
Supporting Operating System Kernel Data Disambiguation
using Points-to Analysis

Amani S. Ibrahim, John Grundy, James Hamlyn-Harris and Mohamed Almorsy

Centre for Computing and Engineering Software Systems
Swinburne University of Technology

Melbourne, Australia

[aibrahim, jgrundy, jhamlynharris, malmorsy]@swin.edu.au

ABSTRACT

Generic pointers scattered around operating system (OS) kernels
make the kernel data layout ambiguous. This limits current kernel
integrity checking research to covering a small fraction of kernel
data. Hence, there is a great need to obtain an accurate kernel data
definition that resolves generic pointer ambiguities, in order to
formulate a set of constraints between structures to support
precise integrity checking. In this paper, we present KDD, a new
tool for systematically generating a sound kernel data definition
for any C-based OS e.g. Windows and Linux, without any prior
knowledge of the kernel data layout. KDD performs static points-
to analysis on the kernel’s source code to infer the appropriate
candidate types for generic pointers. We implemented a prototype
of KDD and evaluated it to prove its scalability and effectiveness.

Categories and Subject Descriptors

D2.7 [LOGICS AND MEANINGS OF PROGRAMS]:
Program analysis; D4.6 [Operating Systems]: Security kernels.

General Terms

Performance, Security, Languages.

Keywords

Systematic kernel data integrity checking, points-to analysis.

1. INTRODUCTION
It is a very challenging task to verify the integrity of OS kernel
data. An OS kernel has thousands of data structures that have
direct and indirect relations between each other, with no explicit
integrity constraints. In Windows and Linux OSs, from our
analysis, nearly 40% of the structure relations are pointer-based
relations (indirect relations), and 35% of these pointer-based
relations are generic pointers (e.g. null pointers that do not have
values, and void pointers that do not have associated type
declarations in the source code). Such generic pointers get their
values and thus types only at runtime according to the calling
context. This makes kernel data a rich target for malware that
exploits the pointer relations between data structures to
compromise the kernel. Current kernel data integrity checking
research [1, 2] is limited in solving those problems. This is
because they depend on their prior knowledge of the kernel data
to manually resolve the ambiguous pointer-based relations, and
thus they only cover a small fraction of kernel data structures that

relate to well-known objects e.g. processes and threads [3]. This
results in limited protection and inability to detect zero-day
threats, raising the need to get an accurate kernel data definition
that resolves the generic pointers ambiguities.

In this paper, we introduce KDD (Kernel Data Disambiguator), a
new static analysis tool that can generate a sound kernel data
definition for any C-based OS (e.g. Windows and Linux), without
any prior knowledge of the OS kernel data layout. KDD
disambiguates the pointer relations including generic pointers - to
infer their candidate types/values - by performing static points-to
analysis on the kernel’s source code. KDD is able to scale to the
enormous size of kernel code, unlike many other points-to
analysis tools. In KDD, precision is an important factor; we want
the most precise points-to sets to be computed. As the analysis is
done offline and just once for each kernel version, performance is
not such an important factor. To meet our requirements, we
designed and implemented a new points-to analysis algorithm that
has the ability to provide interprocedural, context- and field-
sensitive, and inclusion-based points-to analysis for large
programs that contain millions lines of code e.g. OS kernel.

2. BACKGROUND
C-based OSs use C structures heavily to model objects. They also
use pointers extensively to emulate object-oriented dispatch, avoid
expensive copying of large objects, implement complex data
structures. Moreover, objects can be cast to multiple types during
their lifetime, and a pointer deposited in a field under one object
may be read from a field under another object. This makes the
analysis of kernel’s data structures a non-trivial task. To get a
concrete idea of the generic pointers problem, Figure 1 shows
exemplar C code implementing pointers of the sort found in a
typical OS. We discuss in it the context of three problems we need
to address: void pointers, null pointers and casting.

