
An Automated Collaborative Requirements Engineering
Tool for Better Validation of Requirements

Nor Aiza Moketar, Massila
Kamalrudin, Safiah Sidek

Innovative Software System and
Services Group,

Universiti Teknikal Malaysia Melaka,
Melaka, Malaysia

nor.aiza09@gmail.com,
{massila, safiahsidek}@

utem.edu.my

Mark Robinson
Fulgent Corporation,

USA

marcos@fulgentcorp.com

John Grundy
Faculty of Science Engineering and

Built Environment, School of
Information Technology, Melbourne

Burwood Campus, Deakin University,
Victoria 3125, Australia

j.grundy@deakin.edu.au

ABSTRACT

This demo introduces an automated collaborative requirements

engineering tool, called TestMEReq, which is used to promote

effective communication and collaboration between client-

stakeholders and requirements engineers for better requirements

validation. Our tool is augmented with real time communication

and collaboration support to allow multiple stakeholders to

collaboratively validate the same set of requirements. We have

conducted a user study focusing on validating requirements using

TestMEReq with a few groups of requirements engineers and

client stakeholders. The study shows that our automated tool

support is able to assist requirements engineers to effectively

communicate with client-stakeholders to better validate the

requirements virtually in real time. (Demo video:

https://www.youtube.com/watch?v=7sWLOx-N4Jo).

CCS Concepts

• Software and its engineering~Requirements analysis

• Software and its engineering~Acceptance testing • Software

and its engineering~Collaboration in software development

Keywords

Abstract test, Essential Use Cases, Essential User Interface,

requirement-based testing, requirements validation,

communication and collaboration

1. INTRODUCTION
Communication and collaboration between requirements engineer

and client-stakeholders is one of the most important activities in

requirements engineering process [1]. As the initial stage of any

software development, it is the key component to achieve success

in a software development project [2]. Any errors found at the

requirements stage will disrupt the completion of a project and

cause many other problems. At this initial stage, a lot of key

information and requirements about a project are reported and

documented from the client-stakeholders. Therefore, it is very

important to validate, verify and clarify the information so that

common understanding of and agreements on the requirements

can be achieved at the early stage of the development stage.

In our previous work, we have presented an automated

requirements validation tool, called TestMEReq1[3]. This tool is

able to automatically generate a combination of abstract test cases

and mock-up user interface (UI) prototypes from semi-formalised

Essential Use Cases (EUC) and Essential User Interface (EUI)

models [4], [5]. Our automated approach assists requirements

engineers to validate requirements with the stakeholders; hence, it

helps to reduce the cost of generating and designing test cases and

user interface prototypes.

We have extended our tool to support more effective

communication and collaboration for better requirements

validation process. Our tool has a new feature that allows multiple

users to collaborate synchronously and asynchronously regardless

of their location whether in remote or co-locate project. To our

knowledge, this approach is unique in the sense that it supports

effective communication and collaboration for early testing during

the requirements validation phase. Further, we also enhance the

tool with template-based tests authoring to assist requirement

engineers in writing quality test requirements and test cases.

2. OUR APPROACH
We have developed an approach and automated support tool

called TestMEReq that enables requirements engineers to

effectively communicate and collaborate with client-stakeholders

to discuss and validate the quality of the captured requirements.

Figure 1 shows an overview of our approach for collaborative

requirements validation. It is an extension to our previous work

[3], [6], [7]. Our new work is labelled as (B) and (C). The process

starts with the requirements engineer and the client-stakeholders

use the TestMEReq to validate the requirements (A). Here, the

users need to key in their requirements in the form of user story or

use case scenario (1) to generate the related EUC and EUI models

(2) from the textual requirements. The requirements are analysed

with the EUC and EUI pattern libraries to generate the related

EUC and EUI models. Then, a set of abstract tests consisting of

test requirements and test cases are generated (3)(4). This

automated process is supported with the test requirements and test

case pattern libraries [3]. The users may then execute the test

cases on the generated mock-up user interface to review and

validate the expected behaviour of the requirements. Then, they

need to indicate their testing status. The testing status will be

saved in the database for future reference.

