
Improving Automated Documentation to Code Traceability by Combining Retrieval
Techniques

Xiaofan Chen

Department of Computer Science
University of Auckland
Auckland, New Zealand

xche044@aucklanduni.ac.nz

John Grundy
Centre for Computing & Engineering Software Systems

Swinburne University of Technology
Melbourne, Australia
jgrundy@swin.edu.au

Abstract— Documentation written in natural language and
source code are two of the major artifacts of a software system.
Tracking a variety of traceability links between software
documentation and source code assists software developers in
comprehension, efficient development, and effective
management of a system. Automated traceability systems to
date have been faced with a major open research challenge:
how to extract these links with both high precision and high
recall. In this paper we introduce an approach that combines
three supporting techniques, Regular Expression, Key Phrases,
and Clustering, with a Vector Space Model (VSM) to improve
the performance of automated traceability between documents
and source code. This combination approach takes advantage
of strengths of the three techniques to ameliorate limitations of
VSM. Four case studies have been used to evaluate our
combined technique approach. Experimental results indicate
that our approach improves the performance of VSM,
increases the precision of retrieved links, and recovers more
true links than VSM alone.

Keywords-component; Traceability, Vector Space Model,
Regular Expression, Key Phrases, Clustering

I. INTRODUCTION
Source code alone is not sufficient to capture all

information about a software system. Software requirements,
architectural decisions, detailed design, tutorials and user
documentation, and various types of technical system
documentation (e.g. deployment configuration) are important
artifacts produced while engineering software systems.
Tracing and maintaining interrelationships between these
various forms of software documentation and source code
enables software engineers to better understand systems,
undertake improved maintenance of systems, and ultimately
to produce higher quality systems [2, 3, 25]. However, this
relies on retrieving high quality candidate links between
elements in one artifact (e.g. code constructs) and elements
in another (e.g. requirements and detailed design
documentation). A set of high quality candidate links
represents a link set between these artifacts that contains as
many correct links as possible and as few fault links as
possible. Moreover, a high quality candidate link set should
connect elements of different artifacts at a fine-grained level
of detail e.g. part of a design document description and its
related source code elements. However, it is very challenging
to automatically extract high quality candidate links between
the wide variety of artifacts created during the software
development life cycle [2, 13, 22, 29].

Many traceability recovery techniques have been
invented to retrieve traceability links between artifacts [2, 3,
5-7, 9, 10, 14, 18, 21, 23, 26, 29, 32]. Some need human
intervention [9, 10, 18]; others can automatically generate
traceability links [2, 3, 5-7, 14, 21, 23, 26, 29, 32].
Unfortunately, no recovery approaches have the capability of
recovering all possible links between artifacts automatically
and accurately. This is due both to the inherent imprecision
when expressing things in natural language and inherent
information loss or addition when moving between software
artifacts at differing levels of abstraction. Some potentially
useful and important links are missed by existing techniques.
Similarly, some incorrect or unuseful links are extracted and
may confuse developers.

Most existing automated traceability techniques adopt a
single approach to trace link retrieval. However, different
link retrieval approaches have different strengths and
weaknesses. To try and improve the performance of
automated traceability link retrieval, we have developed an
approach that combines a Vector Space Model (VSM) IR
approach, with three supporting techniques: Regular
Expression (RE), Key Phrases (KP), and Clustering. These
particular techniques have quite different strengths and
weaknesses and recover different sets of links due to their
vastly different retrieval approaches. Our approach attempts
to take advantage of strengths of these techniques to
automatically recover links between artefacts at both high
precision and high recall. Our particular focus is on
retrieving links between class entities and sections in
documents written in natural language, e.g. tutorials,
handbooks, developer or user’s guides, API documentation,
architecture documentation, design rationale, emails and so
on. The objective of this research is to demonstrate whether
our new composite traceability link recovery approach can
improve the automatic recovery of traceability links with
high precision and recall. We have conducted a detailed
experiment with four case studies to evaluate the strengths
and weaknesses of our approach. Analysis of experimental
results demonstrates that our approach improves the
performance of VSM, increases the precision of retrieved
links, and recovers more true links than VSM alone.

This paper is organized as follows. Related work is
discussed in Section 2. Section 3 describes our traceability
link recovery approach and each technique we have applied.
A description of the implementation of our tool is described
in Section 4, followed by the experimental results in Section

John Grundy
In Proceedings of the 2011 IEEE/ACM International Conference on Automated Software Engineering, (c) IEEE 2011

jgrundy
(c) IEEE 2011. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

jgrundy

5. Section 6 analyzes these results. Finally, we draw
conclusions in Section 7.

II. RELATED WORK
Due to the importance of traceability link recovery,

extensive effort in the software engineering research
community has been put into improving the precision and
recall of recovered traceability links between documents and
code through various traceability recovery techniques. These
approaches can be classified into two main groups: semi-
automatic recovery and automatic recovery.

A. Semi-automatic Techniques
Semi-automatic recovery techniques are those that need

human intervention during the traceability link extraction
process, such as rule-based, scenario-driven, and value-based
approaches. Rule-based approaches [17, 18] use traceability
rules to define traceability relations between tracing
documents. Since these approaches are dependent on
grammatical structures present in the natural language
sentences, traceability rules have to be expanded to allow
generation of relations that consider all possible grammatical
structures. Moreover, building rules is time-consuming.

The scenario-driven technique [9] combines the
hypothesized traces and test scenarios that are executed on a
running software system to generate traceability relations. It
requires test and usage scenarios to be linked to classes in the
source code, and it does not support tracing links to program
variables and other types – other than classes. In addition, the
correctness and completeness of the hypothesized traces
largely affects the quality of recovered links.

