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ABSTRACT 
Adopting publicly accessible platforms such as cloud computing 
model to host IT systems has become a leading trend. Although 
this helps to minimize cost and increase availability and 
reachability of applications, it has serious implications on 
applications’ security. Hackers can easily exploit vulnerabilities in 
such publically accessible services. In addition to, 75% of the total 
reported application vulnerabilities are web application specific. 
Identifying such known vulnerabilities as well as newly discovered 
vulnerabilities is a key challenging security requirement. However, 
existing vulnerability analysis tools cover no more than 47% of the 
known vulnerabilities. We introduce a new solution that supports 
automated vulnerability analysis using formalized vulnerability 
signatures. Instead of depending on formal methods to locate 
vulnerability instances where analyzers have to be developed to 
locate specific vulnerabilities, our approach incorporates a formal 
vulnerability signature described using OCL. Using this formal 
signature, we perform program analysis of the target system to 
locate signature matches (i.e. signs of possible vulnerabilities). A 
newly–discovered vulnerability can be easily identified in a target 
program provided that a formal signature for it exists. We have 
developed a prototype static vulnerability analysis tool based on 
our formalized vulnerability signatures specification approach. We 
have validated our approach in capturing signatures of the OWSAP 
Top10 vulnerabilities and applied these signatures in analyzing a 
set of seven benchmark applications.   

Categories and Subject Descriptors 
F.3.1 [Specifying and Verifying and Reasoning about 
Programs]: Semantics of Programming Languages - Program 
analysis; K.6.5 [Security and Protection]: Verification. 

General Terms 
Algorithms, Design, Security, Languages, Verification 

Keywords 
Software security; Vulnerability analysis; Formal vulnerability 
specification; Common weaknesses enumeration (CWE) 

1. INTRODUCTION 
New computational paradigms such as Cloud Computing and 
Service-Oriented Architectures (SOA) depend on outsourcing IT 
systems for hosting on third-party platforms outside of the 
enterprise network perimeter (usually on the internet). This 

increases the possibility of hackers attacking and exploiting 
vulnerabilities in such applications.  In addition, the number of 
newly discovered vulnerabilities is increasing rapidly. Delays in 
discovering and mitigating such vulnerabilities increase the 
probability of successful application attacks and security breach. 

Web applications have become the prominent application delivery 
model used in such platforms as they do not require client 
deployment or configuration, and can be centrally updated and 
managed. However, web application vulnerabilities continue to 
make up the largest percentage of the total reported vulnerabilities 
in software applications. Web applications vulnerabilities 
constitute 75% on average of the total reported vulnerabilities over 
the last three years1. Of these reported vulnerabilities, well-known 
vulnerabilities such as Cross site scripting (XSS) represents 28%, 
while SQL Injection (SQLI) vulnerabilities represent 20%. 
Reported vulnerabilities are usually recorded in commonly 
available vulnerability databases such as NVD or CVEdetails.com. 
Vulnerabilities/weaknesses definitions are maintained in the 
Common Weaknesses Enumeration (CWE) database. This 
database is used as a reference framework by application 
developers, deployment engineers and security engineers to help 
identifying possible weaknesses to attack in software applications.  
However, a key problem with CWE is that recorded vulnerabilities 
are almost specified informally. Thus, each security vendor 
develops their security analysis tools based on their own 
understanding of such vulnerabilities. 

Commercial vulnerability scanners such as AppScan, Web inspect, 
Cenzic, McAfee focus on black-box vulnerability analysis to avoid 
being limited to specific programming languages or platforms. 
However, none of these scanners cover all known vulnerability 
types [1]. Moreover, they are limited in discovering stored forms 
of XSS and SQLI vulnerability. To achieve good results with 
vulnerability analysis, multiple scanners should be applied [1]. 

Existing research efforts [2-7] focus on specific vulnerability 
types. Most focus on SQLI [8, 9], XSS [8, 10, 11], or input 
sanitization [12, 13]. These efforts use static analysis with many 
variations [2, 14], dynamic analysis [8], or hybrid of static and 
dynamic techniques [15, 16]. However, they focus on specific 
vulnerabilities only. Thus, new vulnerabilities cannot be 
incorporated for checking unless we have new algorithms.  

A key problem with both industrial and academic efforts is that 
they are not comprehensive enough to cover known vulnerabilities 
or extensible to incorporate new vulnerabilities. Many tools 
depend on their own encoded representations of vulnerabilities, 
which are suitable for their own analysis approaches and 
algorithms. From our investigation in these efforts, we reached a 
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conclusion that the key problem really lies in the vulnerability 
definitions themselves and not in introducing new analysis 
techniques (most of the existing approaches use similar techniques 
with various combinations). Moreover, the various existing 
vulnerabilities databases, while useful, are not directly utilized by 
vulnerability analysis tools due to their informality; however, we 
figured out that different security analysis tasks including 
vulnerability analysis, attack analysis, and threat analysis can be 
facilitated if we have a formal vulnerability definition. Our 
analysis of the vulnerability analysis domain leads us to following 
research questions: 

- What details do we need to capture to fully describe a given 
vulnerability? 

- How can we formalize the signatures of possible security 
vulnerabilities? 

- How can we effectively use such formal vulnerability 
specifications in automating the vulnerability analysis process? 

In this paper, we introduce a new, comprehensive vulnerability 
specification schema. This schema captures formal rich details of a 
given application vulnerability/weakness including categories, 
preconditions, consequences, signatures, etc. A key entry that we 
focus on in this schema is the vulnerability signature. This 
signature specifies a set of invariants, when matched; it means that 
the given vulnerability exists. We adopt Object Constraint 
Language (OCL) in capturing such signatures. OCL is a 
declarative and formal language [17] based on first order logic and 
set theory. Vulnerability signatures are validated against a 
comprehensive system description model that covers most program 
entities including classes, methods, statements, inputs, sources, 
outputs, targets, etc. Furthermore, it helps in developing more 
abstract signatures not coupled with specific programming 
language or platform.  

