
Supporting Automated Vulnerability Analysis using
Formalized Vulnerability Signatures

Mohemed Almorsy, John Grundy and Amani S. Ibrahim
Computer Science & Software Engineering, Faculty of Information & Communication Technologies

Swinburne University of Technology, Hawthorn, Victoria, Australia
[malmorsy, jgrundy, aibrahim]@swin.edu.au

ABSTRACT
Adopting publicly accessible platforms such as cloud computing
model to host IT systems has become a leading trend. Although
this helps to minimize cost and increase availability and
reachability of applications, it has serious implications on
applications’ security. Hackers can easily exploit vulnerabilities in
such publically accessible services. In addition to, 75% of the total
reported application vulnerabilities are web application specific.
Identifying such known vulnerabilities as well as newly discovered
vulnerabilities is a key challenging security requirement. However,
existing vulnerability analysis tools cover no more than 47% of the
known vulnerabilities. We introduce a new solution that supports
automated vulnerability analysis using formalized vulnerability
signatures. Instead of depending on formal methods to locate
vulnerability instances where analyzers have to be developed to
locate specific vulnerabilities, our approach incorporates a formal
vulnerability signature described using OCL. Using this formal
signature, we perform program analysis of the target system to
locate signature matches (i.e. signs of possible vulnerabilities). A
newly–discovered vulnerability can be easily identified in a target
program provided that a formal signature for it exists. We have
developed a prototype static vulnerability analysis tool based on
our formalized vulnerability signatures specification approach. We
have validated our approach in capturing signatures of the OWSAP
Top10 vulnerabilities and applied these signatures in analyzing a
set of seven benchmark applications.

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Semantics of Programming Languages - Program
analysis; K.6.5 [Security and Protection]: Verification.

General Terms
Algorithms, Design, Security, Languages, Verification

Keywords
Software security; Vulnerability analysis; Formal vulnerability
specification; Common weaknesses enumeration (CWE)

1. INTRODUCTION
New computational paradigms such as Cloud Computing and
Service-Oriented Architectures (SOA) depend on outsourcing IT
systems for hosting on third-party platforms outside of the
enterprise network perimeter (usually on the internet). This

increases the possibility of hackers attacking and exploiting
vulnerabilities in such applications. In addition, the number of
newly discovered vulnerabilities is increasing rapidly. Delays in
discovering and mitigating such vulnerabilities increase the
probability of successful application attacks and security breach.

Web applications have become the prominent application delivery
model used in such platforms as they do not require client
deployment or configuration, and can be centrally updated and
managed. However, web application vulnerabilities continue to
make up the largest percentage of the total reported vulnerabilities
in software applications. Web applications vulnerabilities
constitute 75% on average of the total reported vulnerabilities over
the last three years1. Of these reported vulnerabilities, well-known
vulnerabilities such as Cross site scripting (XSS) represents 28%,
while SQL Injection (SQLI) vulnerabilities represent 20%.
Reported vulnerabilities are usually recorded in commonly
available vulnerability databases such as NVD or CVEdetails.com.
Vulnerabilities/weaknesses definitions are maintained in the
Common Weaknesses Enumeration (CWE) database. This
database is used as a reference framework by application
developers, deployment engineers and security engineers to help
identifying possible weaknesses to attack in software applications.
However, a key problem with CWE is that recorded vulnerabilities
are almost specified informally. Thus, each security vendor
develops their security analysis tools based on their own
understanding of such vulnerabilities.

Commercial vulnerability scanners such as AppScan, Web inspect,
Cenzic, McAfee focus on black-box vulnerability analysis to avoid
being limited to specific programming languages or platforms.
However, none of these scanners cover all known vulnerability
types [1]. Moreover, they are limited in discovering stored forms
of XSS and SQLI vulnerability. To achieve good results with
vulnerability analysis, multiple scanners should be applied [1].

Existing research efforts [2-7] focus on specific vulnerability
types. Most focus on SQLI [8, 9], XSS [8, 10, 11], or input
sanitization [12, 13]. These efforts use static analysis with many
variations [2, 14], dynamic analysis [8], or hybrid of static and
dynamic techniques [15, 16]. However, they focus on specific
vulnerabilities only. Thus, new vulnerabilities cannot be
incorporated for checking unless we have new algorithms.

A key problem with both industrial and academic efforts is that
they are not comprehensive enough to cover known vulnerabilities
or extensible to incorporate new vulnerabilities. Many tools
depend on their own encoded representations of vulnerabilities,
which are suitable for their own analysis approaches and
algorithms. From our investigation in these efforts, we reached a

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 www2.cenzic.com/downloads/Cenzic_AppSecTrends_Q1-­‐Q2-­‐2010.pdf	

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE'12, September 3–7, 2012, Essen, Germany.
Copyright 2012 ACM 978-1-4503-1204-2/12/09... $15.00.

conclusion that the key problem really lies in the vulnerability
definitions themselves and not in introducing new analysis
techniques (most of the existing approaches use similar techniques
with various combinations). Moreover, the various existing
vulnerabilities databases, while useful, are not directly utilized by
vulnerability analysis tools due to their informality; however, we
figured out that different security analysis tasks including
vulnerability analysis, attack analysis, and threat analysis can be
facilitated if we have a formal vulnerability definition. Our
analysis of the vulnerability analysis domain leads us to following
research questions:

- What details do we need to capture to fully describe a given
vulnerability?

- How can we formalize the signatures of possible security
vulnerabilities?

- How can we effectively use such formal vulnerability
specifications in automating the vulnerability analysis process?

In this paper, we introduce a new, comprehensive vulnerability
specification schema. This schema captures formal rich details of a
given application vulnerability/weakness including categories,
preconditions, consequences, signatures, etc. A key entry that we
focus on in this schema is the vulnerability signature. This
signature specifies a set of invariants, when matched; it means that
the given vulnerability exists. We adopt Object Constraint
Language (OCL) in capturing such signatures. OCL is a
declarative and formal language [17] based on first order logic and
set theory. Vulnerability signatures are validated against a
comprehensive system description model that covers most program
entities including classes, methods, statements, inputs, sources,
outputs, targets, etc. Furthermore, it helps in developing more
abstract signatures not coupled with specific programming
language or platform.

As an initial step in validating our vulnerability schema and
signature specification approach, we have developed an OCL-
based static application Vulnerability Analysis tool. This tool uses
a new static vulnerability detection approach that performs
program analysis looking for matches for vulnerability signatures,
defined in OCL, in a given program source code. Then, it produces
an overall vulnerability assessment report for the target
application. This vulnerability analyzer will be extended to support
dynamic analysis as well using vulnerability analysis workflow
engine. A Key difference between our static vulnerability analysis
tool and existing tools is that it uses our formal vulnerability
specifications to detect source code vulnerabilities, while working
on an abstract system representation. Moreover, it analyzes
programs for any (new) vulnerability that has defined signature(s).
This is compared to existing efforts that have specific (built-in)
algorithms to discover certain vulnerability types only. We have
developed a prototype tool supporting our approach and evaluated
it in capturing the well-known TOP10 vulnerabilities reported by
OWSAP. We have validated our toolset in locating these
vulnerabilities in a set of open source web applications.

