
Analyis of the Textual Content of Mined Open Source Usability Defect Reports

Nor Shahida Mohamad Yusop, Jean-Guy
Schneider

School of Software and Electrical Engineering
Swinburne University of Technology

Melbourne, Australia
{nmohamadyusop, jschneider}@swin.edu.au

John Grundy, Rajesh Vasa
Faculty of Science, Engineering and Built Environment

Deakin University
Melbourne, Australia

{j.grundy, rajesh.vasa}@deakin.edu.au

Abstract— Writing a good usability defect report can be a
tedious task, especially in identifying what important
information should be included, and capturing the attention of
software developers to fix them. This paper is a continuity of
our previous studies investigating software development
practitioners’ day-to-day practices when dealing with usability
defects. In this study, we mined 377 developer-tagged usability
defect reports from Mozilla Thunderbird, Firefox for Android
and Eclipse Platform to confirm what software development
practitioners claimed to provide when reporting usability
defects. We looked for the presence of key defect attributes –
steps to reproduce, impact, software context, expected output,
actual output, assumed causes, solution proposal and
supplementary information. In addition, we analyzed the trend
of different types of usability defects, correlation between
usability defects and defect severity, and failure qualifier. Our
findings demonstrate a mismatch between what software
development practitioners claimed to provide when reporting
usability defects, and the information that actually appears in
the defect reports. The results of our research have important
implications for software defect reporting, especially in
designing more effective mechanisms for reporting usability
defects.

Keywords-Bugzilla; software defect reporting; usability
defects;

I. INTRODUCTION
Reporting usability defects can be a challenging task,

especially in convincing software developers that the
usability defect reported is indeed a real defect. Specifically,
the subjective nature of usability defects that cause confusion
for some people require stronger evidence to describe and
report the problem. However, research to date in software
defect reporting has not investigated the capture of different
information based on defect types, such as usability defects.
This lack of empirical data on information needs for different
types of defect reporting impedes research on finding what
information is best to describe a usability defect. While
previous studies have identified steps to reproduce, actual
output and expected output as an important information to
fix software defects in general [1], [2], however, these
studies do not consider what information should be reported,
and how the information should be presented when it come
to specific types of defects.

Our work fills this gap by focusing on usability defect
reporting. In our previous studies [3], we have surveyed

software development practitioners to identify what kind of
information do they provided when reporting usability
defects. In order to verify what the software development
practitioners claimed in the surveys, we conducted an
empirical investigation of 377 usability defects in Mozilla
Thunderbird, Firefox for Android and Eclipse Platform
projects. In addition to previous studies that investigate the
characteristics of defects based on predefined defect data
(i.e., product, component, version) and comments [4]–[8],
we examined the textual content of usability and
performance-related defects to find out if there is any
difference in the way these two types of defects are
described. We picked performance-related defects as a
comparison benchmark because they are a non-functional
type of defect that are commonly reported in open source
projects and often studied by other researchers [9].

The rest of the paper is organized as follows. In Section
2, related work and motivational example is presented. In
Section 3 we describe the methodology of our study. Section
4 follows with results and discussion in comparison with
previous studies. Section 5 outlines threats to validity. The
paper concludes with a summary, implications and future
works in the conclusion Section 6.

II. RELATED WORK AND MOTIVATION
Although some recent work has analyzed defect

repositories, very little has been done on mining and
understanding usability defects. Most research has focused
on improving the defect resolution of critical defects such as
performance and security defects [7], [10], [11]. Other work
focuses on identifying defect characteristics of software
defects in general [5], [11]–[15]. To the best of our
knowledge, Twidale et al. [16] provides a starting point to
studying open source usability defects. In contrast to our
work that studied usability defect report content, they
examined the usability discussions in comments section and
revealed four main challenges – (1) the difficulty to textually
report usability defects, (2) the use of posted textual
comments that is not suitable to discuss and keep track of
design ideas, (3) the subjective nature of usability defects
that leads to many disagreements, and (4) the ripple effects
of fixing usability defects.

In this work we are interested in addressing the first
challenge. The motivation for investigating usability defects
is that these types of defects have been said to receive less

2017 Asia-Pacific Conference on Software Engineering (APSEC2017), 4-8 December 2017, Nanjing, Jiangsu, China, (c) IEEE 2017

attention from software developers [17]. Furthermore, work
in the usability and Human-Computer Interaction (HCI)
literature has focused more on improving usability
evaluation methods and given relatively little attention to the
content of usability defect description [18], [19]. We
postulate the completeness of a defect report often
determines how quickly it will be fixed. According to [20]–
[22], a well-written usability defect description should
describe impact and severity, cause of the problem, observed
user actions, solution to the problem, support with data and
avoid wordiness and jargon. However, in the absence of
formal usability evaluation in open source projects, aspects
such as likely difficulties [23], impact [24], user’s feelings,
emotion and “struggling” with the interface [16], which is
important to convince software developers about the validity
of the problem are often missing in defect report.

