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Abstract— Documentation written in natural language and 
source code are two of the major artifacts of a software system. 
Tracking a variety of traceability links between software 
documentation and source code assists software developers in 
comprehension, efficient development, and effective 
management of a system. Automated traceability systems to 
date have been faced with a major open research challenge: 
how to extract these links with both high precision and high 
recall. In this paper we introduce an approach that combines 
three supporting techniques, Regular Expression, Key Phrases, 
and Clustering, with a Vector Space Model (VSM) to improve 
the performance of automated traceability between documents 
and source code. This combination approach takes advantage 
of strengths of the three techniques to ameliorate limitations of 
VSM. Four case studies have been used to evaluate our 
combined technique approach. Experimental results indicate 
that our approach improves the performance of VSM, 
increases the precision of retrieved links, and recovers more 
true links than VSM alone.  

Keywords-component; Traceability, Vector Space Model, 
Regular Expression, Key Phrases, Clustering 

I.  INTRODUCTION 
Source code alone is not sufficient to capture all 

information about a software system. Software requirements, 
architectural decisions, detailed design, tutorials and user 
documentation, and various types of technical system 
documentation (e.g. deployment configuration) are important 
artifacts produced while engineering software systems. 
Tracing and maintaining interrelationships between these 
various forms of software documentation and source code 
enables software engineers to better understand systems, 
undertake improved maintenance of systems, and ultimately 
to produce higher quality systems [2, 3, 25]. However, this 
relies on retrieving high quality candidate links between 
elements in one artifact (e.g. code constructs) and elements 
in another (e.g. requirements and detailed design 
documentation). A set of high quality candidate links 
represents a link set between these artifacts that contains as 
many correct links as possible and as few fault links as 
possible. Moreover, a high quality candidate link set should 
connect elements of different artifacts at a fine-grained level 
of detail e.g. part of a design document description and its 
related source code elements. However, it is very challenging 
to automatically extract high quality candidate links between 
the wide variety of artifacts created during the software 
development life cycle [2, 13, 22, 29]. 

Many traceability recovery techniques have been 
invented to retrieve traceability links between artifacts [2, 3, 
5-7, 9, 10, 14, 18, 21, 23, 26, 29, 32]. Some need human 
intervention [9, 10, 18]; others can automatically generate 
traceability links [2, 3, 5-7, 14, 21, 23, 26, 29, 32]. 
Unfortunately, no recovery approaches have the capability of 
recovering all possible links between artifacts automatically 
and accurately. This is due both to the inherent imprecision 
when expressing things in natural language and inherent 
information loss or addition when moving between software 
artifacts at differing levels of abstraction. Some potentially 
useful and important links are missed by existing techniques. 
Similarly, some incorrect or unuseful links are extracted and 
may confuse developers. 

Most existing automated traceability techniques adopt a 
single approach to trace link retrieval. However, different 
link retrieval approaches have different strengths and 
weaknesses. To try and improve the performance of 
automated traceability link retrieval, we have developed an 
approach that combines a Vector Space Model (VSM) IR 
approach, with three supporting techniques: Regular 
Expression (RE), Key Phrases (KP), and Clustering. These 
particular techniques have quite different strengths and 
weaknesses and recover different sets of links due to their 
vastly different retrieval approaches. Our approach attempts 
to take advantage of strengths of these techniques to 
automatically recover links between artefacts at both high 
precision and high recall. Our particular focus is on 
retrieving links between class entities and sections in 
documents written in natural language, e.g. tutorials, 
handbooks, developer or user’s guides, API documentation, 
architecture documentation, design rationale, emails and so 
on. The objective of this research is to demonstrate whether 
our new composite traceability link recovery approach can 
improve the automatic recovery of traceability links with 
high precision and recall. We have conducted a detailed 
experiment with four case studies to evaluate the strengths 
and weaknesses of our approach. Analysis of experimental 
results demonstrates that our approach improves the 
performance of VSM, increases the precision of retrieved 
links, and recovers more true links than VSM alone. 

This paper is organized as follows. Related work is 
discussed in Section 2. Section 3 describes our traceability 
link recovery approach and each technique we have applied. 
A description of the implementation of our tool is described 
in Section 4, followed by the experimental results in Section 

John Grundy
In Proceedings of the 2011 IEEE/ACM International Conference on Automated Software Engineering, (c) IEEE 2011

jgrundy
(c) IEEE 2011. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE.

jgrundy



5. Section 6 analyzes these results. Finally, we draw 
conclusions in Section 7. 

II. RELATED WORK 
Due to the importance of traceability link recovery, 

extensive effort in the software engineering research 
community has been put into improving the precision and 
recall of recovered traceability links between documents and 
code through various traceability recovery techniques. These 
approaches can be classified into two main groups: semi-
automatic recovery and automatic recovery. 