As an initial step in validating our vulnerability schema and 
signature specification approach, we have developed an OCL-
based static application Vulnerability Analysis tool. This tool uses 
a new static vulnerability detection approach that performs 
program analysis looking for matches for vulnerability signatures, 
defined in OCL, in a given program source code. Then, it produces 
an overall vulnerability assessment report for the target 
application. This vulnerability analyzer will be extended to support 
dynamic analysis as well using vulnerability analysis workflow 
engine. A Key difference between our static vulnerability analysis 
tool and existing tools is that it uses our formal vulnerability 
specifications to detect source code vulnerabilities, while working 
on an abstract system representation. Moreover, it analyzes 
programs for any (new) vulnerability that has defined signature(s). 
This is compared to existing efforts that have specific (built-in) 
algorithms to discover certain vulnerability types only. We have 
developed a prototype tool supporting our approach and evaluated 
it in capturing the well-known TOP10 vulnerabilities reported by 
OWSAP. We have validated our toolset in locating these 
vulnerabilities in a set of open source web applications. 

In section 2, we analyze the existing security vulnerabilities and 
map this analysis on the Top10 OWSAP vulnerabilities. Section 3 
describes our vulnerability definition schema, the vulnerability 
signature specification, and our OCL-based static vulnerability 
analysis tool. Section 4 describes our prototype implementation 
details. In section 5, we discuss our experimental evaluation and 
results. Section 6 discusses the implications of our work and key 
directions for further research. Section 7 reviews related work. 

2. BACKGROUND 
To understand the root causes of security vulnerabilities we 
analyzed different system structures, components, and deployment 
models. We applied this analysis on the Top10 vulnerabilities 
reported by OWSAP. We summarize our conclusions as follows:                                                                                                   

2.1 Analysis of Security Vulnerabilities 
A given software system, whether desktop, web, or even 
embedded is based on a hosting service – e.g. web server, 
operating system, virtual server, etc. (Figure 1). A hosting service 
provides a set of APIs that the hosted system can use to read inputs 
from possible input sources (users, files, memory, database, etc.) 
or write outputs to possible output targets. Any vulnerability in the 
hosting service implies that an attacker can control inputs and/or 
outputs of the target system. The hosting media is a place where 
the hosted system runs – e.g. a process in case of web server, or 
memory in case of OS.  If the hosting media breached, it may be 
used to control the hosted system inputs, outputs, or even 
processing (overriding kernel data using buffer overflow). 
However, these entities are out of the software system control. 
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Figure 1. An overview of the host-system-component relations 

Any target system is composed of a set of components. These 
components may be subsystems, composite components, or simple 
components. System components may be hosted on the same 
hosting service instance or different instances (different servers). 
In the latter case, they have to communicate through 
communication channels, which may be unsecure (an attacker may 
eavesdrop, or intercept messages). A system component may be an 
active component, a component that can take actions or perform 
operations such as system functions. Active components are able 
to secure themselves and their processed data – e.g. authenticating 
users, authorizing users, encrypting data, etc. Or alternatively, a 
passive component, a component that cannot take actions to 
change data it maintains, such as storage components 
(databases/files) or transmission components (communication 
channels). Passive components cannot secure themselves e.g. a file 
or table cannot enforce security access on its contents by itself. 
They depend on other components, such as the hosting service 
(OS, DBMS), or active system components to manage/secure such 
components. This is a big open issue in data security area - e.g. 
data leakage protection - where confidentiality of data moving 
between different applications with different security levels may 
be threatened. Both active and passive components may be 
breached by the hosting service e.g. read data in memory, files, or 
on communication channels.  

Each component, regardless of its type, has a set of entry points 
(E) and set of exit, output points (X), and is used in processing (P), 
as a storage (S), or as a communication channel (T). These entry 
and exit points can be compromised by an attacker who has control 
on the hosting service to read/write/modify/delete the data. Usually 
the number of entry points and exit points – the “attack surface” - 



is used as a security metric when assessing systems security [18]. 
Furthermore, an active component may have vulnerabilities related 
to inputs (input validation - input coming from a user passing by 
the hosting service), outputs (output validation and exceptions – 
outputs may depend on malicious/modified inputs or passed 
through a vulnerable hosting service), or processing (logical errors 
– e.g. race conditions, malicious data corruption, service 
overloading). We use this analysis in categorizing vulnerabilities 
according to the source of vulnerability, such as input validation, 
output validation, processing, and hosting service vulnerabilities. 
This helps in deciding which types of vulnerabilities can be 
identified by static analysis, dynamic analysis, etc. Moreover, it 
helps in deciding the mitigation actions that can be applied to 
block such vulnerabilities. 

2.2 OWSAP Top10 Security Vulnerabilities 
 Before we discuss how we formalize software system 
vulnerability definitions, we give an overview of the OWSAP 
Top10 web application vulnerabilities. OWSAP (Open Web 
Security Application Project) is a community effort to define and 
share knowledge about web application security approaches. We 
discuss these Top 10 vulnerabilities and signatures we deduce from 
the vulnerabilities recorded in NVD and CWE. These signatures 
are used by our vulnerability analysis tool; however, they can be 
further revised by experts to get more accurate results.  
Injection Flaws: This type of vulnerabilities includes several well-
known attacks intended to compromise application inputs in order 
to gain control or modify data, such as SQLI, OS command 
injection, LDAP query injection, and XPath query injection. All 
arise from input validation problems. “All external inputs are 
untrusted” is a well-known security principal that should be realize 
in securing systems. These vulnerabilities occur whenever a 
system trusts an input from the user – first order injection – or 
from a repository – stored or second order injection – and uses it 
to build dynamic queries that run OS or database commands 
without sufficient input sanitization or validation. An attacker can 
use this type of vulnerabilities to execute malicious commands or 
gain privileged access to the system under attack. Figure 2 shows 
code vulnerable to SQLI. For example, a password argument of the 
form “’ OR (1=1) OR ‘’=‘” allows access to any specified 
username e.g. ‘admin’ or ‘root’. The signature of these 
vulnerabilities is a dynamic query statement that uses external 
inputs without proper sanitization. 

Public bool LogUser(string username, string password) { 
     string query = “SELECT username FROM Users WHERE       
     UserID =‘” username “ ‘ AND Password = ‘” +  password + “’”;  

Figure 2. A code snippet vulnerable to SQLI attack 

Cross-Site Scripting Flaws: This is a two-step vulnerability. First, 
an attacker uses the application to store malicious data. Whenever 
a victim sends a request to resource X, the web server responds 
with data containing “malicious code” without being encoded. This 
malicious code executes on the victim browser causing disclosure 
of her confidential information to the attacker. This vulnerability 
type may be from stored data (e.g. from a database) or reflected 
(from user input). This is very common attack in applications that 
use user inputs for search or discussions. The signature of these 
vulnerabilities is to call output functions using external or stored 
inputs without sanitization or encoding. 

