
REInDetector: A Framework for Knowledge-based
Requirements Engineering

Tuong Huan Nguyen, Bao Quoc Vo, Markus Lumpe, and John Grundy
Faculty of Information and Communication Technology

Swinburne University of Technology
Hawthorn, VIC 3122, Australia

{huannguyen,bvo,mlumpe,jgrundy}@swin.edu.au

ABSTRACT
Requirements engineering (RE) is a coordinated effort to allow
clients, users, and software engineers to jointly formulate assump-
tions, constraints, and goals about a software solution. However,
one of the most challenging aspects of RE is the detection of in-
consistencies between requirements. To address this issue, we have
developed REInDetector, a knowledge-based requirements engi-
neering tool, supporting automatic detection of a range of incon-
sistencies. It provides facilities to elicit, structure, and manage re-
quirements with distinguished capabilities for capturing the domain
knowledge and the semantics of requirements. This permits an au-
tomatic analysis of both consistency and realizability of require-
ments. REInDetector finds implicit consequences of explicit re-
quirements and offers all stakeholders an additional means to iden-
tify problems in a more timely fashion than existing RE tools. In
this paper, we describe the Description Logic used to capture re-
quirements, the REInDetector tool, its support for inconsistency
detection, and its efficacy as applied to several RE examples. An
important feature of REInDetector is also its ability to generate
comprehensive explanations to provide more insights into the de-
tected inconsistencies.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—tools;
I.2.2 [Artificial Intelligence]: Automatic Programming—program
verification; I.2.4 [Artificial Intelligence]: Knowledge Represen-
tation Formalisms and Methods—representation language

General Terms
Design, Languages, Verification

Keywords
Requirements Engineering, Consistency, Description Logic

1. INTRODUCTION
Inconsistencies between requirements create major challenges

for all stakeholders of a software solution and they can materialize

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3-7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$15.00.

during or between different phases of software development [9].
Conflicts arising from ill-aligned requirements typically mandate
removing or modifying some of them. Yet, these changes can di-
rectly affect utility and effectiveness of the resulting system and,
hence, ultimately determine a project’s success. We thus require
automated tool support to assist software engineers, clients, and
users to make informed decisions regarding specific demands and
their impact on the system design and functionality.

Requirements engineering is the process of discovering, docu-
menting, and maintaining requirements for software solutions [14].
The key objective of these activities aims at establishing sound
goals and constraints for the software system being planned and
constructed. However, achieving this goal is hard. There have been
numerous attempts to facilitate the elicitation of sound sets of re-
quirements [2,4,6–8,12,15], but they lack or insufficiently support
the creation and maintenance of domain knowledge and semantics
of requirements that, in our view, provide the crucial elements for
reliable and preferably automatic verification of, possibly hidden,
requirement dependencies. Moreover, while Siegemund et al [13]
propose to build an ontology to support the RE process, their focus
is mainly on tracking the interactions among requirements (e.g.,
supporting, retracting, etc.) and the inconsistency detection is for
identifying the conflicts between these interactions rather than be-
tween the requirements themselves.

Zave & Jackson [16] view requirements as optative concepts,
whose understanding requires domain knowledge to help bridge
between a stakeholder’s intuition and what is practically imple-
mentable in a system. The domain knowledge, which also contains
rules and assumptions about the system’s operating environment,
offers us a practical means to ensure consistency between compet-
ing objectives. Some types of requirement inconsistencies may not
be detectable in the absence of such domain knowledge. Consider,
for example, a scenario stipulating conflicting quality attributes for
bitmaps in a graphical user interface. The requirements “the appli-
cation must support bitmaps up to 1280x960 pixels” and “the size
of an individual bitmap must not exceed 3MB” cannot be satisfied
simultaneously in the presence of the domain knowledge that also
includes the rule “bitmaps can require a color-depth of up to 24 bits
per pixel.” Without the additional domain knowledge, we would
not be able to observe the inherent conflict in the specification.