In section 2, we analyze the existing security vulnerabilities and
map this analysis on the Top10 OWSAP vulnerabilities. Section 3
describes our vulnerability definition schema, the vulnerability
signature specification, and our OCL-based static vulnerability
analysis tool. Section 4 describes our prototype implementation
details. In section 5, we discuss our experimental evaluation and
results. Section 6 discusses the implications of our work and key
directions for further research. Section 7 reviews related work.

2. BACKGROUND
To understand the root causes of security vulnerabilities we
analyzed different system structures, components, and deployment
models. We applied this analysis on the Top10 vulnerabilities
reported by OWSAP. We summarize our conclusions as follows:

2.1 Analysis of Security Vulnerabilities
A given software system, whether desktop, web, or even
embedded is based on a hosting service – e.g. web server,
operating system, virtual server, etc. (Figure 1). A hosting service
provides a set of APIs that the hosted system can use to read inputs
from possible input sources (users, files, memory, database, etc.)
or write outputs to possible output targets. Any vulnerability in the
hosting service implies that an attacker can control inputs and/or
outputs of the target system. The hosting media is a place where
the hosted system runs – e.g. a process in case of web server, or
memory in case of OS. If the hosting media breached, it may be
used to control the hosted system inputs, outputs, or even
processing (overriding kernel data using buffer overflow).
However, these entities are out of the software system control.

ChannelStorageFunction

Component

Hosting	
 Service

Hosting	
 Media
P/S/T

E

X

(a) (b)
	

Figure 1. An overview of the host-system-component relations

Any target system is composed of a set of components. These
components may be subsystems, composite components, or simple
components. System components may be hosted on the same
hosting service instance or different instances (different servers).
In the latter case, they have to communicate through
communication channels, which may be unsecure (an attacker may
eavesdrop, or intercept messages). A system component may be an
active component, a component that can take actions or perform
operations such as system functions. Active components are able
to secure themselves and their processed data – e.g. authenticating
users, authorizing users, encrypting data, etc. Or alternatively, a
passive component, a component that cannot take actions to
change data it maintains, such as storage components
(databases/files) or transmission components (communication
channels). Passive components cannot secure themselves e.g. a file
or table cannot enforce security access on its contents by itself.
They depend on other components, such as the hosting service
(OS, DBMS), or active system components to manage/secure such
components. This is a big open issue in data security area - e.g.
data leakage protection - where confidentiality of data moving
between different applications with different security levels may
be threatened. Both active and passive components may be
breached by the hosting service e.g. read data in memory, files, or
on communication channels.

Each component, regardless of its type, has a set of entry points
(E) and set of exit, output points (X), and is used in processing (P),
as a storage (S), or as a communication channel (T). These entry
and exit points can be compromised by an attacker who has control
on the hosting service to read/write/modify/delete the data. Usually
the number of entry points and exit points – the “attack surface” -

is used as a security metric when assessing systems security [18].
Furthermore, an active component may have vulnerabilities related
to inputs (input validation - input coming from a user passing by
the hosting service), outputs (output validation and exceptions –
outputs may depend on malicious/modified inputs or passed
through a vulnerable hosting service), or processing (logical errors
– e.g. race conditions, malicious data corruption, service
overloading). We use this analysis in categorizing vulnerabilities
according to the source of vulnerability, such as input validation,
output validation, processing, and hosting service vulnerabilities.
This helps in deciding which types of vulnerabilities can be
identified by static analysis, dynamic analysis, etc. Moreover, it
helps in deciding the mitigation actions that can be applied to
block such vulnerabilities.

2.2 OWSAP Top10 Security Vulnerabilities
 Before we discuss how we formalize software system
vulnerability definitions, we give an overview of the OWSAP
Top10 web application vulnerabilities. OWSAP (Open Web
Security Application Project) is a community effort to define and
share knowledge about web application security approaches. We
discuss these Top 10 vulnerabilities and signatures we deduce from
the vulnerabilities recorded in NVD and CWE. These signatures
are used by our vulnerability analysis tool; however, they can be
further revised by experts to get more accurate results.
Injection Flaws: This type of vulnerabilities includes several well-
known attacks intended to compromise application inputs in order
to gain control or modify data, such as SQLI, OS command
injection, LDAP query injection, and XPath query injection. All
arise from input validation problems. “All external inputs are
untrusted” is a well-known security principal that should be realize
in securing systems. These vulnerabilities occur whenever a
system trusts an input from the user – first order injection – or
from a repository – stored or second order injection – and uses it
to build dynamic queries that run OS or database commands
without sufficient input sanitization or validation. An attacker can
use this type of vulnerabilities to execute malicious commands or
gain privileged access to the system under attack. Figure 2 shows
code vulnerable to SQLI. For example, a password argument of the
form “’ OR (1=1) OR ‘’=‘” allows access to any specified
username e.g. ‘admin’ or ‘root’. The signature of these
vulnerabilities is a dynamic query statement that uses external
inputs without proper sanitization.

Public bool LogUser(string username, string password) {
 string query = “SELECT username FROM Users WHERE
 UserID =‘” username “ ‘ AND Password = ‘” + password + “’”;

Figure 2. A code snippet vulnerable to SQLI attack

Cross-Site Scripting Flaws: This is a two-step vulnerability. First,
an attacker uses the application to store malicious data. Whenever
a victim sends a request to resource X, the web server responds
with data containing “malicious code” without being encoded. This
malicious code executes on the victim browser causing disclosure
of her confidential information to the attacker. This vulnerability
type may be from stored data (e.g. from a database) or reflected
(from user input). This is very common attack in applications that
use user inputs for search or discussions. The signature of these
vulnerabilities is to call output functions using external or stored
inputs without sanitization or encoding.

Broken Authentication and Session Management Flaws: This is
a common problem with security authentication. It includes attacks
such as: authentication bypassing via external inputs (depend on

external input to bypass authenticating the current requester);
authentication checking not included in critical functions; using
hard-coded credentials; using an easy to guess password; or
session timeouts not set or checked. This enables unauthenticated
users to maliciously access and use system resources. Figure 3
shows a code snippet vulnerable to improper authentication attack,
where a user can modify their cookie to bypass the authentication
check. The signature of these vulnerabilities is that every publicly
accessible function should not trust external inputs to bypass (by
conditional statement) triggering the authentication function.

if(Request.Cookies["Loggedin"] != true) {
 if(!AuthenticateUser(Request.Params["username"],
 Request.Params["password"]))
 throw new Exception("Invalid user");

}
DoAdministrativeTask();

Figure 3. A code snippet vulnerable to authentication Bypass

Insecure Direct Object Reference Flaws: authenticated users can
send malicious inputs to access unauthorized data. Figure 4 shows
an example where attacker sends custID = XYZ instead of custID =
ABC. This enables the attacker to access other customers’ data.
The signature of these vulnerabilities is that user inputs are not
authorized before used in business functions.