Broken Authentication and Session Management Flaws: This is 
a common problem with security authentication. It includes attacks 
such as: authentication bypassing via external inputs (depend on 

external input to bypass authenticating the current requester); 
authentication checking not included in critical functions; using 
hard-coded credentials; using an easy to guess password; or 
session timeouts not set or checked. This enables unauthenticated 
users to maliciously access and use system resources. Figure 3 
shows a code snippet vulnerable to improper authentication attack, 
where a user can modify their cookie to bypass the authentication 
check.  The signature of these vulnerabilities is that every publicly 
accessible function should not trust external inputs to bypass (by 
conditional statement) triggering the authentication function. 

if( Request.Cookies["Loggedin"] != true ) { 
    if(  !AuthenticateUser(Request.Params["username"],      
                                            Request.Params["password"] ) ) 
              throw new Exception("Invalid user"); 

} 
DoAdministrativeTask(); 

Figure 3. A code snippet vulnerable to authentication Bypass 

Insecure Direct Object Reference Flaws: authenticated users can 
send malicious inputs to access unauthorized data. Figure 4 shows 
an example where attacker sends custID = XYZ instead of custID = 
ABC. This enables the attacker to access other customers’ data. 
The signature of these vulnerabilities is that user inputs are not 
authorized before used in business functions. 

if( !AuthenticateUser( Request.Params["username"],  
                             Request.Params["password"] ) ) 
          throw new Exception("Invalid user"); 

updateCustomerBalance(Request.QueryString["custID"], nBalance); 
Figure 4. A code snippet vulnerable to improper authz 

Cross-Site Request Forgery (CSRF) Flaws: an attacker deceives 
an authorized user by sending a forged request to the user’s 
application to perform malicious actions. This attack requires the 
victim to have a valid session or cookie with the application 
(already authorized). The signature of these vulnerabilities is that 
requests’ origins are not validated or that responses are usually 
predictable or have fixed URL format. It is usually difficult to 
identify CSRF using static analysis techniques because it is usually 
managed by the web server. 
Security Misconfiguration Flaws: the system is not securely 
configured. This includes exposing information through 
exceptions; system executing with higher privileges than required; 
system files are accessible to unauthenticated users; or resources 
have misconfigured permissions. Some of these vulnerabilities can 
be discovered from the exception handlers whether they expose 
system details or not. Others need to be examined by application 
responses for unauthorized actions using dynamic analysis. 
Unvalidated Redirect and Forward Flaws: the application 
redirects requests to a target URL that is concatenated from user 
inputs “Response.Redirect(userInput)”. This type of vulnerability 
is similar to the injection vulnerabilities where web redirect 
functions use external inputs to build the redirect URL. 

Failure to Restrict URL Access Flaws: an application does not 
perform access control on resources or URLs. These vulnerabilities 
can be easily examined by checking webpage methods for 
authorization function calls. Dynamic analysis is required to check 
application responses for unauthorized URLs. 
Insufficient Transport Layer Protection Flaws: sensitive data 
including credentials and customer data are transmitted in plain 
text. The signature of these vulnerabilities is that output data are 
transmitted without passing by encryption functions. Dynamic 
analysis is required to examine application responses (if the 
protection is done on the transport layer). 



From this analysis, we deduced two points: (i) Top10 
vulnerabilities reflect categorization we introduce in Section 2.2 – 
i.e. input validation such as SQLI, URL redirection, CSRF; output 
validation such as XSS, information exposure; and hosting service 
such as security misconfiguration and insufficient transport layer 
protection; and (ii) many of these Top10 vulnerabilities can be 
discovered using static source code analysis (vulnerabilities related 
to the program itself), while other require dynamic analysis 
(vulnerabilities related to the hosting service or configurations). 

Threat	
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Figure 5. Vulnerability definition and security analysis tasks 

2.3 Why We Need a Formalized Vulnerability 
Definition? 
The security analysis for a given system includes different tasks 
that are usually performed at different stages of the system 
implementation. Threat analysis is conducted at early stages of the 
system development usually during the system design phase. Here 
the software development team work together to identify possible 
problems that may arise from using specific platforms, 
architectures, languages, and the expected deployment model. A 
formal vulnerability definition, as shown in Figure 5, facilitates 
identifying possible weaknesses in a given platform or language. 
Vulnerability analysis is applied during system development or 
after development has been completed. It targets identifying 
security-compromising errors in the system implementation. A 
formal vulnerability definition helps in automating vulnerability 
analysis as we will show later in this paper. Attack analysis is 
applied after the system has been deployed or when a detailed 
deployment model becomes available. It focuses on identifying 
possible attack vectors on system resources given the networked 
system. A formal definition helps identifying preconditions and 
consequences for each vulnerability instance found in the program.  

3. OUR APPROACH 
We base our security analysis approach on (i) a formal 
vulnerability definition schema that captures every detail related to 
a given vulnerability. This helps in every security analysis task, as 
discussed above; (ii) a formal vulnerability signature specification 
approach that can capture security vulnerability signatures; and 
(iii) an extensible vulnerability analysis tool that perform 
signature-based program analysis. Here, we introduce a static 
analysis component only. We are working on an integrated 
vulnerability analyzer that performs static and dynamic analysis. 

Figure 6. Weakness definition schema 
 

3.1 Vulnerability Definition Schema 
We studied the various security analysis tasks (vulnerability, attack 
and threat analysis) to identify the key items required in these tasks 
that should be included in a vulnerability definition schema, shown 

in Figure 6. These vulnerabilities’ definitions should be managed 
by security experts (may be used as extension of CWE database). 