A. Semi-automatic Techniques 
Semi-automatic recovery techniques are those that need 

human intervention during the traceability link extraction 
process, such as rule-based, scenario-driven, and value-based 
approaches. Rule-based approaches [17, 18] use traceability 
rules to define traceability relations between tracing 
documents. Since these approaches are dependent on 
grammatical structures present in the natural language 
sentences, traceability rules have to be expanded to allow 
generation of relations that consider all possible grammatical 
structures. Moreover, building rules is time-consuming. 

The scenario-driven technique [9] combines the 
hypothesized traces and test scenarios that are executed on a 
running software system to generate traceability relations. It 
requires test and usage scenarios to be linked to classes in the 
source code, and it does not support tracing links to program 
variables and other types – other than classes. In addition, the 
correctness and completeness of the hypothesized traces 
largely affects the quality of recovered links. 

The value-based approach [10] does not treat every 
artifact as equally important, so not all trace relationships are 
equally important in the context of traceability. The value-
based approach produces high quality trace relationships 
among high-value artifacts on a finer-grained level of detail, 
but the quality of relationships among low-value artifacts is 
undesirable because they are based on a coarser-grained level 
of detail. Although this approach can save cost due to its 
focus on artifacts with high value, the determination of the 
value of every artifact is complex and time-consuming. 

B. Automatic Techniques 
Automatic recovery techniques include lightweight and 

heavyweight techniques. Lightweight techniques do not 
require pre-computation of the input and can be directly 
executed at run-time. Bacchelli et al [5, 6] build regular 
expressions to match class names to words in emails. Their 
experimental results show that the Regular Expression (RE) 
approach achieves good accuracy. The drawback is that this 
approach fails to retrieve links between classes and emails 
where class names don't explicitly appear but are mentioned 
implicitly, such as an email that describes tasks that a class 
should fulfill but does not directly mention its name. 

Heavyweight techniques, by contrast, require pre-
processing of their input. These techniques include 
Information Retrieval (IR) and Text Mining (TM). Many 
traceability recovery techniques to date make use of a variety 
of Information Retrieval (IR) approaches [2, 3, 7, 14, 21, 23, 

26, 29] to automatically recover traceability links. However, 
the accuracy rate of link recovery by using IR heavily relies 
on a cut point; only links that have a similarity value greater 
than or equal to the cut point are shown to users [7, 21]. The 
same cut point may or may not be suited to different 
software systems. Using a low cut point retrieves a larger 
number of accurate (true) links than using a high cut point, 
but more incorrect (fault) links are captured at the same time. 

Antoniol et al. [2] apply two different IR models, 
Probabilistic Model (PM) and Vector Space Model (VSM), 
to extract links between code and documentation. The results 
show that IR provides a practical solution for automated 
traceability recovery. The two IR models have similar 
performances when terms in artifacts perform a preliminary 
morphological stemming. A traceability recovery tool based 
on PM was developed to explore how the retrieval 
performance can be improved by learning from user 
feedback [3]. The results show that significant improvements 
are achieved both with and without preliminary stemming [3, 
21]. Cleland-Huang et al. [7] propose an approach to 
improve the performance of dynamic requirements 
traceability by incorporating three different strategies into 
PM, namely hierarchical modeling, logical clustering of 
artifacts, and semi-automated pruning of the probabilistic 
network. The results indicate that the three strategies 
effectively improve trace retrieval performance. 

Settimi et al. [26] investigate the effectiveness of VSM 
and VSM with a general thesaurus for generating links 
between requirements, code, and UML design models. The 
comparison results show that precision and recall are not 
improved by the use of the general thesaurus. Hayes et al. 
[14, 15] use VSM but with a context-specific thesaurus that 
is established based on technical terms in requirement 
documents to recover links between requirements. The 
results show that improvements in recall and sometimes in 
precision are achieved. Marcus and Maletic [23] introduce 
Latent Semantic Indexing (LSI), an extension of the VSM, to 
recover links between documentation and source code. The 
results show that LSI achieves very good performance 
without the need for stemming as required for PM and VSM. 
Wang et al. [29] present four enhanced strategies to improve 
LSI, namely, source code clustering, identifier classifying, 
similarity thesaurus, and hierarchical structure enhancement. 
The comparison results indicate that this approach has higher 
precision than LSI and PM, but has lower recall. Although 
various strategies have been applied to enhance the 
performance of IR techniques, no approaches to date can 
largely decrease fault links at low cut points and significantly 
increase true links at high cut points [2, 7, 23, 26, 29]. 

The TM technique organizes related texts in documents 
to extract domain-specific information from texts [28, 31]. 
Witte et al [32] employ Information Extraction, a subfield of 
TM, to capture traceability links through extracting entities 
(e.g. methods, classes, packages, etc.) from software 
documents. Its limitation is that it can only extract from 
documents salient facts about pre-specified types of events, 
entities, or relationships, though it generates relationships 
with high accuracy [12, 31]. Types of entities have to be pre-



defined, and grammar rules have to be built for detecting 
complex named entities. 