if(!AuthenticateUser(Request.Params["username"],
 Request.Params["password"]))
 throw new Exception("Invalid user");

updateCustomerBalance(Request.QueryString["custID"], nBalance);
Figure 4. A code snippet vulnerable to improper authz

Cross-Site Request Forgery (CSRF) Flaws: an attacker deceives
an authorized user by sending a forged request to the user’s
application to perform malicious actions. This attack requires the
victim to have a valid session or cookie with the application
(already authorized). The signature of these vulnerabilities is that
requests’ origins are not validated or that responses are usually
predictable or have fixed URL format. It is usually difficult to
identify CSRF using static analysis techniques because it is usually
managed by the web server.
Security Misconfiguration Flaws: the system is not securely
configured. This includes exposing information through
exceptions; system executing with higher privileges than required;
system files are accessible to unauthenticated users; or resources
have misconfigured permissions. Some of these vulnerabilities can
be discovered from the exception handlers whether they expose
system details or not. Others need to be examined by application
responses for unauthorized actions using dynamic analysis.
Unvalidated Redirect and Forward Flaws: the application
redirects requests to a target URL that is concatenated from user
inputs “Response.Redirect(userInput)”. This type of vulnerability
is similar to the injection vulnerabilities where web redirect
functions use external inputs to build the redirect URL.

Failure to Restrict URL Access Flaws: an application does not
perform access control on resources or URLs. These vulnerabilities
can be easily examined by checking webpage methods for
authorization function calls. Dynamic analysis is required to check
application responses for unauthorized URLs.
Insufficient Transport Layer Protection Flaws: sensitive data
including credentials and customer data are transmitted in plain
text. The signature of these vulnerabilities is that output data are
transmitted without passing by encryption functions. Dynamic
analysis is required to examine application responses (if the
protection is done on the transport layer).

From this analysis, we deduced two points: (i) Top10
vulnerabilities reflect categorization we introduce in Section 2.2 –
i.e. input validation such as SQLI, URL redirection, CSRF; output
validation such as XSS, information exposure; and hosting service
such as security misconfiguration and insufficient transport layer
protection; and (ii) many of these Top10 vulnerabilities can be
discovered using static source code analysis (vulnerabilities related
to the program itself), while other require dynamic analysis
(vulnerabilities related to the hosting service or configurations).

Threat	
 Analysis

Vulnerability	
 Definition Vulnerability	
 Analysis

Attack	
 Analysis
	

Figure 5. Vulnerability definition and security analysis tasks

2.3 Why We Need a Formalized Vulnerability
Definition?
The security analysis for a given system includes different tasks
that are usually performed at different stages of the system
implementation. Threat analysis is conducted at early stages of the
system development usually during the system design phase. Here
the software development team work together to identify possible
problems that may arise from using specific platforms,
architectures, languages, and the expected deployment model. A
formal vulnerability definition, as shown in Figure 5, facilitates
identifying possible weaknesses in a given platform or language.
Vulnerability analysis is applied during system development or
after development has been completed. It targets identifying
security-compromising errors in the system implementation. A
formal vulnerability definition helps in automating vulnerability
analysis as we will show later in this paper. Attack analysis is
applied after the system has been deployed or when a detailed
deployment model becomes available. It focuses on identifying
possible attack vectors on system resources given the networked
system. A formal definition helps identifying preconditions and
consequences for each vulnerability instance found in the program.

3. OUR APPROACH
We base our security analysis approach on (i) a formal
vulnerability definition schema that captures every detail related to
a given vulnerability. This helps in every security analysis task, as
discussed above; (ii) a formal vulnerability signature specification
approach that can capture security vulnerability signatures; and
(iii) an extensible vulnerability analysis tool that perform
signature-based program analysis. Here, we introduce a static
analysis component only. We are working on an integrated
vulnerability analyzer that performs static and dynamic analysis.

Figure 6. Weakness definition schema

3.1 Vulnerability Definition Schema
We studied the various security analysis tasks (vulnerability, attack
and threat analysis) to identify the key items required in these tasks
that should be included in a vulnerability definition schema, shown

in Figure 6. These vulnerabilities’ definitions should be managed
by security experts (may be used as extension of CWE database).

Vulnerability ID: Every discovered vulnerability instance, as in
the NVD database, should have a reference to its parent weakness
or vulnerability definition. This helps retrieving vulnerability
details e.g. preconditions, consequences.
Category: Many categorization-schemas for software
vulnerabilities do exist. Each categorization schema helps
understanding weaknesses from a specific point of view e.g.
developers or researchers. A categorization based on the root cause
or source of the weakness, shown in Figure 1, helps in
vulnerability analysis, mitigation, and even avoidance. Thus, we
propose to categorize vulnerabilities as input validation, processing
logic, output validation, hosting service, hosting media,
communication channel, storage, and security control
vulnerabilities.
Language/platform: specifies the language(s) that a given
vulnerability applies to - i.e. many languages have language-
specific vulnerabilities such as C, C++, C#, Java, etc. We also use
this to describe the technology or architecture paradigm inherent
with the vulnerability - e.g. client-server, web-based, service-
oriented, or multi-tier, along with the underlying environment e.g.
web server, client, application server, database server. This helps
in threat analysis to identify possible vulnerabilities that may exist
and start taking precautions to avoid such vulnerabilities.
Preconditions: This attribute aids both vulnerability analysis and
attack analysis. Preconditions are a list of the capabilities that an
attacker should possess, or the list of system configurations that
need to be present in order to exploit this vulnerability e.g. to
exploit a specific vulnerability, an attacker might have to have root
access, user access, remote root access, public access, etc.
Consequences: if a given vulnerability exploited, what will be the
benefits achieved by the attackers e.g. disclosure of system
information, invalid processing, invalid results, execute an
unauthorized function, elevate permission, bypass security, crash,
or Denial-of-Service - DOS. This can be used in planned attacks
e.g. using vulnerability V1 will help the attacker to obtain a set of
privileges. These privileges may be preconditions of vulnerability
V2. The consequence of V2 may be the actual goal of the attacker.
Impacted resources: this specifies the resources that will be
impacted if the given vulnerability exploited including memory,
configuration files, registry, customer data, credentials,
cryptography keys.
Likelihood: The probability that the given vulnerability is
exploited by an attacker may be low, medium, or high. This
depends on the complexity of the given vulnerability and attacker
capabilities as defined in the vulnerability preconditions.
Vulnerability signature: A vulnerability signature describes
patterns that when matched in a target program mean it is likely to
have the given vulnerability. This may be signature of code
snippets, or signature of system response for requests with specific
signatures. Every single vulnerability may have different
signatures that capture different forms (scenarios), or that are
applicable with different vulnerability analysis techniques.
Prevention: a list of precautions to be followed or checked during
code review. These might be rules to check during system
development or deployment; combinations of architectures;
languages and platforms to use or not to use.
Mitigations: Indicates how we can modify the vulnerable system
entities to block a discovered vulnerability. This may require
modification of the vulnerable code parts; changing system
configurations; or even changing system architecture.