The value-based approach [10] does not treat every
artifact as equally important, so not all trace relationships are
equally important in the context of traceability. The value-
based approach produces high quality trace relationships
among high-value artifacts on a finer-grained level of detail,
but the quality of relationships among low-value artifacts is
undesirable because they are based on a coarser-grained level
of detail. Although this approach can save cost due to its
focus on artifacts with high value, the determination of the
value of every artifact is complex and time-consuming.

B. Automatic Techniques
Automatic recovery techniques include lightweight and

heavyweight techniques. Lightweight techniques do not
require pre-computation of the input and can be directly
executed at run-time. Bacchelli et al [5, 6] build regular
expressions to match class names to words in emails. Their
experimental results show that the Regular Expression (RE)
approach achieves good accuracy. The drawback is that this
approach fails to retrieve links between classes and emails
where class names don't explicitly appear but are mentioned
implicitly, such as an email that describes tasks that a class
should fulfill but does not directly mention its name.

Heavyweight techniques, by contrast, require pre-
processing of their input. These techniques include
Information Retrieval (IR) and Text Mining (TM). Many
traceability recovery techniques to date make use of a variety
of Information Retrieval (IR) approaches [2, 3, 7, 14, 21, 23,

26, 29] to automatically recover traceability links. However,
the accuracy rate of link recovery by using IR heavily relies
on a cut point; only links that have a similarity value greater
than or equal to the cut point are shown to users [7, 21]. The
same cut point may or may not be suited to different
software systems. Using a low cut point retrieves a larger
number of accurate (true) links than using a high cut point,
but more incorrect (fault) links are captured at the same time.

Antoniol et al. [2] apply two different IR models,
Probabilistic Model (PM) and Vector Space Model (VSM),
to extract links between code and documentation. The results
show that IR provides a practical solution for automated
traceability recovery. The two IR models have similar
performances when terms in artifacts perform a preliminary
morphological stemming. A traceability recovery tool based
on PM was developed to explore how the retrieval
performance can be improved by learning from user
feedback [3]. The results show that significant improvements
are achieved both with and without preliminary stemming [3,
21]. Cleland-Huang et al. [7] propose an approach to
improve the performance of dynamic requirements
traceability by incorporating three different strategies into
PM, namely hierarchical modeling, logical clustering of
artifacts, and semi-automated pruning of the probabilistic
network. The results indicate that the three strategies
effectively improve trace retrieval performance.

Settimi et al. [26] investigate the effectiveness of VSM
and VSM with a general thesaurus for generating links
between requirements, code, and UML design models. The
comparison results show that precision and recall are not
improved by the use of the general thesaurus. Hayes et al.
[14, 15] use VSM but with a context-specific thesaurus that
is established based on technical terms in requirement
documents to recover links between requirements. The
results show that improvements in recall and sometimes in
precision are achieved. Marcus and Maletic [23] introduce
Latent Semantic Indexing (LSI), an extension of the VSM, to
recover links between documentation and source code. The
results show that LSI achieves very good performance
without the need for stemming as required for PM and VSM.
Wang et al. [29] present four enhanced strategies to improve
LSI, namely, source code clustering, identifier classifying,
similarity thesaurus, and hierarchical structure enhancement.
The comparison results indicate that this approach has higher
precision than LSI and PM, but has lower recall. Although
various strategies have been applied to enhance the
performance of IR techniques, no approaches to date can
largely decrease fault links at low cut points and significantly
increase true links at high cut points [2, 7, 23, 26, 29].

The TM technique organizes related texts in documents
to extract domain-specific information from texts [28, 31].
Witte et al [32] employ Information Extraction, a subfield of
TM, to capture traceability links through extracting entities
(e.g. methods, classes, packages, etc.) from software
documents. Its limitation is that it can only extract from
documents salient facts about pre-specified types of events,
entities, or relationships, though it generates relationships
with high accuracy [12, 31]. Types of entities have to be pre-

defined, and grammar rules have to be built for detecting
complex named entities.

To varying degrees, none of the traceability recovery
techniques developed so far is able to produce sufficiently
consistent and high enough quality results to meet
developer’s needs. Semi-automatic techniques are unable to
generate traceability links automatically without human
intervention. It is difficult to employ these techniques to
retrieve traceability links between artifacts in a system for
people who are unfamiliar with the system. Although
automatic techniques improve this issue, their limitations
impede them from capturing all potential true links and few
fault links.

III. OUR APPROACH
In order to recover traceability links at a high-level of

precision and recall, we have explored an approach
incorporating three supporting techniques, Regular
Expression (RE), Key Phrases (KP), and Clustering, into a
Vector Space Model (VSM) to recover links between
sections in documents and class entities. Our approach is
intended to overcome the limitations of VSM by taking
advantage of strengths of RE, KP, and Clustering.

We use an IR model, VSM, as the fundamental basis of
our approach as VSM can retrieve all potential links with
appropriate queries. However, VSM has three main
limitations [1, 2, 7, 15, 21, 23, 26, 27, 29, 30]. First, very few
true links are retrieved at high cut points. Second, many fault
links are captured at low cut points. The third limitation is
that VSM misses links in the following two situations: class
names that do not follow a common naming convention
strategy; and documents that use different words to describe
related classes. Combining the first supporting technique,
Regular Expression (RE), with VSM allows extraction of
more true links at high cut points. As long as class names are
retrieved correctly and refined regular expressions are built,
RE can retrieve all possible links that are related to these
class names and return few fault links as well.