To varying degrees, none of the traceability recovery 
techniques developed so far is able to produce sufficiently 
consistent and high enough quality results to meet 
developer’s needs. Semi-automatic techniques are unable to 
generate traceability links automatically without human 
intervention. It is difficult to employ these techniques to 
retrieve traceability links between artifacts in a system for 
people who are unfamiliar with the system. Although 
automatic techniques improve this issue, their limitations 
impede them from capturing all potential true links and few 
fault links. 

III. OUR APPROACH 
In order to recover traceability links at a high-level of 

precision and recall, we have explored an approach 
incorporating three supporting techniques, Regular 
Expression (RE), Key Phrases (KP), and Clustering, into a 
Vector Space Model (VSM) to recover links between 
sections in documents and class entities. Our approach is 
intended to overcome the limitations of VSM by taking 
advantage of strengths of RE, KP, and Clustering. 

We use an IR model, VSM, as the fundamental basis of 
our approach as VSM can retrieve all potential links with 
appropriate queries. However, VSM has three main 
limitations [1, 2, 7, 15, 21, 23, 26, 27, 29, 30]. First, very few 
true links are retrieved at high cut points. Second, many fault 
links are captured at low cut points. The third limitation is 
that VSM misses links in the following two situations: class 
names that do not follow a common naming convention 
strategy; and documents that use different words to describe 
related classes. Combining the first supporting technique, 
Regular Expression (RE), with VSM allows extraction of 
more true links at high cut points. As long as class names are 
retrieved correctly and refined regular expressions are built, 
RE can retrieve all possible links that are related to these 
class names and return few fault links as well.  

We added the second technique, Key Phrases (KP), to 
our approach to recover links missed by VSM. We extend 
the VSM queries to include key phrases of comments in the 
source code. If code is well commented, KP can extract key 
phrases from code comments closely related to classes. 
Clustering, the third technique incorporated, aims to 
eliminate fault links at low cut points by refining existing 
retrieved traceability links. As the aim of our approach is to 
trace useful links between class entities and sections in 
documents, we take advantage of the inherent hierarchical 
structure of documents to cluster links retrieved by VSM, RE, 
and KP. Therefore, our combination approach increases the 
precision at any cut point and retrieves links with a high 
recall. The following section describes the four techniques 
used in detail. 

A. The Basic Retrieval Approach 
Information Retrieval (IR) is widely used in searching 

fields such as web search engines and library document 
search. We decided to employ an IR technique as the 
foundation of our traceability links retrieval approach as its 

query-based approach has potential to recover all types of 
link, if appropriate queries are constructed. The IR engine we 
employed is Apache Lucene, which is a full-featured text 
search engine written in Java [4]. We chose this as it is 
broadly used for IR experimentation and practice. Lucene 
uses VSM to index text and determine how relevant a section 
is to a query [4, 20]. As many papers have extensively 
discussed VSM [1-3, 7, 14, 21, 23, 29], we only briefly 
describe how queries are built and similarity scores of links 
are calculated. 

A class name (or identifier) composed of two or more 
words is split into separate words. A query string for VSM is 
established by using the OR operator to combine the name 
and the separated words. For example, DragSource is split 
into the words drag and source, then the query string is 
“DragSource OR drag source OR drag OR source”. The 
query is case-insensitive. 

The output of the indexing process is a term-by-document 
matrix, where term represents all words that occur in 
documents, and document indicates all documents in the 
VSM corpus. Each entry ai,j of this matrix denotes a weight 
for the frequency of the ith term in the jth document. Each 
matrix column is considered as a vector that describes a 
document. Queries are represented in a similar way by a 
matrix, where each vector indicates a query. The similarity 
between a document and a query is measured by the cosine 
of the angle between the corresponding vectors. In other 
words, a matching document may have one or more query 
terms and is ranked based on the frequency of term 
occurrence and number of query terms present in the 
document [2, 20, 21]. In the end, traceability links between 
documents and classes are retrieved. Each link has a 
similarity score to display how much the related document 
and class is matched. 

There are three main drawbacks with using VSM. The 
method calculating link similarity values results in some true 
links with a very low similarity score and the majority of 
retrieved links have low similarity values. Therefore, the 
lower the cut point that is used, the more possible links are 
retrieved but also the more fault links are captured as well. 
This leads to the first limitation that very few true links are 
captured at high cut points. The second limitation is that 
many fault links are extracted at low cut points. The third 
limitation is that links are missed in the following two 
situations: class names not following a naming convention 
strategy and documents using different words to describe 
related classes. We have found that these are both common 
occurrences in many software documentation artifacts. 

B. Regular Expression (RE) 
In order for us to augment the number of retrieved links 

at high cut points, a RE technique is used. A regular 
expression, which is a pattern of characters that describes a 
set of strings, is constructed and used to find all of the 
occurrences of this pattern in an input sequence. Here, we 
use REs to find class names in documents. It is case 
sensitive. 

