
Tool Support for Automatic Model Transformation
Specification using Concrete Visualisations

Iman Avazpour, John Grundy
Faculty of ICT, Centre for Computing and Engineering Software and

Systems (SUCCESS), Swinburne University of Technology
Hawthorn 3122, VIC, Australia

{iavazpour, jgrundy}@swin.edu.au

Lars Grunske
Institute of Software Technology

Universität Stuttgart
Universitätsstraße 38, D-70569 Stuttgart, Germany

lars.grunske@informatik.uni-stuttgart.de

Abstract—Complex model transformation is crucial in several
domains, including Model-Driven Engineering (MDE), informa-
tion visualisation and data mapping. Most current approaches
use meta-model-driven transformation specification via coding
in textual scripting languages. This paper demonstrates a novel
approach and tool support that instead provides for specification
of correspondences between models using concrete visualisations
of source and target models, and generates transformation scripts
from these by-example model correspondence specifications.

I. INTRODUCTION

Successful application of Model-Driven Engineering (MDE)
relies on model transformations. In MDE, development, main-
tenance and evolution of software is performed by transforma-
tions on models. With current MDE approaches, specification
of these transformations is performed using textual scripting
languages and abstract representations of meta-modelling lan-
guages. These textual representations are hard to specify and
maintain for non-software engineering users [1], and although
abstractions provide better generalisation and thus code re-
duction, their syntax is often far removed from the actual
model syntax [4]. As a result, current approaches introduce
pragmatic barriers for non-software engineering users to adopt
MDE as their main approach. Moreover, the variety of models
being used in today’s software systems and their often large
scale, adds to the complexity of transformation specification
and maintenance, even for expert users [1], [2].

To address this complexity, several approaches have been
developed including use of visual abstractions (e.g. [3]),
by-example transformations [4], graph transformations (e.g.
[5]), automatic inference of bi-directional transformations (e.g.
[6]), and automated assistance for mapping correspondence
deduction (e.g. [7]). However, none of these fully address the
problems nor do so in an integrated and highly extensible way.

This paper demonstrates the approach implemented in our
CONcrete Visual assistEd Transformation (CONVErT) frame-
work [8]. CONVErT provides users with familiar concrete
visualisations of source and target models in order to leverage
their domain knowledge in transformation specification. As
a result, users can specify complex model element mappings
between concrete visual notational elements using interactive
drag-and-drop and reusable, spreadsheet-like mapping formu-
lae. It also automatically creates high-level abstractions for

transformation generation from the concrete visualisations.
Using this abstraction and model examples, CONVErT helps
users decide, find and explore possible model correspondences
by providing automated recommendations using an interac-
tive recommender system. Complex, scalable and reusable
model transformation implementations will then be generated
from these visually specified, by-example model mappings.
Following sections better describe CONVErT’s approach and
implementation architecture.

Fig. 1. CONVErT’s approach and usage scenario.

II. CONVERT’S APPROACH AND USAGE EXAMPLE

CONVErT’s approach to model transformation is outlined
in Figure 1. It consists of three steps: 1) Providing source
and target model examples to the framework. 2) Creating (or
reusing) concrete visualisation for the provided examples. 3)
Using these model visualisations, specifying source and target
mapping correspondences, which includes 1-to-1, 1-to-many,
many-to-1 and many-to-many element correspondences.

Input examples can be provided to CONVErT as Comma
Separated Value (CSV) or XML files. CONVErT uses a graph
lattice to reverse engineer an abstraction (meta-model) from
provided examples. A crawler analyses the inputs and inserts
the new structures and elements it faces to the lattice. This
abstraction is used for transformation script generation and in
calculating recommendations of mappings to users.

CONVErT’s guidance mechanism uses a group of similar-
ity heuristics (we call “Suggesters”) to calculate similarities
between source and target model elements. These suggesters

978-1-4799-0215-6/13 c© 2013 IEEE ASE 2013, Palo Alto, USA
Tool Demonstrations

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

718



check source and target models for value, name tag and struc-
tural similarities. Each suggester returns a similarity matrix
representing similarity scores between elements of source and
target models. The recommender system then analyses these
scores and prepares a list of recommendations according to
the confidence score assigned to each suggester. If a recom-
mendation is selected by the user, a feedback loop increases
the confidence score of the suggester(s) which came up with
that recommendation. If it is otherwise rejected, the confidence
scores will be updated accordingly. Due to performance issues
of structural similarity suggesters, the reverse engineered ab-
straction of input models are used for similarity calculation.
Other suggesters use actual values of the input models.

If a visualisation has been previously defined, it can be
reused. If not, users can specify visualisations by linking
model elements to provided visual notations. These notations
can be generated by designers and be adopted according to the
application domain. CONVErT provides facilities for drag and
dropping input elements to visual notations to specify model
to visualisation correspondences. It also examines the input
model and the notation, and provide series of automatically-
generated recommendations to the user.