Vulnerability

Name

ID
Signature

PreconditionsConsequences

Impacted resources

Likelihood

Description

Mitigation Actions

Prevention Actions

Category

Language/Platform

Figure 7. Our system description class diagram used by our OCL-based vulnerability signature approach

3.2 Vulnerability Signature Specification
Existing software security weakness, or vulnerability definitions,
in the Common Weakness Enumeration (CWE) database help in
understanding the nature of a given vulnerability. However they do
not directly help in locating such vulnerabilities in target systems.
Formalizing these descriptions helps vulnerability analysis tools in
automating the vulnerability analysis process. Ideally a formal
vulnerability signature, specified by security experts, should be
specified on an abstract level far from the source code and
programming language details, enabling locating possible
vulnerability instances in different programs written in different
programming languages.

We use OCL as a well-known, extensible, and formal language to
specify semantic rather than syntactical signatures of security
weaknesses. To support specifying and validating OCL-based
signatures, we have developed a system-description model, shown
in Figure 7. This model is inspired from our analysis of security
vulnerabilities (Section 2). It captures main entities in an object-
oriented program including components, classes, instances, inputs,
input sources, output, output targets, methods, method body,
method statements e.g. if-else statements, loops, new objects, etc.
Moreover, it captures security concepts such as authentication,
authorization, audit, etc. and other system details such as hosting
service, deployment descriptors, etc. Each entity has a set of
attributes such as method name, accessibility, variable name,
variable type, method call name, etc. This enables specifying
OCL-based vulnerability signatures on different system entities
other than source code entities (classes, methods, code-blocks)
such as deployment descriptors (configuration files), hosting
services (web server), storage, output targets, or input sources. Of
course, this requires developing different parsers other than code
parsers that can read such entities. Moreover, this requires a
comprehensive vulnerability analyzer that supports locating
signatures in such entities as well as source code.
The vulnerability analysis tool should have different profiles for
different languages and platforms (ASP.Net, PHP, C#, Java, etc.).
Thus vulnerabilities with signatures containing input source or
output target security authentication, authorization, sanitization
and other functions can be interpreted differently based on the
program platform or programming language used. If the system
uses custom sanitization or security functions, developers have to
mark their security functions in the resulting system model.

Table1 shows some vulnerability signatures specified in OCL
using our system description model (Figure 7), For example:

Table1. Examples of OCL-specified vulnerability signatures
Vul.	
 Vulnerability	
 Signature	

SQLI Method.Contains(S : MethodCall | S.FnName =

“ExecuteQuery” AND S.Arguments.Contains(X :
IdentifierExpression | X.Contains(InputSource)))

XSS Method.Contains(S : AssignmentStatement |
S.RightPart.Contains(InputSource) AND
S.LeftPart.Contains(OutputTarget))

Improper
Authn.

Method.IsPublic == true AND Method.Contains(S :
MethodCall | S.IsAuthenitcationFn == true AND S.Parent ==
IFElseStmt AND S.Parent.Condition.Contains(InputSource))

Improper
Authz.

Method.IsPublic == true AND Method.Contains(S :
Expression | S.Contains(X: InputSource | X.IsSanitized ==
False OR X.IsAuthorized == False)

SQLI Signature: any method that has method call statement “S”
where the callee function is “ExecuteQuery” and one of the
parameters passed to it is previous assigned to untrusted identifier
coming from one of the input sources. This initial signature can be
revised to incorporate taint analysis checking. Taint analysis can
be defined as an OCL function that adds every variable assigned to
a user input parameter to a suspected list. In this case we update
the vulnerability signature to use “Method.SuspectedList().
Contains(X)” instead of X.Contains(InputSource)” as in Table1.
XSS Signature: any method statement “S” of type assignment
statement where left part is of type “output target” e.g. text, label,
grid, etc. and right part uses input from the tainted input sources.
Improper Authentication Signature: any public method that has
statement “S” of type “method call” where the callee method is
marked as Authentication function while this method call can be
skipped using user input as part of the bypassing condition.
Improper Authorization Signature: any public method that has
statement “S” of type “expression” – i.e. any statement - where “S”
uses data X without being sanitized, authorized, or simply taint
data (Method.SuspectedList().Contains(X) == true).
A key problem with these signatures is that we do not consider
security solutions applied beyond the system source code either
using proxies to filter SQL queries or using security controls
deployed on the web server as an http handler. These can be
handled by appending a dynamic signature forming a sequence of
OCL constraints to be checked on system responses to malicious
requests. Another issue is that we may have different signatures
with different complexities for the same vulnerability. We expect

security experts to develop strong and complete signatures. Weak
signatures mean more false positives, which may annoy
developers, or more false negatives, which may harm customers.

3.3 OCL-based Static Vulnerability Analyzer
Given that vulnerability signatures are now formalized (in OCL),
the static vulnerability analysis component becomes a program
analysis tool that traverses the given program looking for code
snippets that match the given vulnerability signatures. Figure 8
describes the architecture of our static vulnerability analyzer based
on the formalized vulnerability signature concept.

Program	

Representation	
 1

AST

Program	

Representation

……

……

Signature	
 Locator

OCL	

Functions

Platform	

Profile

Weakness	

Signatures	

(OCL)

Vulnerability	
 List

Pr
og
ra
m
	
 S
ou

rc
e

Figure 8. OCL-based static vulnerability analysis tool
Program source code: the program to be analysed can be either a
source code or even program binaries (dlls, exes). In the latter
case, we use de-compilation techniques to reverse engineer the
source code of the given program.
Abstract Program Representation: to avoid being specific to
programs written in a specific programming language or with a
specific coding style, we transform the given system code into an
abstract syntax tree (AST) representation. The program AST
abstracts most of the source code details away from specific
language constructs. Extracting source code AST requires using
different language parsers (we currently support C++, VB.Net and
C#). Then, we perform more abstraction by transforming this AST
to our system description model, shown in Figure 7. We support
specifying signatures on other system aspects including features,
architecture, etc. For example one may check for vulnerability
signatures of code that realize specific features. This also helps in
combining static analysis and dynamic analysis where results of
the static analysis used to drive black-box testing scenarios.
Signature locator: This is the main component in our
vulnerability analysis tool. It receives the abstract system
representation and generates a list of possible vulnerabilities in the
given system along with their locations in code. At analysis time, it
loads the platform profile based on the details of the program
under analysis. Then, it loads the defined weaknesses in the
weaknesses’ signatures database (specified in OCL), based on the
target program platform/language. The signature locator
transforms these signatures into constraints and checks on program
entities - i.e. code snippets that match the specified signatures. The
OCL functions represent a library of predefined functions that can
be used in specifying vulnerability signatures and in identifying
possible matches. This includes control flow analysis, data flow
analysis, string analysis, taint-analysis, etc. The developed
Weaknesses’ signatures are compiled using OCL compiler and
validated against our system description model before getting
stored in the weaknesses’ signatures database.
To locate vulnerability matches, the signature locator translates
every vulnerability OCL-signature in a visitor class, as in Figure 9,
which has a handler (method) for every concept used in the OCL-
signature – e.g. if the signature checks that the method is public,
then the visitor class will have a handler for system entities of type
method definition. This handler contains a set of checks based on

the given OCL-signature. The visitor class traverses the target
program entities. If a visited node has a handler, this handler is
triggered – e.g. a visitor for SQLI signature (Figure9), has handlers
for “method definition” and “method call” nodes. In the method
call handler, it will have a condition to check the called method. If
it is “ExecuteQuery”, it marks this entity and continues to visit its
arguments. Otherwise, it skips for another system entity. The
signature locator generates a list of discovered vulnerabilities
along with code locations thought to have these vulnerabilities. We
use Application Vulnerability Description Language 2 - AVDL - to
represent the identified vulnerabilities in XML format to support
interoperability with existing vulnerability databases such as NVD.