Class names can be placed into two groups. One group is 
class names containing only one word, such as Control, 



Main, Graphics etc. Another is class names formed by 
compound words, such as NamingExceptionEvent,  
DragSource etc. For the second group, class names are most 
likely not part of common words that can be found in a 
dictionary. Therefore, once they appear in documents, most 
likely they represent class names. For the first group, class 
names probably belong to common words. Then we need to 
make sure the same words found in documents indicate class 
names and not other names. 

For the second group, simply matching class names 
against their occurrence in documents suffices. From 
inspection of typical documents, we observe that class names 
can be surrounded by a wide variety of non-word characters 
but must exclude the hyphen “-”. A hyphen attached before 
or after a class name can be part of another class name. For 
example, the string “DragSource” matches a class named 
“DragSource”, but also a class name is written as 
“DragSource-Listener” in documents when a class name is 
separated over two lines and is connected by a hyphen: 
“DragSource-“ is at the end of a line, “Listener” is at the 
beginning of the following line. It raises another issue that 
hyphens may exist inside class names, e.g. “DragSource-
Listener”. Therefore, we extend the regular expressions 
developed by Bacchelli et al [5, 6] to the following regular 
expression code (take the class named “Control” for the 
example): 

(.*)(^a-zA-Z0-9\-)<C-?o-?n-?t-?r-?o-?l>(^a-zA-Z0-9\-)(.*) 

In order to identify class names in the first group, we can 
additionally match different parts of the package name of a 
class in documents. For example, a package named 
javax.naming.event has three parts: javax, naming, event. It 
is not feasible to require the package name to be presented 
before the class name, because it is very rare that a package 
name is cited before the class name in documents. If the class 
name, the last part of the package name, and at least one of 
other parts of the package name are found, then the single 
word in documents denote a class name. This method also 
can apply to identify classes sharing the same name but 
belonging to two different packages. The regular expression 
code for matching each part of package names is: 

(.*)(^a-zA-Z0-9\-)<each part of package name>(^a-zA-Z0-9\-)(.*) 

These two regular expressions can correctly capture all 
documents directly containing class names and return few 
unrelated documents. Therefore, links recovered by RE are 
considered as true links, they are assigned with the highest 
similarity value. This largely expands the retrieved link sets 
at high cut points but does not change the fault links 
recovered by VSM. This approach still fails to retrieve links 
that are missed by VSM. 

Both TM, discussed in Section 2, and RE can fulfill class 
name entity recognition. We found through experimentation 
that the results obtained from both approaches are the same. 
However, TM spends much more time than RE, and 
combining TM into our traceability recovery system made 
the whole system much slower than RE. Therefore, we chose 
to use RE rather than more sophisticated TM techniques in 
our current tool. 

C. Key Phrases (KP) 
Key Phrases provide a brief summary of a document’s 

content [33]. We wanted to use the KP technique to extract 
key words (or key phrases) from comments of code to 
provide a brief summary of each class’s description 
comment and use these to augment our VSM technique’s 
link recovery.  

There are two situations where VSM is unable to retrieve 
correct links. Firstly, when class names do not follow a 
naming convention strategy VSM struggles to retrieve 
documents that do not explicitly mention the class name. For 
example, for a class named “RefAddr”, its VSM query is 
“RefAddr OR ref addr OR ref OR addr”, VSM is unable to 
retrieve documents not containing “RefAddr” as “ref” and 
“addr” are not common words. Secondly, documents 
implicitly mentioning a class but not explicitly using the 
same word as the class name or separated words of the 
compounded class name are also problematic. For example, 
a class named “Media”, but where documents may use 
“medium” to indicate this class. We have found that these 
two issues can be addressed by taking the comments in 
source code into consideration. Generally, software 
developers provide comments to describe the purpose of the 
class or what tasks the class fulfills. Extracting key phrases 
from comments can help find alternative words to the class 
name or words indicating what tasks the class fulfills. For 
example, “medium” indicates the class “Media”, “reference 
address” refers to the purpose of the class “RefAddr”. As 
long as comments in each classes are well documented, KP 
can extract all possible key phrases that summarize the 
purpose of each class. We found that adding these extracted 
key phrases to the VSM queries enables our approach to 
work in the above two contexts. However, many fault links 
at low cut points are also recovered. 

D. Clustering 
In general, every document has an inherent hierarchical 

structure. Documents are usually divided into sections with 
headings. Each section has a direct parent or some direct 
children or some siblings. There exist tangled relationships 
between these sections. For example, in this paper, “Section 
3.A The Basic Retrieval Approach” has a direct parent, 
“Section 3 Our Approach”, and three siblings, “Sections 3.B, 
3.C, and 3.D”. It has no children. Section 3.A, 3.B, 3.C, and 
3.D cross-reference each other to some extent. We take 
advantage of these tangled relationships to reduce the 
number of fault links retrieved by using Clustering. 