1Tool demo is available at https://youtu.be/oCZYaU9Mbxg

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...

http://dx.doi.org/10.1145/2970276.2970295

864

The requirements engineer can review the testing results from the

client-stakeholder. If there are any conflicting results from all the

client-stakeholders, the requirements engineer can initiate for

collaboration with the client-stakeholders for further discussion

(B). Here, the requirements engineer needs to share the access to

the client-stakeholders by sending an invitation email to all

relevant stakeholders. Upon receiving the email, the client-

stakeholders can click on the provided link to join the discussion.

They can comment any part of the results that they disagree

during the discussion. They also can simultaneously edit the

document and communicate to each other using the chatting

facilities.

Upon agreement from all stakeholders, the requirements engineer

may add and update the pattern library of TestMEReq through the

tests authoring-template (C). This template helps the requirements

engineer to write quality test requirements and test cases. We have

embedded a natural language parser for English language to

ensure the correctness and accuracy of the test requirements and

the test cases provided by the requirements engineer. The parser

helps to ensure that the user follows the correct sentence structure

from our test requirements pattern library. We have defined the

syntax rules for the sentence structure as the following:

<Action verbs> [Actor]<Auxiliary verbs> [Action] [Condition]

The parser helps to ensure the requirements engineer uses the

right terms for the test requirements in order to ensure correct

sentences is written and reflected to the objectives/goals of the

requirements. For this, the user must use an infinitive/action verbs

and words such as “Validate that...”, “Verify that...” and “Test

that...” in the test requirements statements. Some examples of the

sentences that follow our test requirements sentence structure are:

1. Validate (VB) that (Art) user (NN) can (MD) login (VB) with

(Prep) valid (Adj) user name and password (NN).

2. Validate (VB) that (Art) user (NN) can (MD) withdraw (VB)

the correct (Adj) amount (NN).

Our tool also provides prompt notification and feedback as well as

highlighting of errors to alert requirements engineer to any defects

found in the test requirements and test cases. The tool is flexible

as it allows users to also ignore the notification if they disagree

with it. This may be helpful if the user wants an addition to be

made to the test requirements and test cases, which later can be

reviewed by the requirements engineer. Further, the test-authoring

template also helps to enhance the scalability of our test

requirements pattern library by allowing requirements engineers

to insert new test requirements and test cases for other domains of

applications.

Figure 1. The overview of our proposed approach.

865

3. TOOL SUPPORT: TESTMEREQ
We have extended our TestMEReq tool with communication and

collaborative support to allow multiple stakeholders to validate

the same set of requirements at anytime and anywhere. For this,

we have integrated the TestMEReq with an open source tool,

Etherpad [8] an online editor for collaborative editing in real-time.

Further, we enhanced the TestMEReq with a template-based test

authoring to assist the requirements engineer to write quality test

requirements and test cases, which are in compliance with our

pattern libraries. Several screen dumps of the tool in use are

shown in Figure 2. From a set of natural language requirements, a

semi-formal EUC models are extracted (1) and then mapped to a

low-fidelity EUI model (2). Then, a set of test requirements (3)

and test cases (4) is generated. Users can validate the

requirements by executing the test cases on the mock-up user

interface prototype (5) and see the expected results. Then, users

can indicate and save their testing status for future reference.

From here, the requirements engineer can initiate collaboration

with the client-stakeholders by clicking the “Review” button.

Then, he/she will be navigated to the Etherpad screen that is

integrated with the TestMEReq, as shown in Figure 3. Here,

he/she can share the access to the screen with the client-

stakeholders by sending an invitation email (A). The requirements

engineer can indicate the access level for the invited users,

whether he/she can edit, view or comment on the document. The

requirements engineer and the invited client-stakeholders can also

simultaneously edit the documents (B), add comments (C) and

communicate with each other via the chatting facility (D). They

can also view the online users in the collaborative session (D).