Vulnerability ID: Every discovered vulnerability instance, as in 
the NVD database, should have a reference to its parent weakness 
or vulnerability definition. This helps retrieving vulnerability 
details e.g. preconditions, consequences. 
Category: Many categorization-schemas for software 
vulnerabilities do exist. Each categorization schema helps 
understanding weaknesses from a specific point of view e.g. 
developers or researchers. A categorization based on the root cause 
or source of the weakness, shown in Figure 1, helps in 
vulnerability analysis, mitigation, and even avoidance. Thus, we 
propose to categorize vulnerabilities as input validation, processing 
logic, output validation, hosting service, hosting media, 
communication channel, storage, and security control 
vulnerabilities.  
Language/platform: specifies the language(s) that a given 
vulnerability applies to - i.e. many languages have language-
specific vulnerabilities such as C, C++, C#, Java, etc. We also use 
this to describe the technology or architecture paradigm inherent 
with the vulnerability - e.g. client-server, web-based, service-
oriented, or multi-tier, along with the underlying environment e.g. 
web server, client, application server, database server. This helps 
in threat analysis to identify possible vulnerabilities that may exist 
and start taking precautions to avoid such vulnerabilities. 
Preconditions: This attribute aids both vulnerability analysis and 
attack analysis. Preconditions are a list of the capabilities that an 
attacker should possess, or the list of system configurations that 
need to be present in order to exploit this vulnerability e.g. to 
exploit a specific vulnerability, an attacker might have to have root 
access, user access, remote root access, public access, etc. 
Consequences: if a given vulnerability exploited, what will be the 
benefits achieved by the attackers e.g. disclosure of system 
information, invalid processing, invalid results, execute an 
unauthorized function, elevate permission, bypass security, crash, 
or Denial-of-Service - DOS. This can be used in planned attacks 
e.g. using vulnerability V1 will help the attacker to obtain a set of 
privileges. These privileges may be preconditions of vulnerability 
V2. The consequence of V2 may be the actual goal of the attacker. 
Impacted resources: this specifies the resources that will be 
impacted if the given vulnerability exploited including memory, 
configuration files, registry, customer data, credentials, 
cryptography keys.  
Likelihood: The probability that the given vulnerability is 
exploited by an attacker may be low, medium, or high. This 
depends on the complexity of the given vulnerability and attacker 
capabilities as defined in the vulnerability preconditions. 
Vulnerability signature: A vulnerability signature describes 
patterns that when matched in a target program mean it is likely to 
have the given vulnerability. This may be signature of code 
snippets, or signature of system response for requests with specific 
signatures. Every single vulnerability may have different 
signatures that capture different forms (scenarios), or that are 
applicable with different vulnerability analysis techniques. 
Prevention: a list of precautions to be followed or checked during 
code review. These might be rules to check during system 
development or deployment; combinations of architectures; 
languages and platforms to use or not to use.   
Mitigations: Indicates how we can modify the vulnerable system 
entities to block a discovered vulnerability. This may require 
modification of the vulnerable code parts; changing system 
configurations; or even changing system architecture.  
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Figure 7. Our system description class diagram used by our OCL-based vulnerability signature approach 

 

3.2 Vulnerability Signature Specification  
Existing software security weakness, or vulnerability definitions, 
in the Common Weakness Enumeration (CWE) database help in 
understanding the nature of a given vulnerability. However they do 
not directly help in locating such vulnerabilities in target systems. 
Formalizing these descriptions helps vulnerability analysis tools in 
automating the vulnerability analysis process. Ideally a formal 
vulnerability signature, specified by security experts, should be 
specified on an abstract level far from the source code and 
programming language details, enabling locating possible 
vulnerability instances in different programs written in different 
programming languages. 

We use OCL as a well-known, extensible, and formal language to 
specify semantic rather than syntactical signatures of security 
weaknesses. To support specifying and validating OCL-based 
signatures, we have developed a system-description model, shown 
in Figure 7. This model is inspired from our analysis of security 
vulnerabilities (Section 2). It captures main entities in an object-
oriented program including components, classes, instances, inputs, 
input sources, output, output targets, methods, method body, 
method statements e.g. if-else statements, loops, new objects, etc. 
Moreover, it captures security concepts such as authentication, 
authorization, audit, etc. and other system details such as hosting 
service, deployment descriptors, etc. Each entity has a set of 
attributes such as method name, accessibility, variable name, 
variable type, method call name, etc. This enables specifying 
OCL-based vulnerability signatures on different system entities 
other than source code entities (classes, methods, code-blocks) 
such as deployment descriptors (configuration files), hosting 
services (web server), storage, output targets, or input sources. Of 
course, this requires developing different parsers other than code 
parsers that can read such entities. Moreover, this requires a 
comprehensive vulnerability analyzer that supports locating 
signatures in such entities as well as source code.  
The vulnerability analysis tool should have different profiles for 
different languages and platforms (ASP.Net, PHP, C#, Java, etc.). 
Thus vulnerabilities with signatures containing input source or 
output target security authentication, authorization, sanitization 
and other functions can be interpreted differently based on the 
program platform or programming language used. If the system 
uses custom sanitization or security functions, developers have to 
mark their security functions in the resulting system model.   

Table1 shows some vulnerability signatures specified in OCL 
using our system description model (Figure 7), For example: 

Table1. Examples of OCL-specified vulnerability signatures 
Vul.	
   Vulnerability	
  Signature	
  
SQLI  Method.Contains( S : MethodCall | S.FnName  = 

“ExecuteQuery” AND S.Arguments.Contains( X : 
IdentifierExpression |  X.Contains(InputSource))) 

XSS  Method.Contains(S : AssignmentStatement | 
S.RightPart.Contains(InputSource) AND 
S.LeftPart.Contains(OutputTarget)) 

Improper 
Authn.  

Method.IsPublic == true AND Method.Contains( S : 
MethodCall | S.IsAuthenitcationFn == true AND S.Parent == 
IFElseStmt AND S.Parent.Condition.Contains(InputSource)) 

Improper 
Authz. 

Method.IsPublic == true AND Method.Contains( S : 
Expression | S.Contains(X: InputSource  | X.IsSanitized == 
False OR X.IsAuthorized == False) 

SQLI Signature: any method that has method call statement “S” 
where the callee function is “ExecuteQuery” and one of the 
parameters passed to it is previous assigned to untrusted identifier 
coming from one of the input sources. This initial signature can be 
revised to incorporate taint analysis checking. Taint analysis can 
be defined as an OCL function that adds every variable assigned to 
a user input parameter to a suspected list. In this case we update 
the vulnerability signature to use “Method.SuspectedList(). 
Contains(X)” instead of X.Contains(InputSource)” as in Table1. 
XSS Signature: any method statement “S” of type assignment 
statement where left part is of type “output target” e.g. text, label, 
grid, etc. and right part uses input from the tainted input sources. 
Improper Authentication Signature: any public method that has 
statement “S” of type “method call” where the callee method is 
marked as Authentication function while this method call can be 
skipped using user input as part of the bypassing condition. 
Improper Authorization Signature: any public method that has 
statement “S” of type “expression” – i.e. any statement - where “S” 
uses data X without being sanitized, authorized, or simply taint 
data (Method.SuspectedList().Contains(X) == true). 
A key problem with these signatures is that we do not consider 
security solutions applied beyond the system source code either 
using proxies to filter SQL queries or using security controls 
deployed on the web server as an http handler. These can be 
handled by appending a dynamic signature forming a sequence of 
OCL constraints to be checked on system responses to malicious 
requests. Another issue is that we may have different signatures 
with different complexities for the same vulnerability. We expect 



security experts to develop strong and complete signatures. Weak 
signatures mean more false positives, which may annoy 
developers, or more false negatives, which may harm customers.  

