
Generating Essential User Interface Prototypes to Validate Requirements

Massila Kamalrudin
Department of Electrical and Computer Engineering

University of Auckland
Private bag 92019 Auckland 1142, New Zealand

mkam032@aucklanduni.ac.nz

John Grundy
Centre for Computing and Engineering Software Systems

Swinburne University of Technology
PO Box 218, Hawthorn, Victoria 3122, Australia

jgrundy@swin.edu.au

Abstract—Requirements need to be validated at an early stage
of analysis to address inconsistency and incompleteness issues.
Capturing requirements usually involves natural language
analysis, which is often imprecise and error prone, or
translation into formal models, which are difficult for non-
technical stakeholders to understand and use. Users often best
understand proposed software systems from the likely user
interface they will present. To this end we describe novel
automated tool support for capturing requirements as
Essential Use Cases and translating these into “Essential User
Interface” low-fidelity rapid prototypes. We describe our
automated tool supporting requirements capture, lo-fi user
interface prototype generation and consistency management,
and outline a user evaluation of our tool.

Keywords-requirements validation; rapid prototyping

I. INTRODUCTION
Requirements capture from clients is often difficult, time

consuming and error prone [1, 2]. Late validation, in
particular, causes requirements quality to suffer [3]. This has
placed a focus on techniques for early client feedback such
as use of formal and semi-formal models and heuristic
algorithms [4],[5] plus techniques for translating natural
language requirements into such models. While beneficial,
these approaches are often difficult to use and require much
effort [6] [7]. Rapid prototyping can be one of the best ways
for early validation of requirements from both a requirements
engineer (RE) and a client’s view [8]. Using prototypes,
clients gain a much clearer understanding of a proposed
system via an intuitive representation, or mock-up, of the
target system. This helps to very early on identify missing or
incorrect requirements [9],[10].

For early stage requirements analysis, low-fidelity or
abstract prototypes are useful [11]. However, developing
such prototypes requires effort [10] and is poorly supported
by toolsets [11]. In previous work we have developed a
technique and toolset for checking consistency of
requirements based on Essential Use Case (EUC) diagrams
[12-14].These EUCs are semi-formal models which we
automatically extract from natural language requirements
and validate against known EUC patterns. Here, we describe
a significant extension of this work providing end to end
rapid prototyping support. EUC models are mapped to an
abstract Essential User Interface (EUI) prototype model.
From there they are mapped to concrete User Interface (UI)
views in the form of form-based UIs. This allows the RE and
client to walk-through the formalized requirements together
and to validate and confirm the consistency of these

requirements. We have implemented a set of EUI patterns as
an extension to our existing Marama AI EUC extraction and
modeling tool and have conducted a formal user evaluation
of both the EUI extension and its resulting end to end rapid
prototyping and requirements validation support.

II. BACKGROUND AND OUR APPROACH
EUI prototyping is a low fidelity prototyping approach

[15]. It provides the general idea behind the UI but not its
exact details. It focuses on the requirements and not the
design, representing UI requirements without the need for
prototyping tools or widgets to draw the UI [16]. EUI
prototyping extends from and works in tandem with the
semi-formal representation of EUCs, both focusing on users
and their usage of the system, rather than system features [2].
It thus helps to avoid clients and REs being misled or
confused by chaotic, rapidly evolving and distracting details.

Figure 1 Example of EUI prototype from an EUC model (Ambler [2][16]))
Figure 1 shows an example of an EUI prototype being

developed from an EUC. The post-it notes represent
abstractions of user interfaces. Here the requirements
engineer is capturing the user intention/system responsibility
dialogue represented in the EUC as possible UI functionality,
at a high level of abstraction. Although EUI prototyping has
advantages, it has not been rigorously applied in practice as
no tool support is available. Being a whiteboard/paper
technique, it does not integrate well with other tools [15].
Previous work has shown that the application of low fidelity
techniques in practice proves challenging [10].