To get a deeper insight into how important the early
presence of certain information can speed up the defect
correction process, consider usability defect 846414 in
Mozilla Thunderbird, as shown in Fig. 1. The defect was
opened on February 2013, but only responded by Developer
A after a year noting that the defect is not of high priority
and they have a lot of other things to work on. This defect
report is very minimal, containing just summary of the
problem extracted from a blog post and the reporter’s
expectation. Possibly, the unclear description of user
difficulty and solution to the problem makes this issue slip to
the bottom of the list of things to fix. Surprisingly, a patch to
the issue was ready by Developer B on the same day
Developer A expressed their idea to solve the issue. This
suggests that including all relevant information when a
defect is first reported is clearly important to help software
developers prioritize the defect, fix the defect and speed up
the defect resolution time. However, the current unstructured
free-text defect report form may not help reporters to report
such information at the initial report submission [16], [25],
[26]. Studies have shown that important information, such as
stack traces, error reports and test cases are common to be
provided at a later time[13]. Furthermore, without specific
prompts for this information, it can be challenging for non-
technical users to be aware what kind of information should
be provided.

Bug 846414: Hide the “Show All Tabs” button when there are less
than 2 tabs
Part of a blog post that we are pushing to redo the TB UI.
Point 7: Only show "show all tabs" button when there are multiple
tabs.
For more details see:
http://infinite-josiah.blogspot.com/2013/02/thunderbird-ui-
concept.html
========================
It is pointless to show the button that lists all your tabs when you only
have one open. In fact, it really is pointless to show them unless you
have more tabs than your Window can hold.
This bug is to remove it/hide it when not being useful.

Figure 1. Example of a ONE-COLUMN figure caption.

III. METHODOLOGY

A. Research Questions
In order to investigate how usability defects are

currently described in representative open source
communities and to reveal common usability defect
characteristics, we formulated the following six research
questions:

• RQ1: What information is commonly provided in
open source usability defect reports?

• RQ2: How if at all, is a proposed solution to the
usability problem described?

• RQ3: Are usability defects described differently
from performance-related defects?

• RQ4: What are the dominant types of usability
defects (e.g., interface and interaction) in open
source projects?

• RQ5: What are the impacts of usability defects and
what types of usability defects have a severe impact?

• RQ6: On what basis, do usability defect reporters
justify that the user difficulty that they experience is
an issue?

B. Projects and Report Extraction
To answer these research questions, we performed an

extraction and analysis of usability and performance-related
defects gathered from the Bugzilla defect repository of the
Mozilla Thunderbird, Firefox for Android and Eclipse
Platform projects. Our choice of these projects was based on
the following factors:

• These projects represent a variety of different uses
and environments;

• These projects have significant graphical user
interfaces (GUI) that use windows, icons and menus
and user tasks can be manipulated by a mouse,
keyboard or touch screen;

• These projects use standard defect-reporting
templates provided by the Bugzilla defect repository,
hence maintaining consistency when comparing the
type of information presented when reporting
defects;

• These projects make use of keywords to label and
classify defect type reducing selection bias; and

• These projects are among the most successful user-
facing applications that engage various levels of user
participation with different levels of knowledge and
technical experience.

Across the three projects, 23,373 defect reports are
available to download in CVS format. However, we only
studied 377 FIXED defect reports tagged with predefined
Bugzilla usability keywords as listed in Table 2. The reason
we chose to use developer-tagged usability defect reports is
to reduce selection bias, as the software developers already
completed the resolution process and have reached
agreement on the actual types of defects reported and
corrected. We extracted sample defect reports for each
project in four steps: 1) filter defect reports that were
resolved as FIXED; 2) specify columns/ attributes that we

wish to appear in the defect list. In this study, we add
Keywords, Opened, Reporter, Number of Comments and Last
Resolved attributes; 3) extract and save the data in CSV
format; 4) filter the usability and performance defect reports.
Since the usability defects downloaded for all projects only
constitute a small percentage of all reported defects we chose
to analyze all of them in this work.

C. Analyzing defect Report Content
Our analysis of usability defect report content only

focused on the initial reporting of a defect, not investigating
the subsequent discussion about the problem and its possible
solution in the comments sections. We used the defect
report title, description and attachment fields as our main
source of investigation. We defined eight metrics based on
Capra’s guidelines as described in [27] to assess the
presence of certain information when describing usability
defects. Since defect reports presented in open source defect
repositories are in unstructured plain text, we are unable to
automatically assess the presence of these metrics. Even
though the Bugzilla defect report template can be
customized to label some of these metrics, such as “Steps to
reproduce”, “Expected Output” and “Actual Output”, many
reporters do not explicitly describe these metrics.