3.3 OCL-based Static Vulnerability Analyzer 
Given that vulnerability signatures are now formalized (in OCL), 
the static vulnerability analysis component becomes a program 
analysis tool that traverses the given program looking for code 
snippets that match the given vulnerability signatures. Figure 8 
describes the architecture of our static vulnerability analyzer based 
on the formalized vulnerability signature concept.   
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Figure 8. OCL-based static vulnerability analysis tool 
Program source code: the program to be analysed can be either a 
source code or even program binaries (dlls, exes). In the latter 
case, we use de-compilation techniques to reverse engineer the 
source code of the given program. 
Abstract Program Representation: to avoid being specific to 
programs written in a specific programming language or with a 
specific coding style, we transform the given system code into an 
abstract syntax tree (AST) representation. The program AST 
abstracts most of the source code details away from specific 
language constructs. Extracting source code AST requires using 
different language parsers (we currently support C++, VB.Net and 
C#). Then, we perform more abstraction by transforming this AST 
to our system description model, shown in Figure 7. We support 
specifying signatures on other system aspects including features, 
architecture, etc. For example one may check for vulnerability 
signatures of code that realize specific features. This also helps in 
combining static analysis and dynamic analysis where results of 
the static analysis used to drive black-box testing scenarios.  
Signature locator: This is the main component in our 
vulnerability analysis tool. It receives the abstract system 
representation and generates a list of possible vulnerabilities in the 
given system along with their locations in code. At analysis time, it 
loads the platform profile based on the details of the program 
under analysis. Then, it loads the defined weaknesses in the 
weaknesses’ signatures database (specified in OCL), based on the 
target program platform/language. The signature locator 
transforms these signatures into constraints and checks on program 
entities - i.e. code snippets that match the specified signatures. The 
OCL functions represent a library of predefined functions that can 
be used in specifying vulnerability signatures and in identifying 
possible matches. This includes control flow analysis, data flow 
analysis, string analysis, taint-analysis, etc. The developed 
Weaknesses’ signatures are compiled using OCL compiler and 
validated against our system description model before getting 
stored in the weaknesses’ signatures database. 
To locate vulnerability matches, the signature locator translates 
every vulnerability OCL-signature in a visitor class, as in Figure 9, 
which has a handler (method) for every concept used in the OCL-
signature – e.g. if the signature checks that the method is public, 
then the visitor class will have a handler for system entities of type 
method definition. This handler contains a set of checks based on 

the given OCL-signature. The visitor class traverses the target 
program entities. If a visited node has a handler, this handler is 
triggered – e.g. a visitor for SQLI signature (Figure9), has handlers 
for “method definition” and “method call” nodes. In the method 
call handler, it will have a condition to check the called method. If 
it is “ExecuteQuery”, it marks this entity and continues to visit its 
arguments. Otherwise, it skips for another system entity. The 
signature locator generates a list of discovered vulnerabilities 
along with code locations thought to have these vulnerabilities. We 
use Application Vulnerability Description Language 2 - AVDL - to 
represent the identified vulnerabilities in XML format to support 
interoperability with existing vulnerability databases such as NVD. 

4. IMPLEMENTATION 
We briefly describe some implementation details of our formal 
static vulnerability analysis tool. First, we developed a UI 
component to assist security experts in capturing vulnerability 
signatures’ in OCL. This provides vulnerability specification and 
signature editing including checking validity of OCL statements 
and testing of specifications on sample source code. We use an 
existing OCL parser [22] to parse and validate signatures against 
our system description model (Figure 7). Once validated, the 
vulnerability signature is stored in the signatures database. 
Next, to parse the given program source code and generate a 
system abstract model, we use an existing .Net parser NReFactory 
Library, which supports VB.Net and C#. Moreover we have used a 
C parser written in python called pycparser. Thus we now support 
locating vulnerabilities in C#, VB.Net, C, and C++. We are 
working on parsers for PhP and Java. For a system with binaries 
only available - we use an existing de-compilation tool ILSPY to 
generate code from binaries. This is currently supported for C# and 
VB.Net only. Third, we developed a class library to transform the 
generated AST into a more abstract (summarized) representation 
as specified in our system description model. This reduces its size 
and complexity to reflect only necessary details required in 
signatures’ matching, reduce complexity and make our technique 
more scalable than if a full AST was used. Other system models 
such as system features, architecture, etc. can be specified by the 
system provider and added to our AST model. Fourth, our 
signature locator has an OCL translator that translates a given OCL 
signature into a corresponding visitor class. This visitor class is 
used to traverse system representation entities. For each entity, it 
performs customized checks as determined in the OCL signature.  
 

public class SQLIVisitor : AbstractAstTransformer { 
    public override object VisitMethodCall(InvocationExpression S)  {   
          if(S.FnName == "ExecuteQuery")  { 

 foreach (Statement X in S.Arguments) { 
      if(X.AcceptVisitor(this) != null)  { 
 count++; 
 list.Items.Add(S.StartLocation + S.EndLocation); 
        }  … 

      public override VisitIdentifierExpression(IdentifierExpression X) { 
if( OCLLibrary.IsTainted(X.Identifier) == true )   
          return true; 
return null; … 

Figure 9. Sample of the SQL injection Visitor class 

Figure 9 shows a sample visitor class generated from the simple 
SQL injection signature specified in Table 1. The SQLIVisitor 
class implements a set of predefined functions based on each part 
in the SQL injection signature e.g. the VisitMethodCall function is 
related to the condition “Method.Contains( S : MethodCall)”, etc. 
 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2  https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=avdl 



context Method:: SuspectedList(): Collection(Identifier) 
    Let userInputs: Collection(Identifier) = Method. Parameters 
    Post: result = Method.Body->select(stmt:AssignmentStmt |  
               RightPart.Contains(userInputs)->select(id: IdentifierExp))  

Figure 10. Sample of the tainted-data analysis function 
Our OCL functions library has a set of functions required during 
the analysis phase. This includes control-flow analysis (CFA), 
data-flow analysis (DFA), Tainted-data analysis, etc. These 
functions are defined in OCL and can be extended with further 
static analysis functions based on future vulnerability analysis 
needs. An OCL to C# transformer performs a transformation for 
these functions as well as new OCL signatures once defined. 
Program slicing and taint analysis techniques (core techniques in 
program and security analysis area) can be easily captured in OCL. 
Figure 10 shows a sample tainted-data analysis function defined in 
OCL. This can be extended to filter sanitized variables (variables 
processed by sanitization functions). 

