
Supporting Automated Software Re-Engineering using
“Re-Aspects”

Mohamed Almorsy, John Grundy, and Amani S. Ibrahim
Centre for Computing & Engineering Software Systems

Swinburne University of Technology
Melbourne, Australia

[malmorsy,jgrundy, aibrahim]@swin.edu.au

ABSTRACT
System maintenance, including omitting an existing system feature
e.g. buggy or vulnerable code, or modifying existing features, e.g.
replacing them, is still very challenging. To address this problem
we introduce the “re-aspect” (re-engineering aspect), inspired from
traditional AOP. A re-aspect captures system modification details
including signatures of entities to be updated; actions to apply
including remove, modify, replace, or inject new code; and code to
apply. Re-aspects locate entities to update, entities that will be
impacted by the given update, and finally propagate changes on the
system source code. We have applied our re-aspects technique to
the security re-engineering problem and evaluated it on a set of
open source .NET applications to demonstrate its usefulness.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering

General Terms
Algorithms, Design, Languages

Keywords
System Reengineering; Software Evolution; Change Impact
Analysis; Re-Aspects

1. INTRODUCTION
Software systems are usually exposed to extensive change and
evolution after deployment. These maintenance activities represent
up to 80% of the total system cost and effort [1]. This usually
requires capturing new features/modifications, locating system
entities that must be modified, locating system entities that are
impacted by this modification and should be modified, and
propagating the required modification to the whole system.
Existing system maintenance approaches are mostly limited to
change impact analysis [2, 3], where we identify entities that will
be impacted by a given system modification to a specific system
entity. These efforts assume that entities to modify are known and
just look for entities impacted by this modification. Moreover, they
focus on changes on class and method level rather than a block-of-

code. They assume a set of predefined system modifications. The
problem of capturing and locating specific system entities to
change has been addressed by other system reengineering efforts:
concept location [4], design patterns [5], aspects [6], and source
code evolution [7]. However, these efforts are limited in their
expressiveness, formality, and identification precision, as most of
them targeted to help program understanding rather than
supporting actual program modification. Propagating change
modifications on the target system has often been realized using
AOP techniques to support software maintenance [8], re-
engineering [6], and refactoring [9].
We introduce the concept of re-engineering aspects, or “re-
aspects” for short, as a novel, integrated and systematic solution to
the system re-engineering and maintenance problem. A re-aspect
captures signature of system entities that need to be modified to
effect a given change request, actions required (add new code,
remove existing code, modify code, or replace code), and code to
apply on the located matching entities. Then we automatically
analyse the system source code, locate entities that match the
specified signatures, conduct detailed impact analysis to identify
the impacted entities, and propagate the change required on source
code. Re-aspect signature may be class, method, or even code
blocks. We introduce two novel signature specification designators
to capture formal and flexible semantic and syntactic signatures.

2. RE-ASPECTS
Once a new change request (CR) is received, a change request
management process is initiated. This process is conducted to
figure out, and document, the expected impacts on system entities.
First, it starts with an impact analysis task. The output of it is
maintained in a “change set”. Each item in the change set may be
removed, modified, replaced, or new code injected. Next, a deeper
analysis is then conducted to identify the “impact set” which
includes items that will be impacted by changes in the “change
set”. Finally, system developers propagate the specified system
modifications on the system entities. This might require modifying
code developed in different programming languages and different
syntactical format (variable name, conditions’ order or format).

2.1 Re-aspects Motivation
Figure 1 shows different code snippets, from an internally
developed ERP application called Galactic, vulnerable to different
security issues including: (A) built-in security functions that need
to be disabled; (B) code vulnerable to authentication bypass attack;
and (C) code vulnerable to improper authorization attack. In this
figure we also show some possible mitigations (system
modifications) to address these vulnerabilities (the code with grey
shading) i.e. the required re-engineering of the original code to
address the identified security vulnerabilities found.	