4. IMPLEMENTATION
We briefly describe some implementation details of our formal
static vulnerability analysis tool. First, we developed a UI
component to assist security experts in capturing vulnerability
signatures’ in OCL. This provides vulnerability specification and
signature editing including checking validity of OCL statements
and testing of specifications on sample source code. We use an
existing OCL parser [22] to parse and validate signatures against
our system description model (Figure 7). Once validated, the
vulnerability signature is stored in the signatures database.
Next, to parse the given program source code and generate a
system abstract model, we use an existing .Net parser NReFactory
Library, which supports VB.Net and C#. Moreover we have used a
C parser written in python called pycparser. Thus we now support
locating vulnerabilities in C#, VB.Net, C, and C++. We are
working on parsers for PhP and Java. For a system with binaries
only available - we use an existing de-compilation tool ILSPY to
generate code from binaries. This is currently supported for C# and
VB.Net only. Third, we developed a class library to transform the
generated AST into a more abstract (summarized) representation
as specified in our system description model. This reduces its size
and complexity to reflect only necessary details required in
signatures’ matching, reduce complexity and make our technique
more scalable than if a full AST was used. Other system models
such as system features, architecture, etc. can be specified by the
system provider and added to our AST model. Fourth, our
signature locator has an OCL translator that translates a given OCL
signature into a corresponding visitor class. This visitor class is
used to traverse system representation entities. For each entity, it
performs customized checks as determined in the OCL signature.

public class SQLIVisitor : AbstractAstTransformer {
 public override object VisitMethodCall(InvocationExpression S) {
 if(S.FnName == "ExecuteQuery") {

 foreach (Statement X in S.Arguments) {
 if(X.AcceptVisitor(this) != null) {
 count++;
 list.Items.Add(S.StartLocation + S.EndLocation);
 } …

 public override VisitIdentifierExpression(IdentifierExpression X) {
if(OCLLibrary.IsTainted(X.Identifier) == true)
 return true;
return null; …

Figure 9. Sample of the SQL injection Visitor class

Figure 9 shows a sample visitor class generated from the simple
SQL injection signature specified in Table 1. The SQLIVisitor
class implements a set of predefined functions based on each part
in the SQL injection signature e.g. the VisitMethodCall function is
related to the condition “Method.Contains(S : MethodCall)”, etc.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2 https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=avdl

context Method:: SuspectedList(): Collection(Identifier)
 Let userInputs: Collection(Identifier) = Method. Parameters
 Post: result = Method.Body->select(stmt:AssignmentStmt |
 RightPart.Contains(userInputs)->select(id: IdentifierExp))

Figure 10. Sample of the tainted-data analysis function
Our OCL functions library has a set of functions required during
the analysis phase. This includes control-flow analysis (CFA),
data-flow analysis (DFA), Tainted-data analysis, etc. These
functions are defined in OCL and can be extended with further
static analysis functions based on future vulnerability analysis
needs. An OCL to C# transformer performs a transformation for
these functions as well as new OCL signatures once defined.
Program slicing and taint analysis techniques (core techniques in
program and security analysis area) can be easily captured in OCL.
Figure 10 shows a sample tainted-data analysis function defined in
OCL. This can be extended to filter sanitized variables (variables
processed by sanitization functions).

<Profile platform="ASP.Net">
 <InputSources>
 <Source> Web.HttpRequest.get_QueryString</Source>
 <Source>Web.HttpRequest.get_Cookies</Source> …
 <OutputTargets>
 <Target>System.Web.HttpResponse.Write</Target>
 <Target> UI.WebControls.TextBox.set_Text</Target>
 <Target> WebControls.HyperLink.set_NavigateUrl</Target> …

Figure 11. Sample of the platform profile for ASP.Net
Our vulnerability analyzer depends on platform profiles to set the
analysis context. Platform profile is an XML document that
contains information about a specific platform. It is used to set the
context of the signature locator according to the target system
implementation platform. Figure 11 shows an example of a
platform profile for ASP.Net. This is different from Java or PHP
profiles. These functions are used by the signature locator as
values for the abstract concepts (input sources, output targets, etc.).

5. EVALUATION
In this section we summarize our experimental evaluation we have
performed to assess the capabilities of our approach in capturing as
well as identified security vulnerabilities. We apply the OCL-based
vulnerability signatures illustrated in Section 3.

Table 2. Summary of benchmark applications statistics
Benchmark Downloads KLOC Files Classes Method AST
Galactic - 16.2 99 101 473 187
SplendidCRM >400 245 816 6177 6107 765
KOOBOO >2,000 112 1178 7851 5083 78
BlogEngine >46,000 25.7 151 258 616 163
BugTracer >500 10 19 298 223 93
NopCommerce >10 Rel. 442 3781 5127 9110 484
Webgoat - 15 105 125 165 150

5.1 Benchmark Applications
We have selected a set of seven web-based, open source web
applications developed ASP.NET as a benchmark to evaluate our
approach. These applications cover a wide business spectrum
including: Galactic is an ERP system developed internally in our
group for testing purposes. SplendidCRM is an open source CRM
that is developed with the same capabilities of the well-known
open source SugarCRM. It has a commercial and community
versions. KOOBOO is an open source Enterprise CMS used in
developing websites. BlogEngine is an open source ASP.NET 4.0
blogging engine. BugTracer is an open-source, web-based bug
tracking and general purpose issue tracking application.
NopCommerce is an open-source eCommerce solution with more
than 10 releases. Webgoat is developed by OWSAP for security
testing purposes. Except for Galactic, we did not have any

experience with these applications security. Table2 summarizes
statistics of these applications including: known No. download,
size, KLOC, files, classes, methods, and AST build time (msec).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"#$% !"#$%&'(') !"#$%&'()#)*)%+ (!")
!"#$% !"#$%&'(!" !"#$%&'()#)*)%+ (!"!!")

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Eq.	
 1	

𝑅𝑒𝑐𝑎𝑙𝑙 = !"#$% !"#$%&'(') !"#$% (!")
!"#$% !"#$% !" ! !"#$% !"!#$% (!"!!")