Moreover, reasoning about requirements typically mandates se-
mantics of requirements [3]. They can be defined in terms of in-
stances, concepts and rôles. Concepts are collections of modeling
artifacts (i.e., instances) and rôles constitute the relationships be-
tween concepts. In knowledge representation, concepts and rôles
are defined abstractly in the domain-level knowledge base using
specialization relationships [1]. For instance, in requirements spec-
ification, it is possible for several terms to refer to the same concept,

Input Module Knowledge Module Reasoner Module

Requirement
Elicitor

Ontology
Editor

Ontology
Manager

MOS Parser

Reasoner

Explanation
Generator

Requirements
Domain knowledge rules

Constraints

Identified
Requirement

Problems

Figure 1: REInDetector– Overview.

such as customer and client. It is critical that these concepts are for-
mally defined to assist the RE process. Furthermore, relationships
between concepts and instances must also be captured precisely for
the purpose of requirements analysis. For example, consider two
requirements regarding the languages supported in an enterprise-
wide system, one states that “Chinese must be supported” and an-
other says that “only major languages should be supported.” Then,
the interaction (e.g., conflict) between the two requirements cannot
be determined precisely without knowing about the relationship be-
tween Chinese and the concept of major languages (i.e., whether
Chinese is one of the major languages).

As these types of reasoning are common in RE, we looked for
a way to better capture it in an automated RE analysis tool. To
this end, we identified Description Logic [1] as a suitable formal-
ism, both expressive and usable by a wide range of RE stakehold-
ers. In Description Logic, basic inference is subsumption (or con-
cept inclusion). Together with domain knowledge and semantics of
requirements encoded in an ontology, subsumption allows require-
ments engineers to unveil implicit consequences of explicit features
occurring simultaneously in the requirements of a system.

2. THE FRAMEWORK
REInDetector is a Java application which provides a graphical

user interface to perform all requirements elicitation, management,
and validation tasks [15]. Our focus in REInDetector is on three
particular objectives: a) define and maintain a knowledge base for
requirements, b) provide an expressive and usable formalism for
RE, and c) develop a knowledge-based RE framework to perform
automated inconsistency and realizability analysis. We use De-
scription Logic [1], a decidable subset of first-order logic com-
monly used as the formal basis of object/class-style ontologies, as
the core for requirements formalization and analysis in REInDetec-
tor. Description Logic has been successfully applied to define vari-
ous members of Web Ontology Languages (OWL) [5] and yields an
attractive means to capture and maintain the domain knowledge and
semantics of requirements and their corresponding relationships.

Figure 1 depicts the conceptual overview of REInDetector. In
REInDetector, we support a goal-oriented requirements engineer-
ing approach [15] that aims at improving the manageability of re-
quirements and allow for effective traceability of the underlining
rationales of inconsistent requirements, respectively. The Input
Module takes and manages specifications from requirements en-
gineers, including the specific requirements, their relationships and
formalizations, domain knowledge, rules, and constraints. The cor-
responding data is pushed into the Knowledge Module in which
it is interpreted and stored in an ontology of concepts, rôles, and
instances. The Reasoner Module provides analysis and reasoning

services including inconsistency detection, requirements queries,
and report generator.

We use Manchester OWL syntax (MOS) [10] as the requirements
specification language. Manchester OWL syntax faithfully maps
expressions in Description Logic. Moreover, MOS offers an easy
means to the formalization of requirements (while preserving suf-
ficient expressiveness) as it is close to natural language and much
simpler than other languages such as LTL in KAOS [6] or Formal
Tropos in Tropos [8]. Furthermore, by relying solely on Descrip-
tion Logic and MOS, we can utilize the off-the-shelf OWL reasoner
Pellet [11] (with some extensions) to perform requirements queries,
conflict detection and explanation services.

