
TeeVML: Tool Support for Semi-automatic
Integration Testing Environment Emulation

Jian Liu
School of Software and Electrical Engineering

Swinburne University of Technology
Hawthorn, VIC 3122, Australia

jianliu@swin.edu.au

Iman Avazpour
School of Information Technology

Deakin University, Burwood, VIC 3125, Australia
iman.avazpour@deakin.edu.au

John Grundy
School of Information Technology

Deakin University, Burwood, VIC 3125, Australia
j.grundy@deakin.edu.au

Mohamed Abdelrazek
School of Information Technology,

Deakin University, Burwood, VIC 3125, Australia
mohamed.abdelrazek@deakin.edu.au

ABSTRACT
Software environment emulation provides a means for simulating
an operational environment of a system. This process involves
approximation of systems’ external behaviors and their
communications with a system to be tested in the environment.
Development of such an environment is a tedious task and
involves complex low level coding. Model driven engineering is
an avenue to raise the level of abstraction beyond programming by
specifying solution directly using problem domain concepts. In
this paper we propose a novel domain-specific modeling tool to
generate complex testing environments. Our tool employs a suite
of domain-specific visual modeling languages for modeling
emulation environment at a high level of abstraction. These high
level specifications are then automatically transformed to runtime
environment for application integration testing, boosting
development productivity and ease of use. The tool demonstration
video can be accessed here: https://youtu.be/H3Vg20Juq80.

CCS Concepts
•Software and its engineering ➝ Model-driven software
engineering •Software and its engineering ➝

Interoperability •Software and its engineering ➝ Software
testing and debugging •Software and its engineering ➝

Empirical software validation •Software and its engineering
➝ Integrated and visual development environments.

Keywords
Model-driven engineering; domain-specific visual modeling
language; software component interface description; testing
environment emulation.

1. INTRODUCTION
Modern enterprise software systems usually operate in a
distributed and heterogeneous environment. These systems
interact and cooperate with other systems in their environment for
providing composite services to support daily enterprise

operations. Thus, the performance of a software system is
governed not only by its internal implementation but also driven
by interactions with other systems. With the increasing complexity
of the environments enterprise systems are deployed in, it is
becoming more difficult and expensive to replicate a realistic
production environment for software systems integration testing.
On the other hand, a production environment is generally
unsuitable to conduct this kind of testing, as a fault in the
enterprise system may cause disruption or irreversible damage to
that production environment.

The UML Testing Profile (UTP) is often used to systemically
define tests for static and dynamic aspects of systems modeled in
UML [1]. UTP provides a generic extension mechanism for the
automation of test generation processes. The Model Language
(TML) is another testing language for describing Markov chain
usage models to characterize the probabilities of all usages using
some statistic techniques and generate test cases accordingly [2].
However, both the UTP and TML are for server-side system
testing and do not have abstractions suitable for developing a
testing environment for client-side application integration testing.

Testing environment emulation is an emerging technique to
provide integration testing environment for a System Under Test
(SUT) that interacts with many external systems. The main idea is
to model the run-time behaviors of each system (also known as
endpoint) in the environment and replace each real system by an
instantiation of the corresponding model in the emulation
environment. The aim is to make the emulated testing environment
rich enough to “fool” the SUT that it is talking to the real systems.
Other behaviors and the systems which sit underneath and in the
background are ignored from the emulated environment
perspective where possible.

There have been two approaches to develop such integration
testing environment. The first one is specification-based approach
[3], where IT professionals manually develop interaction models
with the use of available knowledge about the underlying
interaction protocol and system behaviors, respectively. The
second one is interaction trace data record-and-replay approach
[4]. This approach uses a traffic recording tool to sit between a
SUT and an endpoint, recording information about how the SUT
and endpoint interact. Later those recordings can be used to
simulate the endpoint response for each corresponding request by
searching for the close-matching request in traffic recordings.
Both of these approaches have their shortcomings: former
approach has high development and set-up costs and requires
access to detailed system knowledge and implementations. The

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ASE’16, September 3–7, 2016, Singapore, Singapore
c© 2016 ACM. 978-1-4503-3845-5/16/09...

http://dx.doi.org/10.1145/2970276.2970291

840

later one depends on the availability of traffic recordings for all
interactive scenarios between a SUT and its operational
environment.