We added the second technique, Key Phrases (KP), to
our approach to recover links missed by VSM. We extend
the VSM queries to include key phrases of comments in the
source code. If code is well commented, KP can extract key
phrases from code comments closely related to classes.
Clustering, the third technique incorporated, aims to
eliminate fault links at low cut points by refining existing
retrieved traceability links. As the aim of our approach is to
trace useful links between class entities and sections in
documents, we take advantage of the inherent hierarchical
structure of documents to cluster links retrieved by VSM, RE,
and KP. Therefore, our combination approach increases the
precision at any cut point and retrieves links with a high
recall. The following section describes the four techniques
used in detail.

A. The Basic Retrieval Approach
Information Retrieval (IR) is widely used in searching

fields such as web search engines and library document
search. We decided to employ an IR technique as the
foundation of our traceability links retrieval approach as its

query-based approach has potential to recover all types of
link, if appropriate queries are constructed. The IR engine we
employed is Apache Lucene, which is a full-featured text
search engine written in Java [4]. We chose this as it is
broadly used for IR experimentation and practice. Lucene
uses VSM to index text and determine how relevant a section
is to a query [4, 20]. As many papers have extensively
discussed VSM [1-3, 7, 14, 21, 23, 29], we only briefly
describe how queries are built and similarity scores of links
are calculated.

A class name (or identifier) composed of two or more
words is split into separate words. A query string for VSM is
established by using the OR operator to combine the name
and the separated words. For example, DragSource is split
into the words drag and source, then the query string is
“DragSource OR drag source OR drag OR source”. The
query is case-insensitive.

The output of the indexing process is a term-by-document
matrix, where term represents all words that occur in
documents, and document indicates all documents in the
VSM corpus. Each entry ai,j of this matrix denotes a weight
for the frequency of the ith term in the jth document. Each
matrix column is considered as a vector that describes a
document. Queries are represented in a similar way by a
matrix, where each vector indicates a query. The similarity
between a document and a query is measured by the cosine
of the angle between the corresponding vectors. In other
words, a matching document may have one or more query
terms and is ranked based on the frequency of term
occurrence and number of query terms present in the
document [2, 20, 21]. In the end, traceability links between
documents and classes are retrieved. Each link has a
similarity score to display how much the related document
and class is matched.

There are three main drawbacks with using VSM. The
method calculating link similarity values results in some true
links with a very low similarity score and the majority of
retrieved links have low similarity values. Therefore, the
lower the cut point that is used, the more possible links are
retrieved but also the more fault links are captured as well.
This leads to the first limitation that very few true links are
captured at high cut points. The second limitation is that
many fault links are extracted at low cut points. The third
limitation is that links are missed in the following two
situations: class names not following a naming convention
strategy and documents using different words to describe
related classes. We have found that these are both common
occurrences in many software documentation artifacts.

B. Regular Expression (RE)
In order for us to augment the number of retrieved links

at high cut points, a RE technique is used. A regular
expression, which is a pattern of characters that describes a
set of strings, is constructed and used to find all of the
occurrences of this pattern in an input sequence. Here, we
use REs to find class names in documents. It is case
sensitive.

Class names can be placed into two groups. One group is
class names containing only one word, such as Control,

Main, Graphics etc. Another is class names formed by
compound words, such as NamingExceptionEvent,
DragSource etc. For the second group, class names are most
likely not part of common words that can be found in a
dictionary. Therefore, once they appear in documents, most
likely they represent class names. For the first group, class
names probably belong to common words. Then we need to
make sure the same words found in documents indicate class
names and not other names.

For the second group, simply matching class names
against their occurrence in documents suffices. From
inspection of typical documents, we observe that class names
can be surrounded by a wide variety of non-word characters
but must exclude the hyphen “-”. A hyphen attached before
or after a class name can be part of another class name. For
example, the string “DragSource” matches a class named
“DragSource”, but also a class name is written as
“DragSource-Listener” in documents when a class name is
separated over two lines and is connected by a hyphen:
“DragSource-“ is at the end of a line, “Listener” is at the
beginning of the following line. It raises another issue that
hyphens may exist inside class names, e.g. “DragSource-
Listener”. Therefore, we extend the regular expressions
developed by Bacchelli et al [5, 6] to the following regular
expression code (take the class named “Control” for the
example):

(.*)(^a-zA-Z0-9\-)<C-?o-?n-?t-?r-?o-?l>(^a-zA-Z0-9\-)(.*)

In order to identify class names in the first group, we can
additionally match different parts of the package name of a
class in documents. For example, a package named
javax.naming.event has three parts: javax, naming, event. It
is not feasible to require the package name to be presented
before the class name, because it is very rare that a package
name is cited before the class name in documents. If the class
name, the last part of the package name, and at least one of
other parts of the package name are found, then the single
word in documents denote a class name. This method also
can apply to identify classes sharing the same name but
belonging to two different packages. The regular expression
code for matching each part of package names is:

(.*)(^a-zA-Z0-9\-)<each part of package name>(^a-zA-Z0-9\-)(.*)

These two regular expressions can correctly capture all
documents directly containing class names and return few
unrelated documents. Therefore, links recovered by RE are
considered as true links, they are assigned with the highest
similarity value. This largely expands the retrieved link sets
at high cut points but does not change the fault links
recovered by VSM. This approach still fails to retrieve links
that are missed by VSM.

Both TM, discussed in Section 2, and RE can fulfill class
name entity recognition. We found through experimentation
that the results obtained from both approaches are the same.
However, TM spends much more time than RE, and
combining TM into our traceability recovery system made
the whole system much slower than RE. Therefore, we chose
to use RE rather than more sophisticated TM techniques in
our current tool.

C. Key Phrases (KP)
Key Phrases provide a brief summary of a document’s

content [33]. We wanted to use the KP technique to extract
key words (or key phrases) from comments of code to
provide a brief summary of each class’s description
comment and use these to augment our VSM technique’s
link recovery.