Clustering is a division of a set of objects into groups of 
similar objects: clusters [22]. We modify the K-mean 
clustering algorithm [22] to meet our needs. There are three 
main steps in this: initialization, assignment, and removal. 
We take links between the class “java.awt.dnd.DragSource” 
and sections in a document as an example to illustrate our 
clustering algorithm. Table 1 shows an example where 34 
sections are related to “DragSource”. Each line represents a 
link and lines colored blue and italicized refer to true links. 
Before starting the initialization step, all retrieved links are 
grouped based on classes; namely, links related to the same 
class are grouped together. Clustering is performed on each 



group that represents sections related to the same class. Then 
the algorithm selects k clusters according to the number of 
links with similarity values ! s. Each cluster contains one of 
these related sections. When the group contains links with a 
similarity value that equals to 1, then the algorithm uses s = 1. 
Otherwise, the algorithm uses s = 0.3 to create clusters. From 
empirical observation we found four reasons to use this latter 
value when none of the links’ similarity value in the group is 
equal to 1. Firstly, a majority of the fault links have a 
similarity score " 0.3. Secondly, links with similarity ! 0.3 
are more likely to be true. Thirdly, if we use s " 0.3, our 
approach retrieves many fault links and only slightly more 
true links. Fourthly, if s ! 0.3, our approach slightly 
decreases the number of fault links but does not obtain more 
true links. Empirically, therefore, we found the 0.3 threshold 
to be the best choice for the target systems used in our 
experiment. We need to conduct more experiments, however, 
to validate its suitability for other systems. In Table 1, 15 
links have a similarity score = 1. The algorithm thus creates 
15 clusters, each one containing one of these sections. 

TABLE I.  SECTIONS RELATED TO JAVA.AWT.DND.DRAGSOURCE 

Next, the algorithm assigns the direct parent, all direct 
children and all siblings of the initial section to the cluster, 
but only new sections that aren’t already in other clusters and 
are in the retrieved link set. Take the cluster for section 2.3 in 
Table 1 for example: sections 2.3.1, 2.3.2, 2.3.5, 2.3.6, and 
2.5 are not assigned to this cluster as they belong to other 
clusters, and section 2.4 is not assigned as it is not in the 
retrieved link set. Lines colored by red (bold) and blue 
(italics) indicate links included in clusters. Finally, links not 
in clusters are discarded. Thus, in this case, 6 links out of 34 
are discarded in the group for “DragSource”. We have found 
that our clustering approach eliminates many fault links at 
low cut points. 

IV. IMPLEMENTATION 
Figure 1 illustrates the traceability recovery process of 

our approach. First, if a document contains sections, it is 
partitioned into small sub-documents according to sections 
or headings (1). For example, if a PDF document contains 10 
headings including all sub-headings, it is split into 10 sub-
documents; the contents of each are the text between its 
heading and the following one. These sub-documents are 
then preprocessed. 

Next, source code is analyzed by the code dependency 
analysis system in order to extract source code identifiers 
(every class, method, package name), and comments inside 
code (2). Code dependency analysis is based on Eclipse’s 
JDT Java parser [8]. These extracted class names are passed 
to the Regular Expression (RE) processor to find sections 
that directly mention class names (3). Links retrieved by the 
RE processor are assigned the highest similarity score (= 1), 
and form the RE link set. 

 

 
Figure 1.  Traceability recovery process of our approach 

At the same time, extracted comments inside code are 
passed to the Key phrases extraction system (4). This is 
based on KEA, a keyphrase extraction algorithm developed 
by Witten et al. [19, 33]. This extracts key phrases from 
comments. These extracted key phrases are combined with 
extracted class names to form IR queries (5). A query string 
for IR is established by using OR operators to combine the 
class name, the separated words if the class name is formed 
by compound words, and key phrases extracted from 
comments in the class code. 

Before using the Apache Lucene IR engine [4, 20] to 
capture links between sections and class entities, sections in 
documents are preprocessed (6). Lucence preprocessing 
starts by generating tokens from consecutive letters in the 
text stream according to token boundaries that are defined at 
non-letter characters.  Next, non-textual tokens (i.e. special 
symbols, numbers etc.) are dropped. A lower case filter 
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transforms all capital letters into lower case letters, and a 
stop-words filter removes common words (i.e. articles, 
adverbs, etc.). Finally, an IR corpus is generated containing 
all documents and words (or tokens) in the documents. The 
IR engine retrieves traceability links according to queries, 
and computes similarity scores (0 " similarity score " 1) 
based on the frequency and distribution of the key words or 
phrases (7). Recovered links forms the IR link set. The RE 
link set and the IR link set are then merged together (8). If a 
link can be found in both sets, then the one in the IR set is 
removed and we leave the link in the RE set (i.e. with higher 
rank). Finally, the merged link set passes through the 
Clustering system to refine the link set to produce the final 
candidate traceability links (9). 