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Eq.	
 2	

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 !"#$%&%'(∗!"#$%%
!"#$%&%'(!!"#$%%

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Eq.	
 3	

5.2 Metrics used
To assess the effectiveness of our approach in discovering security
vulnerabilities using static program analysis, we use a set of
metrics to measure the soundness and completeness of the analysis
technique. These metrics are precision rate, recall rate, and F-
measure. The precision metric is used to assess the soundness of
the approach. A high precision means that the approach returns
more valid results (true positive - TP) than invalid results (false
positive - FP). Thus the maximum precision is achieved when no
false positives (see Equation 1 below). The recall metric is used to
assess the completeness. A high recall means that the approach
returns most of the valid results (true positive - TP) than missed
valid results (false negative - FN), see Equation 2. The F-measure
metric combines both precision and recall. It is used to measure the
overall effectiveness of the approach (weighted harmonic mean).
This metric depends on the importance of the recall rate and the
precision rate e.g. if we are interested in high precision (more valid
vulnerabilities) then we will give precision factor high weight, and
vice-versa. In our evaluation, we assume that the importance of the
precision rate and recall rate is equal, see Equation 3.
Table 3. Experimental results of applying OCL-based vulnerability
analysis tool on benchmark applications. (D) no. of discovered
vulnerability, (FP) no. of false positives, and (FN) no. of false negatives.
Columns represent IDs of the benchmark applications: [1] Galactic, [2]
Splendid, [3] KOOBOO, [4] BlogEngine, [5] BugTracer, [6]
NopCommerce, and [7] Webgoat.

Vulnerability [1] [2] [3] [4] [5] [6] [7] Total

SQLI
D 2 12 14 3 9 19 8 67
FP 0 2 2 0 0 2 0 6
FN 0 2 2 1 3 1 1 10

Authn.
Bypass

D 2 2 1 0 0 0 2 7
FP 0 0 0 0 0 0 0 0
FN 0 0 0 0 1 0 1 2

Authz.
Bypass

D 2 3 11 4 0 0 3 23
FP 1 0 2 0 0 0 0 3
FN 0 0 2 0 2 3 0 7

XSS
D 3 5 10 2 0 4 5 29
FP 0 1 1 0 0 0 1 3
FN 1 2 2 1 2 1 0 9

CSRF
D 5 6 13 10 0 12 3 49
FP 1 0 1 0 0 1 0 3
FN 0 1 2 0 4 1 0 8

Info.
Expo.

D 3 0 0 10 0 0 3 16
FP 0 0 0 0 0 0 0 0
FN 0 0 0 0 2 1 0 3

URL
Redirect

D 1 0 2 8 0 6 0 17
FP 0 0 0 0 0 0 0 0
FN 0 0 0 0 3 1 0 4

Total
D 18 28 51 37 9 41 24 208
FP 2 3 6 0 0 3 1 15
FN 1 5 8 2 17 8 2 43

0
10
20
30
40
50
60
70
80

D FP FN D FP FN D FP FN D FP FN D FP FN D FP FN D FP FN

SQLI Authn.
Bypass

Authz.
Bypass

XSS CSRF Info.
Exposure

URL
Redirect

N
um

be
r	

of
	
 V
ul
ne

ra
bi
lit
ie
s

Vulnerability	
 type

7

6

5

4

3

2

1

Chart 1. Discovered vulnerabilities per vulnerability type

0

10

20

30

40

50

60
URL
Redirect

Info.
Exposure

CSRF

XSS

Authz.
Bypass

Chart 2. Discovered vulnerabilities per benchmark application

5.3 Experimental Results
Table 3 summarizes results of our experiments. We used our
approach to analyse applications in the benchmark suite to
identify seven of the Top10 web applications vulnerabilities (from
the OWSAP2010 report). Other vulnerabilities could not specify
static signatures (use static program analysis). However,
specifying dynamic signatures for these vulnerabilities is easy.
Table 3 summarizes, for each application and each vulnerability
analysed, the total time taken, number of vulnerabilities in the
code base found, false positives (analyser thought vulnerability
but there isn’t on manual analysis), and false negatives (manual
code analysis indicates a vulnerability but our analysis tool did not
discover it at this code location).

Chart 1 shows the number of discovered vulnerabilities grouped
by vulnerability type. The SQLI represents the most frequent
vulnerability in all applications, then cross site reference forgery
(CSRF) vulnerability. After that, cross site scripting (XSS) and
authorization bypassing vulnerabilities are relatively equal. This is
mostly conforming to the ranking reported by OWSAP2010.

Chart 2 shows the number of vulnerabilities identified in every
application. It is clear that nopCommerce and KOOBOO are the
most vulnerable applications. However, if we consider the
application size factor, we see that the ratio of vulnerabilities
discovered per compared to application size is about equal.
Moreover, some applications such as BlogEngine use Microsoft
membership for access control, which eliminates the
authentication bypassing vulnerabilities.

0%

20%

40%

60%

80%

100%

120%

Precision

Recall

F-­‐Measure

Chart 3. Our achieved precision, recall, and F-measure rates

Chart 3 shows the precision, recall, and F-measure rates for each
vulnerability type. This chart shows that we achieve a high
precision rate for most of the vulnerability types. The precision
metric is on average 93%. This means that for each identified 100
vulnerabilities we have 7 false positives. This chart also shows a
good recall rate, although it is relatively lower than precision rate
we achieved. The recall metric is on average 82%. This means
that in every 100 vulnerability instances, we can correctly identify
82 and we miss 18 instances. This value could be improved if we
use a hybrid dynamic and static analysis approach. The overall
effectiveness of the approach (F-measure) is around 87%. A key
result from this chart is that the recall metric is higher in SQLI,
XSS, Information disclosure, and URL redirection than in the
other vulnerabilities. This justifies our initial supposition that
although we succeeded in developing a static signature for these
signatures (CSRF, authorization and authentication bypass), it is
difficult to achieve a high correct detection rate without dynamic
analysis.

5.4 Performance Evaluation
Chart 4 shows the time (in sec) required to analyse the benchmark
applications to locate the existing vulnerabilities’ instances for the
given set of vulnerability signatures. It is clear that the SQLI
vulnerability takes much more time to identify than XSS and
authorization bypassing. The authentication bypass takes the
lowest time. The time required to identify a given vulnerability
depends on the number and complexity of the specified OCL
signatures.

1
2
4
8

16
32
64

128

XSS

CSRF

URL	
 Redirect.

Authz.	
 Bypass

Info.	
 Expos.

SQL

Chart 4. Performance of approach per vulnerability and application

6. DISCUSSION
In this research we introduce a formal vulnerability definition
schema; signature specification approach based on OCL; and
static vulnerability analyser. Vulnerability definition schema
covers most of the details required in security analysis tasks
(attack, threat and vulnerability analysis tasks). Vulnerability
signature is specified on an abstract system representation. This
allows applying the same signature on different systems
developed with different languages. Use of OCL allows
formalizing and easing of signatures validation and testing.
Moreover, a new vulnerability can be easily located in the target
system as far as we have a formal signature for it.