Aiming to achieve high development productivity and ease of use
for domain experts, we have developed a novel specification-
based domain-specific Visual Modeling Language for Testing
environment emulation (TeeVML). Our TeeVML is based on a
layered software components interaction description framework,
where each layer represents a modeling problem domain. We
provide a separate Domain-Specific Visual Language (DSVL) for
each of these interaction layers. Domain experts use these DSVLs
to model their endpoint by layers. TeeVML’s testing runtime
environment is provided by transforming endpoint signature
model WSDL XML file to Axis2 Web Service platform [5].

2. MOTIVATION
To motivate our TeeVML tool, we use a business case as an
example and describe the interactive behaviors between a SUT and
an endpoint. The SUT for this case study is an Internet banking
application. It communicates with a core banking system (as the
endpoint) for accessing user and bank account records for each end
user service request. From description simplicity consideration,
we assume that the Internet banking application provides six
services to its end users: logon, logout, searchaccount, deposit,
withdraw and moneytransfer.

From the SUT’s perspective, the endpoint must provide
integration testing functionalities, which should mimic its real
system services. Therefore, we can realistically assume that the
main testing endpoint characteristics are: (1) an endpoint only
considers the external behaviors (or call services) of the real
system, and all internal implementations will be ignored; (2) an
endpoint only provides a subset of the real system invoked by the
SUT; and (3) an endpoint should be able to detect all SUT interface
defects, identifying their types and origins. Based on the above
assumptions, we can describe the core banking system endpoint
from three different abstraction layers: (1) service signature –
service request name and parameters, and response return values;
(2) protocol – valid temporal sequence of services; and (3)
interactive behavior -- service request process and response
generation. We describe the endpoint from these three layers in
Table 1.

It is not feasible to test the Internet banking application with the
production core banking system. It would also be very expensive
to duplicate the core banking system. Hence, conventional
interaction trace data record-and-reply and specification-based
approaches would not be feasible or would be difficult to use, as
the former relies on the existence of interaction trace data and the
later requires development of detailed endpoint model
implementations. We thus define three key objectives for our
testing environment emulation tool:

 Testing endpoint functionalities – the tool should be able
to develop various types of testing endpoints, which could
be used to detect all sorts of interconnectivity and
interoperability defects of SUTs;

 Development productivity – the tool should ideally have
high endpoint development productivity, and less
development effort and time;

 Ease of use – the tool should be easy to learn and use to
specify endpoint interface and behavior at high levels of
abstraction rather than implementation details.

3. OUR APPROACH
To identify the common entities and find out their relationships,
we conducted our testing environment emulation domain analysis
by investigating three typical business applications interacting
with their clients. The domain analysis focused on two areas: the
interaction abstraction between a service provider and a service
consumer, and the requirement on integration testing environment.
From the domain analysis, we proposed a layered software
components interaction description framework for testing
environment emulation, and identified service request defect types
to be detected.

Table 1. Core banking system endpoint description

Signature
All services have a name and consist of one or more
parameters for their request and/or response.
All services have a request and response, except for logout
service, which has a request only.
Request and response parameters can be a string, integer, float,
boolean or date data type.
Request and response parameters can be either mandatory or
optional.
A logon service request has optional username and password
fields for authenticating a secured interactive session.
The userid field in logon request is five digit integer; amount
field in deposit and withdraw requests ranges from 0.00 to
99999.00; amount field in moneytransfer request ranges from
1000.00 to 99999.00

Protocol
A logon request transits the endpoint from idle state to home
state and an interactive session starts. On the opposite
direction, a logout request terminates the session.
In a secured session, all the services can be accessed by the
SUT. Otherwise, only logout and searchaccount services can
be invoked.
As the minimum money transfer amount is $1000.00, a
moneytransfer request must follow a searchaccount request;
and the amount value in the searchaccount response will
determine whether the moneytransfer request can be executed.
Timeout event will automatically change the endpoint state
from a “from” state to a “to” state after a certain period of time.
All service requests will be rejected, when endpoint is
processing a synchronous service.
All transaction services (deposit, withdraw and
moneytransfer) are considered as unsafe services, and multiple
requests for a same service are not allowed.

