
Architecture vs Agile: competition or co-operation?

John Grundy

Swinburne University of Technology

Until recently, conventional wisdom has held that Software Architecture design and Agile

development methods are somehow “incompatible”, or at least they generally work at cross-
purposes (Nord and Tomayko, 2006). Software architecture design has usually been seen by
many in the agile community as a prime example of the major agile anti-pattern of “big de-
sign up front”. On the other hand, agile methods have been seen by many of those focusing
on the discipline of software architecture as lacking sufficient forethought, rigor and far too
dependent on “emergent” architectures (a suitable one which may never actually emerge). In
my view, there is both a degree of truth and a substantial amount of falsehood in these some-
what extreme viewpoints. Hence the time seems ripe for a book exploring leading research
and practice in an emerging field of “agile software architecture”, and charting a path for in-
corporating the best of both worlds in our engineering of complex software systems.

In this foreword I briefly sketch the background of each approach and the anti-agile, anti-
software architecture viewpoints of both camps, as they seem to have become known. I delib-
erately do this in a provocative and all-or-nothing way, mainly to set the scene for the variety
of very sensible, balanced approaches contained in this book. I hope to seed in the reader’s
mind both the traditional motivation of each approach and how these viewpoints of two ei-
ther-or, mutually exclusive approaches to complex software systems engineering came about.
I do hope that it is apparent that I myself believe in the real benefits of both approaches and
they are certainly in no way incompatible – agile software architecting - or architecting for
agile, if you prefer that viewpoint – is both a viable concept and arguably the way to approach
the current practice of software engineering.

Software Architecture - the “Traditional” View

The concept of “software architecture” – both from a theoretical viewpoint as a means to
capturing key software system structural characteristics (Shaw & Garlan, 1996) and practical
techniques to develop and describe (Kruchten, 1995; Bass et al, 2003) – emerged in the early
to mid 1980s in response to the growing complexity and diversity of software systems. Practi-
tioners and researchers knew implicitly the concept of a “software architecture” existed in all
but the most trivial systems. Software architecture incorporated elements including, but not
limited to, human machine interfaces, databases, servers, networks, machines, a variety of el-
ement inter-connections, many diverse element properties, and a variety of further structural
and behavioral sub-divisions (thread management, proxies, synchronization, concurrency, re-
al-time support, replication, redundancy, security enforcement, etc). Describing and reasoning
about these elements of a system became increasingly important in order to engineer effective
solutions, with special purpose “Architecture Description Languages” as well as a wide varie-
ty of architecture modeling profiles for the UML. Software architecting includes defining an
architecture from various perspectives and levels of abstraction, reasoning about the architec-

jgrundy
Foreword - Agile Software Architectures, © Elsevier 2013.

jgrundy

jgrundy

ture’s various properties, ensuring the architecture is realizable by a suitable implementation
which will meet system requirements, and evolving and integrating complex architectures.

A number of reusable “architecture patterns” (Bass et al, 2003) have emerged, some ad-
dressing quite detailed concerns e.g. concurrency management in complex systems, while
others much larger scale organizational concerns e.g. multi-tier architectures. This allowed a
body of knowledge around software architecture to emerge, allowing practitioners to leverage
best-practice solutions for common problems and researchers to study both the qualities of
systems in use and to look for improvements in software architectures and architecture engi-
neering processes.

The position of “software architecting” in the software development lifecycle was (and still
is) somewhat more challenging to define. Architecture describes the solution space of a sys-
tem and hence traditionally is though of as an early part of the design phase (Bass et al, 2003;
Kruchten, 1995). Much work has gone into developing processes to support architecting
complex systems, modeling architectures, and refining and linking architectural elements into
detailed designs and implementations. Typically one would identify and capture require-
ments, both functional and non-functional, and then attempt to define a software architecture
that meets these requirements.

However, as all practitioners know, this is far easier said than done for many real world
systems. Different architectural solutions themselves come with many constraints on which
requirements can be met and how they are met, particularly non-functional requirements.
Over-constrained requirements may easily describe a system that has no suitable architectural
realization. Many software applications are in fact “systems of systems” with substantive
parts of the application already existent and incorporating complex, existent software archi-
tecture that must be incorporated. In addition, architectural decisions heavily influence re-
quirements and co-evolution of requirements and architecture is becoming a common ap-
proach (Avgeriou et al, 2011). Software architectural development as a top-down process is
hence under considerable question.

Agile Methods – the “Traditional” View

The focus in the 1980s and 90s on extensive up-front design of complex systems, devel-
opment of complex modeling tools and processes, and focus on large investment on architec-
tural definition (among other software artifacts) were seen by many to have some severe dis-
advantages (Beck et al, 2001). Some of the major ones identified included over-investment in
design and wasted investment in over-engineering solutions, inability to incorporate poorly
defined and/or rapidly changing requirements, inability to change architectures and imple-
mentations if they proved unsuitable, and lack of a human focus (both customer and practi-
tioner) in development processes and methods. In response a variety of “agile methods” were
developed and became highly popular in the early to mid 2000s. One of my favorites and one
that I think exemplifies the type is Kent Beck’s eXtreme Programming (XP) (Beck, 1999).