There are two situations where VSM is unable to retrieve
correct links. Firstly, when class names do not follow a
naming convention strategy VSM struggles to retrieve
documents that do not explicitly mention the class name. For
example, for a class named “RefAddr”, its VSM query is
“RefAddr OR ref addr OR ref OR addr”, VSM is unable to
retrieve documents not containing “RefAddr” as “ref” and
“addr” are not common words. Secondly, documents
implicitly mentioning a class but not explicitly using the
same word as the class name or separated words of the
compounded class name are also problematic. For example,
a class named “Media”, but where documents may use
“medium” to indicate this class. We have found that these
two issues can be addressed by taking the comments in
source code into consideration. Generally, software
developers provide comments to describe the purpose of the
class or what tasks the class fulfills. Extracting key phrases
from comments can help find alternative words to the class
name or words indicating what tasks the class fulfills. For
example, “medium” indicates the class “Media”, “reference
address” refers to the purpose of the class “RefAddr”. As
long as comments in each classes are well documented, KP
can extract all possible key phrases that summarize the
purpose of each class. We found that adding these extracted
key phrases to the VSM queries enables our approach to
work in the above two contexts. However, many fault links
at low cut points are also recovered.

D. Clustering
In general, every document has an inherent hierarchical

structure. Documents are usually divided into sections with
headings. Each section has a direct parent or some direct
children or some siblings. There exist tangled relationships
between these sections. For example, in this paper, “Section
3.A The Basic Retrieval Approach” has a direct parent,
“Section 3 Our Approach”, and three siblings, “Sections 3.B,
3.C, and 3.D”. It has no children. Section 3.A, 3.B, 3.C, and
3.D cross-reference each other to some extent. We take
advantage of these tangled relationships to reduce the
number of fault links retrieved by using Clustering.

Clustering is a division of a set of objects into groups of
similar objects: clusters [22]. We modify the K-mean
clustering algorithm [22] to meet our needs. There are three
main steps in this: initialization, assignment, and removal.
We take links between the class “java.awt.dnd.DragSource”
and sections in a document as an example to illustrate our
clustering algorithm. Table 1 shows an example where 34
sections are related to “DragSource”. Each line represents a
link and lines colored blue and italicized refer to true links.
Before starting the initialization step, all retrieved links are
grouped based on classes; namely, links related to the same
class are grouped together. Clustering is performed on each

group that represents sections related to the same class. Then
the algorithm selects k clusters according to the number of
links with similarity values ! s. Each cluster contains one of
these related sections. When the group contains links with a
similarity value that equals to 1, then the algorithm uses s = 1.
Otherwise, the algorithm uses s = 0.3 to create clusters. From
empirical observation we found four reasons to use this latter
value when none of the links’ similarity value in the group is
equal to 1. Firstly, a majority of the fault links have a
similarity score " 0.3. Secondly, links with similarity ! 0.3
are more likely to be true. Thirdly, if we use s " 0.3, our
approach retrieves many fault links and only slightly more
true links. Fourthly, if s ! 0.3, our approach slightly
decreases the number of fault links but does not obtain more
true links. Empirically, therefore, we found the 0.3 threshold
to be the best choice for the target systems used in our
experiment. We need to conduct more experiments, however,
to validate its suitability for other systems. In Table 1, 15
links have a similarity score = 1. The algorithm thus creates
15 clusters, each one containing one of these sections.

TABLE I. SECTIONS RELATED TO JAVA.AWT.DND.DRAGSOURCE

Next, the algorithm assigns the direct parent, all direct
children and all siblings of the initial section to the cluster,
but only new sections that aren’t already in other clusters and
are in the retrieved link set. Take the cluster for section 2.3 in
Table 1 for example: sections 2.3.1, 2.3.2, 2.3.5, 2.3.6, and
2.5 are not assigned to this cluster as they belong to other
clusters, and section 2.4 is not assigned as it is not in the
retrieved link set. Lines colored by red (bold) and blue
(italics) indicate links included in clusters. Finally, links not
in clusters are discarded. Thus, in this case, 6 links out of 34
are discarded in the group for “DragSource”. We have found
that our clustering approach eliminates many fault links at
low cut points.

IV. IMPLEMENTATION
Figure 1 illustrates the traceability recovery process of

our approach. First, if a document contains sections, it is
partitioned into small sub-documents according to sections
or headings (1). For example, if a PDF document contains 10
headings including all sub-headings, it is split into 10 sub-
documents; the contents of each are the text between its
heading and the following one. These sub-documents are
then preprocessed.

Next, source code is analyzed by the code dependency
analysis system in order to extract source code identifiers
(every class, method, package name), and comments inside
code (2). Code dependency analysis is based on Eclipse’s
JDT Java parser [8]. These extracted class names are passed
to the Regular Expression (RE) processor to find sections
that directly mention class names (3). Links retrieved by the
RE processor are assigned the highest similarity score (= 1),
and form the RE link set.

Figure 1. Traceability recovery process of our approach

At the same time, extracted comments inside code are
passed to the Key phrases extraction system (4). This is
based on KEA, a keyphrase extraction algorithm developed
by Witten et al. [19, 33]. This extracts key phrases from
comments. These extracted key phrases are combined with
extracted class names to form IR queries (5). A query string
for IR is established by using OR operators to combine the
class name, the separated words if the class name is formed
by compound words, and key phrases extracted from
comments in the class code.

