, Precision@10, F1-score@10.
Wilcoxon signed-rank test (Song et al 2011; Zimmermann and Nagappan 2008)
confirms that the performance improvement of FastTagRec is statistically sig-
nificant (p-value < 0.001). It may not be enough to use the Wilcoxon test only
to assess the significance of the differences of experimental results. Therefore,
we use Cliff’s Delta which is an effective measure for the magnitude of differ-
ences. Cliff’s Delta (Macbeth et al 2011) indicates that the differences between
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the experimental results of our method and the baseline method are signifi-
cant (namely |d-value| is close to 1). In addition, as FastTagRec is based on
neural network, the larger the scale of software information site, the better the
effectiveness (Mikolov et al 2013).

4.3.2 Results for RQ2

In order to investigate the efficiency of FastTagRec, we compared FastTagRec
against TagMulRec on different sized software information sites. The experi-
mental results are given in Table 3. In Table 3, Column 1 lists the names of
the software information sites and Column 2 gives the threshold values that
are 1, 50 and 10000 (only for StackOverflow), and the third and fourth Col-
umn compare the training time needed to construct recommendation model.
Although the training time is significant, it is a one-time expense. The last
two columns compare the average time needed to recommend one tag.

It can be observed that the training time of FastTagRec is significant-
ly shorter than TagMulRec on all the ts settings. FastTagRec achieves three
orders of magnitude reduction for one large-scale software information site
in prediction time on all the ts settings, indicating its capability in recom-
mending large number of tags for larger scale software information sites. For
three medium scale and six small scale software information sites, FastTagRec
achieves one orders of magnitude reduction in prediction time on all the ts
settings.

Therefore, we claim that based on these experimental results, FastTagRec
is more efficient than TagMulRec for tag recommendation for various sized
software information sites.

4.3.3 Results for RQ3

Both FastTagRec and TagMulRec remove rare tags. In this group of experi-
ments, we investigated whether the rare tag threshold values affect the effec-
tiveness and efficiency of FastTagRec. In order to do so, we evaluate Recall@k,
Precision@k, F1-score@k (k=5 and 10) and time overhead of FastTagRec and
TagMulRec under different tag threshold values.

Because prior works (Xia et al 2013; Wang et al 2014; Zhou et al 2017)
limit the tag threshold value to 50, we used the tag threshold values of 1
and 50 for medium-scale and small-scale software information sites and to 1,
50 and 10,000 for large-scale software information sites. Table 4 shows the
performance of FastTagRec and TagMulRec on tag threshold value 1.

Table 5 shows the performance of FastTagRec and TagMulRec on large-
scale software information site StackOverflow with tag threshold values 1, 50,
and 10,000. For the large-scale data set Stackoverflow, we noticed that when
tag threshold value is 10,000, FastTagRec achieves higher Recall@k values
than those with lower threshold values. However, the Precision@k and F1-
score@k values are higher when threshold values are 50 and 1. When the rare
tag threshold value is 50, FastTagRec achieves higher Recall@k values but
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achieves lower Precision@k and F1-score@k when tag threshold is 1, except
Precision@5.

For the large-scale software information site with different tag threshold
values, the prediction time of FastTagRec is the same order of magnitude.
For the 3 medium-scale and 6 small-scale software information sites, when tag
threshold value is 50, FastTagRec achieves higher Recall@k and Precision@k
values than tag threshold 1, except for very few cases. In summary, the differ-
ence on tag threshold values has very limited effect on the F1-score@k values
and time efficiency of the two compared approaches in these experiments.

4.4 User Study

To determine whether FastTagRec is effective in practice, we have designed
and run a user study with five developers including three M.S. and two Ph.D.
students. The five developers stated that they had moderate to high expertise
in Python/Java programming/debugging and everyone has experience of at
least two years. The five developers were asked to complete two tasks on their
own time and no incentives were provided to these developers to complete
these tasks.

We first selected 100 postings from StackOverflow. Among these postings,
there are 50 postings about Python programming/debugging, and the other 50
postings about Java programming/debugging. The average number of tags per
posting is 3. We use FastTagRec to recommend 10 tags for each posting. Five
developers were asked to compare the recommended tags with the ground truth
over 100 postings, and select any other appropriate tags in the recommended
tags in addition to the ground truth for each posting. For a given posting,
if more than three developers choose a specific tag from these recommended
tags in addition to the ground truth, we think the tags is a good supplement
to tag the given posting. We collected all responses from the first task. The
results show that more than 80% postings received at least one supplement
tags (21% postings received one supplement tag, 43% postings received two
supplement tags and 17% postings received more than three supplement tags).
The first task confirms that FastTagRec can provide useful supplement tags
for developers.