<Profile platform="ASP.Net"> 
      <InputSources> 
            <Source> Web.HttpRequest.get_QueryString</Source> 
           <Source>Web.HttpRequest.get_Cookies</Source> … 
    <OutputTargets> 
           <Target>System.Web.HttpResponse.Write</Target>           
           <Target> UI.WebControls.TextBox.set_Text</Target> 
          <Target> WebControls.HyperLink.set_NavigateUrl</Target> … 

Figure 11. Sample of the platform profile for ASP.Net  
Our vulnerability analyzer depends on platform profiles to set the 
analysis context. Platform profile is an XML document that 
contains information about a specific platform. It is used to set the 
context of the signature locator according to the target system 
implementation platform. Figure 11 shows an example of a 
platform profile for ASP.Net. This is different from Java or PHP 
profiles. These functions are used by the signature locator as 
values for the abstract concepts (input sources, output targets, etc.). 

5. EVALUATION 
In this section we summarize our experimental evaluation we have 
performed to assess the capabilities of our approach in capturing as 
well as identified security vulnerabilities. We apply the OCL-based 
vulnerability signatures illustrated in Section 3. 

Table 2. Summary of benchmark applications statistics 
Benchmark Downloads KLOC Files Classes Method AST 
Galactic - 16.2 99 101 473 187 
SplendidCRM >400 245 816 6177 6107 765 
KOOBOO >2,000 112 1178 7851 5083 78 
BlogEngine >46,000 25.7 151 258 616 163 
BugTracer >500 10 19 298 223 93 
NopCommerce >10 Rel. 442 3781 5127 9110 484 
Webgoat - 15 105 125 165 150 
 

5.1 Benchmark Applications 
We have selected a set of seven web-based, open source web 
applications developed ASP.NET as a benchmark to evaluate our 
approach. These applications cover a wide business spectrum 
including: Galactic is an ERP system developed internally in our 
group for testing purposes. SplendidCRM is an open source CRM 
that is developed with the same capabilities of the well-known 
open source SugarCRM. It has a commercial and community 
versions.  KOOBOO is an open source Enterprise CMS used in 
developing websites. BlogEngine is an open source ASP.NET 4.0 
blogging engine. BugTracer is an open-source, web-based bug 
tracking and general purpose issue tracking application. 
NopCommerce is an open-source eCommerce solution with more 
than 10 releases. Webgoat is developed by OWSAP for security 
testing purposes. Except for Galactic, we did not have any 

experience with these applications security. Table2 summarizes 
statistics of these applications including: known No. download, 
size, KLOC, files, classes, methods, and AST build time (msec). 
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5.2 Metrics used 
To assess the effectiveness of our approach in discovering security 
vulnerabilities using static program analysis, we use a set of 
metrics to measure the soundness and completeness of the analysis 
technique. These metrics are precision rate, recall rate, and F-
measure. The precision metric is used to assess the soundness of 
the approach. A high precision means that the approach returns 
more valid results (true positive - TP) than invalid results (false 
positive - FP). Thus the maximum precision is achieved when no 
false positives (see Equation 1 below). The recall metric is used to 
assess the completeness. A high recall means that the approach 
returns most of the valid results (true positive - TP) than missed 
valid results (false negative - FN), see Equation 2. The F-measure 
metric combines both precision and recall. It is used to measure the 
overall effectiveness of the approach (weighted harmonic mean). 
This metric depends on the importance of the recall rate and the 
precision rate e.g. if we are interested in high precision (more valid 
vulnerabilities) then we will give precision factor high weight, and 
vice-versa. In our evaluation, we assume that the importance of the 
precision rate and recall rate is equal, see Equation 3. 
Table 3. Experimental results of applying OCL-based vulnerability 
analysis tool on benchmark applications. (D) no. of discovered 
vulnerability, (FP) no. of false positives, and (FN) no. of false negatives. 
Columns represent IDs of the benchmark applications: [1] Galactic, [2] 
Splendid, [3] KOOBOO, [4] BlogEngine, [5] BugTracer, [6] 
NopCommerce, and [7] Webgoat. 

Vulnerability [1] [2] [3] [4] [5] [6] [7] Total 

SQLI 
D 2 12 14 3 9 19 8 67 
FP 0 2 2 0 0 2 0 6 
FN 0 2 2 1 3 1 1 10 

Authn. 
Bypass 

D 2 2 1 0 0 0 2 7 
FP 0 0 0 0 0 0 0 0 
FN 0 0 0 0 1 0 1 2 

Authz. 
Bypass 

D 2 3 11 4 0 0 3 23 
FP 1 0 2 0 0 0 0 3 
FN 0 0 2 0 2 3 0 7 

XSS 
D 3 5 10 2 0 4 5 29 
FP 0 1 1 0 0 0 1 3 
FN 1 2 2 1 2 1 0 9 

CSRF 
D 5 6 13 10 0 12 3 49 
FP 1 0 1 0 0 1 0 3 
FN 0 1 2 0 4 1 0 8 

Info.  
Expo. 

D 3 0 0 10 0 0 3 16 
FP 0 0 0 0 0 0 0 0 
FN 0 0 0 0 2 1 0 3 

URL  
Redirect 

D 1 0 2 8 0 6 0 17 
FP 0 0 0 0 0 0 0 0 
FN 0 0 0 0 3 1 0 4 

Total 
D 18 28 51 37 9 41 24 208 
FP 2 3 6 0 0 3 1 15 
FN 1 5 8 2 17 8 2 43 
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5.3 Experimental Results 
Table 3 summarizes results of our experiments. We used our 
approach to analyse applications in the benchmark suite to 
identify seven of the Top10 web applications vulnerabilities (from 
the OWSAP2010 report). Other vulnerabilities could not specify 
static signatures (use static program analysis). However, 
specifying dynamic signatures for these vulnerabilities is easy. 
Table 3 summarizes, for each application and each vulnerability 
analysed, the total time taken, number of vulnerabilities in the 
code base found, false positives (analyser thought vulnerability 
but there isn’t on manual analysis), and false negatives (manual 
code analysis indicates a vulnerability but our analysis tool did not 
discover it at this code location).   