Before using the Apache Lucene IR engine [4, 20] to
capture links between sections and class entities, sections in
documents are preprocessed (6). Lucence preprocessing
starts by generating tokens from consecutive letters in the
text stream according to token boundaries that are defined at
non-letter characters. Next, non-textual tokens (i.e. special
symbols, numbers etc.) are dropped. A lower case filter

Source
code

C
ode dependency

analysis

Comments

Class names

Key phrases extraction

Key
phrases

Queries
builder

IR
 engine

Regular
Expression

Document
s

Preprocessing Corpus

Links
integrator Clustering

Traceability
links

1

2

3

4

5

6

7
8 9

1.0----dnd1.pdf:2.1 Overview
1.0----dnd1.pdf:2.2.1 DragGestureRecognizer
1.0----dnd1.pdf:2.3 Drag Source
1.0----dnd1.pdf:2.3.1 The DragSource definition
1.0----dnd1.pdf:2.3.2 The DragSourceContext Definition
1.0----dnd1.pdf:2.3.5 The DragSourceDragEvent Definition
1.0----dnd1.pdf:2.3.6 The DragSourceDropEvent Definition
1.0----dnd1.pdf:2.4.3 The DropTargetContext Definition
1.0----dnd1.pdf:2.4.4 The DropTargetListener Definition
1.0----dnd1.pdf:2.4.5 The DropTargetDragEvent and …
1.0----dnd1.pdf:2.5 Data Transfer Phase
1.0----dnd1.pdf:2.5.1 FlavorMap and SystemFlavorMap
1.0----dnd1.pdf:2.5.2 Transferring Data across the JVM …
1.0----dnd1.pdf:3.0.1 What are the implications of the …
1.0----dnd1.pdf:3.0.3 Lifetime of the Transferable(s)?
0.06234840----dnd1.pdf:3.0.4 Implications of ACTION_...
0.05901812----dnd1.pdf:2.3.3 The DragSourceListener Definition
0.05479498---- dnd1.pdf:2.5.3 Transferring lists of files across…
0.05061744----dnd1.pdf:2.3.4 The DragSourceEvent Definition
0.04429026----dnd1.pdf:3.0.2 Inter/Intra VM transfers?
0.04183720----dnd1.pdf:3.0.5 Semantics of ACTION_...
0.03083606----dnd1.pdf:2.4.1 java.awt.Component additions…
0.02992645----dnd1.pdf:2.5.4 Transferring java.rmi.Remote …
0.02787049----dnd1.pdf:3.0 Issues
0.02787049----dnd1.pdf:2.0 API
0.02658593----dnd1.pdf:2.4.2 The DropTarget Definition
0.02162598----dnd1.pdf:1.1 Provision of a platform independent
0.01930924----dnd1.pdf:2.2 Drag Gesture Recognition
0.01330427----dnd1.pdf:1.2 Integration with platform …
0.01330427----dnd1.pdf:Appendix A : DropTargetPeer definition
0.01317056----dnd1.pdf:1.0 Requirements
0.00965462----dnd1.pdf:2.4.6 Autoscrolling support
0.00064342----dnd1.pdf:Appendix B : DragSourceContextPeer definition
0.00064342----dnd1.pdf:Appendix C : DropTargetContextPeer definition

transforms all capital letters into lower case letters, and a
stop-words filter removes common words (i.e. articles,
adverbs, etc.). Finally, an IR corpus is generated containing
all documents and words (or tokens) in the documents. The
IR engine retrieves traceability links according to queries,
and computes similarity scores (0 " similarity score " 1)
based on the frequency and distribution of the key words or
phrases (7). Recovered links forms the IR link set. The RE
link set and the IR link set are then merged together (8). If a
link can be found in both sets, then the one in the IR set is
removed and we leave the link in the RE set (i.e. with higher
rank). Finally, the merged link set passes through the
Clustering system to refine the link set to produce the final
candidate traceability links (9).

To make the extracted traceability links “useful” for
maintainers our final step is to visualize recovered links
allowing users to browse and maintain these links in a
natural and intuitive way. We use a hierarchical, graphical
traceability link visualization that can be expanded and
contracted to enable users to interact with large numbers of
extracted relationships. A screen dump of a prototype
version showing links visualization is shown in Figure 2.
Here a software engineer has selected a source file
(PrintJob.java) and its related sections retrieved by our link
recovery technique in the file (JPS_PDF.pdf) are highlighted.

Figure 2. A screen dump from our Eclipse-based prototype tool in use.

V. EVALUATION

A. Case Studies
To validate the effectiveness of our approach, we have

set up four case studies based on four unrelated software
systems. The first system we used is JDK 1.5, a free software
system for Java developers. Table 2 describes the packages
in JDK 1.5 and their corresponding PDF documents used in
this study, as well as the number of Java classes and the
number of sections in them. We divided these PDF files into
sections based on their headings. This case study contains
760 true links. We describe how we built the oracle
traceability link set for JDK 1.5 in Section 5.C.

The systems used for the other three case studies are
ArgoUML, Freenet, and JMeter. Alberto Bacchelli [6] kindly
provided the three systems, their email archives, and their

oracle traceability link sets. These emails were extracted
from active development mailing lists of each project. Table
3 provides details of these three case studies.

TABLE II. JDK1.5 PACKAGES AND DOCUMENTS

JDK 1.5 #classes/
sections

Java
packages

java.awt, javax.naming, and javax.print
packages

249

JPS_PDF.pdf: Java™ Print Service API
User Guide

68

dnd1.pdf: Drag and Drop subsystem for the
Java Foundation Classes

41

jndispi.pdf: Java Naming and Directory
Interface™ Service Provider
Interface(JNDI SPI)

73

PDF files

Total sections: 182

TABLE III. CLASS ENTITIES, EMAILS, AND TOTAL TRUE LINKS PER
SYSTEM

 Classes Emails Total true links

ArgoUML 423 378 308

Freenet 517 372 516

JMeter 372 348 563

B. Evaluation Metrics
Precision, Recall, and F-measure are common metrics

used in the evaluation of IR systems. The three metrics
depend on three figures: correct (or true) links retrieved, fault
links retrieved, and missing links.