2.1 Input Module
The Requirement Elicitor enables one to capture a system’s func-

tional and non-functional requirements and shows how they are re-
lated through refinement links. Graphically, elicited goals are de-
noted by AND/OR graphs in which each individual goal is repre-
sented as a node annotated according to the goal’s features. Each
goal can be connected to other goals via refinement links (i.e., edges
in the graph). A refinement link not only indicates how a goal is
decomposed into sub-goals, which means how a goal can be sat-
isfied, but also reveals its parent goal, which shows the rationale
behind the goal. Refinement links can include AND-connectors
to indicate minimal refinements (a goal can only be satisfied if
all sub-goals linked to it via AND-connectors are satisfied), OR-
connectors to signify alternative refinements (a goal being refined
can be satisfied by fulfilling any of its OR-connected sub-goals),
and Optional-connectors to marl optional refinements (sub-goals
involved in Optional-connectors are the preferred options but not
strictly required for the higher-level goal to be fulfilled).

Knowledge, semantics, rules, and constraints in the requirements
domain can be defined using the Ontology Editor, which allows
users to directly interact with the ontology. Both, the requirements
and the ontology, need to be properly formalized in order to allow
the effective analysis and reasoning on requirements. The syntax
and semantics of the specification language are that of MOS, ex-
cept the binary operator “SubClassOf” to represent requirements
and the symbol “%” that we introduced to allow concepts to be
defined within a requirement’s formalization. Requirements can
consist of one or more sentences, each connected by “SubClas-
sOf.” The expression on the right-hand side denotes the expectation
or constraints for the captured concepts occurring on the left-hand
side of “SubClassOf.” In other words, “SubClassOf” is a primary
means to define subsumption in REInDetector.

Figure 2 illustrates the requirement elicitation in REInDetector

Name

Value

GoalType

Refinement Link

RefinedTo

FormalDef

InformalDef

F21_3FailsThenLocked

Refines F19_PreventUnAuAccess

none

If a user makes 3 failed login attempts,
then their account will be locked.

AND

Functional

Security

UserWith3FailedLogins % User AND hasLogins
EXACTLY 3 FailedLogin % SubClassOf User AND
hasAccount SOME LockedAccount

Figure 2: Goal annotations.

UserWith3FailedLogins %User AND hasLogins EXACTLY 3 FailedLogin%
 SubClassOf User AND hasAccount SOME LockedAccount

Class: UserWith3FailedLogins, User, FailedLogin, LockedAccount
Roles: hasLogins, hasAccount
Definition: UserWith3FailedLogins EquivalentTo
 User AND hasLogins EXACTLY 3 FailedLogin
Constraint: UserWith3FailedLogins SubClassOf
 User AND hasAccount SOME LockedAccount

Ontology Manager

MOS Parser

Figure 3: Ontology updated with requirements.

on a security feature that will lock an account after three failed
login attempts. The annotation contains a) the details of the goal
including name, value, and type, and b) the relationships to other
goals including the higher-level goal it refines, the associated re-
finement link, and all possible depended goals (i.e., “RefinedTo”).

2.2 Knowledge Module
The Knowledge Module consists of two components: Ontology

Manager and MOS Parser. The Ontology Manager handles the
problem domain ontology and is the heart of REInDetector. We
use the domain ontology to capture requirement definitions and the
semantics of concepts, rôles, and instances occurring in require-
ments.

The MOS Parser converts definitions into an internal representa-
tion. It receives its input from the Input Module (i.e., the formal-
izations of requirements and the domain rules and constraints) and
extracts the corresponding concepts, rôles, and instances as well as
their constraints and relationships. This information, in turn, be-
comes the input for the Ontology Manager, which will trigger an
update of the underlying ontology.

Figure 3 illustrates in more detail for the requirement “If a user
makes 3 failed login attempts, then their account will be locked.”
The MOS parser takes this input and maps it to a concept called
UserWith3FailedLogins and associates the string %User AND

hasLogins EXACTLY 3 FailedLogin% with its definition. In
addition, we obtain two rôles, hasLogins and hasAccount, and
the constraint that the User must have an account, which has been
locked after three failed login attempts: UserWith3FailedLogins
SubClassOf User AND hasAccount SOME LockedAccount. If
necessary, the Ontology Editor allows for further, user-specific re-
finements of the ontology. All modification result in either an ex-
tended ontology or an updated one.

