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ABSTRACT 

Generic pointers scattered around operating system (OS) kernels 
make the kernel data layout ambiguous. This limits current kernel 
integrity checking research to covering a small fraction of kernel 
data. Hence, there is a great need to obtain an accurate kernel data 
definition that resolves generic pointer ambiguities, in order to 
formulate a set of constraints between structures to support 
precise integrity checking. In this paper, we present KDD, a new 
tool for systematically generating a sound kernel data definition 
for any C-based OS e.g. Windows and Linux, without any prior 
knowledge of the kernel data layout. KDD performs static points-
to analysis on the kernel’s source code to infer the appropriate 
candidate types for generic pointers. We implemented a prototype 
of KDD and evaluated it to prove its scalability and effectiveness.   

Categories and Subject Descriptors 

D2.7 [LOGICS AND MEANINGS OF PROGRAMS]: 
Program analysis; D4.6 [Operating Systems]: Security kernels. 

General Terms 

Performance, Security, Languages. 

Keywords 

Systematic kernel data integrity checking, points-to analysis. 

1. INTRODUCTION 
It is a very challenging task to verify the integrity of OS kernel 
data. An OS kernel has thousands of data structures that have 
direct and indirect relations between each other, with no explicit 
integrity constraints. In Windows and Linux OSs, from our 
analysis, nearly 40% of the structure relations are pointer-based 
relations (indirect relations), and 35% of these pointer-based 
relations are generic pointers (e.g. null pointers that do not have 
values, and void pointers that do not have associated type 
declarations in the source code). Such generic pointers get their 
values and thus types only at runtime according to the calling 
context. This makes kernel data a rich target for malware that 
exploits the pointer relations between data structures to 
compromise the kernel. Current kernel data integrity checking 
research [1, 2] is limited in solving those problems. This is 
because they depend on their prior knowledge of the kernel data 
to manually resolve the ambiguous pointer-based relations, and 
thus they only cover a small fraction of kernel data structures that 

relate to well-known objects e.g. processes and threads [3]. This 
results in limited protection and inability to detect zero-day 
threats, raising the need to get an accurate kernel data definition 
that resolves the generic pointers ambiguities. 

In this paper, we introduce KDD (Kernel Data Disambiguator), a 
new static analysis tool that can generate a sound kernel data 
definition for any C-based OS (e.g. Windows and Linux), without 
any prior knowledge of the OS kernel data layout. KDD 
disambiguates the pointer relations including generic pointers - to 
infer their candidate types/values - by performing static points-to 
analysis on the kernel’s source code. KDD is able to scale to the 
enormous size of kernel code, unlike many other points-to 
analysis tools. In KDD, precision is an important factor; we want 
the most precise points-to sets to be computed. As the analysis is 
done offline and just once for each kernel version, performance is 
not such an important factor. To meet our requirements, we 
designed and implemented a new points-to analysis algorithm that 
has the ability to provide interprocedural, context- and field-
sensitive, and inclusion-based points-to analysis for large 
programs that contain millions lines of code e.g. OS kernel.  

2. BACKGROUND 
C-based OSs use C structures heavily to model objects. They also 
use pointers extensively to emulate object-oriented dispatch, avoid 
expensive copying of large objects, implement complex data 
structures. Moreover, objects can be cast to multiple types during 
their lifetime, and a pointer deposited in a field under one object 
may be read from a field under another object. This makes the 
analysis of kernel’s data structures a non-trivial task. To get a 
concrete idea of the generic pointers problem, Figure 1 shows 
exemplar C code implementing pointers of the sort found in a 
typical OS. We discuss in it the context of three problems we need 
to address: void pointers, null pointers and casting. 

Void pointers; the problem with use of ‘void’ type is that the 
target object type(s) can only be identified at runtime. From our 
example, UniqueProcessId is void *. However if we analyse the 
code, we find that it indirectly points to another data structure, 
_ExHandle. The wide use of such void pointers hinders 
performing systematic integrity checks on kernel data, where 
there are no type constraints for void *. Null Pointers; null 
pointers are used heavily to implement linked lists which are 
heavily used in OS kernels. The C definition makes a linked list 
points to itself, but actually during system runtime it points to a 
specific object type according to the calling context. Procedure 
Updatelinks, from our example, is used to update the objects’ list 
structured in _LIST_ENTRY (doubly-linked list). However, the 
objects structured in this list can be recognized only during 
runtime. Identifying type of the object that a linked list may hold 
at the offline analysis phase helps significantly in identifying a set 
of constraints on the runtime objects to detect invalid pointer 
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dereferencing. Casting; a major problem with casts is that they 
induce relationships between objects that may appear to be 
unrelated, enabling hackers to exploit data structures layout in 
physical memory. DebugPort, from our code, is declared as an 
integer; however it is being cast to be a pointer to a data structure. 