Void pointers; the problem with use of ‘void’ type is that the
target object type(s) can only be identified at runtime. From our
example, UniqueProcessId is void *. However if we analyse the
code, we find that it indirectly points to another data structure,
_ExHandle. The wide use of such void pointers hinders
performing systematic integrity checks on kernel data, where
there are no type constraints for void *. Null Pointers; null
pointers are used heavily to implement linked lists which are
heavily used in OS kernels. The C definition makes a linked list
points to itself, but actually during system runtime it points to a
specific object type according to the calling context. Procedure
Updatelinks, from our example, is used to update the objects’ list
structured in _LIST_ENTRY (doubly-linked list). However, the
objects structured in this list can be recognized only during
runtime. Identifying type of the object that a linked list may hold
at the offline analysis phase helps significantly in identifying a set
of constraints on the runtime objects to detect invalid pointer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE 2012, Sept 3–7, 2012, Essen, Germany.
Copyright 2012 ACM 1-58113-000-0/00/0010 …$15.00.

dereferencing. Casting; a major problem with casts is that they
induce relationships between objects that may appear to be
unrelated, enabling hackers to exploit data structures layout in
physical memory. DebugPort, from our code, is declared as an
integer; however it is being cast to be a pointer to a data structure.

2.1 Related Work
Pointer analysis algorithms for C programs have been studied
intensively over the last two decades. Their use has predominantly
been for compiler optimizations and their main goal has thus been
performance. Some work has attempted performing field and
context sensitivity analysis on large programs [4, 5]. However
none has been shown to scale to large programs e.g. OS’s kernel
code with a high precision rate. Kernel data integrity checking has
been studied intensively [1, 2]. However, all of these approaches
depend on OS expert knowledge to extract some value-invariants
that cover specific semantics for a very small number of kernel
data structures. OSck [2] and SigGraph [6] provides a more
systematic approach to cover system data, however they do no not
solve generic pointers problem.

typedef struct _LIST_ENTRY {

struct _LIST_ENTRY *Flink;

struct _LIST_ENTRY *Blink;
} LIST_ENTRY, *PLIST_ENTRY, *RESTRICTED_POINTER;

typedef struct _EPROCESS {

void* UniqueProcessId;

LIST_ENTRY ActiveProcessLinks;
} EPROCESS, *PEPROCESS;

typedef struct _ExHandle {
int* handle;

} ExHandl;

LIST_ENTRY PsActiveProcessHead;
PEPROCESS ActiveProcess;

PEPROCESS AllocatePrMemory(){

return (PEPROCESS) malloc(sizeof(EPROCESS));

}
void CreateProcess(PEPROCESS p_ptr) {

p_ptr = (PEPROCESS)AllocatePrMemory();
ActiveProcess = p_ptr;

p_ptr->UniqueProcessId=ExHandler(ActiveProcess);

updatelinks(&ptr->ActiveProcessLinks, &PsActiveProcessHead);
…

}

void* ExHandler() {

_ExHandle tempHandle;
tempHandle.handle = CreateHandler();

…
return tempHandle.handle;

}

void updatelinks(PLIST_ENTRY src, PLIST_ENTRY tgt) {
src->Flink = tgt->Flink;

tgt->Blink = src->Blink;

}

…

Figure 1. Example reflecting use of generic pointers.

3. OUR APPROCH
KDD takes an OS kernel’s source code as input and outputs a
type-graph that summarizes the different data types located in the
kernel along with their connectivity patterns. It reflects inclusion-
based relation between kernel data structures – for both direct and
indirect relations – to generate constraint sets between data
structures. To facilitate the analysis, we use Abstract Syntax Tree
(AST) as a high-level intermediate representation for the source
code. KDD proceeds by first generating the AST for the kernel’s
source code. Then two main phases of the analysis are used to
build the type-graph: (i) Direct Inclusion-Based Relations; to
extract kernel type definitions to build an initial type-graph that
reflects the direct relations between structures; (ii) Indirect

Inclusion-Based Relations; to compute the indirect relations.