Behavior
To start a secured session, logon request must be authenticated
by userid, username and password parameters; if only userid
parameter is provided, the interactive session will be insecure.
All query and transaction services use userid field to find a
bank account record, and retrieve the account balance. If the
account record cannot be found, an error code and error
message will be generated in response.
For withdraw and moneytransfer services, the transaction
amount must be equal or less than the account balance.
Otherwise, a not enough balance error occurs.

3.1 Software Components Interaction
Description Framework

Our software components interaction description framework
abstracts an interaction into three horizontal and two vertical

841

layers. The horizontal layers include signature, protocol and
behavior. The vertical layers include data store (data persistence
access) and Quality-of-Service (QoS) (as non-functional
requirements). A SUT service request is processed horizontally by
an endpoint step by step from signature, protocol, down to
interactive behavior layer. Whenever an error occurs at any layer,
the request process will be terminated.

The signature and protocol layers act as message pre-processors
for validating service request syntax and sequence correctness,
before handing it over to the behavior layer for generating
response. Vertical layers are not directly involved in request
processing, but provide support to horizontal layers. We use
modular development approach to model an endpoint – i.e. each
module represents a particular interactive layer.

3.2 Integration Testing Environment
A testing endpoint is a server-side application, receiving and
processing service requests from a SUT based on Remote
Procedure Call (RPC) communication style. Thus, the endpoint
should be able to validate the correctness of service requests sent
from the SUT. In general, there are two types of service request
defects: functional defects, which are directly related to service
request processing by endpoint; and non-functional requirement
defects, such as non-compliance with security requirement or
robustness under different operational conditions. Table 2 lists all
the functional defects a SUT service request may cause. Our
current version of testing endpoint does not support QoS testing
and it will be our future work.

Table 2. Service request defects

No Defect Type Description
Signature

S1 A service request is not a service provided by endpoint.

S2
The parameters in a service request are not matched with
the parameters of the corresponding service provided by
endpoint, in terms of parameters’ name, data type or order.

S3
One or more service request mandatory parameter(s) is (are)
missing.

S4
One or more parameters in a service request is (are) beyond
the defined value range of the corresponding endpoint
service.

Protocol
P1 A service request is invalid for the current endpoint state.

P2
A service request is invalid for the current endpoint state, as
one or more parameter(s) violate(s) defined constraint
condition(s).

P3
A service request is invalid for the current endpoint state, as
one or more returned value(s) from a previous service
request violate(s) defined constraint condition(s).

P4
A service request is invalid, due to endpoint state transition
driven by some internal event, such as time out.

P5
A service request is invalid, as endpoint is in processing a
synchronous service request.

P6
A service request is invalid, as one such request for an
unsafe service has been received by endpoint.

From Design by Contract (DbC) programming style’s perspective,
a SUT’s obligation is to send correct service requests to an
endpoint [6]. The way these requests to be processed is defined in

1 The endpoint source codes, a recorded demo video, user study
result reports and an in press publication are available at:
https://sites.google.com/site/teevmlase/.

the endpoint’s internal implementation. While it may seem as if
endpoint behavior modeling is not necessary for emulating an
integration testing environment, there are situations where a
business process may have several interactions between a SUT and
an endpoint. The SUT may send a different subsequent request to
its endpoint, depending on what values are returned in the response
message it has received from a previous service request (refer to
P3 defect type of Table 2). As a result, an emulated endpoint needs
to have behavior modeling functionality for capturing some
runtime SUT protocol defects.