Correct links retrieved are those that are correctly
captured by the system. Fault links are those that are wrongly
detected by the system. Total links retrieved combine these
two kinds of link. Relationships that are not found by the
system are called missing links. Total correct links are the
sum of correct links retrieved and missing links. Precision
can be defined as the ratio of the number of correct retrieved
links over the total number of retrieved links. If precision
equals 1, it means that all the recovered links are correct,
though there could be correct links that were not recovered.

Precision = Correct links retrieved / Total links retrieved

Recall is the ratio of the number of correct retrieved links
over the total number of correct links. Recall = 1 indicates
that all correct links are recovered, but there may be
incorrect recovered links.

Recall = Correct links retrieved / Total correct links

The F-measure combines precision and recall based on
their weighted harmonic mean to measure the effectiveness
of retrieval. # is an adjustable weight to favor precision over
recall. We take #=1 to weight precision and recall equally.

F-measure = (#2+1) Precision $ Recall / ((#2Recall)+Precision)

Two sets of traceability links between sections in
documents and class entities are prepared in order to
compute precision, recall, and F-measure. One set is
produced by a system under evaluation; the other is an oracle
traceability link set carefully prepared manually (Section 5.3

describes how the link set for JDK1.5 is established; the
oracle link sets of ArgoUML, Freenet, and JMeter area as
provided by Alberto Bacchelli). The latter is critical as it is a
crucial factor in determining the number of missing links.
Comparison of the two sets is then conducted to determine
whether a link is correct, faulty, or missing.

C. Building the Oracle Traceability Link Set
In order to build the oracle traceability link set for

JDK1.5, we employed a method of manually verifying trace
links by a group as used in [5, 6, 15] to build the oracle
traceability link set for our case study, JDK1.5. We recruited
11 analysts: 9 analysts had at least 6 years of Java
programming experience, and 2 participants had more than 9
years of Java programming experience. We set up two rules
to assist participants in finding and verifying a link. First, if a
section directly mentions a class identifier/name, then this
section is related to this class. The second rule is that if a
section describes tasks that a class should fulfill, then they
are related. At the first stage, the classes were divided into 6
sets. 6 participants then manually retrieved links between
sections in documents and classes by following the above
two rules. After they completed their task, we asked another
participant to verify these links. At the second stage, conflict
links produced at the first stage were randomly divided into 3
overlapping sets. Three other participants verified these
conflict links by carefully studying the text of documents and
the comments inside code. After the three finished, we asked
a senior participant to verify those links still having conflicts.
This participant carefully studied the text of documents and
the comments in code. This participant also consulted with
another senior participant. Each conflict link was thus
analyzed by at least 3 participants. When three reviewers
agreed that the conflict link was a fault, we considered this
link to be a fault link and discarded it. The final oracle link
set comprised 760 true links. Our rigorous manual
verification of the true links remedied any potential bias of
adding incorrect links to the oracle link set [5, 6, 15].

D. Evaluation Results
To evaluate whether the three supporting techniques, RE,

KP, and Clustering, ameliorate limitations of VSM, we
compared the performances of four different combinations of
techniques: VSM; the combination of VSM and RE; the
combination of VSM, RE and KP; and our final approach
VSM, RE, KP and Clustering. The following sections
describe the results produced by the four different
combination techniques. Every approach recovers links with
a similarity score ! the cut point. For example, the cut point
is 0.02, which denotes that all links having a similarity score
! 0.02 are extracted by our approach. A cut point < 0.3 is
considered as a low cut point in the following discussion.
Otherwise we consider it to be a high cut point. In Figure 3,
we summarize the precision results of all approaches for the
four case studies. Recall results of all approaches are in
Figure 4.

1) The Basic Retrieval Approach: First, we used VSM
to recover links between documents and class entities to
discover VSM’s performance at different cut points. It is

obvious from precision results in Figure 4 and recall results
in Figure 5 that the lower the cut point used, the lower the
precision value but the higher the recall value VSM obtains.
Although VSM retrieves a majority of true links at low cut
points from 0 to 0.1, many fault links are extracted,
especially at 0 and 0.02 cut points. VSM gets the highest
precision value at 0.9 cut point for JDK1.5 and ArgoUML
and at 0.7 cut point for Freenet and JMeter but only recovers
very few true links.

2) VSM and Regular Expressions (RE): We then
evaluated the combination of VSM and RE to verify
whether RE can increase the number of retrieved links at
high cut points. Figure 4 shows that adding RE to VSM
improves precision at all cut points except for JMeter’s 0.5
and 0.7 cut points. In Figure 5, we observe that recall is
largely increased at all cut points especially for high cut
points. This indicates that adding RE to VSM retrieves more
true links than VSM alone.

3) VSM, RE, and Key Phrases (KP): To recover links
missed by VSM, we added an additional technique, KP.
From Figures 4 and 5, compared with the combination of
VSM and RE, we see that after adding KP to VSM and RE,
precision at all cut points is increased for JDK1.5 and
ArgoUML, but recall has a slight decrease. However, there
is no significant improvement in Freenet and JMeter.
Compared with VSM, adding KP still increases recall at all
cut points except for the slight decrease at cut points from
0.02 to 0.08 for JDK1.5. This shows that this combination
retrieved more true links and less fault links than VSM.