Next, we selected 150 popular projects from GitHub and collected the
readme files of these projects which are text files that often include project’s
description and instruction. As tagged projects in GitHub are rarely tagged,
rich tags in StackOverflow can be used to tag these projects. We asked five
developers to read these readme files and tag these projects using FastTagRec
tool which is trained based on StackOverflow data set. Five developers were
also asked to rate the level of difficulty in using FastTagRec to tag projects as
easy, moderate, or difficult. Similar to the first task, for a given project, if more
than three developers choose a specific tag from these recommended tags, we
think the tag is appropriate to tag the given project. We collected all responses
from the task. The results shows that each project received an average of 3.6
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appropriate tags. Five developers unanimously agreed that FastTagRec is very
useful and easy to use. The second task confirms that FastTagRec is a useful
tool for tagging software projects.

5 Discussion

In this section, we will first share some of the important lessons that we learned
in implementing the work in this paper, followed by the discussion on threats
to Validity.

5.1 Implications on Our Work

While experimental results affirm that our method is suitable for tag recom-
mendation in software information sites, how to reduce the training and pre-
diction time also needs attention. To this end, we identified some implications
which we take from implementing our method.

1. Performance Improvement over Baseline Method. As discussed in the re-
lated work, the baseline method only utilizes a small portion of software
information sites that is most relevant to a given software object. To im-
prove performance, our method utilizes shared parameters among features
and tags to utilize all information in software information sites. To further
improve performance, our method uses a bag of n-grams as additional fea-
tures to capture partial information about the local word order (the rank
constraint of word).

2. Costs Reduction over Baseline Method. It is important to consider the
training and prediction costs of a method before applying it. Three tricks
are used in our method to reduce these costs. Specifically, first, the network
structure of our method is very simple, only with three layers: input layer,
hidden layer and output layer. Second, the hash trick introduced in the
input layer can help quickly find feature vector and use less memory. Third,
the hierarchical softmax trick in the output layer based on Huffman coding
tree reduces the complexity of our model during the training phase.

3. Implication for Researchers and Practitioners. The major motivation for
researchers and practitioners is to use less cost to achieve better results.
Our work makes a useful attempt to explore better method for our research
question using the neural networks technology.

5.2 Threats to Validity

There are several threats that can potentially affect the validity of our results.

1. Potential Experimental Errors. Threats to internal validity relates to errors
in our experiments. The authors have carefully checked the experiments
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and data sets, but there still could be experimental errors in the set up
that that we did not notice.

2. Potentially Biased Results. Our tag recommendation assumes that existing
tags in a software information site are correct. However, human errors are
inevitable. We do apply some filtering rules, such as time interval of data
set, to alleviate the problem. These filtering rules have also been used
in other past research (Xia et al 2013; Wang et al 2014; Zhou et al 2017).
However, this issue, such as how to deal with a large number of synonymous
tags, cannot be completely solved. In the user study, these developers may
be a potential subjective bias when select tags to label selected postings or
projects. To mitigate potential subjective bias, a specific tag is considered
as a good choice or supplement for a given object only when more than
three developers haven chosen it.

3. Generalizability of Algorithms. External threats to validity relate to how
generalisable experimental results can be. In this research, we have evalu-
ated FastTagRec on one large scale, three medium-scale and six small scale
software information sites. There are more than 11 million software object-
s in the large scale software information site. Even so, more case studies
are needed to generalize our findings to other sites and kinds of software
objects and their tags. In the future, more software information sites will
be used to further evaluate FastTagRec.

4. Suitability of Evaluation Metrics. In this paper, Recall@k, Precision@k
and F1-score@k are used as our evaluation metrics.Recall@k and Precision@k
have been used in past research to evaluate the performance of tag recom-
mendation for software information sites (Xia et al 2013; Wang et al 2014;
Al-Kofahi et al 2010) and for social media and network (Zangerle et al
2011; Wang et al 2013a; Yang et al 2015, 2014). It is possible that more
suitable metrics can be adopted. For example, since our tag recommenda-
tion is a multi-classification process (Cai et al 2011), the evaluation met-
rics of multi-label classification approaches (Tsoumakas and Katakis 2006;
Zhang and Zhou 2007) will be used in our future work.

5. Model Scalability. In this paper, we only utilized the textual content of the
description of software objects. We removed all code snippets and screen-
shots form the descriptions. We will attempt to utilize these code snippets
and extracted information from screenshots in the description to extend
our model in our future work.