Fig. 2. Mapping example elements to notation elements. Arrows depict drag
and drop directions.

For example, consider a Computer Aided Design (CAD)
application in which architect Carrie needs to create a new
visualisation for a provided design model. To specify corre-
spondences between shapes of the input model and a Room
notation she drags and drops shape element of the input model
on a room notation (see solid black arrow in Figure 2) or if it
has been recommended, selects it in the recommendation list
(see a in Figure 2). CONVErT analyses this interaction and
triggers a transformation rule for transforming that portion of
the input model (Shape element in XML input) to the room
notation’s model. Each notation may have internal elements
which can be viewed in a pop-up window by right clicking on
the notation. For example, the room notation of Figure 2 has a

Geometry, Name and Type. These internal elements can also
be linked by drag and dropping elements or choosing from
recommendations. These correspondences will be included in
the transformation rule template that has been triggered.

The notations that are defined in CONVErT represent a
model element-to-visual notation transformation rule. CON-
VErT uses these notations to generate a model-to-visualisation
transformation script. To have a complete transformation
script, the prepared collection of defined notation rules should
be scheduled according to their call sequence. Usually, this is
achieved by asking users to write code for this script, similar to
procedural programming. In our approach however, CONVErT
can generate this scheduling and the transformation code by
user composition of notations.

Fig. 3. Composition of notations for CAD visualisation.

Composition of notations specifies how a full model visu-
alisation is formed from a set of sub-element visualisations.
For instance in the CAD example, assume Carrie has defined
visual notations to represent building, floor and room. She can
compose these defined notations by linking them according
to their specific place holder elements as depicted by Figure
3. These place holders are notation elements which will be
replaced by calls to transformation rules of other notations. For
example in composition of Figure 3 since the room notation
is linked to Rooms element of floor notation, a call to the
transformation rule embedded in the room notation will be
placed in floor notations Rooms element.

The notation mapped to Start element in Figure 3 defines the
transformation rule that has to be called first. For example in
Figure 3, the transformation rule in building notation (marked
by 1) is the first rule to be called. It then calls the floor trans-
formation rule, and the scheduling continues accordingly for
other linked notations. This linking results in the scheduling
of model element-to-visual notation transformation rules and
thereby CONVErT can generate the model to visualisation
transformation script.

The transformation script generated by CONVErT for
each composition generates Windows Presentation Foundation
(WPF) visual elements. For example, by using the composi-
tions specified in Figure 3, a complete XSLT script to generate
concrete visualisations of CAD models will be generated for
rendering those model examples to visualisations similar to
the visualisation of Figure 4. Note that the generated XSLT
transformation script can be reused and applied to all examples

719



of the CAD input to provide an automatic concrete visual no-
tation renderer. These generated concrete 2D visualisations are
implemented as WPF elements and allow interaction with their
composing notations. The individual elements of a concrete
visualisation can be dragged, dropped on other elements, and
right clicking them reveals their internal elements.

Fig. 4. Example of a generated CAD visualisation.

Once visualisations of both source and target models are
available, users can generate transformation rules between
source and target models by (a) drag and dropping elements
in those visualisations or (b) selecting from provided recom-
mendations. CONVErT analyses user interactions and either
creates new transformation rules or inserts those correspon-
dences into other transformation rules.

Figure 5 shows an example of creating a transformation rule
for mapping a 2D room shape (source model visual notation)
to a building structure node (target model notation). To create
this rule, architect Carrie needs to drag a room notation
element to a building node notation element, as depicted
by solid black arrow, and match their internal elements, as
shown by dashed black arrows (or select them in automatically
suggested recommendations). By dragging one notation to
another, CONVErT’s automatic recommender updates the list
of suggested correspondences to provide suggestions related to
that rule and hence better guide users with targeted recommen-
dations. For example, if Carrie defines a 2D room to tree node
rule (by either drag and drop or selecting from suggesters), the
suggestion list will be updated to demonstrate how internal
elements of these notations (like Name, Type, Geometry and
Color) can be linked (see a in Figure 5). This intelligent
assistance greatly helps in mapping large models and models
with many correspondences and complex visualisations.

A wide variety of mapping functions are available in
CONVErT (see b in figure 5) to specify more complex
correspondences in both model-to-visual notation and visual-

Fig. 6. Using conditions to map 2D room notation to room node notation of
a structure chart. Arrows depict drag and drop direction.

to-visual transformation rules. For example, in the mapping
of room notation to structure node notation of Figure 5, room
notations have explicit Type attribute whereas building nodes
representing rooms in floors are color-coded. To generate these
colors, Carrie can use condition functions and specify colors
based on types. By dragging a room notation to a room node
(or any notational element to another) their default notation
representations will be shown on a separate view to better
provide space for using functions. In this example, Carrie can
navigate to that canvas and specify conditions as depicted by
Figure 6. The condition function in the Figure tests whether
room’s Type is equal to for example Kitchen. For this situation,
Carrie can specify different colors (in this case Green) and
drag it to the condition expression and specify what color to
be used otherwise. The value provided by the condition will
be then assigned to the element of the target (in this case tree
node’s color) as depicted by arrows in Figure 6.