To make the extracted traceability links “useful” for 
maintainers our final step is to visualize recovered links 
allowing users to browse and maintain these links in a 
natural and intuitive way.  We use a hierarchical, graphical 
traceability link visualization that can be expanded and 
contracted to enable users to interact with large numbers of 
extracted relationships. A screen dump of a prototype 
version showing links visualization is shown in Figure 2. 
Here a software engineer has selected a source file 
(PrintJob.java) and its related sections retrieved by our link 
recovery technique in the file (JPS_PDF.pdf) are highlighted. 

 
Figure 2.  A screen dump from our Eclipse-based prototype tool in use. 

V. EVALUATION 

A. Case Studies 
To validate the effectiveness of our approach, we have 

set up four case studies based on four unrelated software 
systems. The first system we used is JDK 1.5, a free software 
system for Java developers. Table 2 describes the packages 
in JDK 1.5 and their corresponding PDF documents used in 
this study, as well as the number of Java classes and the 
number of sections in them. We divided these PDF files into 
sections based on their headings. This case study contains 
760 true links. We describe how we built the oracle 
traceability link set for JDK 1.5 in Section 5.C. 

The systems used for the other three case studies are 
ArgoUML, Freenet, and JMeter. Alberto Bacchelli [6] kindly 
provided the three systems, their email archives, and their 

oracle traceability link sets. These emails were extracted 
from active development mailing lists of each project. Table 
3 provides details of these three case studies. 

TABLE II.  JDK1.5 PACKAGES AND DOCUMENTS 

JDK 1.5 #classes/ 
sections 

Java 
packages 

java.awt, javax.naming, and javax.print 
packages 

249 

JPS_PDF.pdf: Java™ Print Service API 
User Guide 

68 

dnd1.pdf: Drag and Drop subsystem for the 
Java Foundation Classes 

41 

jndispi.pdf: Java Naming and Directory 
Interface™ Service Provider 
Interface(JNDI SPI) 

73 

PDF files 

Total sections: 182 

TABLE III.  CLASS ENTITIES, EMAILS, AND TOTAL TRUE LINKS PER 
SYSTEM 

 Classes Emails Total true links 

ArgoUML 423 378 308 

Freenet 517 372 516 

JMeter 372 348 563 

B. Evaluation Metrics 
Precision, Recall, and F-measure are common metrics 

used in the evaluation of IR systems. The three metrics 
depend on three figures: correct (or true) links retrieved, fault 
links retrieved, and missing links. 

Correct links retrieved are those that are correctly 
captured by the system. Fault links are those that are wrongly 
detected by the system. Total links retrieved combine these 
two kinds of link. Relationships that are not found by the 
system are called missing links. Total correct links are the 
sum of correct links retrieved and missing links. Precision 
can be defined as the ratio of the number of correct retrieved 
links over the total number of retrieved links. If precision 
equals 1, it means that all the recovered links are correct, 
though there could be correct links that were not recovered. 

Precision = Correct links retrieved / Total links retrieved  

Recall is the ratio of the number of correct retrieved links 
over the total number of correct links. Recall = 1 indicates 
that all correct links are recovered, but there may be 
incorrect recovered links. 

Recall = Correct links retrieved / Total correct links 

The F-measure combines precision and recall based on 
their weighted harmonic mean to measure the effectiveness 
of retrieval. # is an adjustable weight to favor precision over 
recall. We take #=1 to weight precision and recall equally. 

F-measure = (#2+1) Precision $ Recall / ((#2Recall)+Precision) 

Two sets of traceability links between sections in 
documents and class entities are prepared in order to 
compute precision, recall, and F-measure. One set is 
produced by a system under evaluation; the other is an oracle 
traceability link set carefully prepared manually (Section 5.3 



describes how the link set for JDK1.5 is established; the 
oracle link sets of ArgoUML, Freenet, and JMeter area as 
provided by Alberto Bacchelli). The latter is critical as it is a 
crucial factor in determining the number of missing links. 
Comparison of the two sets is then conducted to determine 
whether a link is correct, faulty, or missing. 