Once confirmed and agreed by the client-stakeholders, the

requirements engineer can add/update the EUC model, test

requirements and test cases through the test-authoring template of

TestMEReq, as shown in Figure 4. At the pattern editor page, the

requirements engineer needs to search for the relevant EUC

model, test requirements or test cases that need to be added,

updated or deleted (A). Figure 6 (B) shows the test requirements

template form that allows the requirements engineer to add or

update the test requirements. An error message will appear to

warn the requirements engineer if the test requirements do not

follow our test requirements sentence structure.

Figure 2: TestMEReq generates EUC model, EUI prototype model, test requirements, test cases and mock-up UI prototype from

natural language requirements.

866

4. EVALUATION
This study focuses on answering a concrete research question:

Can an automated approach and tool support help to improve the

communication and collaboration between requirements engineer

and their clients in order to validate the requirements? For this

aim, we have conducted a small user study to observe the

effectiveness of our approach in a collaborative requirements

validation environment.

4.1 User Study
We have conducted a qualitative study with six post-graduate

students who worked in pairs as the requirements engineer and the

client. Some of the participants have working experience in the

software industry. The participants were given an explanation and

demonstration of our TestMEReq tool and task to be performed.

For the experiment, every participant received a laptop or an

android tablet to access the TestMEReq tool. Each of the pairs

was requested to explore our tool with some requirements sample.

They were given one hour to identify any missing requirements:

incomplete and inconsistency between the generated EUC and the

EUI model as well as the test requirements and the test cases. In

this study, they were required to identify three inconsistent EUC

and EUI model, two incomplete or missing test requirements and

four incomplete test cases. They were also requested to discuss

the requirements using the facilities in our tool, such as the

comment and the chatting tool. During the workshop, they were

assigned in two different rooms and not allowed to communicate

verbally to each other. We observed their behaviour and

transcribed their comments and chatting history to analyse their

communication behaviour. Finally, they were requested to answer

a questionnaire to identify their level of satisfaction when using

our tool that allows them to communicate and collaborate in the

requirements validation process. We also conducted a semi-

structured interview to seek their opinions whether the approach

helps to improve the communication and collaboration between

the requirements engineer and client and whether it helps to

improve the requirements validation process.

From our observation, we found that TestMEReq assisted both

requirements engineer and clients to better communicate and

collaborate, to discuss and to validate the intended system

requirements. In evaluation 1, RE1 stated that the tool encouraged

him to ask the client to confirm and validate the consistency and

completeness of the requirements that he had captured in

TestMEReq. An extract from the dialogue is as follows:

RE1: “Here is the requirement scenario of your requirements.

From here we got the EUC and EUI models as well as the test

requirements and test cases. What do you think?”

C1: “I think the EUC and EUI models are not in the correct order.

The item “List of option” must be before the “Choose item”.”

RE1: “Ok. Let’s re-arrange the use case scenario and let see the

EUC and EUI models.”

RE1 re-wrote the use case scenario as per the client’s instructions

and then showed to C1 the generated EUC and EUI models from

the scenario. C1 was then requested to validate and confirm the

modified requirements against the original requirements and

responded:

C1: “Yes. I think it is fine now.”

A similar dialogue occurred in evaluation 2:

RE2: “This is the outcome of your requirements. Can you please

have a look on each requirements components: EUC, EUI, test

requirements and test cases to confirm that we have the right

requirements.”

C2: “I think the requirements scenario is not tallied with our

initial requirements. It is not in the right flow of the system that

we imagine. First, the user should be able to view the list of

product to be added in the system, then he can choose the item

from the list.”

RE2: “Ok. Let’s re-write the flow of the requirements.”

RE2 showed C2 the original requirements in the textual editor

and refined it based on C2’s instruction and then asked C2 to

validate the modified requirements.