2.3 Reasoner Module
The Reasoner Module is in charge of requirements validation and

causal analysis. It comprises two elements: the Reasoner that per-
forms the automated detection of specification issues (i.e., require-
ments inconsistencies, redundancies, and overlaps) and the Expla-
nation Generator that yields the causes (i.e., explanations) for the
detected problems.

The Reasoner is based Pellet [11], but also allows for the iden-
tification and explanation of redundancies and overlaps in require-
ments. These features are not supported in Pellet as of now. More-
over, we added a query facility to Reasoner in order to support the
definition and proper handling of partial requirement specifications
that can arise due to the cyclic nature of the requirements engineer-
ing process [14].

The Explanation Generator accepts “raw explanations” from the
Reasoner and merges them with the internal requirement-constraint
mappings in the ontology. As a result, we obtain a detailed report
(i.e., problem descriptions) as to why a specific set of requirements
has failed validation. Problems can relate to either misaligned de-
mands or logical errors within requirements. The information con-
tained in the reports allows all stakeholders to jointly develop suit-
able solutions to correct erroneous requirements.

3. TOOL EVALUATION
To test the effectiveness of REInDetector, we run an analysis

of approx. 100 requirements for a social networking system that
aims at encouraging collaboration among staff in a multi-national
company. We performed a controlled failure injection, that is, we
constructed a number of non-trivial scenarios containing inconsis-
tencies, redundancies, and overlaps in the original requirements set.

A sample run on an ill-formed set of security requirements is
shown in Figure 4. The system needs to protect user account against
unauthorized access. In case of tampering, the system will auto-
matically lock an account after three failed login attempt. If this
happens, the system has to issue a notice, either through SMS or
email, to the user in order to the new account status. There are
three possible scenarios1:

• F22_IfLockedThenEmail: If an user account has been
locked, then the user will receive an account locked noti-
fication email (UserWithLockedAccount SubClassOf

User AND receiveEmail SOME AccLockedNotif).

• F23_IfLockedThenSMS: If an user account has been locked,
then the user will receive an account locked notification SMS
(UserWithLockedAccount SubClassOf User AND

receiveSMS SOME AccLockedNotif).

• F24_IfEmailThenNoSMS: If the staff member receives ac-
count locked notification via email, the this user will not re-
ceive it in SMS also (StaffReceiveLockedNotifEmail
%Staff AND receiveEmail SOME AccLockedNotif%

SubClassOf Not (Staff AND receiveSMS SOME

AccLockedNotif)).

Unfortunately, these requirements employ two different terms to
denote the same domain concept: “user” and “staff.” Without con-
sidering the semantics and relationships between these terms, the
inherent inconsistency of these requirements cannot be detected.
With the use of the ontology, which captures semantics in the prob-
lem domain (i.e., “staff” and “user” are equivalent), REInDetector
can reveal the problem as shown in Figure 4.

The corresponding explanations provide a rationale governing
the problem. Depending on the security and notification prefer-
ences, there are two possible solutions to rectify the problem. First,
1We use the prefix F_XX as a goal counter for requirements.

Figure 4: An identified inconsistency

if “security” is valued more than “cost effectiveness”, then a res-
olution is to remove F24_IfEmailThenNoSMS, which would al-
low the use of both communication channels and, hence, a possibly
faster notification of the user (i.e., the user may not have access
to email momentarily but to a smart phone or vice versa). Al-
ternatively, we can remove either F22_IfLockedThenEmail or
F23_IfLockedThenSMS, which would solve the issue also, but at
the expense of “security.” The user may learn of the new account
state only after they has checked the system-support notification
system (i.e., either email or SMS). The stakeholders must make a
decision here. REInDetector can assist them in this process.