John Grundy

John Grundy

John Grundy
In Proceedings of the 2011 IEEE/ACM International Conference on Automated Software Engineering, (c) IEEE 2011

jgrundy
(c) IEEE 2007. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

Figure 2 End-to-end EUC and EUI prototyping approach

Figure 3. An example of performing mapping of EUC model to EUI prototype using the UI Pattern library with trace-forward/ trace-back

We have developed an approach and supporting tool to
enable REs to more effectively capture or confirm
requirements with clients, as shown in Figure 2. REs
elicit/capture requirements from users (1) as textual natural
language. These are translated to a list of abstract
interactions (essential requirements) using an essential
interaction library (2). These abstract interactions are
transformed to an EUC model (3) capturing the sequence and
interactions of a requirement. REs can validate requirements
consistency between the various models and also against
known, valid patterns of both Essential interactions and
EUCs (4, 5 and 6) [13]. Our new work, in the grey box,
allows the RE to automatically and traceably transform EUC
models to EUI prototypes (7). Combined with our earlier
toolset, this means traceability is provided throughout the
process allowing any of the EUI components to be traced
forward/back from/to the EUC model, abstract interaction or
textual natural language requirement. The EUI prototype can
also be translated to a more concrete HTML web form (8).
Simple interaction with the generated HTML form is
supported to illustrate how target system information input
and output could work. This EUI model and concrete UI is
reviewed by the RE with end users to validate and confirm
consistency of the original textual requirements (9).

Figure 3 shows the mapping and tracing process between
the EUC, EUI prototype and Concrete UI view, using
Constantine and Lockwood’s “getting cash” scenario. The
numbers indicate mapped elements between the models. The
EUC model is mapped to/from the EUI prototype using the
UI mapping engine. This maps each of the abstract
interaction components which have a relevant EUI pattern in
the EUI pattern library. For example, the abstract interaction
“identify self” will be searched for in the EUI pattern library
and its related EUI pattern found. This results in abstract UI
elements “ID” and “Other personal detail” being added to the
EUI model. More than one abstract interaction may share
the same UI pattern. For example, the abstract interactions
“dispense cash” and “take cash” share the same UI pattern
“Display cash”. Here, only one UI pattern “Display Cash” is
included in the model. The EUI patterns were developed by
us using an adaptation of the brainstorming methodology of
Constantine and Lockwood [17]. Our adaptation generalised
their approach using simpler and more generic EUI patterns.
Our generalized EUI patterns comprise four types of EUI
pattern category: List, Display, Input and Action. The main
aim of these EUI Patterns is to assist REs to rapidly model a
user interface based on the requirements captured and
modelled earlier in the EUC model.

III. TOOL SUPPORT
We have extended our prototype tool, MaramaAI [12,

18], to additionally and automatically map EUC models to
EUI prototypes and concrete UIs. The EUI prototype is
modelled in a Marama editor, MaramaEUI. The concrete UI
is presented in the form of an HTML page, both realised in
the Eclipse IDE. Several screen dumps of the tool in use are
shown in Figure 4. From a set of natural language
requirements (1) semi-formal EUC models are extracted (2)
and then mapped to a low-fidelity Essential User interface
model in a MaramaEUI editor (3). Each EUI prototype
component is associated with an EUC model abstract
interaction component and, via that, the original natural
language textual requirement it was derived from. Any EUI
component can be selected and its associated EUC
component and related textual natural requirement can be
shown using a “trace back” menu item which highlights the

relevant components. For example in Figure 4 (section A),
the “List of Option” EUI Component (3) is traced back to a
“system responsibility: offer choice” EUC component (2)
which in turn is traced back to the textual requirement (1),
both of which have been highlighted. One EUI component
might associate with more than one abstract interaction in the
EUC model. Figure 4 (section B) shows that the EUI
component “ Display cash” (4), traces back to two abstract
interaction components of the EUC model “dispense cash”
and “take cash” (5) and the associated textual requirement
(6) “dispenses the requested amount” and “receives cash”.