4) VSM, RE, KP, and Clustering: Incorporating
Clustering into the last combination aims to reduce the
number of fault links but not deteriorate recall too much.
Figures 4 and 5 show that our approach of integrating the
three supporting techniques with VSM fulfills the above two
objectives. Precision is largely increased at all cut points
especially at low cut points. The majority of fault links are
discarded at low cut points. Although our approach retrieves
less true links than VSM alone at low cut points for JDK1.5
and ArgoUML, at 0 to 0.02 cut points for Freent, and at 0 to
0.04 cut points for JMeter, recall is only slightly reduced
and still reaches a value ! 80% for JDK1.5, Freenet and
JMeter, and > 62% for ArgoUML. This shows that our
approach largely reduces the number of fault links without
suffering from low recall at low cut points.

E. Performance of Our Approach
We ran our approach on an iMac with a 2.4 GHz Intel

Core Duo processor and 3GB of RAM. Figure 3 shows that
our approach took up to 5 minutes to execute on each case.
For all cases, this is 4-9 times more than VSM, 2-6 times
more than VSM+RE, and up to 10 seconds more than
VSM+RE+KP. 80% of time for JDK1.5 and at least 60% of
time for other cases are spent on KP extraction. It is because
KEA, the key phrases processor in our approach, uses an
expensive machine learning algorithm for training and key

phrase extraction [33]. Our approach thus produces a much
better result than the other 3 combination techniques but is
slower. It is vastly faster than manually extracting links.
When building the oracle link set, every participant spent one
hour on average to identify related sections of 50 classes.

Figure 3. Execution times for different combinations

VI. DISCUSSION
According to our experimental results, precision is

gradually improved through incrementally adding techniques
into the combination approach, and is greatest when
incorporating all three techniques with VSM. Adding RE to
VSM increases precision at high cut points from 0.3 to 0.9
and recall at all cut points. Analysis of the four case studies
shows that documents contain many class names that enable
RE to match classes to documents. Further adding KP
increases precision at all cut points for JDK1.5 and
ArgoUML but slightly decreases recall. Freenet and JMeter
are unresponsive to the KP technique. Analysis of source
code reveals a low number of comments in their source code.
In addition, the key phrases extracted from comments

contain many key words unrelated to the purpose of classes.
Finally, precision at low cut points from 0 to 0.1 is greatly
increased by adding Clustering. Analysis of the four cases
shows that documents have inherent hierarchical structure
that provides useful hierarchical information for Clustering
to refine retrieved links. Our approach is able to obtain good
Precision at all cut points. Moreover, recall for our approach
is much higher than for VSM at high cut points, but slightly
less than for VSM at low cut points for JDK1.5 and
ArgoUML, at 0 to 0.02 cut points for Freenet, and at 0 to
0.04 cut points for JMeter.

Therefore, we conclude that our approach improves the
precision of retrieved links and achieves high recall by
utilizing the strengths of RE, KP, and Clustering to mitigate
limitations of VSM. VSM has three main drawbacks: it
recovers very few links at high cut points, has low Precision
at low cut points, and misses links if class names do not
follow the naming convention strategy and if documents use
different words to describe the related classes.

Combining RE with VSM eliminates the first drawback
of VSM. Adding KP to this combination ameliorates the
third drawback of VSM. Finally, integrating Clustering
ameliorates the drawback of many fault links produced by
VSM. Furthermore, the F-measure results of all approaches
in Figure 6 show that our approach is the most effective
among all approaches we evaluated if precision and recall
are considered equally important.

The main limitation of our approach is that some true
links are discarded after adding Clustering. This is because
the group containing links related to a same class is totally
removed when no links in the group have a similarity value
larger than the threshold s value, this leads to no clusters for
this group being created. True links in such groups are cut.

(a) JDK1.5 (b) ArgoUML

(c) Freenet (d) JMeter
Figure 4. Precision results for (a) JDK1.5, (b) ArgoUML, (c) Freenet, and (d) JMeter

(a) JDK1.5 (b) ArgoUML

(c) Freenet (d) JMeter

Figure 5. Recall results for (a) JDK1.5, (b) ArgoUML, (c) Freenet, and (d) JMeter

(a) JDK1.5 (b) ArgoUML

(c) Freenet (d) JMeter

Figure 6. F-measure (#=1) results for (a) JDK1.5, (b) ArgoUML, (c) Freenet, and (d) JMeter

In future work we will experiment with allowing users to
configure thresholds and select some or all techniques to
apply to the extracted link set. Furthermore, we will explore

the impact of other techniques to refine the extracted links
such as our visual IDE’s user creation and editing of links
and both user and automated ranking of relationship quality.

In addition, we will carry out a usability evaluation of our
traceability relationship recovery approach and our trace link
visualization tool to determine how effective they are in
assisting users navigate between source code elements and
associated documentation elements.

VII. THREATS TO VALIDITY
First, we relied on human judgment to build the oracle

link set and thus this set might not 100% correct. To alleviate
this, we applied a very rigorous manual verification strategy
to analyze every true link, which were verified by at least 3
analysts. Second, our traceability recovery technique may
show different results when applied to other software
systems with other types of documents. To alleviate this, we
chose 4 unrelated open-source systems. These systems are
varied in the sizes of the systems, the types of documents,
the structures of documents, and the availability of
comments in source code. However, we cannot confirm that
our results are similar in closed-source systems.

VIII. SUMMARY
It is a major challenge for traceability recovery

techniques to extract relationships between diverse artifacts
of a software system at high-levels of precision and recall.
Many recovery techniques exist but none so far produces
sufficiently consistent and high enough quality of results that
software developers require. Our traceability system
incorporates three supporting techniques, RE, KP, and
Clustering, with VSM to extract links between documents
and class entities. The three techniques ameliorate the key
limitations of VSM by taking advantage of the respective
strengths of each of the three supporting techniques. Our
experimental results from four different combination
recovery approaches provide a demonstration that our
combination recovery approach can eliminate some
limitations of VSM. Our approach improves precision at all
cut points, reduces fault links at low cut points, and increases
the number of true links at high cut points.