Testing endpoint functionalities that is one of our tool’s objectives,
is measured by the coverage of service request defects that can be
detected by testing endpoint. In the followings, we discuss how the
integration testing defects listed in Table 2 can be detected from
our TeeVML’s design.

3.3 TeeVML Design
Our TeeVML consists of signature, protocol and behavior DSVLs.
Each of the DSVLs includes a collection of visual notations for
modeling an endpoint layer and code generators for transforming
the layer model to target forms. The design of visual notations is
based on a metamodel or a programming paradigm, which covers
all endpoint layer modeling aspects and their inter-relationships.
We used MetaEdit+ 5.1 [7] as the meta-language to develop the
DSVLs. In the following subsections we briefly describe these
DSVL designs. More details of TeeVML tool and its visual
notations are subject of another publication [8] 1.

3.3.1 Signature DSVL
To improve components reusability and have a concise
presentation, we have adopted a hierarchical DSVL architecture
design approach (refer to Figure 1). The top-level signature DSVL
uses WSDL 1.1 [9] as its metamodel to define the five WSDL
entity types and their relationships (refer to Figure 1a). The
middle-level operation DSVL is for defining request and/or
response message(s) contained in an operation (or call service)
(refer to Figure 1b). The bottom-level message DSVL uses W3C
XML Schema 1.1 [10] as its metamodel to define complex
elements in a message (refer to Figure 1c).

Figure 1. Signature DSVL metamodel

The signature defects S1 to S3 in Table 2 are detected by Axis2
Web Service engine transformed from signature WSDL file. For
S4 defect debugging, two fields are added to element type for

842

specifying the minimum and maximum values of a request
parameter.

3.3.2 Protocol DSVL
To capture dynamic endpoint protocol behaviors, we used an
Extended Finite State Machine (EFSM) metamodel to describe
endpoint protocol behaviors (refer to Figure 2). One entity type
and two entity properties are added to an operation-driven state
transition FSM (marked yellow in Figure 2). The entity type is the
InternalEvent, which is used to define state transitions triggered
by time event. One of the entity properties is the
StateTransitionConstraint of the transition entity; and it is used for
specifying either static or dynamic constraints on state transition
function. Another one is the StateTimeProperty of the state entity,
which is for simulating synchronous and unsafe operations.

All the protocol defects listed in Table 2 can be detected by a
testing endpoint, developed by a modeling tool based on the EFSM
metamodel: (1) P1 – the operation-driven state transition FSM; (2)
P2 and P3 – the StateTransitionConstraint of transition entity; (3)
P4 – the InternalEvent entity type; and (4) P5 and P6 -- the
StateTimeProperty of state entity.

 Figure 2. Protocol DSVL metamodel (EFSM)

3.3.3 Behavior DSVL
The endpoint behavior DSVL was designed based on dataflow
programming paradigm [11]. We chose this metaphor as it allows
complex specification of behavior models but is understandable
by a wide range of target end users. The dataflow programming
execution model is represented by a directed graph. The nodes of
the graph are data processing units, and directed arcs between the
nodes represent data dependencies. Data flows in each node from
its input connector. The node starts to process and convert the data
whenever it has the minimum required parameters available. The
node then places its execution results onto output connector for the
next node(s) in the chain.

4. EXAMPLE USAGE1
Here, we use the core banking system from the Motivation section
as an example to explain how a testing endpoint is developed. Our
testing endpoint development process consists of three steps: (1)
modeling endpoint – to model endpoint signature, protocol and
behavior layers by using TeeVML, (2) transforming models – to
transform endpoint models to WSDL XML file (signature model)
and Java class files (protocol and behavior models) by code
generators, and (3) integrating the generated codes with domain
framework in a Java IDE environment.