 Figure 5 shows the view for both the Marama EUI (A)
and concrete HTML form-based UI view (B). Both views
allow the RE and client to walk-through the requirement and
its UI in order to validate the consistency of the requirement.
The Marama EUI component is editable allowing the RE and
client to add input detail that they think is required or delete
any UI pattern that they think is not necessary.

Figure 4.Trace forward and Trace-back from EUC model to EUI prototype.

Figure 5. Marama EUI and concrete UI view in a form of form- based UI
IV. RELATED WORK

Ogata and Matsuura proposed a method for automatic
generation of user interface prototypes for web-based
business applications based on requirement specifications

defined in UML [20]. Their work guarantees consistency of
the data and flow between the RA model and prototype, and
decreases the time taken to conduct requirements analysis. In
contrast, our work supports the consistency of requirements

A

B

2

1
6

5
4

3

A

B

using end-to-end prototyping from natural language
requirement to semi formal models in the form of Essential
Use Cases (EUCs), abstract prototypes (EUI prototypes) and
form-based UIs for various domains, not just business
applications, complementing their approach. Work on non
tool-based techniques includes Vijayan and Raju, who
propose a paper prototyping approach for eliciting
requirements [21]. Examining the captured paper prototype
to identify omissions, ambiguities and other requirement
quality problems validates requirements gathered. Our work
is complementary to theirs. Combining the two approaches
would provide an interesting approach to elicitation and
validation by allowing comparison of the two different types
of lo-fidelity prototype for consistency. Molina et al. have
developed a model and graphical notation for specification of
abstract user interfaces based on a conceptual pattern [22].
Their Just UI approach identifies patterns for UIs and
abstracts them to work with problem domains specifically
for presentation and navigation issues. It extends OO
methods to capture UI requirements and presents a set of
patterns that can be used as building blocks to create UI
specifications for information systems manually. We do not
focus on UI issues specifically, rather using UI prototypes as
a means of understanding requirements.

V. SUMMARY
We have described an approach supporting the

confirmation and verification of requirements from both and
RE and client perspective using end-to-end rapid
prototyping. We allow requirements captured earlier by an
RE to be verified by the client by visualizing low-fidelity
prototypes in a form of Essential User Interface prototypes
and a more concrete form-based UI in order to validate
requirements. We have developed automated tool support for
our approach and evaluated our prototype tool using an end
user study. The results of this evaluation are promising. As
future work, we plan to enhance our EUI library with more
EUI patterns to support wider domains of application. We
plan to develop domain specific GUI templates for the form
based prototype. It would be useful to integrate our EUI
library with UML models. We are planning an industrial
example evaluation with real software clients.

ACKNOWLEDGEMENTS
We thank John Hosking and Jun Huh for their assistance.

This research is funded by the: PReSS Account of University
of Auckland; FRST Software Process and Product
Improvement Project; Ministry Of Higher Education
Malaysia & Universiti Teknikal Malaysia Melaka.

REFERENCES
[1] M.Kamalrudin, J.G., John Hosking. Tool Support for Essential Use

Cases to Better Capture Software Requirements, Proc. 25th
IEEE/ACM International Conference on Automated Software
Engineering (ASE'10), ACM. 2010. Antwerp, Belgium.

[2] S.W. Ambler, The Object Primer: Agile Model-Driven Development
with UML 2.0 (3rd ed.). 2004, New York Cambridge University Press.

[3] K.Schneider, Generating Fast Feedback in Requirements Elicitation,
in Requirements Engineering: Foundation for Software Quality. 2007.
p. 160-174.

[4] V.Gervasi, and D. Zowghi, Reasoning about inconsistencies in
natural language requirements. ACM Trans. Softw. Eng. Methodol.,
2005. 14(3): p. 277-330.

[5] A.Kozlenkov and A. Zisman, Are their design specifications
consistent with our requirements?, Proc. IEEE Joint International
Conference on Requirements Engineering,(ICRE02) IEEE Press,
2002. pp. 145-154.