We read all 377 usability defect reports and manually
identify whether the criteria listed in Table 1 were present in
the defect report. The presence of steps to reproduce (STR),
impact (IMP), software context (SC), expected output (EO),
actual output (AO), assume cause (AC), solution proposal
(SP), and supplementary information (SI) set as 1 implies
that the “information exist”, and 0 implies that the
“information does not exist”. Since IMP, AC and SP do not

have separate fields, we measured the presence of these
information based on the following criteria:

1) AC - defect report number, in which reporter felt the
current issues was likely due to the previous fixed.

2) IMP – user difficulty, number of reproducibility,
high numbers of users encountered the same
problem, and severity.

3) SP – justification of the proposed solution or
fragmental/ modification of affected code/ patch
description on how to fix the problem.

The procedure to analyze the defect reports consisted of
going through each report twice. The first reading focused
on understanding the context of usability problems and
identifying the main interface or/ interaction problems
described by the reporter. The second reading was to
highlight the keywords and snippets of the defect
description describing the problem types, impact, and failure
qualifier based on the previous classification. We used the
card-sorting technique to group impact information into
several groups that have similar ground of user difficulty,
while problems types and failure qualifier were reorganized
according to Usability Problem Taxonomy (UPT) and
Orthogonal Defect Classification (ODC), respectively.

D. Data Analysis
We report our analysis results with descriptive statistics.

Chi-square test of independence was used to find the
significance relationship between: (1) the types of projects
and defects, and the presence of seven usability defect
attributes, and (2) the presence of impact information and
defect severity.

TABLE I. CRITERIA USE TO RATE LEVEL OF DETAILS OF USABILITY DEFECT DESCRIPTION BASED ON CAPRA’S GUIDELINE [20]

Quality criteria Related Capra’s Guidelines
1. Is the defect report describe details steps to reproduce the defect? [11] (Steps to reproduce) Describe observed user actions
2. Does the defect report indicate the effect of the problems on the user? (Impact) Describe the impact and severity of the problem
3. Does the defect report describe the problematic part of the user interface? (Software context) Describe the impact and severity of the problem
4. Does the defect report contain details of expected output and actual output? [11] (Actual and

expected output)
Describe observed user actions

5. Does the defect report contains criteria used to justify the usability problem identified is true?
(Assumed cause)

Describe the cause of the problem

6. Does the defect report contain design ideas? (Solution proposal) Describe a solution to the problem
7. Does the defect report contain support information as evidence to the problem? (Supplementary

information)
Support your findings with data

TABLE II. USABILITY DEFECTS STUDIED

Project Total Other resolution Resolved/ Verified
Fixed Duplicate Incomplete Invalid Wontfix Worksforme Expired

Mozilla Thunderbird 384 185 88 64 4 9 16 17 1
Firefox for Android 292 62 101 59 3 11 36 20 0
Eclipse Platform 530 78 188 46 - 68 103 47 -
Total 1206 325 377 169 7 88 155 84 1
Other resolution – New, unconfirmed, assigned, and reopened
Usability-related – ue, uiwanted, useless-UI, ux-affordance, ux-consistency, ux-control, ux-discovery, ux-efficiency, ux-error-prevention, ux-error-recovery,
ux-implementation, ux-interruption, ux-jargon, ux-minimalism, ux-mode-error, ux-natural-mapping, ux-tone, ux-trust, ux-undo, ux-userfeddback, ux-visual-
hierarchy

IV. RESULTS AND DISCUSSION

A. Usability Defect Report Contents
In this research we are interested in investigating the

presence of the following key information in usability defect
report descriptions: (1) steps to reproduce the problem; (2)
user difficulty that could effect human task and emotional
reaction; (3) context, or settings, in which the problem occurs;
(4) actual and observed results; (5) assumption of or known
cause of the problem; (6) solution proposed to solve the
problem; and (7) supplementary information. We answer the
following research questions: RQ1: What information is
commonly provided in open source usability defect reports?
when the defect is initially reported. In addition, we
investigate RQ2: How if at all, is a proposed solution to the
usability problem described?

Fig. 2 shows that the most widely reported attributes in
usability defect reports open source projects studied are AO,
EO and SC. Attributes rarely presented in usability defect
description are AC and SI. The AC could only be found in less
than 5% of defect reports. While STR is considered as the
most important attributes in defect reports [1], [2], our study
found that only between 19% - 46% of defect reports contain
this information, depending on project.