Chart 1 shows the number of discovered vulnerabilities grouped 
by vulnerability type.  The SQLI represents the most frequent 
vulnerability in all applications, then cross site reference forgery 
(CSRF) vulnerability. After that, cross site scripting (XSS) and 
authorization bypassing vulnerabilities are relatively equal. This is 
mostly conforming to the ranking reported by OWSAP2010. 

Chart 2 shows the number of vulnerabilities identified in every 
application. It is clear that nopCommerce and KOOBOO are the 
most vulnerable applications. However, if we consider the 
application size factor, we see that the ratio of vulnerabilities 
discovered per compared to application size is about equal. 
Moreover, some applications such as BlogEngine use Microsoft 
membership for access control, which eliminates the 
authentication bypassing vulnerabilities. 
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Chart 3. Our achieved precision, recall, and F-measure rates  

Chart 3 shows the precision, recall, and F-measure rates for each 
vulnerability type. This chart shows that we achieve a high 
precision rate for most of the vulnerability types. The precision 
metric is on average 93%. This means that for each identified 100 
vulnerabilities we have 7 false positives. This chart also shows a 
good recall rate, although it is relatively lower than precision rate 
we achieved. The recall metric is on average 82%. This means 
that in every 100 vulnerability instances, we can correctly identify 
82 and we miss 18 instances. This value could be improved if we 
use a hybrid dynamic and static analysis approach. The overall 
effectiveness of the approach (F-measure) is around 87%. A key 
result from this chart is that the recall metric is higher in SQLI, 
XSS, Information disclosure, and URL redirection than in the 
other vulnerabilities. This justifies our initial supposition that 
although we succeeded in developing a static signature for these 
signatures (CSRF, authorization and authentication bypass), it is 
difficult to achieve a high correct detection rate without dynamic 
analysis. 

5.4 Performance Evaluation 
Chart 4 shows the time (in sec) required to analyse the benchmark 
applications to locate the existing vulnerabilities’ instances for the 
given set of vulnerability signatures. It is clear that the SQLI 
vulnerability takes much more time to identify than XSS and 
authorization bypassing. The authentication bypass takes the 
lowest time. The time required to identify a given vulnerability 
depends on the number and complexity of the specified OCL 
signatures.  
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6. DISCUSSION 
In this research we introduce a formal vulnerability definition 
schema; signature specification approach based on OCL; and 
static vulnerability analyser. Vulnerability definition schema 
covers most of the details required in security analysis tasks 
(attack, threat and vulnerability analysis tasks). Vulnerability 
signature is specified on an abstract system representation. This 
allows applying the same signature on different systems 
developed with different languages. Use of OCL allows 
formalizing and easing of signatures validation and testing. 
Moreover, a new vulnerability can be easily located in the target 
system as far as we have a formal signature for it. 

We succeeded in producing a vulnerability analysis tool that can 
work online without a need for new algorithms, modules, or 
patches. The current static analyser achieves a precision rate of 
93% and recall rate of 82%. Although we are usually interested in 
high recall rate which implies less false negatives i.e. less number 
of vulnerabilities that could not be detected by the analyser, in the 
current tool we focused on high precision rate where number of 
reported vulnerabilities that are false positives i.e. not a real 
vulnerability, are less. The reason behind this decision was that 
static analysers are usually used by system developers who are 
interested in getting less false positives to mitigate. Another 



reason is related to the nature of security vulnerabilities. From our 
experiments, we determined that not all vulnerabilities can be 
captured using static analysis, and the same applies using dynamic 
analysis. Vulnerabilities related to source code such as SQLI and 
XSS can be described and located using static analysis. 
Vulnerabilities such as CSRF are difficult to use static signatures. 
From our experience in developing signatures of the TOP10 
vulnerabilities and our experiments we determined that: (i) it is 
better to use dynamic analysis tools with certain vulnerabilities, 
such as CSRF, because these vulnerabilities can be handled by the 
web server. This means that we have a high false positive if we 
use static analysis tool to locate these vulnerabilities; (ii) some 
vulnerabilities can be easily identified and located by static 
analysis such as SQL Injection and XSS vulnerabilities; (iii) some 
vulnerabilities such as DOM-based SQL and XSS vulnerabilities 
need a collaborating static and dynamic analysis to locate them. 
We believe that combining static and dynamic analysis is needed 
to increase the precision and recall rates. 

A key problem with static analysis tools is the use of aspect-
oriented security techniques, where security is weaved within the 
system at runtime. In this case we will have a high false positive 
rate because we report vulnerabilities that are already mitigated by 
the aspect-based security. The same will occur if external security 
controls are used, such as in database engines to filter SQL 
queries, using DB proxies to filter queries, using web server’s 
deployed security controls such as encryptions, authentication, 
and authorization, or even provided by the platform through 
configurations such as ASP.NET membership or other anti-CSRF/ 
anti-XSS security controls. These can be discovered using 
dynamic vulnerability analysis extensions. 

The lack of system engineers’ annotations of the system security 
functions may lead to high false positive. However, this problem 
can be solved by employing dynamic vulnerability analysis. 
Dynamic vulnerability analysis approaches cannot help in locating 
specific code snippets where vulnerabilities exist. Moreover, they 
cannot help testing code coverage. Thus, a hybrid approach of 
static and dynamic analysis is required. We are extending our 
analyser to support both. We use a workflow engine to define the 
analysis sequence, using different approaches, to locate a given 
vulnerability. This increases the recall rate of the overall 
approach. Moreover, we plan to include confidence level with 
reported vulnerabilities. This helps developers to prioritize based 
on criticality and importance. 

Our OCL-based signatures and vulnerability analysis tool can be 
used in different program analysis problems such as aspect 
mining, refactoring – locating “bad-smells”, or reengineering 
“impact analysis”. In these cases system engineers have to specify 
signatures they want to locate in their programs. 