[6] G.Engels, R.heckel, and M.Kuster, The Consistency Workbench: A
tool for consistency management in UML-based development, in UML
2003—the Unified Modeling Language, P. Stevens, Whittle, J., Booch,
G, Editor. 2003, Springer, Berlin Heidelberg New York. p. 356–359.

[7] A.Katasonov and M. Sakkinen, Requirements quality control: a
unifying framework. Requirements Engineering, 2006. 11(1): p. 42-57.

[8] Z.Jia, C.K. Chang, and C. Jen-Yao. Mockup-driven fast-prototyping
methodology for Web requirements engineering. in Computer
Software and Applications Conference, 2003. COMPSAC 2003.
Proceedings. 27th Annual International. 2003.

[9] Xiping, S. S-RaP: A Concurrent Prototyping Process for Refining
Workflow-Oriented Requirements. 2005.

[10] S.Robertson, J.Robertson, Mastering the Requirements Process (2nd
Edition). 2006: Addison-Wesley Professional.

[11] N.Sukaviriya et al., User-Centered Design and Business Process
Modeling: Cross Road in Rapid Prototyping Tools, in Human-
Computer Interaction – INTERACT 2007, C. Baranauskas, et al.,
Editors. 2007, Springer Berlin / Heidelberg. p. 165-178.

[12] M.Kamalrudin, J.Grundy, J.Hosking, "Managing consistency between
textual requirements, abstract interactions and Essential Use Cases",
Proc. 34th Annual IEEE International Computer Software and
Applications (COMPSAC 2010). IEEE. Seoul, Korea.

[13] M.Kamalrudin, J.Hosking, J.Grundy. "Improving Requirements
Quality using Essential Use Case Interaction Patterns". in Proc.33rd
International Conference of Software Engineering (ICSE'11). 2011.
ACM. Honolulu, Hawaii, USA.

[14] M.Kamalrudin, J. Hosking, and J. Grundy. MaramaAI: Automated
and Visual Approach for Inconsistency Checking of Requirements. in
Proc. 18th IEEE International Requirements Engineering Conference
(RE2010), 2010. IEEE. Sydney,Australia.

[15] S.W.Ambler. Essential (Low Fidelity) User Interface prototypes.
2003-2009 Available from:
www.agilemodeling.com/artifacts/essentialUI.htm.

[16] L.L.Constantine. and A.D.L. Lockwood, "Usage-centered software
engineering: an agile approach to integrating users, user interfaces,
and usability into software engineering practice", in Proc. 25th
International Conference on Software Engineering (ICSE'03). 2003,
IEEE Computer Society, Portland, Oregon.

[17] L.L.Constantine. and A.D.L. Lockwood, "Software for use: a
practical guide to the models and methods of usage-centered design".
1999, ACM Press/Addison-Wesley Publishing Co. 579.

[18] M.Kamalrudin, J.Hosking, J.Grundy. MaramaAI: Tool support for
capturing requirement and checking the inconsistency, Proc. 21st
Australian Software Engineering Conference (ASWEC'10), 2010.
Auckland, New Zealand: IEEE Computer society.

[19] J.Grundy, J.Hosking,J Huh,. and N.Li, Marama: an Eclipse meta-
toolset for generating multi-view environments. Proc. IEEE/ACM
International Conference on Software Engineering 2008(ICSE'08).
May 2008, Liepzig, Germany: ACM Press.

[20] S.Ogata and S. Matsuura, Evaluation of a use-case-driven
requirements analysis tool employing web UI prototype generation.
WSEAS Trans. Info. Sci. and App., 2010. 7(2): p. 273-282.

[21] J.Vijayan and G. Raju, Requirements Elicitation Using Paper
Prototype, in Advances in Software Engineering, T.-h. Kim, et al.,
Editors. 2010, Springer Berlin Heidelberg. p. 30-37.

[22] Pedro J.Molina, S.M., O.Pastor, "JUST-UI: A User Interface
Specification Model, in Computer-Aided Design of User Interfaces
III", Proc. 4th International Conference on Computer-Aided Design of
User Interfaces (CADUI’2002).2002. Valenciennes, France.