XP is one of many agile methods that attempts to address these problems all the way from
underlying philosophy to pragmatic deployed techniques. Teams comprise both customers
and software practitioners. Generalist roles are favored over specialization. Frequent itera-
tions deliver usable software to customers ensuring rapid feedback and continuous value de-
livery. Requirements are sourced from focused user-stories and a backlog and planning game
prioritizes requirements, tolerating rapid evolution and maximizing value of development ef-
fort. Test-driven development ensures requirements are made tangible and precise via execut-
able tests. In each iteration enough work is done to pass these tests but no more, avoiding
over-engineering. Supporting practices including 40 hour week, pair programming and cus-
tomer on site avoid developer burn-out, support risk mitigation and shared ownership, and fa-
cilitate human-centric knowledge transfer.

A number of agile approaches to developing a “software architecture” exist, though most
treat architecture as an “emergent” characteristic of systems. Rather than the harshly criti-

cized “big design up front” architecting approaches of other methodologies, spikes and refac-
toring are used to test potential solutions and continuously refine architectural elements in a
more bottom-up way. Architectural spikes in particular give a mechanism for identifying ar-
chitectural deficiencies and experimenting with practical solutions. Refactoring, whether
small scale or larger scale, is incorporated into iterations to counter “bad smells”, which in-
clude architectural-related problems including performance, reliability, maintainability, port-
ability and understandability. These are almost always tackled on a need-to basis, rather than
explicitly as an upfront, forward-looking investment (though they of course may bring such
advantages).

Software Architecture – Strengths and Weaknesses w.r.t. Agility

Upfront software architecting of complex systems has a number of key advantages (Abra-
hamsson et al, 2010). Very complex systems typically have very complex architectures, many
components of which may be “fixed” as they come from third party systems incorporated into
the new whole. Understanding and validating a challenging set of requirements may necessi-
tate modeling and reasoning with a variety of architectural solutions, many of which may be
infeasible due to highly constrained requirements. Some requirements may need to be traded
off against others to even make the overall system as a whole feasible. It has been found in
many situations to be much better to do this in advance of a large code base and complex ar-
chitectural solution to try and refactor (Abrahamsson et al, 2010). It is much easier to scope
resourcing and costing of systems when a software architecture documenting key components
exists upfront. This includes costing non-software components (networks, hardware) as well
as necessary third party software licenses, configuration and maintenance.

A major criticism of upfront architecting is the potential for over-engineering and thus
over-investment in capacity that may never be used. In fact, a similar criticism could be lev-
eled in that it all too often results in an under-scoped architecture and thus under-investing in
required infrastructure, one of the major drivers in the move to elastic and pay-as-you-go
cloud computing (Grundy et al, 2012). Another major criticism is the inability to adapt to po-
tentially large requirements changes as customers re-prioritize their requirements as they gain
experience with parts of the delivered system (Beck et al, 2001). Upfront design implies at
least some broad requirements – functional and non-functional – that are consistent across the
project lifespan. The relationship between requirements and software architecture has indeed
become one of mutual influence and evolution (Avgeriou et al, 2011).

Agile – Strengths and Weaknesses w.r.t. Software Architecture

A big plus of agile methods is their inherent tolerance and in fact encouragement of highly
iterative, changeable requirements, focusing on delivering working, valuable software for
customers. Almost all impediments to requirements change are removed, and in fact many ag-
ile project planning methods explicitly encourage reconsideration of requirements and priori-
ties at each iteration review, the mostly widely known and practiced being SCRUM (Schwa-
ber, 2009). Architectural characteristics of the system can be explored using spikes and parts
found wanting refactored appropriately. Minimizing architectural changes by focusing on
test-driven development – incorporating appropriate tests for performance, scaling and relia-
bility – goes a long way to avoiding redundant, poorly fitting and costly over-engineered so-
lutions.

While every system has a software architecture, whether designed-in or emergent, experi-
ence has shown that achieving a suitable complex software architecture for large-scale sys-
tems is challenging with agile methods. The divide-and-conquer approach used by most agile
methods works reasonably well for small and some medium-sized systems with simple archi-
tectures. It is much more problematic for large-scale system architectures and for systems in-

corporating existent (and possibly evolving!) software architectures (Abrahamsson et al,
2010). Test-driven development can be very challenging when software really needs to exist
in order to be able to define and formulate appropriate tests for non-functional requirements.
Spikes and refactoring support small system agile architecting but struggle to scale to large-
scale or even medium-scale architecture evolution. Some projects even find iteration se-
quences become one whole refactoring exercise after another, in order to try and massively
re-engineer a system whose emergent architecture has become untenable.

Bringing the Two Together – Agile Architecting or Architecting for
Agile?