3.1 Direct Inclusion-Based Relations
This phase of analysis is straightforward, and its output is an
initial type-graph that reflects the direct inclusion-based relations
between kernel data structures that have clear type definitions.

From the generated AST file, KDD performs a compiler-pass
approach to extract the data structure type definitions by looking
for typedef aliases, and extract their fields with the corresponding
type definition. Nodes are data structures and edges are data
members (inclusion relations) of the structures

3.2 Indirect Inclusion-Based Relations
Indirect relations (generic pointer dereferencing) cannot be
computed from the AST directly. We have developed a new
points-to analysis algorithm to statically analyse the kernel’s
source code to get an approximation for every generic pointer
dereferencing based on Anderson’s approach [5]. We consider all
forms of assignments and function calls. Data structures are
flattened to a scalar field. Type casting is handled by inferring
locations accessed by the pointer being cast. Kernel objects are
represented by their allocation site according to the calling
context. The target graph of this step is G (N, E), where N is the
set of nodes representing global and local variables, fields, array
elements, procedure arguments\parameters and function return. E

is a set of directed edges across nodes representing, assignments
and function calls. The graph nodes have four types and edges
also have four types. Nodes - a node is one of: (i) Variable Node;
represents variables including parameters. (ii) Field Reference

Node; represents structure’s fields. Each field reference node has
an associated parent node. (iii) Function Call Node; represents a
function name and an index; index = -1 if the node represents a
function return, otherwise index = i, where i is the index of
formal-in argument – i.e. given a function call G (arg1, arg2) in
this case we will have two nodes G:1 and G:2 representing passed
arguments arg1 and arg2, respectively. (iv) Cast Node; represents
explicit casting where the type of the node is the typecast and the
name is the casted variable or function. Edges - an edge may be:
(i) Points-to edge; represents points-to relations between two
nodes according to the edge direction. (ii) Inlist edge; represents a
points-to relation between two nodes but on a local scope, thus if
∃ node A has inlist edge to node B, then B ∈ pts(A) where pts(A)

means the points-to set of A. (iii) Outlist edge; is not a relation
edge, but represents a directed path between two nodes that are
used to achieve the points-to analysis. (iv) Parent-child edge;
represents relation between parent and child – i.e. relation
between structure and fields, or array and elements.

The type-graph of the indirect relations is created and refined by
our points-to analysis algorithm in a three step process:
Intraprocedural Analysis, Interprocedural Analysis, and Context-

Sensitive Points-To Analysis. These steps are discussed below.

3.2.1 Intraprocedural Analysis
The goal of this phase is to compute a local type-graph without
information about caller or callee. KDD takes the AST file as
input and outputs an initial graph, as follows: (i) Variables - create
a node for each variable declaration and check the function scope
to find out if it is a local or global variable. (ii) Procedure

Declaration; create a node for each formal-in parameter; (iii)
Call; create node for each formal-in argument (if not already
created), in addition to a dummy node for each formal-in
argument represented by its index in the procedure. These dummy
nodes will be used in the interprocedural analysis phase to create
an implicit assignment relation between the formal-in arguments
and formal-in parameters. (iv) Assignments; create nodes for the
left and right hand sides, if not already created. (iv) Returns;

create two nodes; one for the return statement itself and the other
for the returned value inside the called procedure.

KDD then builds the initial edges at this step by computing a
transfer function (TF) for each procedure, procedure call,

assignment, and return statement, as described in table 1. TF is a
formal description for the relation between the nodes created for
each of the previous entities. In our motivating example from
Section 2, consider the call to the function Updatelinks, where the
formal-in parameters are (src, tgt), and the actual passed
arguments are (&ActiveProcessLinks, &PsActiveProcessHead).