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASE'12, September 3–7, 2012, Essen, Germany.
Copyright 2012 ACM 978-1-4503-1204-2/12/09... $15.00.

bool	 updateCustomerBalance(string	 custID,	 decimal	 nBalance)	 {	
if(!AuthenitcateUser(username,	 password))	 return	 false;	
if(!AuthorzUser(username,	 "updateCustBalance"))	 return	 false;	
LogTrx(username,	 dateTime.Now,	 "updateCustomerBalance");	
Customer	 customer	 =	 Customers.getCustomerByID(custID);	
customer.Balance	 =	 nBalance;	
Customers.SaveChanges();	
LogTrx(username,	 dateTime.Now,	 "updateCustBalance	 done");}	

if(Request.Cookies["Loggedin"]	 !=	 true)	 {	
	 	 	 	 	 	 	 if(!AuthenticateUser(Request.Params["username"],	

Request.Params["password"]));	
	 	 	 	 throw	 new	 Exception("Invalid	 user");	 }	

DoAdministration();

if(!AuthenticateUser(Request.Params["username"],	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Request.Params["password"]))	

throw	 new	 Exception("Invalid	 user");	
if(!AuthorizeUser(Thread.CurrentPrincipal,	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (new	 StakeFrame()).GetMethod().Name,	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (new	 StakeFrame()).GetMethod().GetParameters()))	 	 	
	 	 	 	 	 	 	 	 	 throw	 new	 Exception("User	 is	 not	 auhorized");	
updateCustomerBalance(Request.QueryString["cID"],	 nBalance);	

Figure 1. Possible system changes - motivating examples

2.2 Re-aspect Syntax
A re-aspect specifies a single system modification to be applied on
the target code base. A re-aspect has a signature, an advice and an
action. A re-aspect signature defines footprint of a target system
entity that should be deleted/modified/replaced or into which new
code is inserted – this may be a line of code, a method, or a class.
A re-aspect instance is a matched system entity that matches a
given re-aspect signature. Each re-aspect instance maintains their
specific context information. A re-aspect action specifies what to
do on the re-aspect’s instances. An action may be applied on re-
aspect level (i.e. on all re-aspect instances) or on specific instances.
A re-aspect impact set represents system entities that will be
impacted by a given system modification.

Re-‐aspectDef	 	 	 	 ::=	 	 s:{Signature}	 a:{Action}	 d:{Advice}	 i:{Impact	 _aspect}	
Signature	 	 	 	 	 	 ::=	 	 st:SignatureType	 se:	 {Signature	 Expression}	 ;	 OtherSig	
OtherSig	 	 	 	 	 	 	 	 	 	 	 	 ::=	 	 NULL	 |	 Signature	 	
SignatureType	 	 ::=	 	 code-‐snippet	 	 |	 	 OCL-‐expression	
Action	 	 	 	 	 	 ::=	 	 at:Action	 Type	 ac:	 {Action	 Condition}	
Action	 Type	 	 	 	 	 	 	 ::=	 	 Delete	 |	 Modify	 |	 Replace	 |	 Inject	
Action	 Cond	 	 	 	 	 	 ::=	 	 OCL-‐expression;	 Action	 Cond	 |	 NULL	
Impact_Aspect	 ::=	 	 NULL	 |	 Re-‐aspectDef	 |	 Impact_Aspect	 	 	

Figure 2. Re-aspect syntax
Figure 2 shows our re-aspect definition syntax. Every re-aspect has
a signature, action, advice, and may have an impact re-aspect. The
signature specifies the signature type and the signature expression.
This can be a collection of composite signatures. Re-aspect action
specifies action type and conditions, if any. The advice specifies
code to replace or inject or the code used to modify existing code.
The impact re-aspect specifies what to do with other system
entities impacted by this system modification.