C. Building the Oracle Traceability Link Set 
In order to build the oracle traceability link set for 

JDK1.5, we employed a method of manually verifying trace 
links by a group as used in [5, 6, 15] to build the oracle 
traceability link set for our case study, JDK1.5. We recruited 
11 analysts: 9 analysts had at least 6 years of Java 
programming experience, and 2 participants had more than 9 
years of Java programming experience. We set up two rules 
to assist participants in finding and verifying a link. First, if a 
section directly mentions a class identifier/name, then this 
section is related to this class. The second rule is that if a 
section describes tasks that a class should fulfill, then they 
are related. At the first stage, the classes were divided into 6 
sets. 6 participants then manually retrieved links between 
sections in documents and classes by following the above 
two rules. After they completed their task, we asked another 
participant to verify these links. At the second stage, conflict 
links produced at the first stage were randomly divided into 3 
overlapping sets. Three other participants verified these 
conflict links by carefully studying the text of documents and 
the comments inside code. After the three finished, we asked 
a senior participant to verify those links still having conflicts. 
This participant carefully studied the text of documents and 
the comments in code. This participant also consulted with 
another senior participant. Each conflict link was thus 
analyzed by at least 3 participants. When three reviewers 
agreed that the conflict link was a fault, we considered this 
link to be a fault link and discarded it. The final oracle link 
set comprised 760 true links. Our rigorous manual 
verification of the true links remedied any potential bias of 
adding incorrect links to the oracle link set [5, 6, 15]. 

D. Evaluation Results 
To evaluate whether the three supporting techniques, RE, 

KP, and Clustering, ameliorate limitations of VSM, we 
compared the performances of four different combinations of 
techniques: VSM; the combination of VSM and RE; the 
combination of VSM, RE and KP; and our final approach 
VSM, RE, KP and Clustering. The following sections 
describe the results produced by the four different 
combination techniques. Every approach recovers links with 
a similarity score ! the cut point. For example, the cut point 
is 0.02, which denotes that all links having a similarity score 
! 0.02 are extracted by our approach. A cut point < 0.3 is 
considered as a low cut point in the following discussion. 
Otherwise we consider it to be a high cut point. In Figure 3, 
we summarize the precision results of all approaches for the 
four case studies. Recall results of all approaches are in 
Figure 4. 

1) The Basic Retrieval Approach: First, we used VSM 
to recover links between documents and class entities to 
discover VSM’s performance at different cut points. It is 

obvious from precision results in Figure 4 and recall results 
in Figure 5 that the lower the cut point used, the lower the 
precision value but the higher the recall value VSM obtains. 
Although VSM retrieves a majority of true links at low cut 
points from 0 to 0.1, many fault links are extracted, 
especially at 0 and 0.02 cut points. VSM gets the highest 
precision value at 0.9 cut point for JDK1.5 and ArgoUML 
and at 0.7 cut point for Freenet and JMeter but only recovers 
very few true links. 

2) VSM and Regular Expressions (RE): We then 
evaluated the combination of VSM and RE to verify 
whether RE can increase the number of retrieved links at 
high cut points. Figure 4 shows that adding RE to VSM 
improves precision at all cut points except for JMeter’s 0.5 
and 0.7 cut points. In Figure 5, we observe that recall is 
largely increased at all cut points especially for high cut 
points. This indicates that adding RE to VSM retrieves more 
true links than VSM alone. 

3) VSM, RE, and Key Phrases (KP): To recover links 
missed by VSM, we added an additional technique, KP. 
From Figures 4 and 5, compared with the combination of 
VSM and RE, we see that after adding KP to VSM and RE, 
precision at all cut points is increased for JDK1.5 and 
ArgoUML, but recall has a slight decrease. However, there 
is no significant improvement in Freenet and JMeter. 
Compared with VSM, adding KP still increases recall at all 
cut points except for the slight decrease at cut points from 
0.02 to 0.08 for JDK1.5. This shows that this combination 
retrieved more true links and less fault links than VSM. 

4) VSM, RE, KP, and Clustering: Incorporating 
Clustering into the last combination aims to reduce the 
number of fault links but not deteriorate recall too much. 
Figures 4 and 5 show that our approach of integrating the 
three supporting techniques with VSM fulfills the above two 
objectives. Precision is largely increased at all cut points 
especially at low cut points. The majority of fault links are 
discarded at low cut points. Although our approach retrieves 
less true links than VSM alone at low cut points for JDK1.5 
and ArgoUML, at 0 to 0.02 cut points for Freent, and at 0 to 
0.04 cut points for JMeter, recall is only slightly reduced 
and still reaches a value ! 80% for JDK1.5, Freenet and 
JMeter, and > 62% for ArgoUML. This shows that our 
approach largely reduces the number of fault links without 
suffering from low recall at low cut points. 

E. Performance of Our Approach 
We ran our approach on an iMac with a 2.4 GHz Intel 

Core Duo processor and 3GB of RAM. Figure 3 shows that 
our approach took up to 5 minutes to execute on each case. 
For all cases, this is 4-9 times more than VSM, 2-6 times 
more than VSM+RE, and up to 10 seconds more than 
VSM+RE+KP. 80% of time for JDK1.5 and at least 60% of 
time for other cases are spent on KP extraction. It is because 
KEA, the key phrases processor in our approach, uses an 
expensive machine learning algorithm for training and key 



phrase extraction [33]. Our approach thus produces a much 
better result than the other 3 combination techniques but is 
slower. It is vastly faster than manually extracting links. 
When building the oracle link set, every participant spent one 
hour on average to identify related sections of 50 classes. 