RE2: “Here are the new requirements components. Let’s see each

of them. Do you agree with this one?”

C2: “Yes, this is what we want.”

Similarly, in evaluation 3, C3 highlighted the incomplete test

requirements and test cases generated from the textual

requirements.

RE3: “Let’s test your requirements. These are the four test cases

generated from the requirements scenario. What do you think?”

C3: “I think the test cases are not complete. Something is missing.

How about if the user key in an incorrect product id?”

RE3: “Ok, I will add a new test case for that.”

The RE3 added a new test case as requested through the test-

authoring template. He entered the same requirements scenario

again and showed the result to C3.

RE3: “I have updated the test cases. Please confirm if this is

right.”

C3: “This is perfect.”

In all the three cases, the tool helped the requirements engineer to

validate the user’s requirements in terms of consistency,

correctness and completeness in a timely manner. The

requirements engineer can get faster confirmation and agreements

without face-to-face meeting with the client. This can help to save

time and cost for both the requirements engineer and client.

Overall, the evaluation and interview with the participants provide

positive results. The requirements engineer stated that the tool

helps them to communicate and discusses the captured

requirements with the clients, thus it helps to speed up the

requirements validation process. The requirements engineers were

also satisfied with their interaction with the clients where they

find them very helpful in identifying any missing requirements.

This helps to avoid incorrect implementation of the requested

system.

5. RELATED WORK
Many studies have proposed a mechanism for collaborative work

in the requirements engineering process, such as the StakeRare [9]

and FlexiSketch [10][11]. StakeRare uses social network and

collaborative filtering to identify and prioritize requirements in

large software projects. An evaluation on StakeRare shows that it

is able to accurately identify a complete set of requirements and

prioritize them. Meanwhile, FlexiSketch allows multiple users to

sketch requirements models or notation simultaneously within the

same canvas region. It uses electronic whiteboard to support a

synchronous, co-located and multi-display collaboration. Both of

these works contribute to support requirements engineer and

client-stakeholders during requirements elicitation, except for

validation of requirements for final confirmation and agreement.

867

M. Sourour and N. Zarour [12] have proposed CoREVDO, a

methodology for a collaborative requirements validation process

based on the concept of competences and multi-viewpoints to

increase the quality of software product and reduce the

complexity of the validation task. This approach involved the

generation of Quality Function Deployment (QFD), checklist and

groupware, such as the NetMeeting tool for collaborative work. It

focuses more on the internal audit with customer using formal

method, such as mathematical logic or algebra. There is no

automation for the prototype, where the group of REs needs to

make a rapid prototype to simulate the intended system. In

contrast to our work, we focus on the external validation with the

user using the techniques of requirements-based testing and rapid

prototyping to support the automatic generation of the abstract

tests and the mock-up UI prototypes. Our approach is also

supported with Etherpad to allow the RE and client-stakeholders

to effectively communicate and work on the same set of abstract

tests that represent their requirements. A summary of our findings

of the related tools is described in Table 1.

Table 1. Related tools comparison

Tool StakeRare FlexiSketch CoREVDO

RE Phase Elicitation Elicitation Validation

Objective Identify and

prioritise

stakeholders

to support

requirements

elicitation in

large software

projects.

Support

synchronous,

co-located,

and multi-

display

collaboration

for sketching

requirements

model /

notation.

Increase the

quality of

the software

product.

Reduce the

complexity

of the

validation

task.

Collaborative

Method

Social

network and

collaborative

filtering

Electronic

whiteboard

Prototype

QFD,

checklist,

groupware

6. CONCLUSION AND FUTURE WORK
TestMEReq is an automated collaborative tool that could assist

requirements engineers to effectively communicate and

collaborate with the client-stakeholders virtually in real time to

validate the requirements. Our tool is integrated with Etherpad, an

open source tool that provides online editor for collaborative

document editing in real-time. Our initial studies suggest that the

automated support provided by our tool can help the requirements

engineer and the client-stakeholders to effectively communicate

and collaborate in real time to validate their requirements even

though they are not in the same geographical location. The test-

authoring template also helps the requirements engineer to write

quality test requirements and test cases compliance with the test

pattern libraries. This helps the requirements engineer to write

correct and complete test requirements and test cases before

reviewing them with the clients.