4. CONCLUSION AND FUTURE WORK
REInDetector is a knowledge-based requirements engineering

tool. It offers stakeholders an automated means to elicit, struc-
ture, and manage requirements. We use Description Logic (DL) to
capture and reason about requirements as well as their constraints
and relationships. DL belongs to a family of formal knowledge
representation languages [1] that can effectively represent domain
concepts. Artifacts (i.e., requirements, concepts, rôles, and con-
straints) can be expressed in a quasi-natural form, a powerful tool
that can assist all stakeholders in their endeavor to formulate sound
sets of requirements for the software system being developed.

Requirements engineering is an iterative process. REInDetec-
tor can assist stakeholders in identifying the missing elements and
conflicting (and possibly hidden) aspects in the requirements. Our
framework encourages an incremental development approach that
allows stakeholders to synchronize their assumptions and expec-
tations. It offers a robust infrastructure to reason about require-
ments, even in the presence of incomplete information. Neverthe-
less, REInDetector is not able to detect the conflicts associated with
the requirements that are not expressible in DL. However, this is
expected due to the limited support for temporal operators in DL.
Thus, a requirement such as “When a user chooses to show their
online status, the user’s status button will always reflect the user’s
availability on the system” can not presently be expressed in REIn-
Detector. Hence, as a future extension of REInDetector, we seek to
investigate additional constructors that would allow us to express
temporal properties of the system being developed. Furthermore,
we wish to explore additional abstraction mechanisms to address
the varying needs of different stakeholders.

REInDetector and a user guide are available at:

http://www.ict.swin.edu.au/personal/huannguyen/REInDetector.html

5. REFERENCES
[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.

Patel-Schneider, editors. The Description Logic Handbook - Theory,
Implementation and Applications. Cambridge University Press, 2nd
edition, 2007.

[2] B. Boehm, P. Bose, E. Horowitz, and M. Lee. Software requirements
negotiation and renegotiation aids: A theory-w based spiral
approach. In Software Engineering, 1995. ICSE 1995. 17th Int.
Conference on, pages 243–243. IEEE, 1995.

[3] T. Breaux, A. Antón, and J. Doyle. Semantic parameterization: A
process for modeling domain descriptions. ACM TOSEM, 18(2):5,
2008.

[4] K. Chung. Representing and using non-functional requirements: a
process-oriented approach. IEEE Trans. Software Engineering,
18(6):483–497, 1993.

[5] O. Corcho and A. Gómez-Pérez. A roadmap to ontology
specification languages. In EKAW 2000, pages 80–96, 2000.

[6] A. Dardenne, A. Van Lamsweerde, and S. Fickas. Goal-directed
requirements acquisition. Science of Computer Programming,
20(1-2):3–50, 1993.

[7] A. Egyed and P. Grunbacher. Identifying requirements conflicts and
cooperation: How quality attributes and automated traceability can
help. IEEE Software, 21(6):50–58, 2004.

[8] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and
P. Traverso. Specifying and analyzing early requirements in tropos.
Requirements Engineering, 9(2):132–150, 2004.

[9] P. Henderson. Why large it projects fail. ACM Trans. Program. Lang.
Syst, 15(5):795–825, 2006.

[10] M. Horridge, N. Drummond, J. Goodwin, A. Rector, R. Stevens, and
H. Wang. The manchester owl syntax. OWL: Experiences and
Directions, pages 10–11, 2006.

[11] Pellet – OWL 2 reasoner, http://clarkparsia.com/pellet/.
[12] W. Robinson and S. Pawlowski. Managing requirements

inconsistency with development goal monitors. IEEE Trans. on
Software Engineering, 25(6):816–835, 1999.

[13] K. Siegemund, E. Thomas, Y. Zhao, J. Pan, and U. Assmann.
Towards ontology-driven requirements engineering.

[14] I. Sommerville. Software Engineering. Pearson Education Inc., 9th
edition, 2011.

[15] A. Van Lamsweerde. Goal-oriented requirements engineering: A
guided tour. In Proceedings of 5th International Symposium on
Requirements Engineering, pages 249–262, 2001.

[16] P. Zave and M. Jackson. Four dark corners of requirements
engineering. ACM TOSEM, 6(1):1–30, 1997.