Similar to previous findings investigating open source
defect reporting in general [13], we also found that the
presence of information for usability defects varies between
projects. Referring to Table 3, the p-value for the Chi-square
tests for each attribute except AC, which is less than 0.05,
suggesting that there is indeed a relationship between projects
and the presence of certain attributes for usability defects. As
shown in Fig. 2, it is apparent that certain attributes are
common in some projects. From this data, we can draw
several observations. First, the AO is found in more than 80%
of Mozilla Thunderbird and Eclipse Platform. Surprisingly,
only about 50% of Firefox for Android usability defects
contain actual outcome even though the defect reporting tool
specifically prompts its users for this information. Second,
while Mozilla Thunderbird and Eclipse Platform reporters
mainly used textual description to describe usability defects,
Firefox for Android more often provided supplementary
information. As we can see from Table 4, screenshots are the
most favorable supplementary materials used in Firefox for
Android. Third, across the three projects, Firefox for Android
usability defects contained very little information on STR
(19.%), IMP (15.8%), and EO (43%). Fourth, given the nature
of the open source communities, which the users have varying
level of technical knowledge, defect reports in all projects
contained virtually no AC. This attribute, however, is not
necessarily appropriate for all types of usability defects. For
example, a usability defect that is not related to technical
deficiency is quite difficult to be explained even by technical
users. The limited knowledge and experience of open source
communities around usability and HCI aspects is one of the
barriers for reporters to technically relate the usability issues
and the violated usability principles and HCI guidelines. In the
context of understanding the root cause of usability defects,
perhaps AC could be explained in the form of rationale as a
ground for a particular usability issue.

For answering RQ2, we observed about one third of the
defect descriptions contain SP. A close inspection of usability
defect data as in Table 6 shows that about 30% to 40% of
solution proposals were described in words. The other means
of describing solution proposals were in a form of ASCII art,
graphical elements or code, and UI-digital mockups, that only
account less than 2% of defects in all three projects.

Figure 2. Distribution of usability defects in which each attribute was
presented, by project

TABLE III. CHI-SQUARE TESTS RESULTS TO EXAMINE THE INFLUENCE
OF PROJECTS AND THE PRESENCE OF DEFECT ATTRIBUTES

Defect attributes ρ value χ2 (df=2, n=377)
Steps to reproduce (STR) 0.000 16.67
Impact (IMP) 0.006 10.16
Software context (SC) 0.000 24.96
Expected output (EO) 0.003 11.51
Actual output (AO) 0.000 32.78
Assumed cause (AC) 0.934 0.137
Solution proposal (SP) 0.024 7.45
Supplementary information (SI) 0.000 26.68

TABLE IV. TYPES OF SUPPLEMENTARY INFORMATION PROVIDED IN
USABILITY DEFECT REPORTS

Supplementary
information

Project
Mozilla

Thunderbird
(n=88)

Firefox for
Android
(n=101)

Eclipse
Platform
(n=188)

Annotated
screenshots

1.1% 0.0% 0.0%

Error report 1.1% 0.0% 0.5%
External URL link 6.8% 10.0% 1.1%
Problem occurrence 0.0% 1.0% 1.6%
Screenshots 0.0% 13.9% 1.1%
Stack traces 0.0% 0.0% 1.1%
Task workaround 2.3% 0.0% 0.0%
Usability guidelines 0.0% 0.0% 0.5%
Violated UX-
consistency

2.3% 0.0% 0.0%

0.0% 50.0% 100.0% 150.0% 200.0% 250.0%

STR

IMP

SC

EO

AO

AC

SP

SI

STR IMP SC EO AO AC SP SI
Mozilla	Thunderbird 46.6% 35.2% 73.9% 65.9% 83.0% 2.3% 40.9% 13.6%
Firefox	for	Android 19.8% 15.8% 47.5% 43.6% 53.5% 2.0% 33.7% 25.7%
Eclipse	Platform 33.0% 30.3% 42.6% 56.9% 85.6% 3.2% 31.9% 6.9%

TABLE V. CHI-SQUARE TEST RESULT TO EXAMINE THE INFLUENCE OF DEFECT TYPES (PERFORMANCE-RELATED AND USABILITY DEFECTS) AND THE
PRESENCE OF DEFECT ATTRIBUTES

Attributes Mozilla Thunderbird Firefox for Android Eclipse Platform
ρ χ2 (df=1, n=121) Φ ρ χ2 (df=1, n=177) Φ ρ χ2 (df=1, n=800) Φ

Steps to reproduce 0.06 3.69 0.18 0.13 2.30 0.11 0.01 7.54 0.10
Impact 0.03 4.54 0.19 0.18 1.84 0.10 0.00 65.65 0.29

Software context 0.00 12.45 0.32 0.03 4.57 0.16 0.00 3.52 0.07
Expected output 0.01 6.85 0.23 0.00 12.25 0.26 0.00 58.21 0.27

Actual output 0.21 1.58 0.11 0.21 1.59 0.10 0.75 0.10 0.01
Assumed causes 0.38 0.76 0.08 0.00 14.26 0.28 0.00 32.95 0.20

Solution proposal 0.88 0.02 0.01 0.77 0.09 0.02 0.05 3.97 0.07
Supplementary information 0.83 0.05 0.02 0.00 8.06 0.21 0.00 11.59 0.12

Figure 3. Distribution of defect attributes between usability and performance-related defects.