 
Figure 3.  Execution times for different combinations 

VI. DISCUSSION 
According to our experimental results, precision is 

gradually improved through incrementally adding techniques 
into the combination approach, and is greatest when 
incorporating all three techniques with VSM. Adding RE to 
VSM increases precision at high cut points from 0.3 to 0.9 
and recall at all cut points. Analysis of the four case studies 
shows that documents contain many class names that enable 
RE to match classes to documents. Further adding KP 
increases precision at all cut points for JDK1.5 and 
ArgoUML but slightly decreases recall. Freenet and JMeter 
are unresponsive to the KP technique. Analysis of source 
code reveals a low number of comments in their source code. 
In addition, the key phrases extracted from comments 

contain many key words unrelated to the purpose of classes. 
Finally, precision at low cut points from 0 to 0.1 is greatly 
increased by adding Clustering. Analysis of the four cases 
shows that documents have inherent hierarchical structure 
that provides useful hierarchical information for Clustering 
to refine retrieved links. Our approach is able to obtain good 
Precision at all cut points. Moreover, recall for our approach 
is much higher than for VSM at high cut points, but slightly 
less than for VSM at low cut points for JDK1.5 and 
ArgoUML, at 0 to 0.02 cut points for Freenet, and at 0 to 
0.04 cut points for JMeter. 

Therefore, we conclude that our approach improves the 
precision of retrieved links and achieves high recall by 
utilizing the strengths of RE, KP, and Clustering to mitigate 
limitations of VSM. VSM has three main drawbacks: it 
recovers very few links at high cut points, has low Precision 
at low cut points, and misses links if class names do not 
follow the naming convention strategy and if documents use 
different words to describe the related classes. 

Combining RE with VSM eliminates the first drawback 
of VSM. Adding KP to this combination ameliorates the 
third drawback of VSM. Finally, integrating Clustering 
ameliorates the drawback of many fault links produced by 
VSM. Furthermore, the F-measure results of all approaches 
in Figure 6 show that our approach is the most effective 
among all approaches we evaluated if precision and recall 
are considered equally important. 

The main limitation of our approach is that some true 
links are discarded after adding Clustering. This is because 
the group containing links related to a same class is totally 
removed when no links in the group have a similarity value 
larger than the threshold s value, this leads to no clusters for 
this group being created. True links in such groups are cut.  

  
(a) JDK1.5 (b) ArgoUML 

  
(c) Freenet (d) JMeter 
Figure 4.  Precision results for (a) JDK1.5, (b) ArgoUML, (c) Freenet, and (d) JMeter 



  
(a) JDK1.5 (b) ArgoUML 

  
(c) Freenet (d) JMeter 

Figure 5.  Recall results for (a) JDK1.5, (b) ArgoUML, (c) Freenet, and (d) JMeter 

  
(a) JDK1.5 (b) ArgoUML 

  
(c) Freenet (d) JMeter 

Figure 6.  F-measure (#=1) results for (a) JDK1.5, (b) ArgoUML, (c) Freenet, and (d) JMeter 

In future work we will experiment with allowing users to 
configure thresholds and select some or all techniques to 
apply to the extracted link set. Furthermore, we will explore 

the impact of other techniques to refine the extracted links 
such as our visual IDE’s user creation and editing of links 
and both user and automated ranking of relationship quality. 



In addition, we will carry out a usability evaluation of our 
traceability relationship recovery approach and our trace link 
visualization tool to determine how effective they are in 
assisting users navigate between source code elements and 
associated documentation elements. 

VII. THREATS TO VALIDITY 
First, we relied on human judgment to build the oracle 

link set and thus this set might not 100% correct. To alleviate 
this, we applied a very rigorous manual verification strategy 
to analyze every true link, which were verified by at least 3 
analysts. Second, our traceability recovery technique may 
show different results when applied to other software 
systems with other types of documents. To alleviate this, we 
chose 4 unrelated open-source systems. These systems are 
varied in the sizes of the systems, the types of documents, 
the structures of documents, and the availability of 
comments in source code. However, we cannot confirm that 
our results are similar in closed-source systems. 

VIII. SUMMARY 
It is a major challenge for traceability recovery 

techniques to extract relationships between diverse artifacts 
of a software system at high-levels of precision and recall. 
Many recovery techniques exist but none so far produces 
sufficiently consistent and high enough quality of results that 
software developers require. Our traceability system 
incorporates three supporting techniques, RE, KP, and 
Clustering, with VSM to extract links between documents 
and class entities. The three techniques ameliorate the key 
limitations of VSM by taking advantage of the respective 
strengths of each of the three supporting techniques. Our 
experimental results from four different combination 
recovery approaches provide a demonstration that our 
combination recovery approach can eliminate some 
limitations of VSM. Our approach improves precision at all 
cut points, reduces fault links at low cut points, and increases 
the number of true links at high cut points. 
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