4.1 Signature Modeling
Signature modeling starts from specifying endpoint level
properties. Then, signature DSVL is used to instantiate the five
WSDL entity types (service, port, binding, porttype and operation)

by providing their names and relevant information. They are
linked together by using either a composition or an association
relationship. All the entity types have just one instance, except for
the operation. The number of the operation instances depends on
the services provided by the endpoint.

We use the operation deposit as an example to show how an
operation can be modeled. The operation is instantiated by
assigning the operation name as deposit and pattern as in-out.
Then, operation DSVL is used to specify the deposit_request and
deposit_response messages in the operation. The request message
label is “in”, and response message label is “out”.

Message elements are defined by using message DSVL. The
request message contains userid and amount elements, and they
are placed by their IDs in alphabetic order. The userid data type is
defined as integer and the element is mandatory. Since a valid
userid is a five-digit integer, the element’s minimum field is
specified as 10000 and maximum field as 99999. Similarly, the
amount element properties are defined with data type as float,
mandatory field, minimum 0 and maximum 99999. The response
message consists of three elements: newaccountbalance,
errorcode and errormessage. The newaccountbalance is a float
data type, errorcode is integer and errormessage is string. The
newaccountbalance and errorcode fields are mandatory with
default value of 0.

Figure 3a illustrates the hierarchical signature model of the core
banking system endpoint, including the top-level signature model,
the middle-level deposit operation, and the bottom-level request
and response messages.

4.2 Protocol Modeling
Endpoint protocol is modeled using protocol DSVL. The first step
of protocol modeling is to initiate a session by using a logon
transition relationship linking idle state to home state. On the
opposite direction, a logout transition relationship ends the
session. The session can also be terminated by a timeout event,
using a timeout relationship from home state to idle state.

When the endpoint is at its home state, it may accept one query
service request – searchaccount and two transaction service
requests – deposit and withdraw. The query transaction can be
accessed in a secured or an insecured session. Therefore, a
standard transition relationship is used to represent the state
change from home to the searchaccount state. On the other hand,
the transaction services are only valid in a secured session,
authenticated by username and password parameters in logon
service request. Therefore, a constraint transition relationship is
needed to represent such a state transition. The constraint
condition is defined by specifying the inputusername parameter of
the logon service as not equal to null value. Similarly, as the
minimum money transfer amount is $1000.00, the returned bank
account balance from a searchaccount service determines whether
or not a moneytransfer service is valid. Figure 3b illustrates the
banking system endpoint protocol model.

4.3 Behavior Modeling
Endpoint behavior is modeled using behavior DSVL. We use one
service - deposit as an example to show how endpoint behavior is
modeled. The first step of behavior modeling is to define the
service node by assigning its name. The request and response
parameters of the service will be imported from the matching
signature model automatically.

843

Figure 3. Example endpoint three interactive layers modeling

The service node behavior implementation is specified by using a
node (or call method) sub-graph. The first two constructs to use
are a pair of entrance and exit bars. They define inputs and
generated outputs to and from the method, and specify where the
method execution starts and ends. There are two out ports on the
exit bar for normal execution outputs (hollow circle) and
exceptions (yellow circle), respectively. The first operation is to
retrieve account balance by searching bank account table using
inputuserid parameter. If the searching record is found, the
account balance will be assigned to a variable accountbalance.
Otherwise, a FatalError string variable will be assigned and
placed on the exception out port of the exit bar. The next operation
is to calculate new account balance by adding input amount to the
accountbalance variable. The calculation is specified by using an
evaluator, with assigned newaccountbalance variable name on the
top, parameters used in the middle, and formula at the bottom. The
last operation is to update the same bank account record with the
newaccountbalance. Figure 3c illustrates the example endpoint
deposit service node operations and dataflows.

4.4 Testing Environment Creation
Our testing runtime environment is built by transforming the
above endpoint layer models into a WSDL XML file and Java
class files. We use Eclipse as our Java IDE to build two projects
for hosting server and client side Java files separately. The details
of testing environment creation process are described as follows:

1. Testing environment platform creation – The signature
model is transformed to a WSDL file, then the file is
transformed to Axis2 Web Service platform by using Axis2
wsdl2java utility.