We succeeded in producing a vulnerability analysis tool that can
work online without a need for new algorithms, modules, or
patches. The current static analyser achieves a precision rate of
93% and recall rate of 82%. Although we are usually interested in
high recall rate which implies less false negatives i.e. less number
of vulnerabilities that could not be detected by the analyser, in the
current tool we focused on high precision rate where number of
reported vulnerabilities that are false positives i.e. not a real
vulnerability, are less. The reason behind this decision was that
static analysers are usually used by system developers who are
interested in getting less false positives to mitigate. Another

reason is related to the nature of security vulnerabilities. From our
experiments, we determined that not all vulnerabilities can be
captured using static analysis, and the same applies using dynamic
analysis. Vulnerabilities related to source code such as SQLI and
XSS can be described and located using static analysis.
Vulnerabilities such as CSRF are difficult to use static signatures.
From our experience in developing signatures of the TOP10
vulnerabilities and our experiments we determined that: (i) it is
better to use dynamic analysis tools with certain vulnerabilities,
such as CSRF, because these vulnerabilities can be handled by the
web server. This means that we have a high false positive if we
use static analysis tool to locate these vulnerabilities; (ii) some
vulnerabilities can be easily identified and located by static
analysis such as SQL Injection and XSS vulnerabilities; (iii) some
vulnerabilities such as DOM-based SQL and XSS vulnerabilities
need a collaborating static and dynamic analysis to locate them.
We believe that combining static and dynamic analysis is needed
to increase the precision and recall rates.

A key problem with static analysis tools is the use of aspect-
oriented security techniques, where security is weaved within the
system at runtime. In this case we will have a high false positive
rate because we report vulnerabilities that are already mitigated by
the aspect-based security. The same will occur if external security
controls are used, such as in database engines to filter SQL
queries, using DB proxies to filter queries, using web server’s
deployed security controls such as encryptions, authentication,
and authorization, or even provided by the platform through
configurations such as ASP.NET membership or other anti-CSRF/
anti-XSS security controls. These can be discovered using
dynamic vulnerability analysis extensions.

The lack of system engineers’ annotations of the system security
functions may lead to high false positive. However, this problem
can be solved by employing dynamic vulnerability analysis.
Dynamic vulnerability analysis approaches cannot help in locating
specific code snippets where vulnerabilities exist. Moreover, they
cannot help testing code coverage. Thus, a hybrid approach of
static and dynamic analysis is required. We are extending our
analyser to support both. We use a workflow engine to define the
analysis sequence, using different approaches, to locate a given
vulnerability. This increases the recall rate of the overall
approach. Moreover, we plan to include confidence level with
reported vulnerabilities. This helps developers to prioritize based
on criticality and importance.

Our OCL-based signatures and vulnerability analysis tool can be
used in different program analysis problems such as aspect
mining, refactoring – locating “bad-smells”, or reengineering
“impact analysis”. In these cases system engineers have to specify
signatures they want to locate in their programs.

7. RELATED WORK
Existing efforts in vulnerability analysis can be categorized into
static analysis, dynamic analysis, and hybrid analysis based
approaches. Most of these efforts designed for specific
vulnerability types mainly SQLI, XSS. Jimenez et al. [19] review
various software vulnerability prevention and detection
techniques. Broadly, static program analysis techniques work on
the source code level. This includes pattern matching that searches
for a given string inside source code, tokens extracted from source
code, or system byte code e.g. calls to specific functions. Data
flow and taint analysis identify data coming from untrusted
sources to mark as tainted i.e. should not be used before being
sanitized or filtered. Model checking to detect vulnerabilities

depends on extracting a system model from the system source
code and developing a set of constraints on the model that should
not occur. An issue is that model checking approaches often suffer
from a state explosion problem and generate only a
counterexample. Dynamic analysis techniques analyse a system as
a black box, avoiding being overwhelmed with system details.
Fuzzy testing provides random data as input to the application in
order to determine if the application can handle it correctly or not.
Dynamic techniques are however limited in code coverage.

Static analysis approaches: NIST [20] has been conducting a
security analysis tools assessment project (SAMATE). A part of
this project is to specify a set of weaknesses that any source code
security analysis approach should support including SQL
injection, XSS, OS command injection, etc. They have also
developed a set of test cases that help in assessing the capabilities
of a security analysis tool in discovering such vulnerabilities.
Halfond et al. [9] introduce a new SQL injection vulnerability
identification technique base on positive tainting. They identify
“trusted” strings in an application and only these trusted strings to
be used to create certain parts of an SQL query, such as keywords
or operators. Lei et al. [21] trace the memory size of buffer-
related variables and instrument the code with corresponding
constraint assertions before the potential vulnerable points by
constraint based analysis. They used model checking to test for
the reachability of the injected constraints. Dasgupta et al. [5]
introduce a framework for analysing database application binaries
to automatically identify security, correctness and performance
problems especially SQLI vulnerabilities. They adopt data and
control flow analysis techniques as well as identifying SQL
statements, parameters, tables and conditions and finally analyse
such details to identify SQLI vulnerabilities. Martin et al [6, 7]
introduce a program query language PQL that can be used to
capture definition of program queries that are capable to identify
security errors or vulnerabilities. PQL query is a pattern to be
matched on execution traces. They focus on Java-based
applications and define signatures in terms of code snippets. This
limits their capabilities in locating vulnerabilities’ instances that
matches semantically but not syntactically. Wassermann et al.
[11] introduce an approach to finding XSS vulnerabilities based
on formalizing security policies based on W3C recommendation.
They conduct a string-taint analysis using context free grammars
to represent sets of possible string values. They then enforce a
security policy that the generated web pages include no untrusted
scripts. Jovanovic et al. [4] introduce a static analysis tool for
detecting web application vulnerabilities. They adopt flow-
sensitive, inter-procedural and context-sensitive data flow
analysis. They target identifying XSS vulnerabilities only. Ganesh
et al [8, 14] introduce a string constraint solver to check if a given
string can have a substring with a given set of constraints. They
use this to conduct white box and dynamic testing to verify if a
given system is vulnerable to SQLI attacks.

Dynamic analysis approaches: Bau et al [1] perform an analysis
of black box web vulnerability scanners. They conducted an
evaluation of a set of eight leading commercial tools to assess the
supported classes of vulnerabilities and their effectiveness against
these target vulnerabilities. A key conclusion of their analysis is
that all these tools have low detection rates of advanced and
second-order XSS and SQLI. The average percentage of
discovered vulnerabilities equals 53%. The analysis shows that
these tools achieve 87% in session management vulnerabilities
and 45% in the cross site scripting vulnerabilities. Kals et al [2]
introduce a vulnerability scanner that uses a black-box approach
to scan web sites for the presence of exploitable SQLI and XSS

vulnerabilities. They do not depend on a vulnerability signature
database, but they require attacks to be implemented as classes
that satisfy certain interfaces. Weinberger et al [10, 12] introduce
an analysis of a set of 14 frameworks that provide XSS
sanitization techniques. They identify limitations including lack of
context-sensitive sanitization that result in developing custom
sanitizer that need to be validated for their correctness, and
supporting client-side code “DOM-based XSS”. Felmetsger et al
[3] use an approach for automated logic vulnerabilities detection
in web applications. They depend on inferring system
specifications of a web application’s logic by analysing system
execution traces. They then use model checking to identify
specification violations. A key limitation of this approach is the
extraction of properties specifications to be validated. They
assume that collected traces represent correct system behaviour.
Hybrid analysis approaches: Monga et al [15] introduce a
hybrid analysis framework that blends static and dynamic
approaches to detect vulnerabilities in web applications. The
application code is translated into an intermediate form. The
resulting static model is filtered to focus only on dangerous
statements. This reduces model size where dynamic analysis will
be conducted, mitigating the performance overhead of the
dynamic taint analysis approach. This approach, as most taint
analysis approaches (either static or dynamic), targets only
injection-related vulnerabilities. Balzarotti et al [13] introduce
composition of static and dynamic analysis approaches “Saner” to
help validating sanitization functions in web applications. The
static analysis is used to identify sensitive sources/sinks methods.
Dynamic analysis used to analyse the identified suspected paths.