TABLE VI. THE WAY SOLUTION PROPOSAL IS PRESENTED

Solution proposals
presentation

Project
Mozilla

Thunderbird
(n=88)

Firefox for
Android
(n=101)

Eclipse
Platform
(n=188)

Textual descriptions 39.8% 29.7% 30.3%
ASCII arts 1.1% 1.0% 0.0%
Graphical elements or
code that could be
immediately implemented

0.0% 2.0% 0.5%

UI digital mockups 0.0% 1.0% 0.5%

B. Differences Between Usability and Performance Defect
Report Content
In this research we are also interested in investigating how

the different types of defects are described using different
information. In answering RQ3: Are usability defects
described differently from performance-related defects? we
chose performance-related defects as a benchmark to compare
these differences. We considered the defect attributes STR,
IMP, SC, EO, AO, AC, SP and SI as our dependent variables
(nominal data) and defect types as the independent variable
(nominal data). We read the defect description and rated the
presence or absence of information as 0 = information is
present, 1 = information is not present, respectively.

As shown in Table 5, at a significant level p=0.05, we
found relationships between software context and expected
output, and defect types in all the three projects. However, no
relationships were found between actual output and solution
proposal, and defect types in the three projects. At the same

significance level, the relationship between assumed causes
and supplementary information and defect types was only
significant in Eclipse Platform and Firefox for Android
projects, while relationship between steps to reproduce and
defect types was only observed in Eclipse Platform.

Fig. 3 reveals several observations about these
relationships. First, actual output is commonly reported both
in usability and performance-related defects for all three
projects. On average, more than 70% of usability and
performance defects contain explanation about what happened
or what they saw while using the software product. Second, in
contrast to Mozilla Thunderbird and Firefox for Android, steps
to reproduce is most often used to explain in performance-
related rather than usability defects. Third, assumed causes is
least reported for both usability and performance-related
defects across the projects. However, we found Firefox for
Android and Eclipse Platform performance-related defects
contain more information on assumed causes than usability
defects compared to Mozilla Thunderbird. Fourth, while
supplementary information is mostly attached to performance-
related defects, solution proposals is more common in
usability defects. Interestingly, Firefox for Android defect
reports contain more supplementary information as compared
to Mozilla Thunderbird and Eclipse Platform. Fifth, less than
30% of Firefox for Android and Eclipse Platform
performance-related defects described the expected output
(26.3%, 29.9%, for Firefox for Android and Eclipse Platform,
respectively). In summary, we found that usability and
performance-related defects reported in open source projects
usually contain output details and software contexts. Possibly,
these findings were influenced by the generic Bugzilla tool

defect report form that has specific attributes for actual result,
observed result and software context attribute.

C. Types of Usability Defects
In this section, we describe the distribution of different

types of usability defect categories, including interface and
interaction usability defects. We answer RQ2: What are the
dominant types of usability defects (e.g., interface or
interaction) in open source projects? In addition, we study the
subcategories of interface and interaction usability defects, as
suggested in [28], [29].

Fig. 4 summarizes the distribution of usability defects
within different categories and subcategories. Based on UPT
[28] and fault GUI model [29], we classified interface
usability defects into GUI structure and aesthetics, information
presentation and audibleness, while interaction usability
defects are divided into manipulation, task execution and
functionality.

From Fig. 4, we can draw the following findings and
implications:

a) Both interface and interaction usability defects are
common in all three open source projects. However, as
can be seen in Fig. 4b GUI structure and aesthetics are
the most dominant types of usability defects, 34.1% in
Mozilla Thunderbird, 36.6% in Firefox for Android,
and 35.1% in the Eclipse Platform. To this end, the
object state problem is responsible for a significant
proportion of the GUI structure and aesthetics
categories in Mozilla Thunderbird and Eclipse
Platform (Fig.4c). Object state issues account for
15.9% and 14.9% of the sample usability defects in
Mozilla Thunderbird and Eclipse Platform,
respectively. Firefox for Android, on the other hand,
contains a much smaller percentage of object state
problems (7.9%) but had the largest percentage of
object appearance problems, accounting for 18.8%.
One possible reason is due to the nature of the
application, in which Firefox for Android is an
application developed for mobile devices that have
several limitations such as small screen, single
window, touchscreen, and screen orientation support.
For example, the small screen size may limit the
content displayed and organization of information that
substantially affects the overall look and feel of the
application.

b) For the information presentation and audibleness
category, all three projects only contain a small
percentage of defects, accounting for less than 7% of
the usability defects reported. Among the information
presentation problems, error and notification message
and menu structure are the highest problems reported
for Eclipse Platform and Mozilla Thunderbird,
respectively. One possible reason for the large fraction
of error message problems may be that the Eclipse
Platform is targeting technical users, and therefore the
use of syntax error codes or abbreviations in error
message such as “an error of type 2 has occurred”
should not be a problem. However, as everyone can
contribute to open source projects, inexplicit and
technical messages may sometimes not be
understandable by users with limited “technical-

development” knowledge. Perhaps, no matter what
kind of projects and intended users, error messages
should include explicit, polite, precise, constructive
advice written in human-readable language so that all
users can understand it. Surprisingly, non-message
feedback and data error is virtually not exist in Firefox
for Android, while these problems occur in less than
4% of defects in Mozilla Thunderbird and Eclipse
platform.