ACKNOWLEDGEMENT
The authors gratefully acknowledge Alberto Bacchelli

for agreeing to share his exemplar test sets and oracles, and
the financial support of the Foundation for Research, Science
and Technology and University of Auckland.

REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia. “Information

retrieval models for recovering traceability links between code and
documentation”. ICSM’00, 2000, San Jose

[2] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo.
“Recovering traceability links between code and documentations”.
TSE 28 (10), Oct. 2002, pp. 970-983

[3] G. Antoniol, G. Casazza, and A. Cimitile. “Traceability recovery by
modelling programmer behavior”. 7th WCRE, Queensland, Australia,
Nov. 2000, pp. 240-247

[4] Apache Lucene – Overview, from http://lucene.apache.org/java/docs/
[5] A. Bacchelli, M. D’Ambros, M. Lanza, and R. Robbes.

“Benchmarking lightweight techniques to link e-mails and source
code”. In Proceeding of WCRE 2009, pp. 205-214

[6] A. Bacchelli, M. Lanza, and R. Robbes, R. “Linking E-mails and
source code artifacts”. ICSE’10, May 2010, pp.375-384

[7] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou. “Utilizing
supporting evidence to improve dynamic requirements traceability”.
RE'05, Paris, Aug. 2005, pp.135-144

[8] Eclipse Java Development Tools (JDT), http://www.eclipse.org/jdt
[9] A. Egyed. “A scenario-driven approach to trace dependency analysis”.

TSE, 2003, 29(2), PP. 116-132
[10] A. Egyed, S. Biffl, M. Heindl, and P. Grunbacher. “A value-based

approach for understanding cost-benefit trade-offs during automated
software traceability”. TEFSE’05, 2005, California, USA, pp. 2-7

[11] R. Fjeldstad and W. Hamlen. “Application program maintenance-
report to our respondents”. Tutorial on Software Maintenance, 1983,
13-27. Parikh, G.&Zvegintzov, N.

[12] GATE Information Extraction, extracted from http://gate.ac.uk/ie/
[13] O.G. Gotel and A.C.W. Finkelstein. “An analysis of the requirements

traceability problem”. 1st RE, 1994, pp. 94-101
[14] J. H. Hayes, A. Dekhtyar, and J. Osborne. “Improving requirements

tracing via information retrieval”. Proc. Int’l Conf. Requirements Eng.
(RE), pp. 151-161, Sept. 2003

[15] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. “Advancing candidate
link generation for requirements tracing: the study of methods”. TSE,
Vol. 32, No. 1, January 2006, pp. 4-19

[16] D. Jin and J. Cordy. “Ontology-based software analysis and
reengineering tool integration: the OASIS service-sharing
methodology”. 21st ICSM 2005. pp.613-616

[17] W. Jirapanthong and A. Zisman. “Supporting product line
development through traceability”. APSEC, 2005, pp.506-514

[18] W. Jirapanthong and A. Zisman. “XTraQue: traceability for product
line systems”, Software and System Modeling 8 (1), 2009, 1619-1366

[19] KEA: keyphrase extraction algorithm. 2010. Extracted on 1 May
2010 from http://www.nzdl.org/Kea/

[20] M. Konchady. “Building search applications: Lucene, LingPipe, and
Gate”, Musstru Publishing, Oakton, Virginia, 2008

[21] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. “Recovering
traceability links in software artifact management systems using
information retrieval methods”. TOSEM, 2007, Vol. 16, No. 4

[22] J. B. MacQueen. “Some methods for classification and analysis of
multivariate oberservations”. 5th Berkeley Symp. On Math. Stat. and
Prob. 1967, pp. 281-297

[23] A. Marcus and J. I. Maletic. “Recovering documentation-to-source-
code traceability links using latent semantic indexing”. 25th ICSE,
2003, pp. 125-135

[24] J. Rilling, P. Charland, and R. Witte. “Traceability in Software
Engineering—Past, Present and Future”. CASCON Workshop, IBM
Technical Report: TR-74-211, October 25 2007

[25] R. Seacord, D. Plakosh, and G. Lewis. “Modernizing legacy systems:
software technologies, engineering processes, and business
practices”. 2003, Addison-Wesley

[26] R. Settimi, J. Cleland-Huang, O. Ben Khadra, J. Mody, W. Lukasik,
and C. DePalma. “Supporting software evolution through
dynamically retrieving traces to UML artifacts”. 7th IWPSE, 2004,
Kyoto, Japan, pp. 49-54

[27] T. Standish. “An essay on software reuse”. TSE 10 (5), 1984, 494-497
[28] A. Stranieri and J. Zeleznikow. “Knowledge discovery from legal

databases”, 2005 Vol 69, Springer
[29] X. Wang, G. Lai, and C. Liu. “Recovering relationships between

documentation and source code based on the characteristics of
software engineering”. Electronic Notes in Theoretical Computer
Science 243, 2009, pp. 121-137

[30] R. Watkins and M. Neal. “Why and how of requirements tracing”. 5th
ASM, 1994, California, pp.104-106

[31] S. M. Weiss, N. Indurkhya, T. Zhang, and F.J. Damerau. “Text
mining: predictive methods for analyzing unstructured information.”
Springer New York, 2005

[32] R. Witte, Q. Li, F.F. Informatic, Y. Zhang, and J. Rilling. “Text
mining and software engineering: an integrated source code and
document analysis approach”. IET Software 2 (1), 1, 2008, pp. 1-19

[33] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-
Manning. “Kea: practical automatic keyphrase extraction”. 4th ACM
DL, 1999, Berkeley, pp. 254-255