Compared to existing efforts, our approach achieves scalable,
extensible and powerful signature-based vulnerability analysis not
coupled to specific vulnerability, analysis technique, or
language/platform. Our approach is based on formalizing
vulnerability definition including the vulnerability signature part.

8. SUMMARY
We introduce a new automated formal vulnerability analysis
approach. Our approach is based on formalized vulnerability
definition schema. A part of this schema is the formal
vulnerability signature. This signature specifies a set of invariants
that confirm the existence of a given vulnerability in the target
program. We adopt OCL in specifying vulnerability signatures.
We developed a static vulnerability analysis tool that uses our
formally specified vulnerabilities signatures to locate possible
matches in the target system. A new vulnerability can be easily
identified provided that it has a formal signature. We validated
our approach on a set of seven open source applications from
different domains, different sizes and different development
models. Our experimental results show that our OCL-based static
analysis tool achieves (93%) precision rate and (82%) recall rate.
This means that we achieve a good FP rate (7%) and a fair FN rate
(18%). Moreover, these rates can be improved using a dynamic
analysis extension, based on our formal signatures approach,
which we are currently working on.

ACKNOWLEDGEMENTS
The authors are grateful to Swinburne University of Technology
and the FRST SPPI project for support for this research.

REFERENCES
[1] J. Bau, E. Bursztein, D. Gupta, et al, "State of the Art: Automated

Black-Box Web Application Vulnerability Testing," in Proc. 2010
IEEE Symposium on Security and Privacy, 2010, pp. 332-345.

[2] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, "SecuBat: a web
vulnerability scanner," presented at the Proc. of 15th Int. Conf. on
World Wide Web, Edinburgh, Scotland, 2006.

[3] V. Felmetsger, L. Cavedon, C. Kruegel, et al, "Toward automated
detection of logic vulnerabilities in web applications," in Proc. 19th
USENIX Conf. on Security, Washington, DC, 2010, pp. 10–10.

[4] N. Jovanovic, C. Kruegel, and E. Kirda, "Pixy: a static analysis tool
for detecting Web application vulnerabilities," in Proc. of 2006
IEEE Symposium on Security and Privacy, 2006, pp. 258-263.

[5] A. Dasgupta, V. Narasayya, and M. Syamala, "A Static Analysis
Framework for Database Applications," in Proc. IEEE Int. Conf. on
Data Engineering, 2009, pp. 1403-1414.

[6] M. Martin, B. Livshits, and M. S. Lam, "Finding application errors
and security flaws using PQL: a program query language," in Proc.
20th annual ACM Conf. on Object-oriented programming, systems,
languages, and applications CA, USA, 2005, pp. 365-383.

[7] M. S. Lam, M. Martin, et al, "Securing web applications with static
and dynamic information flow tracking," in Proc. 2008 ACM
symposium on Partial evaluation and semantics-based program
manipulation, California, USA, 2008, pp. 3-12.

[8] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, "Automatic
creation of SQL Injection and cross-site scripting attacks," in Proc.
of 31st Int. Conf. on Software Engineering, 2009, pp. 199-209.

[9] W. G. J. Halfond, A. Orso, and P. Manolios, "Using positive
tainting and syntax-aware evaluation to counter SQL injection
attacks," in Proc. of 14th ACM Int. symposium on Foundations of
software engineering, Oregon, USA, 2006, pp. 175-185.

[10] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D.
Song, "A systematic analysis of XSS sanitization in web application
frameworks," in Proc. of 16th European Conf. on Research in
computer security, Leuven, Belgium, 2011, pp. 150-171.

[11] G. Wassermann and Z. Su, "Static detection of cross-site scripting
vulnerabilities," in Proc. of 30th Int. Conf. on Software engineering,
Leipzig, Germany, 2008, pp. 171-180.

[12] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes,
"Fast and precise sanitizer analysis with BEK," in Proc. 20th
USENIX Conf. on Security, San Francisco, CA, 2011.

[13] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C.
Kruegel, and G. Vigna, "Saner: Composing Static and Dynamic
Analysis to Validate Sanitization in Web Applications," in Proc. of
2008 IEEE Symposium on Security and Privacy, 2008, pp. 387-401.

[14] V. Ganesh, A. Kieżun, et al, "HAMPI: a string solver for testing,
analysis and vulnerability detection," in Proc. of 23rd Int. Conf. on
Computer aided verification, Snowbird, UT, 2011, pp. 1-19.

[15] M. Monga, R. Paleari, and E. Passerini, "A hybrid analysis
framework for detecting web application vulnerabilities," in Proc.
2009 ICSE Workshop S/W Engineering for Secure Systems, 2009.

[16] R. Zhang, S. Huang, Z. Qi, et al, "Static program analysis assisted
dynamic taint tracking for software vulnerability discovery,"
Computer&Mathmatics Application,vol. 63, pp. 469-480, 2012.

[17] M. Cengarle and A. Knapp, "OCL 1.4/5 vs. 2.0 Expressions Formal
semantics and expressiveness," Software and Systems Modeling,
vol. 3, pp. 9-30, 2004.

[18] P. K. Manadhata and J. M. Wing, "An Attack Surface Metric,"
IEEE Transactions on Software Engineering, vol. 37, pp. 371-386,
2011.

[19] A. Jimenez, and A. Cavalli "Software Vulnarabilities, Prevention
and Detection Methods: A Reviw," in Proc. European Workshop on
Security in Model Driven Architecture, Netherlands, 2009, p. 6-13.

[20] NIST, "Source Code Security Analysis Tool Functional
Specification Version 1.1," May 2007, Accessed 2011.

[21] W. Lei, Z. Qiang, and Z. Peng Chao, "Automated Detection of
Code Vulnerabilities Based on Program Analysis and Model
Checking," in 8th IEEE Int. Working Conf. on Source Code
Analysis and Manipulation, 2008, pp. 165-173.

[22] T. Vajk, G. Mezei, and T. Levendovszky, “An Incremental OCL
Compiler for Modeling Environments,” Electronic Communications
of the EASST, vol. Volume 15: OCL Concepts and Tools, 2008.