2. Protocol and behavior models transformation and
integration – The protocol and behavior models are
transformed to Java classes, then these Java classes are
integrated with Axis2 skeleton class.

3. Axis2 Web Service generation and deployment -- An
Apache Ant build XML file is used to build endpoint Axis2
Web Service automatically, and the built service aar file is
loaded to Tomcat application server.

4. SUT integration – A Java API file is provided for integrating
a SUT with Axis2 stub file in the client project.

By now, the core banking system testing endpoint is ready to
provide integration testing service to its SUT. Figure 4 illustrates
the integration testing runtime environment. The SUT is on the top
of right-hand side of Axis2 client, communicating with Axis stub

class through a Java API. The lower grey areas at both sides are
Axis2 SOAP engine for low-level SOAP message exchanges. The
behavior and protocol classes are located on the top of left-hand
side of Axis2 server, integrated with Axis2 skeleton class.

Behavior Classes

SOAP Process

Skeleton Class

Axis2 Web Servicce Engine
(Server Side)

SOAP Process

Stub Class

Axis2 Web Service Engine
(Client Side)

SOAP Message

Emulated Testing Endpoint

Java API Interface

Protocol Class

System Under Test

 Figure 4. Testing runtime environment

5. EVALUATION AND DISCUSSION
To qualitatively evaluate our tool, we have defined three
evaluation criteria, each corresponding to one of the three
objectives defined in the Motivation section. Our evaluation
process has two parts: In the first part, we have compared our tool
versus two other testing environment emulation approaches from
a technical point of view. In the second part, we have performed a
user study of software testing experts and developers to obtain
their opinions on our tool’s usefulness and ease of use.

5.1 Technical Comparison
There are two main testing environment emulation approaches
being used currently as described in the Introduction section:
specification-based by manual coding and interaction trace data
record-and-replay. In Table 3, we compare our tool with these
existing approaches, and give a three-point ranking (low, medium
or high) subject to the level of support they provide for each of the
evaluation criteria. Overall our tool compares well with these
existing approaches.

5.2 User Evaluation
The user study was conducted in two phases to measure the two
variables of the perceived usefulness and perceived ease of use
defined by Davis [12], respectively. In the first phase, we
conducted interviews with testing experts to examine the
usefulness of an emulated testing environment for SUT integration

844

testing. In the second phase, we assessed the ease of use of our tool
by asking software developers to perform a modeling task. All the
survey participants were asked to fill an online questionnaire for
collecting their opinions on each question statement. For this paper
evaluation results presentation, we only summarise the overall
responses to some of the questions, and the full result reports are
available online1.

Table 3. Emulation approaches comparison

Manual Coding
Interaction Trace

Data
Our Tool

Testing Endpoint Functionalities
Medium -
signature and
static protocol
behaviors.

Low - cannot
provide defect
information.

High – complete
signature and
protocol
behaviors.

Development productivity
Low – manually
coding endpoint.

High – interaction
trace data
recording.

High – modeling
endpoint.

Ease of use
Low -
programming skill
and domain
knowledge.

High – no special
skill requirement.

Medium –
domain
knowledge only.

Regarding the usefulness, we have received 87% in favour
response rate as a whole. This is a good indication of the
participants’ acceptance of our emulated testing environment. In
particular, all participants liked the protocol layer testing
functionality. We believe the main reason is that many
applications do not have a well-documented protocol
specification, and protocol related defects can only be found by
conducting integration testing. As to what motivates our
participants to use testing endpoints, the top reason was early
detection of interface errors, rather than savings on cost and effort.
In current practice, integration testing is normally conducted
during the later stages of software development lifecycle. This is
partly because integration testing environment is not available
before then. If a rapid and cheap solution for testing environment
deployment was available, software testers may have preferred to
conduct at least part of integration testing earlier