2.1 Related Work 
Pointer analysis algorithms for C programs have been studied 
intensively over the last two decades. Their use has predominantly 
been for compiler optimizations and their main goal has thus been 
performance. Some work has attempted performing field and 
context sensitivity analysis on large programs [4, 5]. However 
none has been shown to scale to large programs e.g. OS’s kernel 
code with a high precision rate. Kernel data integrity checking has 
been studied intensively [1, 2]. However, all of these approaches 
depend on OS expert knowledge to extract some value-invariants 
that cover specific semantics for a very small number of kernel 
data structures. OSck [2] and SigGraph [6] provides a more 
systematic approach to cover system data, however they do no not 
solve generic pointers problem.  

typedef struct _LIST_ENTRY { 

struct _LIST_ENTRY *Flink; 

struct _LIST_ENTRY *Blink; 
} LIST_ENTRY, *PLIST_ENTRY, *RESTRICTED_POINTER; 

typedef struct _EPROCESS { 

void* UniqueProcessId; 

LIST_ENTRY ActiveProcessLinks; 
} EPROCESS, *PEPROCESS; 

typedef struct _ExHandle { 
int* handle; 

} ExHandl; 

LIST_ENTRY PsActiveProcessHead;    
PEPROCESS ActiveProcess; 

PEPROCESS AllocatePrMemory(){ 

return (PEPROCESS) malloc(sizeof(EPROCESS));       

} 
void CreateProcess(PEPROCESS p_ptr) { 

p_ptr = (PEPROCESS)AllocatePrMemory();     
ActiveProcess = p_ptr; 

p_ptr->UniqueProcessId=ExHandler(ActiveProcess); 

updatelinks(&ptr->ActiveProcessLinks, &PsActiveProcessHead); 
…  

} 

void* ExHandler() { 

_ExHandle tempHandle; 
tempHandle.handle = CreateHandler(); 

… 
return tempHandle.handle; 

} 

void updatelinks(PLIST_ENTRY src, PLIST_ENTRY tgt) { 
src->Flink = tgt->Flink; 

tgt->Blink = src->Blink; 

} 

… 

Figure 1. Example reflecting use of generic pointers. 

3. OUR APPROCH 
KDD takes an OS kernel’s source code as input and outputs a 
type-graph that summarizes the different data types located in the 
kernel along with their connectivity patterns. It reflects inclusion-
based relation between kernel data structures – for both direct and 
indirect relations – to generate constraint sets between data 
structures. To facilitate the analysis, we use Abstract Syntax Tree 
(AST) as a high-level intermediate representation for the source 
code. KDD proceeds by first generating the AST for the kernel’s 
source code. Then two main phases of the analysis are used to 
build the type-graph: (i) Direct Inclusion-Based Relations; to 
extract kernel type definitions to build an initial type-graph that 
reflects the direct relations between structures; (ii) Indirect 

Inclusion-Based Relations; to compute the indirect relations.  

3.1 Direct Inclusion-Based Relations 
This phase of analysis is straightforward, and its output is an 
initial type-graph that reflects the direct inclusion-based relations 
between kernel data structures that have clear type definitions. 

From the generated AST file, KDD performs a compiler-pass 
approach to extract the data structure type definitions by looking 
for typedef aliases, and extract their fields with the corresponding 
type definition. Nodes are data structures and edges are data 
members (inclusion relations) of the structures 

3.2 Indirect Inclusion-Based Relations 
Indirect relations (generic pointer dereferencing) cannot be 
computed from the AST directly. We have developed a new 
points-to analysis algorithm to statically analyse the kernel’s 
source code to get an approximation for every generic pointer 
dereferencing based on Anderson’s approach [5]. We consider all 
forms of assignments and function calls. Data structures are 
flattened to a scalar field. Type casting is handled by inferring 
locations accessed by the pointer being cast. Kernel objects are 
represented by their allocation site according to the calling 
context. The target graph of this step is G (N, E), where N is the 
set of nodes representing global and local variables, fields, array 
elements, procedure arguments\parameters and function return. E 

is a set of directed edges across nodes representing, assignments 
and function calls. The graph nodes have four types and edges 
also have four types. Nodes - a node is one of: (i) Variable Node; 
represents variables including parameters. (ii) Field Reference 