c) As shown in Fig.4b, issues related to functionality is
the dominant interaction problem and our study results
indicate that Firefox for Android has the highest
amount of missing functionality, accounting for 14.9%
of defects. As Mozilla Thunderbird is a more stable
project than Firefox for Android and Eclipse Platform,
technical deficiency is very low in comparison.

d) For task execution subcategories, incorrect task action
has the largest proportion in Mozilla Thunderbird
(17%), followed by Eclipse Platform (13.3%). In all
three projects, less than 2% of usability defects had
reversibility problems.

e) As shown in Fig.4f, keyboard press accounts the
largest manipulation problems in Mozilla Thunderbird
(9.1%) and Eclipse Platform (6.4%). Across the three
projects voice control does not exist. This finding
suggests that the voice control category is not pertinent
to the current usability problem taxonomy and could be
eliminated. Unsurprisingly given the nature of the
application, Firefox for Android usability defects
contained virtually no mouse click and drag and drop
problems, and very few keyboard problems (1.0%). As
Firefox for Android is an application developed for a
mobile device, finger touch is the relevant. Also, likely
due to the fact that direct manipulation using mobile
gesture is a very sensitive interaction, scrolling is more
common in Firefox for Android compared to Mozilla
Thunderbird and Eclipse Platform.

D. The Impact of Usability Defects
In this section, we describe the distribution of effect and

the correlation between effects and defect severity. We answer
RQ3: What are the effects of usability defects and what types
of usability defects have severe impact?

In our analysis, we identified two fundamental types of
impact: the (1) impact on human emotion, to which the defect
reporter described their feelings when they were experiencing
difficulties using the software due to the usability defect, and
the (2) impact on task performance, that prevented the reporter
from completing task execution. Overall, when describing a
particular user difficulty, reporters tended to support a single
impact description at a time (rather than discuss both impact
on emotion and task performance) and reporters provided little
evidence for their impact claims.

Fig. 5 summarizes the distribution of different impacts
with the corresponding defect severity. It shows that
accessibility is the dominant task performance impact in
Mozilla Thunderbird, accounting for 11.4% of sampled
defects.

a) Interface vs interaction usability defects

b) Interface and interaction defects subcategories

c) GUI structure and aesthetic subcategories

d) Information presentation subcatgories

e) Audibleness subcategories

f) Manipulation subcategories

g) Functionality subcategories

h) Task execution subcatgories

Figure 4. Distribution of usability defects with categories and subcategories.

47.7%

54.5%

45.5%

48.5%

55.3%

47.3%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0% 140.0% 160.0%

Interface

Interaction

Mozilla	Thunderbird Firefox	for	Android Eclipse	Platform 0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

GUI	structure	 and	aesthetics

Information	 presentation

Audibleness

Manipulation

Task	execution

Functionality

Mozilla	Thunderbird

Firefox	for	Android

Eclipse	Platform

0.0% 10.0% 20.0% 30.0% 40.0% 50.0%

Object	appearance

Object	layout

Object	state

%	of	Defects

GU
I	s
tr
uc
tu
re
	a
nd
	a
es
th
et
ics
	s
ub
ca
te
go
rie

s

Mozilla	Thunderbird

Firefox	for	Android

Eclipse	Platform

0.0% 2.0% 4.0% 6.0% 8.0% 10.0%12.0%

Data	error

Object	(screen)	naming	and	labeling

Non-message	feedback

Error/	 notification	 and	feedback	
message

On	screen	text	and	results

Menu	structure

%	of	Defects
In
fo
rm

at
io
n	
pr
es
en
ta
tio
n	
su
bc
at
eg
or
ie
s

Mozilla	Thunderbird

Firefox	for	Android

Eclipse	Platform

0.0% 5.0% 10.0% 15.0% 20.0%

Keyboard	press

Mouse	click

Finger	touch

Voice	control

Scrolling	 mechanism

Drag	and	drop

Zooming

%	of	Defects

M
an
ipu

lat
ion

	s
ub
ca
te
go
rie

s

Mozilla	Thunderbird

Firefox	for	Android

Eclipse	Platform

0.0% 5.0% 10.0% 15.0% 20.0% 25.0%

Missing

Inadequate

Preferenced

Irrelevant

Misaligned

Problematic

Technical	deficiency

%	of	Defects

Fu
nc
tio
na
lit
y	
su
bc
at
eg
or
ie
s

Mozilla	Thunderbird

Firefox	for	Android

Eclipse	Platform

0.0% 5.0% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0%

Action

Reversibility

Feedback

%	of	Defects

Ta
sk
	e
xe
cu
tio
n	
su
bc
at
eg
or
ie
s

Mozilla	Thunderbird

Firefox	for	Android

Eclipse	Platform

	
a)	Mozilla	Thunderbird	

	

	
b)	Firefox	for	Android	

	

	
c)	Eclipse	Platform	

Figure 5. Distribution of usability defects impact and defect severity.