Based on the re-aspect action type, we have four possible re-
engineering “re-aspects” types: adding re-aspect: this equates to a
conventional AOP code injection aspect. Code to be injected is
specified in a separate advice that is weaved with the target system
at a given re-aspect instance. It can add any static structure (new
method, field, and lines-of-code) to system entities. An anti-aspect
has only signature and no advices. The identified code blocks - re-
aspect instances - are removed from the target system. A replacing
re-aspect is a combination of deletion and adding-aspect. It
includes signature of code to be removed and an advice to be
injected. Finally, a modifying re-aspect is the most complicated
re-aspect. It makes use of the identified re-aspect instance code to
allow the aspect developer to specify selective deletion, reordering,

or addition of new nodes into the identified code instance. For
example, the problem in Fig. 1-B (Authentication bypass) could be
mitigated using a modifying re-aspect advice, as shown in Figure
3. It receives a re-aspect instance (an AST node) as input
parameter. At weaving time, we call the modifying aspect script on
each identified instance. The returned, modified AST is used to
replace the original sub-tree.

void authenticationByPassMitigationAdvice(INode aspectInstance) {
 INode node = aspectInstance;
 if ((node as IfElseStatemenet) != null
 && ((IfElseStmt) node).Condition.Contains("loggedin") == true)) {
 aspectInstance = ((IfElseStatement)node).TrueStatement[0];
 } }	

Figure 3. A sample of a modifying re-aspect advice

2.3 Re-aspect Signature Designators
Supporting system reengineering requires a powerful signature
specification approach. Our re-aspect concept is supported with a
hybrid approach that delivers flexible syntactical code signature as
well as OCL-semantic signature specification designators.

1
2
3
4
5
6
7
8
9

//update namespace or class name for specific instances, if any
 namespace DummyNamespace {
 class DummyClass {
 // update method modifier, return type or
 // name for specific method signatures
 public void DummyMethod() {
 DummyStatement;
 // update method body in case of code block re-aspect
 if (DummyCondition) { }

Figure 4. Code snippet re-aspect template

A. Code Snippet Signature Designator: using this designator,
developers can specify a flexible code snippet as the aspect
signature. Figure 4 shows the template of syntactical code snippet
as a signature. Developers use this template to write code parts
they are interested in. The flexibility comes when specifying
signatures to be matched with code blocks inside methods’ body.
A developer can specify the code block they are interested to
locate. If the developer does not know the details of the code
block, they can use the dummy keyword. This indicates that all
statements in the method body will not be considered until a match
between the target method statements and the next statement in the
given signature is found in the method body.
The syntactical code snippet approach is similar to regular
expressions in their expressiveness. Our code snippets have an
edge in their matching approach. Regular expressions depend on
lexical pattern matching that suffers from lexical problems such as
new lines, tabs, brackets, etc. As our code snippet matching is done
on Abstract Syntax Trees this avoids such lexical problems and can
even match code snippets from different programming languages.

B. Semantic OCL-based Signature Designator: to support more
formal semantic re-aspect signatures we use the Object Constraint
Language (OCL) as a signature definition language. This is more
formal, familiar, and extensible. To enrich OCL with object-
oriented programs semantics, we have developed a system-
description class diagram, shown in Figure 5. This shows every
entity existing in any given object oriented system including
component, class, instance, method, inputs, sources, if statements,
loops, etc. Moreover, it helps in validating OCL constraints and
can be easily extended to capture more abstract system entities and
relations such as security APIs, system models (feature,
architecture, deployment, design, and testing…). Figure 6 shows
examples of OCL-based re-aspect’s signature: (A) get all public
methods whose classes implement a specific system feature; (B)
get all methods that call a security function.