Is there a middle-ground? Can agile techniques sensibly incorporate appropriate levels of
software architecture exploration, definition and reasoning, before extensive code bases using
an inappropriate architecture are developed? Can software architecture definition become
more “agile”, deferring some or even most work until requirements are clarified as develop
unfolds? Do some systems best benefit from some form of big design up front architecting
but can then adopt more agile approaches using this architecture? On the face of it, some of
these seem counter-intuitive and certainly go against the concepts of most agile methods and
software architecture design methods.

However, I think there is much to be gained leveraging strengths from each approach to
mitigate the discovered weaknesses in the other. Incorporating software architecture model-
ing, analysis and validation in “architectural spikes” does not seem at all unreasonable. This
may include fleshing out user stories that help to surface a variety of non-functional require-
ments. It may include developing a variety of tests to validate these requirements are met. If a
system incorporates substantive existing system architecture, exploring interaction with inter-
faces and whether the composite system meets requirements by appropriate test-driven devel-
opment seems eminently sensible early-phase, high-priority work. Incorporating software ar-
chitecture-related stories as priority measures in planning games and SCRUM-based project
management also seems compatible with both underlying conceptual models and practical
techniques. Emerging toolsets for architecture engineering, particularly focusing on analyzing
non-functional properties, would seem to well support and fit agile practices.

Incorporating agile principles into software architecting processes and techniques also does
not seem an impossible ask, whether or not the rest of a project uses agile methods. Iterative
refinement of an architecture including some form of user stories surfacing architectural re-
quirements; defining tests based on these requirements; rapid prototyping to exercise these
tests; and pair-based architecture modeling and analysis could all draw form demonstrated
advantages of agile approaches. A similar discussion emerges when trying to identify how to
leverage design patterns and agile methods, user-centered design and agile methods, and
model-driven engineering and agile methods (Nord and Tomayko, 2006; McInerney and
Maurer, 2005; Dybå and Dingsøyr, 2008). In each area, a number of research and practice
projects are exploring how the benefits of agile methods might be brought to these more “tra-
ditional” approaches to software engineering, and how agile approaches might incorporate
well-known benefits of patterns, UCD and MDE.

Looking Ahead

Incorporating at least some rigorous software architecting techniques and tools into agile ap-
proaches appears, to me at least, to be necessary for successfully engineering many non-
trivial systems. Systems made up of architectures from diverse solutions with very stringent
requirements, particularly challenging non-functional ones, really need careful look-before-
you-leap solutions. This is particularly so when parts of the new system or components under
development may adversely impact existing systems e.g. introduce security holes, privacy

breaches, or adversely impact performance, reliability or robustness. Applying a variety of
agile techniques – and the philosophy of agile – to software architecting also seems highly
worthwhile. Ultimately the purpose of software development is to delivery high quality, on-
time and on-budget software to customers, allowing for some sensible future enhancements.
A blend of agile focus on delivery, human-centric support for customers and developers, in-
corporating dynamic requirements, and where possible avoid over-documenting and over-
engineering exercises all seem of benefit to software architecture practice.

This book goes a long way to realizing these trends of agile architecting and architecting
for agile. Chapters include a focus on refactoring architectures, tailoring SCRUM to support
more agile architecture practices, supporting an approach of continuous architecture analysis,
and conducting architecture design within an agile process. Complementary chapters include
analysis of the emergent architecture concept, driving agile practices using architecture re-
quirements and practices, and mitigating architecture problems found in many conventional
agile practices.

Three interesting works address other topical areas of software engineering: engineering
highly adaptive systems, cloud applications and security engineering. Each of these areas has
received increasing attention from the research and practice communities. In my view, all
could benefit from the balanced application of software architecture engineering and agile
practices described in these chapters.

I do hope that you enjoy this book as much as I have in reading over the contributions.
Happy agile software architecting!

References

Abrahamsson, P., Babar, M.A., Kruchten, P., Agility and architecture – can they co-exist?, IEEE Soft-
ware 27 (2), 2010.

Avgeriou, P., Grundy, J., Hall, J.G., Lago, P., Mistrík, I. Relating software requirements and architec-
tures, Springer, 2011.

Bass, L., Clements, P., Kazman, R., Software architecture in practice, Angus & Robertson, 2003.
Beck et al, Manifesto for Agile Software Development, http://agilemanifesto.org/, 2001.
Beck, K. Embracing change with extreme programming, Computer 32 (10), 1999.
Dybå, T. and Dingsøyr, T., Empirical studies of agile software development: A systematic review, In-

formation and Software Technology 50, August 2008.
Garlan, D. and Shaw, M. Software architecture: perspectives on an emerging discipline, Angus & Rob-

ertson, 1996.
Grundy, J., Kaefer, G., Keong, J., Liu, A. Software Engineering for the Cloud, IEEE Software 29 (2),

2012.
Kruchten, P. The 4+ 1 view model of architecture, IEEE Software 12 (6), 1995.
McInerney, P. and Maurer, F., UCD in agile projects: dream team or oadd couple?, Interactions 12 (6),

2005.
Nord, R.L., Tomayko, J.E., Software architecture-centric methods and agile development, IEEE Soft-

ware 23 (2), 2006.
Schwaber, K., Agile Project Management with SCRUM, O’Reily, 2009.