For future work, we plan to conduct further evaluation with the

industry to validate our approach and tool. We also plan to embed

a requirement prioritization method to our tool for prioritizing the

generated tests for better organization of requirements validation

based on the generated test cases. Furthermore, we intend to

enhance this collaborative validation tool with better graphical

annotation for making comments and function to convert the

generated test to spread sheet for future use as a test plan to the

testers.

7. ACKNOWLEDGMENTS
This research is funded by Ministry of Higher Education Malaysia

(MOHE), Universiti Teknologi Mara (UiTM), Fulgent

Corporation, FRGS grant:

FRGS/2/2013/ICT01/FTMK/02/2/F00185 and RTC/E00038.

8. REFERENCES
[1] P. A. Laplante, Requirements Engineering for Software and

Systems. Auerbach Publications, 2009.

[2] R. R. Young, Effective Requirements Practice. Addison-

Wesley Information Technology Series, 2001.

[3] N. A. Moketar, M. Kamalrudin, S. Sidek, M. Robinson, and

J. Grundy, “TestMEReq : Generating Abstract Tests for

Requirements Validation,” in 3rd International Workshop on

Software Engineering Research and Industrial Practice,

2016, pp. 39–45.

[4] R. Biddle, J. Noble, and E. Tempero, “From Essential Use

Cases to Objects,” forUSE 2002, Second Int. Conf. Usage-

Centered Des. forUSE 2002, vol. 1, no. 978, pp. 1–23, 2002.

[5] L. L. Constantine and L. A. D. Lockwood, “Structure and

Style in Use Cases for User Interface Design,” vol. 1, no.

978. Addison-Wesley Longman Publishing Co., Boston, MA,

2001.

[6] M. Kamalrudin, N. A. Moketar, J. Grundy, and J. Hosking,

“Automatic Acceptance Test Case Generation From

Essential Use Cases,” in 13th International Conference on

Intelligent Software Methodologies, Tools and Techniques,

2014, pp. 246–255.

[7] N. A. Moketar, M. Kamalrudin, S. Sidek, and M. Robinson,

“TestMEReq : Automated Acceptance Testing Tool For

Requirements Validation,” in International Symposium on

Research in Innovation and Sustainability, 2014, vol. 2014,

no. October, pp. 15–16.

[8] “Etherpad.” [Online]. Available: http://etherpad.org/.

[Accessed: 16-May-2016].

[9] S. L. Lim and A. Finkelstein, “StakeRare: Using Social

Networks and Collaborative Filtering for Large-Scale

Requirements Elicitation,” IEEE Trans. Softw. Eng., vol. 38,

no. 3, pp. 707–735, 2012.

[10] D. Wuest, N. Seyff, and M. Glinz, “Sketching and Notation

Creation with FlexiSketch Team : Evaluating a New Means

for Collaborative Requirements Elicitation,” in International

Requirements Engineering Conference, 2015, pp. 186–195.

[11] D. Wuest, N. Seyff, and M. Glinz, “FLEXISKETCH

TEAM : Collaborative Sketching and Notation Creation on

the Fly,” in International Conference on Software

Engineering, 2015, pp. 685–688.

[12] M. D. Sourour and N. Zarour, “A Methodology of

Collaborative Requirements Validation in a Cooperative

Environment,” Program. Syst. (ISPS), 2011 10th Int. Symp.,

pp. 140–147, 2011.

868

Figure 3. Etherpad the online collaborative text editor integrated with TestMEReq

Figure 4. Template-based authoring of TestMEReq

869