B

A

C

Figure 5. The system class diagram used in re-aspects OCL-based signatures

Figure 6. Sample LCL re-aspect signatures
Set	 SigAST	 =	 Call	 Generate	 signature	 AST	
Set	 StartNode	 =	 codeAST.CurrentNode	
CheckNodes:	 	 	 //Recursively	 traverse	 the	 source	 code	 AST	
IF	 code-‐AST.CurrentNode	 ==	 NULL	 THEN	 	 	 	 	 	 	 Exit	
DummyStatement	 =	 True	
IF	 SigAST.CurrentNode.Contains("dummy")	 	 	 	 	 	 ==	 	 True	
	 	 	 	 	 	 	 	 DummyStatement	 =	 True	
END	 IF	
IF	 (codeAST.CurrentNode.Type	 ==	 SigAST.CurrentNode.Type)	
	 	 	 OR	 (DummyStatement	 ==	 True	 	 	
	 	 	 	 	 	 AND	 codeAST.CurrentNode.Type	 =	 SigAST.NextNode.Type)	 THEN	
BEGIN	
	 	 	 	 Result	 =	 Call	 CompareNodes(codeAST.CurrentNode,	 SigAST.CurrentNode)	
	 	 	 	 IF	 Result	 ==	 True	 THEN	 	 //Nodes	 are	 equal	
	 	 	 	 BEGIN	
	 	 	 	 	 	 	 	 Set	 codeAST.CurrentNode	 =	 codeAST.NextNode	
	 	 	 	 	 	 	 	 Set	 SigAST.CurrentNode	 =	 SigAST.NextNode	
	 	 	 	 	 END	 IF	
	 	 	 	 	 ELSE	 IF	 Result	 ==	 False	 THEN	
	 	 	 	 	 BEGIN	
	 	 	 	 	 	 	 	 	 	 	 	 Set	 StartNode	 =	 StartNode.NextNode	
	 	 	 	 	 	 	 	 	 	 	 	 Set	 codeAST.CurrentNode	 =	 StartNode.NextNode	
	 	 	 	 	 	 	 	 	 	 	 	 Set	 sigAST.CurrentNode	 =	 SigAST.Root	
	 	 	 	 END	 IF	
	 	 	 	 GOTO	 CheckNodes	
END	 IF	
ELSE	
BEGIN	
	 	 	 	 Set	 codeAST.CurrentNode	 =	 codeAST.NextNode	
	 	 	 	 Set	 StartNode	 =	 codeAST.CurrentNode	
	 	 	 	 GOTO	 CheckNodes	
END	 IF	

Figure 7. Syntactical code snippet matching algorithm
SigClass	 =	 Call	 ParseOCL_GenerateC#(OCLSig)	
Foreach	 entity	 in	 SystemModel	 DO	
BEGIN	
	 	 	 	 	 	 	 	 IF	 entity.Type	 ==	 SigClass.ContextType	 THEN	
	 	 	 	 	 	 	 	 BEGIN	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 SigInstance	 =	 Call	 CreateInstance(SigClass,	 entity)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 Var	 Output	 =	 SigInstance.InvariantName_Test(entity)	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 MatchesList	 =	 Output.ToList()	
	 	 	 	 	 	 	 END	 IF	
END	

Figure 8. Semantic OCL signatures matching algorithm

2.4 Locating Re-aspect Instances
Given a re-aspect signature, to locate the possible re-aspect
instances in a target application code base, we first parse the input
code and build an abstract syntax tree (AST) representation. This
step helps avoiding spacing, comments, brackets and parentheses
ambiguities. Moreover, it helps avoid syntax details relevant to
different programming languages. Given the source code AST and
re-aspects’ signatures, the re-aspect locator traverses the AST
looking for matches using one of two matching algorithms. The
selection of matching algorithm depends on the given re-aspect
signature type. If code snippet then algorithm 1, else algorithm 2.
Algorithm 1, Figure 7: the aspect locator traverses the input
source code AST and the given re-aspect code snippet AST
looking for matches. The matching takes into consideration the
node hierarchy in both the signature and the system code. It treats
the dummy constructs as “do not care” nodes in the AST.
Algorithm 2, Figure 8: is based on compiling and validating the
given OCL signature using an OCL parser against the system
meta-model from Figure 5. Then we generate a visitor class from
the given re-aspect OCL signature. The visitor class implements
handler methods for every node type specified in the OCL
signature. If a visited node has a handler, this handler is called –
e.g. a visitor for example (B) Figure 5, will have handlers for
method definition and invocation expression nodes. In the
invocation expression the visitor will have a condition to check if
the invoked method is marked as a security function, then adds this
method to the returned list of methods.