7. RELATED WORK 
Existing efforts in vulnerability analysis can be categorized into 
static analysis, dynamic analysis, and hybrid analysis based 
approaches. Most of these efforts designed for specific 
vulnerability types mainly SQLI, XSS. Jimenez et al. [19] review 
various software vulnerability prevention and detection 
techniques. Broadly, static program analysis techniques work on 
the source code level. This includes pattern matching that searches 
for a given string inside source code, tokens extracted from source 
code, or system byte code e.g. calls to specific functions. Data 
flow and taint analysis identify data coming from untrusted 
sources to mark as tainted i.e. should not be used before being 
sanitized or filtered. Model checking to detect vulnerabilities 

depends on extracting a system model from the system source 
code and developing a set of constraints on the model that should 
not occur. An issue is that model checking approaches often suffer 
from a state explosion problem and generate only a 
counterexample. Dynamic analysis techniques analyse a system as 
a black box, avoiding being overwhelmed with system details. 
Fuzzy testing provides random data as input to the application in 
order to determine if the application can handle it correctly or not. 
Dynamic techniques are however limited in code coverage.   

Static analysis approaches: NIST [20] has been conducting a 
security analysis tools assessment project (SAMATE). A part of 
this project is to specify a set of weaknesses that any source code 
security analysis approach should support including SQL 
injection, XSS, OS command injection, etc. They have also 
developed a set of test cases that help in assessing the capabilities 
of a security analysis tool in discovering such vulnerabilities. 
Halfond et al. [9] introduce a new SQL injection vulnerability 
identification technique base on positive tainting. They identify 
“trusted” strings in an application and only these trusted strings to 
be used to create certain parts of an SQL query, such as keywords 
or operators. Lei et al. [21] trace the memory size of  buffer-
related variables and instrument the code with corresponding 
constraint assertions before the potential vulnerable points by 
constraint based analysis. They used model checking to test for 
the reachability of the injected constraints. Dasgupta et al. [5] 
introduce a framework for analysing database application binaries 
to automatically identify security, correctness and performance 
problems especially SQLI vulnerabilities. They adopt data and 
control flow analysis techniques as well as identifying SQL 
statements, parameters, tables and conditions and finally analyse 
such details to identify SQLI vulnerabilities. Martin et al [6, 7] 
introduce a program query language PQL that can be used to 
capture definition of program queries that are capable to identify 
security errors or vulnerabilities. PQL query is a pattern to be 
matched on execution traces. They focus on Java-based 
applications and define signatures in terms of code snippets. This 
limits their capabilities in locating vulnerabilities’ instances that 
matches semantically but not syntactically. Wassermann et al. 
[11] introduce an approach to finding XSS vulnerabilities based 
on formalizing security policies based on W3C recommendation. 
They conduct a string-taint analysis using context free grammars 
to represent sets of possible string values. They then enforce a 
security policy that the generated web pages include no untrusted 
scripts. Jovanovic et al. [4] introduce a static analysis tool for 
detecting web application vulnerabilities. They adopt flow-
sensitive, inter-procedural and context-sensitive data flow 
analysis. They target identifying XSS vulnerabilities only. Ganesh 
et al [8, 14] introduce a string constraint solver to check if a given 
string can have a substring with a given set of constraints. They 
use this to conduct white box and dynamic testing to verify if a 
given system is vulnerable to SQLI attacks.  

Dynamic analysis approaches: Bau et al [1] perform an analysis 
of black box web vulnerability scanners. They conducted an 
evaluation of a set of eight leading commercial tools to assess the 
supported classes of vulnerabilities and their effectiveness against 
these target vulnerabilities. A key conclusion of their analysis is 
that all these tools have low detection rates of advanced and 
second-order XSS and SQLI. The average percentage of 
discovered vulnerabilities equals 53%. The analysis shows that 
these tools achieve 87% in session management vulnerabilities 
and 45% in the cross site scripting vulnerabilities. Kals et al [2] 
introduce a vulnerability scanner that uses a black-box approach 
to scan web sites for the presence of exploitable SQLI and XSS 



vulnerabilities. They do not depend on a vulnerability signature 
database, but they require attacks to be implemented as classes 
that satisfy certain interfaces. Weinberger et al [10, 12] introduce 
an analysis of a set of 14 frameworks that provide XSS 
sanitization techniques. They identify limitations including lack of 
context-sensitive sanitization that result in developing custom 
sanitizer that need to be validated for their correctness, and 
supporting client-side code “DOM-based XSS”. Felmetsger et al 
[3] use an approach for automated logic vulnerabilities detection 
in web applications. They depend on inferring system 
specifications of a web application’s logic by analysing system 
execution traces. They then use model checking to identify 
specification violations. A key limitation of this approach is the 
extraction of properties specifications to be validated. They 
assume that collected traces represent correct system behaviour.  
Hybrid analysis approaches: Monga et al [15] introduce a 
hybrid analysis framework that blends static and dynamic 
approaches to detect vulnerabilities in web applications. The 
application code is translated into an intermediate form. The 
resulting static model is filtered to focus only on dangerous 
statements. This reduces model size where dynamic analysis will 
be conducted, mitigating the performance overhead of the 
dynamic taint analysis approach. This approach, as most taint 
analysis approaches (either static or dynamic), targets only 
injection-related vulnerabilities. Balzarotti et al [13] introduce 
composition of static and dynamic analysis approaches “Saner” to 
help validating sanitization functions in web applications. The 
static analysis is used to identify sensitive sources/sinks methods. 
Dynamic analysis used to analyse the identified suspected paths.   

Compared to existing efforts, our approach achieves scalable, 
extensible and powerful signature-based vulnerability analysis not 
coupled to specific vulnerability, analysis technique, or 
language/platform. Our approach is based on formalizing 
vulnerability definition including the vulnerability signature part. 

8. SUMMARY 
We introduce a new automated formal vulnerability analysis 
approach. Our approach is based on formalized vulnerability 
definition schema. A part of this schema is the formal 
vulnerability signature. This signature specifies a set of invariants 
that confirm the existence of a given vulnerability in the target 
program. We adopt OCL in specifying vulnerability signatures. 
We developed a static vulnerability analysis tool that uses our 
formally specified vulnerabilities signatures to locate possible 
matches in the target system. A new vulnerability can be easily 
identified provided that it has a formal signature. We validated 
our approach on a set of seven open source applications from 
different domains, different sizes and different development 
models. Our experimental results show that our OCL-based static 
analysis tool achieves (93%) precision rate and (82%) recall rate. 
This means that we achieve a good FP rate (7%) and a fair FN rate 
(18%). Moreover, these rates can be improved using a dynamic 
analysis extension, based on our formal signatures approach, 
which we are currently working on. 
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