Updatelinks also contains explicit assignment statements (src�

Flink = tgt�Flink; tgt�Blink = src�Blink). KDD computes the
transfer function (TF) for those statements as shown in Figure 2
(a) and Figure 2 (b), respectively. For the return node, given this
fragment of code UniqueThreadId = ExHandler(), the computed
TF is shown in Figure 2 (c).

Table 1. Transfer function description.
Local points-to sets pts(), constraints between nodes, and edges (→ a

directed inlist edge between two nodes, ← a directed outlist edge).

 Code Local pts() Constraints Edges

P
ro

ce
d

u
re

Description; relation between formal-in parameters and the dummy
nodes that hold the indexes of the parameters. Edges; inlist edge
between each formal-in parameter node and its relevant dummy node,
and outlist edge from the dummy node to its relevant formal-in
parameter node.

proc(p)
pts (proc:1) ⊇

pts(p)
proc:1 ⊇ p

proc:1 → p

proc:1 ← p

A
ss

ig
n

m
e
n

t

Description; relation between left and right hand sides (HSs) of the
assignment statement. Edges; inlist edge from left HS to right HS, and
outlist edge from the right HS to left HS.

p=&q loc (q) ∈ pts(p) p ⊇ [q] p → q, p ← q

p=q pts (p) ⊇ pts(q) p ⊇ q p → q, p ← q

p=*q
∀ v ∈ pts(q) :

 pts (p) ⊇ pts(v)
p ⊇ *q

p → *q → v

p ← *q ← v

*p=q
∀ v ∈ pts(p) :

pts (v) ⊇ pts(q)
*p ⊇ q

v → *p → q

v ← *p ← q

C
a

ll

Description; relation between the formal-in arguments nodes and
dummy nodes. Edges; inlist edge between each argument node and its
relevant dummy node.

proc(q);
pts(q) ⊇ pts

(proc:1)
q ⊇ proc:1 q → proc:1

R
et

u
r
n

Description; relation among left hand side, the procedure return node
and the returned value node. Edges; inlist edge between the left hand
side and the return node, inlist edge between the return node and
retuned value node and outlist edge between the return node and the
left hand side.

p = fn()

return q;
pts (p) ⊇ pts(q) p ⊇ q p → q

3.2.2 Interprocedural Analysis
In this phase we perform an interprocedural analysis that enables
us to perform points-to analysis across different files to perform a
whole-program analysis. We refine the initial type-graph by
incorporating interprocedural information from the callees of each
procedure. The result of this phase is a graph that computes the
calling effects (returns, arguments and parameters), but without
any calling context information yet. This is done by propagating
the local points-to sets (inlist edges) computed at the
intraprocedural analysis step to their use sites consistently with
argument index in the call site, as shown in figure 3. Thus we can
map between the procedure arguments and parameters.

3.2.3 Context-Sensitive Points-To Analysis
The key in achieving context-sensitivity is to obtain the return of
procedures according to the given arguments combined with the
call site. Points-to analysis algorithm of this step, performed in
three sub-steps as follows:

1) Points-to Analysis; a well-known complication in this
analysis is the order of which nodes will be analysed first, where
this can greatly affect performance. A good choice is to analyse

nodes in a topological order [7], by building a Procedure
Dependency Graph (PDG). This graph enhances the analysis by
providing the appropriate analysis sequence that result in precise
points-to analysis. We start with the top node that does not have
any dependencies, and thus we guarantee that each node has its
inlist nodes already analysed before proceeding with the node
itself. We expand the local dereferencing of the pointers to get the
points-to relations between the caller and callee. We propagate the
points-to set of each node into its successors accumulating to the
bottom node. For acyclic points-to relations, pointers are analysed
iteratively until points-to sets are fully traversed. For recursions,
we analyse pointers in each recursion cycle individually.

ActiveProcessLinks

Updatelinks : 1

src

PsActiveProcessHead

Updatelinks : 2

tgt

(a)

Src � Flink tgt � Flink

Points-To Edge

OutList Edge

UniqueProcessId

ExHandler:-1

handle

 (b) (c)

Figure 2. Intraprocedural analysis graph: solid arrows inlist

edges and dashed outlist edges; dashed ovals dummy nodes.