A Context Method inv GetImpactedMethodsforModifiedMethod:
 self.Statements->contains(S | S.StatementType = ‘MethodCall’
 AND S.MethodName = ‘ModifiedMethod’)

B Context Method inv GetImpactedMethodsforClass:
 self. Statements->contains(S | S.StatementType = ‘NewObj’
 AND S.ClassType = ‘ModifiedClass’)

Figure 9. Samples of impact analysis OCL-signatures

2.5 Change Impact Analysis
In AOP the code to be injected is encapsulated in an advice
separate from the target cut-point itself. Thus no impact analysis is
required. However, with reengineering aspects we have more
complicated scenarios where we cut different code parts that have
similar signature but different structure and format, are from
different places (may have different impact sets), and may be
added or modified code. Thus any given system modification
requires a detailed impact analysis to identify other system entities
that should be updated as a part of given modification.

A Context Method inv PublicMethods:
 self.IsPublic = true AND self.Class.ImplementedFeature =
‘CustomerMgmt’

B Context Method inv MethodsWithSecurityFns:
self.Body.Contains(stmt:InvocationExpression |
stmt.Method.securityFn = true)

For each re-aspect instance, we compute a change impact set based
on the re-aspect instance type (class, method, property, field, line-
of-code). A given system modification will have either local
impact or global impact based on re-aspect instance, as follows:
Lines-of-code: Has a local impact – i.e. no other system entities
will be impacted, thus the change impact set is empty.
Method: Has a global impact. To compute the impact set, we
locate methods and properties that contain call statement to the
modified method. Figure 9-A shows sample OCL expression to
locate methods that contain invocation to the modified method.
Class: Has a global impact. The change impact set contains all
methods that have identifiers of this class (Figure 9-B); properties
of this type or have identifier of this type; fields of this class type;
and classes that have this class as base class.
Property: Has a global impact. To compute the change impact set,
we locate all methods that have this property in any expression
statement – e.g. assignment, call, if condition, loop statements.
The change impact sets’ entities are located using pre-specified
OCL expressions (Figure 9), configured according to re-aspect
instance type and name. This avoids building Dependency Graphs
(usually adopted by existing approaches and time consuming).

Figure 10. Control and Data flow analysis, local impact analysis

2.6 Change Propagation
The propagation of a given system modification (re-aspect) is
straight forward. It depends on the re-aspect type (action) either to
insert, delete, replace, or modify code of the located re-aspect
instance. All re-aspect instances are updated in the code AST and
then code is regenerated with the final updates. For entities in the
change impact set of each re-aspect instance (identified in the
previous step), we apply the impact re-aspect included in the re-
aspect definition, as shown in Figure 2.
Confirming that changes caused by a re-aspect didn’t cause any
other problem is an extremely hard problem that requires a deep
understanding of the logic behind the code block. Here we focus
on confirming that the added, removed, replaced, or modified code
does not break the data flow or the control flow of the method, as
shown in Figure 10. Control flow analysis (CFA) is used to
confirm that the modification does not lead to unreachable code
(case 4). Data flow analysis (DFA) confirms that the required data
for the modified block are available from previous blocks and that
next blocks still have required data items (cases 1, 2, 3).

3. EVALUATION
We evaluated the capabilities of re-aspects in locating and
propagating a variety of system modifications. Table 1
summarizes the results of using re-aspects to locate matches of a
given re-aspects’ signatures using our benchmark applications with
a set of three system modifications (from Figure 1) and
propagating given changes on the identified matches. We use
precision and recall metrics to assess our approach effectiveness.
From our experiments, the precision of the code-snippet approach
is (90%), while its recall is (70%). The precision of the OCL-based
approach is (93%) while the recall rate is (87%). The precision of
the change propagation module is 88%.