Node; represents structure’s fields. Each field reference node has 
an associated parent node. (iii) Function Call Node; represents a 
function name and an index; index = -1 if the node represents a 
function return, otherwise index = i, where i is the index of 
formal-in argument – i.e. given a function call G (arg1, arg2) in 
this case we will have two nodes G:1 and G:2 representing passed 
arguments arg1 and arg2, respectively. (iv) Cast Node; represents 
explicit casting where the type of the node is the typecast and the 
name is the casted variable or function. Edges - an edge may be: 
(i) Points-to edge; represents points-to relations between two 
nodes according to the edge direction. (ii) Inlist edge; represents a 
points-to relation between two nodes but on a local scope, thus if 
∃ node A has inlist edge to node B, then B ∈ pts(A) where pts(A) 

means the points-to set of A. (iii) Outlist edge; is not a relation 
edge, but represents a directed path between two nodes that are 
used to achieve the points-to analysis. (iv) Parent-child edge; 
represents relation between parent and child – i.e. relation 
between structure and fields, or array and elements. 

The type-graph of the indirect relations is created and refined by 
our points-to analysis algorithm in a three step process: 
Intraprocedural Analysis, Interprocedural Analysis, and Context-

Sensitive Points-To Analysis. These steps are discussed below. 

3.2.1 Intraprocedural Analysis 
The goal of this phase is to compute a local type-graph without 
information about caller or callee. KDD takes the AST file as 
input and outputs an initial graph, as follows: (i) Variables - create 
a node for each variable declaration and check the function scope 
to find out if it is a local or global variable. (ii) Procedure 

Declaration; create a node for each formal-in parameter; (iii) 
Call; create node for each formal-in argument (if not already 
created), in addition to a dummy node for each formal-in 
argument represented by its index in the procedure. These dummy 
nodes will be used in the interprocedural analysis phase to create 
an implicit assignment relation between the formal-in arguments 
and formal-in parameters. (iv) Assignments; create nodes for the 
left and right hand sides, if not already created. (iv) Returns; 

create two nodes; one for the return statement itself and the other 
for the returned value inside the called procedure. 

KDD then builds the initial edges at this step by computing a 
transfer function (TF) for each procedure, procedure call, 



assignment, and return statement, as described in table 1. TF is a 
formal description for the relation between the nodes created for 
each of the previous entities. In our motivating example from 
Section 2, consider the call to the function Updatelinks, where the 
formal-in parameters are (src, tgt), and the actual passed 
arguments are (&ActiveProcessLinks, &PsActiveProcessHead). 

Updatelinks also contains explicit assignment statements (src� 

Flink = tgt�Flink; tgt�Blink = src�Blink). KDD computes the 
transfer function (TF) for those statements as shown in Figure 2 
(a) and Figure 2 (b), respectively. For the return node, given this 
fragment of code UniqueThreadId = ExHandler(), the computed  
TF is shown in Figure 2 (c). 

Table 1. Transfer function description. 
Local points-to sets pts(), constraints between nodes, and edges (→ a 

directed inlist edge between two nodes, ← a directed outlist edge). 

 Code Local pts() Constraints Edges 

P
ro

ce
d

u
re

 

Description; relation between formal-in parameters and the dummy 
nodes that hold the indexes of the parameters. Edges; inlist edge 
between each formal-in parameter node and its relevant dummy node, 
and outlist edge from the dummy node to its relevant formal-in 
parameter node. 

proc(p) 
pts (proc:1) ⊇ 

pts(p) 
proc:1 ⊇ p 

proc:1 → p 

proc:1 ← p 

A
ss

ig
n

m
e
n

t 

Description; relation between left and right hand sides (HSs) of the 
assignment statement. Edges; inlist edge from left HS to right HS, and 
outlist edge from the right HS to left HS. 

p=&q loc (q) ∈ pts(p) p ⊇ [q] p → q, p ← q 

p=q pts (p) ⊇ pts(q) p ⊇ q p → q, p ← q 

p=*q 
∀ v ∈  pts(q) : 

 pts (p) ⊇ pts(v) 
p ⊇ *q 

p → *q → v 

p ← *q ← v 

*p=q 
∀ v ∈  pts(p) :  

pts (v) ⊇ pts(q) 
*p ⊇ q 

v → *p → q 

v ← *p ←  q 

C
a

ll
 

Description; relation between the formal-in arguments nodes and 
dummy nodes. Edges; inlist edge between each argument node and its 
relevant dummy node. 