PsActiveProcessHead

Updatelinks : 2

tgt

X

Figure 3. Interprocedural analysis result.
2) Graph Unification; consider the following piece of code

from the motivating C code example: Updatelinks

(&ptr->ActiveProcessLinks, &PsActiveProcessHead). We pass an
object (data structure) to the procedure; however the procedure
Updatelinks manipulates the fields of the passed object e.g. Flink
and Blink. To solve this problem, we apply a unification algorithm
to the type-graph, as follows: given node A with points-to set S

and T ∈ S, if T has child-relation edge with f; we copy f to A,
create a child-relation edge between f and A, and also create
points-to edge from A.f to T.f, as shown in Figure 4.
Context-Sensitivity; to achieve context-sensitivity, we use the
transfer function for each procedure call and apply its calling
contexts, to bind the output of the procedure call according to the
calling site. The points-to edge here is a tuple ⟨n, v, c⟩
representing that a pointer n points to variable v at context c,
where the context is defined by a sequence of functions and their
call-sites to find out valid call paths between nodes. Performing
context-sensitive analysis solves two problems: the calling context
and the indirect (implicit) relations between nodes. These indirect
relations are calculated for each of the two nodes that are in the
same function scope but not included in one points-to set. Such
that, ∀ two nodes v and n where v ∈ pts(n) and v and n has
different function scope, check the function scope of n and x
where x ∈ pts(v), if the function scope is the same then create a
points-to edge between n and x. Figure 5 shows the final context-
sensitive analysis for Updatelinks. Note an indirect points-to
relation from PsActiveProcessHead to ActiveProcessLinks.

Finally, we write the type-graph. We replace each variable node
with its data type and for fields and array elements we add the
declared parent type.

PsActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

Flink Blink Flink Blink

Figure 4. Graph unification: highlighted nodes are the newly

copied children nodes. Red arrow shows child-relation edge.

PsActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

Flink Blink Flink Blink

Figure 5. Context-Sensitive Analysis.

4. EVALUATION
To demonstrate KDD’s scalability and effectiveness we first
measured the soundness and precision of KDD using different sets
of C programs from the SPEC2000 and SPEC2006 benchmark
suites and other open source programs. Our results, shown in
Table 2, show that we achieve a high level of precision (~ 97%)
and 100% of soundness. For significantly sized C programs KDD
is able to process the application code with very acceptable CPU
time and memory usage. Second, we analyzed the Linux kernel
v3.0.22 (~ 6 million LOC) and WRK (~ 3.5 million LOC). KDD
scales to the very large size of such OSs. KDD needed around 46
hours to analyze the WRK and around 72 hours to analysis the
Linux kernel. As our points-to analysis is performed offline and
just once or each kernel version, performance overhead of
analyzing kernels is acceptable and does not present a problem for
any security application that wants to make use of KDD’s
generated type graph. To evaluate the effectiveness of KDD
results, we performed a comparison between the pointer relations
inferred by KDD and the manual efforts of OS experts to solve
these indirect relations in both kernels. KDD successfully deduced
the candidate target type/value of these members with 100%
soundness. We could not measure the precision for nearly 60% of
the members as there is no clear description for these members
from any existing manual analysis. We measured precision for
well-known objects and precision was around 96%.

Thus KDD is able to scale to produce a detailed, highly accurate
type-graph for a large-scale C program such as an OS kernel. A

key to achieve this scalability and high performance was by using

AST as the basis for points-to analysis. The compact and syntax-
free AST improves time and memory usage efficiency of the
analysis. To the best of our knowledge, there is no similar
research in the area of systematically defining the kernel data
structure with the exception of KOP [3]. However, KOP is limited
in that the points-to sets of KOP are not highly precise; analysis
performance overhead is very high; and KOP uses a medium-level
intermediate representation (MIR) which complicates the analysis
and results in improper points-to sets.