4. SUMMARY
We described a novel solution - the “re-aspect” - to the system
maintenance problem. A re-aspect captures details of system
modifications including signatures of entities that need to be
modified; actions to apply on located matches possibly take away
(de-weaved), replace, modify or new code inserted; and code to
update these entities. A key strength of our re-aspects comes from
the signature specification designators. Re-aspect supports two
signature specification approaches: code snippet templates, and
OCL-based signatures. Re-aspects ease and automate the
reengineering process starting with locating system entities to be
modified, change impact analysis, and finally propagating updates
on located entities. We have validated our approach effectiveness
in locating entities to be modified and propagating changes using a
set of open source .NET benchmark applications.

ACKNOWLEDGEMENTS
The authors are grateful to Swinburne University of Technology
and the FRST SPPI project for support for this research.

REFERENCES
[1] S. Thummalapenta, et al, "An empirical study on the maintenance of source

code clones," Empirical Softw. Engg., vol. 15, pp. 1-34, 2010.
[2] S. Lehnert, "A Taxonomy for Software Change Impact Analysis," in Proc.

12th Int. Workshop on Principles of Software Evolution, Szeged, 2011.
[3] M. Petrenko and V. Rajlich, "Variable granularity for improving precision

of impact analysis," in Proc. of IEEE 17th Int. Conf. on Program
Comprehension, 2009, pp. 10-19.

[4] S. P. Reiss, "Semantics-based code search," in Proc. of 31st Int. Conf. on
Software Engineering, 2009, pp. 243-253.

[5] M. L. Bernardi and G. Di Lucca, "Model-driven detection of Design
Patterns," in Proc. Int. Conf. on Software Maintenance, 2010, pp. 1-5.

[6] C. Zhang and H.-A. Jacobsen, "PRISM is research in aSpect mining," in
Proc. 19th annual ACM SIGPLAN Conf. on Object-oriented programming
systems, languages, and applications, Vancouver, 2004, pp. 20-21.

[7] I. Neamtiu, J. S. Foster, and M. Hicks, "Understanding source code
evolution using abstract syntax tree matching," in Proc. 2005 Int. workshop
on Mining software repositories, Missouri, 2005, pp. 1-5.

[8] S. C. Previtali and T. R. Gross, "Aspect-based dynamic software updating:
a model and its empirical evaluation," in Proc. 10th Int. Conf. aspect-
oriented software development, Porto Galinhas, Brazil, 2011, pp. 105-116.

[9] M. P. Monteiro and J. M. Fernandes, "An illustrative example of
refactoring object-oriented source code with aspect-oriented mechanisms,"
Softw. Pract. Exper., vol. 38, pp. 361-396, 2008.

Table 1. Results of validating re-aspect to locate and propagate given signatures
Benchmark KLOC Files Classes Authn. Bypass Improper Authz. Sec.Disabling

C O A M C O A M C O A M
Galactic 16.2 99 101 3 3 3 3 4 7 9 7 3 3 3 3
SplendidCRM 245 816 6177 - 8 8 8 2 3 3 3 13 13 13 13
KOOBOO 112 1178 7851 - - - - 6 9 13 8 11 11 11 11
NopCommerce 442 3781 5127 - - - - 0 1 3 2 10 10 10 10
BugTracer 10 19 298 - - - - 0 1 2 2 7 7 7 7
C: using code snippet, O: using OCL, A: actual instances, M: Successfully Modified

B1

A (Remove)

B3

Data	 =	 {}
DFA:	 Removing	 A,	 B3	 impacted?1

Data	 ={B1}

Data={B1+B2}

A

B3

Data	 =	 {}
3

Data	 =	 {B1}

Data	 =	 {B1+A}

{B1+A`+B3}	

B1

A`

Data=	 {B1+A`}

B1

A (Inject)

B3

Data	 =	 {}
DFA:	 Adding	 A,	 B1	 sufficient?2

Data	 ={B1}

{B1+A+B3}	

B1

A (Control	 Block)

B2

4

B3

???
???

???

CFA:	 After	 update,	 B3	 is	 reachable?DFA:	 Modify	 A=>A`,	 B1&	 B3	 Ok?