To evaluate the ease of use, we used the ten questions from
Software Usability Scale (SUS) [13]. The SUS questions’
responses were quite positive with average 85% in favour. To
capture participants’ ideas on how much of their time and effort
will be reduced through using our toolset comparing with a third
generation language, 57% respondents chose “50% - 80%” and
“80%+”. As a result, we can conclude that most participants
believed that our tool could increase endpoint development
productivity. Confirming this is the fact that most participants
have finished the task of an endpoint service modeling in less than
30 minutes. Based on this result, we can generalize that it is
possible to model a relatively complex endpoint with more than
ten services within a day through using our tool support.

6. CONCLUSION AND FUTURE WORK
Current specification-based testing environment emulation
approaches cannot validate SUT’s runtime protocol behavior, as
they check the validity of a coming service request based on
endpoint state only. Our tool protocol model is based on EFSM
and we use behavior model to capture dynamic protocol aspects.
Furthermore, our testing environment has rich functions for

simulating typical business scenarios, such as time-driven state
transition, synchronous and unsafe operations.

In a realistic enterprise environment, endpoint security
requirement may put extra constraints on the validity of a service
request. Some of the constraints are role related, so that some
services are accessible only to a certain group of users. Others are
security policy related, such as restriction on available time or
specific pattern required for some service parameters. Also, there
are some robustness requirements on SUT for handling endpoint
malfunctioning situations. These and other non-functional
requirements modeling will be our future work.

7. ACKNOWLEDGMENT
The authors gratefully acknowledge support for this research by
an Australian Post-graduate Award and an Australian Research
Council Discovery Projects grant.

8. REFERENCE
[1] Schieferdecker, I., Dai, Z. R., Grabowski, J., Rennoch, A.

2003. The UML 2.0 testing profile and its relation to TTCN-
3. Testing of Communicating Systems: Springer. 79-94.

[2] Prowell, S. J. 2000. TML: A description language for
Markov chain usage models. Information and Software
Technology. 42:835-44.

[3] Hine, C., Schneider, J-G, Han, J., Versteeg, S. 2009.
Scalable emulation of enterprise systems. Software
Engineering Conference, Australian: IEEE. 142-51.

[4] Du, M., Schneider, J-G, Hine, C., Grundy, J., Versteeg, S.
2013. Generating service models by trace subsequence
substitution. Proceedings of the 9th international ACM
Sigsoft conference on Quality of software architectures.
Canada: ACM. 123-32.

[5] Jayasinghe, D. 2008. Quickstart apache axis2. Packt
Publishing Ltd.

[6] Dai, G., Bai, X., Wang, Y., Dai, F. 2007. Contract-based
testing for web services. Computer Software and
Applications Conference, COMPSAC 31st Annual
International: IEEE. 517-26.

[7] Kelly, S., Tolvanen, J. P. 2008. Domain-Specific Modeling:
Enabling Full Code Generation. Wiley.

[8] Liu, J., Grundy, J., Avazpour, I., Abdelrazek, M. 2016. A
Domain-Specific Visual Modeling Language for Testing
Environment Emulation. IEEE Symposium on Visual
Languages and Human-Centric Computing. Cambridge,
UK. In Press. ODI=https://sites.google.com/site/teevmlase/.

[9] W3C. 2001. Web Services Description Language (WSDL)
1.1. World Wide Web Consortium.

[10] Thompson, H. S., Beech, D., Maloney, M., Mendelsohn, N.
2004. XML schema part 1: structures second edition. W3C
Recommendation.

[11] Sousa, T. B. 2012. Dataflow Programming Concept,
Languages and Applications. Doctoral Symposium on
Informatics Engineering.

[12] Davis, F. D. 1989. Perceived usefulness, perceived ease of
use, and user acceptance of information technology. MIS
quarterly. 319-40.

[13] Brooke, J. 1996. SUS-A quick and dirty usability scale.
Usability evaluation in industry. 189:4-7.

845