5. SUMMARY
The wide existence of generic pointers in OS kernels makes
kernel data ambiguous and thus hinders current kernel data
integrity research from providing the preemptive protection. KDD
is a new tool that has the ability to generate a sound kernel data
structure definition for any C-based operating system, without any
prior knowledge of the OS. Our experiments have shown that the
KDD-generated type-graph is accurate and solves the generic
pointer problem with high rate of soundness and precision. To the
best of our knowledge, KDD is the only tool that can scale to
produce a detailed, highly accurate type-graph for C-based OSs.

ACKNOWLEDGEMENTS
The authors are grateful to Swinburne University of Technology
and FRST Software Process and Product Improvement project for
support for this research.

6. REFERENCES
[1] A. Baliga, V. Ganapathy, and L. Iftode, "Automatic Inference

and Enforcement of Kernel Data Structure Invariants," in
Proc of 2008 Annual Comp. Sec. App. Conf., 2008, pp. 77-86.

[2] O. S. Hofmann, A. M. Dunn, and S. Kim, "Ensuring
operating system kernel integrity with OSck," in Proc. of 16th

ASPLOS, California, USA, 2011, pp. 279-290.
[3] M. Carbone, W. Cui, L. Lu, et al. "Mapping kernel objects to

enable systematic integrity checking," in Proc 16th ACM

CCS, 2009, pp. 555-565.
[4] H. Yu, J. Xue, W. Huo, X. Feng, and Z. Zhang, "Level by

level: making flow- and context-sensitive pointer analysis
scalable for millions of lines of code," in Proc. of 8th annual

IEEE/ACM CGO, Ontario, Canada, 2010, pp. 218-229.
[5] L. Andersen, "Program Analysis and Specialization for the C

Programming Language," PhD, U. of Copenhagen, 1994.
[6] Z. Lin, J. Rhee, and X. Zhang, "SigGraph: Brute Force

Scanning of Kernel Data Structure Instances Using Graph-
based Signatures," in Proc. of 18th NDSS, San Diego, 2011.

[7] D. J. Pearce, P. H. Kelly, and C. Hankin, "Efficient field-
sensitive pointer analysis for C," in Proc. of 5th ACM

SIGPLAN-SIGSOFT PASTE, USA, 2004, pp. 37-42.

Table 2. Soundness and Precision Results running KDD on a suite of benchmark C programs.
LOC lines of code. Pointer Inst number of pointer instructions. Proc number of Procedure definitions. Struct number of C structs AST T time consumed to

generate AST files, AST M memory usage, and AST C CPU usage. TG T time consumed to build the type-graph, TG M memory usage, TG C CPU usage.

Benchmark LOC Pointer Inst Proc Struct
AST T

(sec)

AST M

(MB)

AST C

(%)

TG T

(sec)

TG M

(MB)

TG C

(%)

P

(%)

S

(%)

art 1272 286 43 19 22.7 21.5 19.9 73.3 12.3 17.6 100 100
equake 1515 485 40 15 27.5 25.4 20.4 87.5 14.1 21.1 98.6 100

mcf 2414 453 42 22 43.2 41 28.5 14 23 27 97.2 100
gzip 8618 991 90 340 154.2 144.6 70.5 503.3 81.4 68.3 95.1 100

parser 11394 3872 356 145 305.2 191.2 76.7 661.4 107.8 74.3 94.5 100
vpr 17731 4592 228 398 316.1 298.7 80.2 1031.5 163.2 79 NA 100
gcc 222185 98384 1829 2806 3960.5 3756.5 93.5 12962 2200 94 NA 100

sendmail 113264 9424 1005 901 2017.2 1915.1 91.6 6609 1075.0 91.5 NA 100
bzip2 4650 759 90 14 82.3 78.1 45.5 271.6 44.2 42.9 95.9 100