CONVErT uses a concrete representation for transformation
rules. Saving a transformation rule between visualisations
results in creation of a concrete representation for that rule
based on source and target elements being involved in the
transformation. For instance in the example above, the visual
representation of the rule transforming a 2D room to a tree
node is marked by c in Figure 5.

Due to use of automatically generated abstractions in trans-
formation rule templates, the two visualisations do not need
to represent the same data. For example in Figure 5 the
CAD visualisation represents a green building design but the
tree representation is for a city council building. However,
visualisations of the same dataset will help CONVErT’s rec-
ommender system to produce more accurate recommendations.

Once the required rules for transforming all parts of source
and target visualisations are defined, CONVErT uses these
abstractions to schedule rules and generates the transforma-
tion script. Applying this script to source visualisations will
transform the data represented by source to visualisation of
the target. For example, in the CAD example, applying the
full transformation script on the source of Figure 5 will result
in the visualisation of Figure 7.

III. SUMMARY

This paper demonstrated the use of CONVErT for spec-
ifying and generating complex model transformations using
concrete model visualisations. CONVErT provides facilities

720



Fig. 5. Using CONVErT to transform 2D CAD drawings to a tree-based layout.

Fig. 7. Resulting tree structure chart.

for specifying correspondences on concrete and familiar vi-
sualisations of source and target models. It reverse engineers
required abstraction from model examples and provides rec-
ommendations for possible source and target correspondences.
As a result, the required knowledge and skills for performing
transformations is reduced. CONVErT has been evaluated by a
user study involving twelve participants from staff and students
at Swinburne university. These participants were divided into
two groups and were asked to create a visualisation for a given
model example and then use their visualisation as source to
transform it to another model visualisation. Experiment set-ups
were the same, however, each group used different models and
visualisations. Results of this study revealed that participants
liked and were more effective using the concrete visualisation
and drag and drop approach to specifying correspondences and
transformation rules. Full results are on our website [9].

ACKNOWLEDGMENTS

Avazpour was supported by Swinburne University Vice
Chancellor’s Research Scholarship (VCRS). We thank Dr
Markus Lumpe, Dr Robert Amor, Ayman A. Amin and anony-
mous reviewers for constructive comments.

REFERENCES

[1] J. C. Grundy, J. G. Hosking, R. Amor, W. B. Mugridge, and Y. Li,
“Domain-specific visual languages for specifying and generating data
mapping systems,” J. Vis. Lang. Comput., vol. 15, no. 3-4, 2004.

[2] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wimmer,
“Conceptual modelling and its theoretical foundations,” A. Düsterhöft,
M. Klettke, and K.-D. Schewe, Eds. Springer-Verlag, 2012, ch. Model
transformation by-example: a survey of the first wave, pp. 197–215.

[3] Y. Sun, J. White, and J. Gray, “Model transformation by demonstration,”
in Model Driven Engineering Languages and Systems, ser. Lecture Notes
in Computer Science, A. Schürr and B. Selic, Eds. Springer Berlin
Heidelberg, 2009, vol. 5795, pp. 712–726.

[4] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. Hernandez, “Clip: a
visual language for explicit schema mappings,” in Data Engineering,
2008. ICDE 2008. IEEE 24th International Conference on, 2008, pp.
30–39.

[5] G. Rozenberg and H. Ehrig, Handbook of graph grammars and computing
by graph transformation. World Scientific London, 1999, vol. 1.

[6] S. Hidaka, Z. Hu, H. Kato, and K. Nakano, “A compositional approach to
bidirectional model transformation,” in Software Engineering - Compan-
ion Volume, 2009. ICSE-Companion 2009. 31st International Conference
on, 2009, pp. 235–238.

[7] S. Bossung, H. Stoeckle, J. Grundy, R. Amor, and J. Hosking, “Automated
data mapping specification via schema heuristics and user interaction,”
in Proceedings of the 19th IEEE/ACM International Conference on
Automated Software Engineering., 2004, pp. 208–217.

[8] I. Avazpour and J. Grundy, “CONVErT: A framework for complex model
visualisation and transformation,” in 2012 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2012, pp. 237–
238.

[9] I. Avazpour, J. Grundy, and L. Grunske. CONVErT website. [Online].
Available: https://sites.google.com/site/iavazpour/tools-manuals

721