proc(q); 
pts(q) ⊇ pts 

(proc:1) 
q ⊇ proc:1 q → proc:1 

R
et

u
r
n

 

Description; relation among left hand side, the procedure return node 
and the returned value node. Edges; inlist edge between the left hand 
side and the return node, inlist edge between the return node and 
retuned value node and outlist edge between the return node and the 
left hand side. 

p = fn() 

return q; 
pts (p) ⊇ pts(q) p ⊇ q p → q 

3.2.2 Interprocedural Analysis 
In this phase we perform an interprocedural analysis that enables 
us to perform points-to analysis across different files to perform a 
whole-program analysis. We refine the initial type-graph by 
incorporating interprocedural information from the callees of each 
procedure. The result of this phase is a graph that computes the 
calling effects (returns, arguments and parameters), but without 
any calling context information yet. This is done by propagating 
the local points-to sets (inlist edges) computed at the 
intraprocedural analysis step to their use sites consistently with 
argument index in the call site, as shown in figure 3. Thus we can 
map between the procedure arguments and parameters.  

3.2.3 Context-Sensitive Points-To Analysis 
The key in achieving context-sensitivity is to obtain the return of 
procedures according to the given arguments combined with the 
call site. Points-to analysis algorithm of this step, performed in 
three sub-steps as follows:  

1) Points-to Analysis; a well-known complication in this 
analysis is the order of which nodes will be analysed first, where 
this can greatly affect performance. A good choice is to analyse 

nodes in a topological order [7], by building a Procedure 
Dependency Graph (PDG). This graph enhances the analysis by 
providing the appropriate analysis sequence that result in precise 
points-to analysis. We start with the top node that does not have 
any dependencies, and thus we guarantee that each node has its 
inlist nodes already analysed before proceeding with the node 
itself. We expand the local dereferencing of the pointers to get the 
points-to relations between the caller and callee. We propagate the 
points-to set of each node into its successors accumulating to the 
bottom node. For acyclic points-to relations, pointers are analysed 
iteratively until points-to sets are fully traversed. For recursions, 
we analyse pointers in each recursion cycle individually. 

ActiveProcessLinks

Updatelinks : 1

src

PsActiveProcessHead

Updatelinks : 2

tgt

 

(a) 

Src � Flink tgt � Flink

Points-To Edge

OutList Edge

UniqueProcessId

ExHandler:-1

handle

                          
            (b)                                                  (c) 

Figure 2. Intraprocedural analysis graph: solid arrows inlist 

edges and dashed outlist edges; dashed ovals dummy nodes. 

PsActiveProcessHead

Updatelinks : 2

tgt

X

 

Figure 3. Interprocedural analysis result. 
2) Graph Unification; consider the following piece of code 

from the motivating C code example: Updatelinks 

(&ptr->ActiveProcessLinks, &PsActiveProcessHead). We pass an 
object (data structure) to the procedure; however the procedure 
Updatelinks manipulates the fields of the passed object e.g. Flink 
and Blink. To solve this problem, we apply a unification algorithm 
to the type-graph, as follows: given node A with points-to set S 

and T ∈ S, if T has child-relation edge with f; we copy f to A, 
create a child-relation edge between f and A, and also create 
points-to edge from A.f to T.f, as shown in Figure 4. 
Context-Sensitivity; to achieve context-sensitivity, we use the 
transfer function for each procedure call and apply its calling 
contexts, to bind the output of the procedure call according to the 
calling site. The points-to edge here is a tuple ⟨n, v, c⟩ 
representing that a pointer n points to variable v at context c, 
where the context is defined by a sequence of functions and their 
call-sites to find out valid call paths between nodes. Performing 
context-sensitive analysis solves two problems: the calling context 
and the indirect (implicit) relations between nodes. These indirect 
relations are calculated for each of the two nodes that are in the 
same function scope but not included in one points-to set. Such 
that, ∀ two nodes v and n where v ∈ pts(n) and v and n has 
different function scope, check the function scope of n and x 
where x ∈ pts(v), if the function scope is the same then create a 
points-to edge between n and x. Figure 5 shows the final context-
sensitive analysis for Updatelinks. Note an indirect points-to 
relation from PsActiveProcessHead to ActiveProcessLinks.  



Finally, we write the type-graph. We replace each variable node 
with its data type and for fields and array elements we add the 
declared parent type.  

PsActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

Flink Blink Flink Blink

 

Figure 4. Graph unification: highlighted nodes are the newly 

copied children nodes. Red arrow shows child-relation edge. 

PsActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

Flink Blink Flink Blink

Figure 5. Context-Sensitive Analysis. 

4. EVALUATION  
To demonstrate KDD’s scalability and effectiveness we first 
measured the soundness and precision of KDD using different sets 
of C programs from the SPEC2000 and SPEC2006 benchmark 
suites and other open source programs. Our results, shown in 
Table 2, show that we achieve a high level of precision (~ 97%) 
and 100% of soundness. For significantly sized C programs KDD 
is able to process the application code with very acceptable CPU 
time and memory usage. Second, we analyzed the Linux kernel 
v3.0.22 (~ 6 million LOC) and WRK (~ 3.5 million LOC). KDD 
scales to the very large size of such OSs. KDD needed around 46 
hours to analyze the WRK and around 72 hours to analysis the 
Linux kernel. As our points-to analysis is performed offline and 
just once or each kernel version, performance overhead of 
analyzing kernels is acceptable and does not present a problem for 
any security application that wants to make use of KDD’s 
generated type graph. To evaluate the effectiveness of KDD 
results, we performed a comparison between the pointer relations 
inferred by KDD and the manual efforts of OS experts to solve 
these indirect relations in both kernels. KDD successfully deduced 
the candidate target type/value of these members with 100% 
soundness. We could not measure the precision for nearly 60% of 
the members as there is no clear description for these members 
from any existing manual analysis. We measured precision for 
well-known objects and precision was around 96%.  

Thus KDD is able to scale to produce a detailed, highly accurate 
type-graph for a large-scale C program such as an OS kernel. A 

key to achieve this scalability and high performance was by using 

AST as the basis for points-to analysis. The compact and syntax-
free AST improves time and memory usage efficiency of the 
analysis. To the best of our knowledge, there is no similar 
research in the area of systematically defining the kernel data 
structure with the exception of KOP [3]. However, KOP is limited 
in that the points-to sets of KOP are not highly precise; analysis 
performance overhead is very high; and KOP uses a medium-level 
intermediate representation (MIR) which complicates the analysis 
and results in improper points-to sets. 

5. SUMMARY 
The wide existence of generic pointers in OS kernels makes 
kernel data ambiguous and thus hinders current kernel data 
integrity research from providing the preemptive protection. KDD 
is a new tool that has the ability to generate a sound kernel data 
structure definition for any C-based operating system, without any 
prior knowledge of the OS. Our experiments have shown that the 
KDD-generated type-graph is accurate and solves the generic 
pointer problem with high rate of soundness and precision. To the 
best of our knowledge, KDD is the only tool that can scale to 
produce a detailed, highly accurate type-graph for C-based OSs. 
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Table 2. Soundness and Precision Results running KDD on a suite of benchmark C programs.  
LOC lines of code. Pointer Inst number of pointer instructions. Proc number of Procedure definitions. Struct number of C structs AST T time consumed to 

generate AST files, AST M memory usage, and AST C CPU usage. TG T time consumed to build the type-graph, TG M memory usage, TG C CPU usage. 

Benchmark LOC Pointer Inst Proc Struct 
AST T 

(sec) 

AST M 

(MB) 

AST C 

(%) 

TG T 

(sec) 

TG M 

(MB) 

TG C 

(%) 

P  

(%) 

S 

(%) 

art 1272 286 43 19 22.7 21.5 19.9 73.3 12.3 17.6 100 100 
equake 1515 485 40 15 27.5 25.4 20.4 87.5 14.1 21.1 98.6 100 

mcf 2414 453 42 22 43.2 41 28.5 14 23 27 97.2 100 
gzip 8618 991 90 340 154.2 144.6 70.5 503.3 81.4 68.3 95.1 100 

parser 11394 3872 356 145 305.2 191.2 76.7 661.4 107.8 74.3 94.5 100 
vpr 17731 4592 228 398 316.1 298.7 80.2 1031.5 163.2 79 NA 100 
gcc 222185 98384 1829 2806 3960.5 3756.5 93.5 12962 2200 94 NA 100 

sendmail 113264 9424 1005 901 2017.2 1915.1 91.6 6609 1075.0 91.5 NA 100 
bzip2 4650 759 90 14 82.3 78.1 45.5 271.6 44.2 42.9 95.9 100 

 