6 Related Work

Tag recommendation has been a hot research problem in the fields of so-
cial network and data mining for some time (Sigurbjörnsson and Van Zwol
2008; Rendle and Schmidt-Thieme 2010; Yin et al 2010; Wang et al 2013b;
Jäschke et al 2007). Automatic tag recommendation in software engineering
was first proposed by Al-Kofahi et. al. in 2010 (Al-Kofahi et al 2010). Al-
Kofahi et al. proposed a method called TAGREC to automatically recom-
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mend tags for work items in IBM Jazz. TAGREC was based on the fuzzy set
theory and considered the dynamic evolution of a system. Later a method
called TAGCOMBINE (Xia et al 2013) was proposed to automatically rec-
ommend tags for software objects in software information sites. It consists of
three components: a multi-label ranking component, a similarity based ranking
component, and a tag-term based ranking component. The multi-label ranking
approach adopted by TAGCOMBINE limits its application to relatively small
datasets. For a large-scale software information site such as StackOverflow,
TAGCOMBINE has to train more than forty thousand binary classifier mod-
els and the size of each training set is more than ten million. A more recent
approach called EnTagRec (Wang et al 2014) outperforms TAGCOMBINE in
terms of Recall and Precision metrics. EnTagRec consists of two components:
Bayesian inference component and Frequentist inference component. However,
EnTagRec is not scalable as well, as it also utilizes all information in software
information sites to recommend tags for a software object. Lately, a state-of-
the-art tags recommendation method TagMulRec is proposed by Zhou et. al.
in 2017 (Zhou et al 2017). For a given software object, TagMulRec prunes the
large-scale categories (tags) into a much smaller set of target category candi-
dates for similarity distance computation. In addition, neither TAGCOMBINE
nor EnTagRec adapts to the dynamic evolution of software information sites.
In contrast, TagMulRec is scalable and is able to handle continuous updates
in the software information sites. However, TagMulRec only utilizes a small
portion of software information sites that is most relevant to a given software
object. Our method FastTagRec utilizes shared parameters among features
and tags to utilize all information in software information sites and avoid the
limitation of generalization in the context of large output space where some
tags have very few examples.

In the field of software engineering, tags have become widely used for in-
formation finding, team co-ordination and co-operation, and helping to bridge
socio-technical issues (Storey et al 2010; Begel et al 2010; Treude and Storey
2009; Thung et al 2012; Wang et al 2012; Beyer and Pinzger 2015, 2016). S-
torey et. al. proposed a set of pertinent research questions (Storey et al 2010),
which strives to understand the benefits, risks and limitations of using so-
cial media in software development at the team, project and community level,
around community involvement, project coordination, project managemen-
t and individual software development activities. Begel et al. described the
potential benefits (Begel et al 2010) for social media to both improve com-
munication and coordination in software development teams and support of
the creation of new kinds of software development communities. Treude et al.
explored how tagging is used to bridge the gap between technical and social
aspects of managing work items (Treude and Storey 2009). They conducted
an empirical study on how tagging has been adopted and adapted over the
two year of a large project with 175 developers. Their results showed that the
tagging mechanism had become a significant part for many informal processes
(Treude and Storey 2009). Thung et al. detected similar software application
using software tags Thung et al (2012). Wang et al. analyzed tags of projects in
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FREECODE to infer semantic relationships among the tags, and express the
relationships as a taxonomy (Wang et al 2012. Beyer et al. designed a tag syn-
onym suggestion tool TSST to alleviates tag synonyms issue in StackOverflow

(Beyer and Pinzger 2015, 2016).
Our primary related work is the work by Mikolov et al.(2013) (Mikolov et al

2013), who proposed a CBOW model to get word vectors in the NLP task.
The CBOW model is based on artificial neural network techniques. An ar-
tificial neural network makes the information flow from input level through
hidden levels to output level along connections with adjustable weights. The
architecture of deep neural networks contains many hidden levels. Our method
only contains a single hidden layer, which ensures that FastTagRec can work
quickly in large-scale software information sites. Deep neural networks have
been utilized in other software engineering tasks, such as code clone detection
(White et al 2016), mining software repositories (White et al 2015; Xu et al
2016; Gu et al 2016), etc.

7 Conclusion and Future Work

In this paper, we presented a scalable tag recommendation method called
FastTagRec for software information sites. FastTagRec achieves accuracy and
efficiency by (1) constructing an suitable framework based on single-hidden
layer neural networks, (2) exploiting the rank constraint of word, (3) utilizing
shared parameters among features and avoiding the limitation in the contex-
t of large tag output space. We implemented FastTagRec and evaluated its
performance on ten software information sites with large number of software
objects and tags. The evaluation was conducted by recommending tags for
randomly selected 10,000 software objects in each software information site.
The experimental results confirmed that FastTagRec is much more effective
and efficient than the stat-of-the-art approach. In order to evaluate FastTa-
gRec in more realistic settings, we first ask five developers to compare the
recommended tags with the ground truth over postings. Then, five developers
are asked to tag open source projects and rate the usefulness of FastTagRec.
The user study confirms that FastTagRec is useful for developers in the real
scene.

Our current work is based on text only. In the future, we plan to con-
sider code snippets and screenshots to make our tag recommendation more
accurate. We will also conduct experiments on more large-scale software infor-
mation sites with more evaluation metrics. The proposed method in this paper
provides a framework that can potentially be used to solve other problems in
software engineering, such as bug triage and code-reviewer recommendation.
In the future, we will explore new applications for the framework.
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