TABLE VII. DISTRIBUTION OF FAILURE QUALIFIER ACROSS
PROJECTS

Failure Qualifier Project
Mozilla

Thunderbird
(n=88)

Firefox
for

Android
(n=101)

Eclipse
Platform
(n=188)

Wrong 23.9% 9.9% 19.1%
Missing 3.4% 1.0% 1.1%
Irrelevant 5.7% 5.9% 3.2%
Better way 25.0% 10.9% 22.9%
Overlooked 3.4% 1.9% 1.1%
Incongruent mental
model

27.3% 20.8% 15.4%

None 11.4% 49.5% 37.2%

In terms of impact on human emotion, confusion is the
most addressed in all three projects: 5.6% in Mozilla
Thunderbird, 3.0% in Firefox for Android, and 11.1% in
Eclipse Platform. However, these percentages are still
considered low, suggesting that the open source usability
defect descriptions do not contain sufficient information
to describe how the interface-interaction defects cause
user difficulty that confuse and mislead users. Perhaps as
a consequence of this, usability defect reporting tools
should specifically prompt its users for this information in
a separate field so that users clearly describe this
information.

As we can see, a large fraction of usability defects are
rated as “normal” severity: 14.7% in Mozilla
Thunderbird, 17.0% in Firefox for Android, and 24.5% in
Eclipse Platform. Only 6.8% of usability defects in
Mozilla Thunderbird and Eclipse Platform were reported
as being a severe problem that causes system failure, data
loss and impairs the product function: major (5.7% in
Mozilla Thunderbird, and 5.8% in Eclipse Platform), and
critical (1.1% in Mozilla Thunderbird, and 1.0% in
Eclipse Platform). While the usability defect severity
distribution in Mozilla Thunderbird and Eclipse Platform
varies between enhancement, trivial, minor, major, critical
and blocker, Firefox for Android usability defects were
only rated as normal and enhancement. One possible
reason for this situation is may be because normal
severity was set as the default option for selection of
severity when reporting a defect using the project
Bugzilla defect repositories [30].

In order to understand the influence of defect report
impact on severity, we carried out Chi-Square tests for
independence to examine whether the defect severity is
dependent on the presence of impact information. We
found χ2 (5) = 9.076, p=0.169> 0.05, suggesting that there
is no relationship between the reported defect severity and
the presence of impact information in the usability defect
report.

E. Usability Defect Failure Qualifier
In a formal usability evaluation, failure qualifier can

usually be easily identified by observing how users
experience a particular usability problem during testing.
However, in the context of open source projects, where
usability defects are normally reported as a result of “black
box” usage without a proper usability evaluation method,
it is quite difficult to identify the qualifier of the problems.
This section answer RQ4: On what basis, do usability
defect reporters justify that the user difficulty that they
experience is an issue? This information is helpful for
software developers to understand the nature of the
problem. In our study, we used qualifier attributes of the
ODC [31] and revised some of the original definitions to
suit the context of our analysis.

As shown in Table 7, the most common failure
qualifiers across the three projects are incongruent mental
model (27.3% in Mozilla Thunderbird, 20.8% in Firefox
for Android, and 15.4% in Eclipse Platform), better way
(25.0% in Mozilla Thunderbird, 10.9% in Firefox for

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

%
	o
f	D

ef
ec
ts

Effect

Minor

Trivial

Enhancement

Blocker

Major

Critical

Normal

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

%
	o
f	D

ef
ec
ts

Effect

Minor

Trivial

Enhancement

Blocker

Major

Critical

Normal

0.5%

9.0%

1.6%

4.3%

2.1% 1.6%
3.2%

1.1% 1.1%0.0%

0.5%

0.0%

0.5%

0.0%
0.0%

0.0%

0.0% 0.0%
0.0%

0.0%

2.1%

0.5%

1.1%

0.0%

1.6%

0.5% 0.0%
0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%
0.0%

0.0%

1.1%

1.1%

1.1%

0.5%

0.5%

0.0%

0.0%
0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%

0.0%
0.0%

0.0%

0.5%

0.0%

0.0%

0.5%

0.0%

0.0%

0.0%
0.0%

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

Normal Critical Major Blocker Enhancement Trivial Minor

Android, and 22.9% in Eclipse Platform) and wrong
(23.9% in Mozilla Thunderbird, 9.9% in Firefox for
Android, and 19.1% in Eclipse Platform). With regards to
incongruent mental model, it was common for reporters to
compare two different things that have similar
characteristics in order to justify a desire for consistency
in design. It was also common for reporters to use their
previous experiences to illustrate some point of view on
certain issues:

With the menu changes, and the removal of the
numbered perspective items, we need another way
of switching between perspectives. We should add
a perspective switcher, similar to the editor and
view switchers … [Consistency]
With recent E4 builds I often see unjustified flickering
in the workbench window. I haven't seen this before.
[Previous experience]

Only a small fraction of usability defect reports

contain missing (3.4% in Mozilla Thunderbird, 1.0% in
Firefox for Android, and 1.1% in Eclipse Platform),
overlooked (3.4% in Mozilla Thunderbird, 1.9% in
Firefox for Android, and 1.1% in Eclipse Platform) and
irrelevant (5.7% in Mozilla Thunderbird, 5.9% in Firefox
for Android, and 3.2% in Eclipse Platform) to support the
claim of the usability issues. Overall, we observed that
these failure qualifiers are primarily used to support a
claim and defend solution proposal ideas.

V. USING THE TEMPLATE
Construct validity concerns the appropriateness of the

studied metrics. For example, for our assessment of the
existence certain information in usability defect reports,
we have chosen important usability attributes from human
computer interaction studies [20]. One possible threat
might be the reliability of the attributes to be significant
for comparing performance defects with usability defects.
We minimized this threat by using common defect
attributes such as steps to reproduce, actual and expected
output, and introducing general attributes like
supplementary information.

Internal validity For each defect in the sample, the
first author manually read the textual description. This
process required reading the bundle of text, interpreting
the problems, classifying the information into any of the
defined attributes and assigning a score if the information
is presented. Since this qualitative analysis leads to the
subjective evaluation, incorrect interpretation,
classification and scoring may potentially affect our
results. To overcome this threat the other authors
crosschecked a selection of classifications. We also built a
checklist that consists of guidelines, so that researchers
are consistent when classifying and giving score for the
information presented in the defect reports.

External validity concerns the generality of our
findings. Our study is limited to open source projects and
restricted to the Bugzilla defect repository. To reduce
selection bias and for a comparison purpose, we selected

two projects from the same defect repository while the
third project is from a different defect repository. We
examined three open source projects, with projects
spanning diverse product functionality and environment;
this small sample cannot be regarded as representative.
However, we did not consider the defect reports from
closed defect repositories, which might affect our results.
We plan to replicate the study with a large number of
datasets in future to test the outcome of this study.

VI. CONCLUSION AND FUTURE WORK
We manually examined 377 usability defect reports

from Mozilla Thunderbird, Firefox for Android and
Eclipse Platform. We presented insights into the current
practice of describing usability defects by open source
communities. In all three projects, actual output, expected
output and software context are the most widely reported
attributes for usability defects, while assumed cause and
supplementary information are the least. It was also
surprising that steps to reproduce is less reported in
Mozilla Thunderbird, Firefox for Android and Eclipse
Platform even software practitioners in our previous
survey claimed that they always provide this information
while reporting usability defects. These findings raise the
question of how the absence of such important
information will affect time to fix? In comparison to
performance-related defects, solution proposal are more
common for usability defects. Additionally, we studied
usability defects from three different dimensions
(usability defect categories, user difficulty and failure
qualifier).

These research findings have important implications
for further research and practice of open source software
development alike. From a research perspective, this
study adds to the body of knowledge focused at
improving defect reporting approaches by considering the
need of different defects types that may need to be further
verified and extended in subsequent research. For
practitioners, especially software testers, it provides a
general guide to the important defect attributes that should
be reported for certain types of defects in order to
improve defect resolution time. Additionally, our findings
can facilitate software developers and management to
prioritize defect fix tasks.

In future work, we would like to investigate the
different categories usability defects belong to, and how
categories vary across projects. Since our manual analysis
may be biased on human interpretation, further research
using text mining tools, such as Weka, could be explored
to automatically classify certain words and phrases into
different categories. While we have done some
comparison with performance-related defect reports, we
believe comparison with other types of fixed defect
reports is needed. Perhaps, a similar study could be
extended to investigate an in-depth relative comparison
with other kinds of functional and non-functional defect
reports, so that we could confirm if the presence of
mismatch only happens with usability defect reports or
other kind of reports as well.

ACKNOWLEDGMENT
Support for the first author from the Ministry of

Higher Education Malaysia, Universiti Teknologi MARA
(UiTM), the ARC Discovery Projects scheme project
DP140102185, and from the Deakin Software and
Technology Innovation Lab and Data61 for all authors, is
gratefully acknowledged.

REFERENCES
[1] T. Zimmermann, R. Premraj, N. Bettenburg, C. Weiss, S. Just, and

A. Schro, “What Makes a Good Bug Report ?,” IEEE Trans. Softw.
Eng., vol. 36, no. 5, pp. 618–643, 2010.

[2] E. I. Laukkanen and M. V. Mantyla, “Survey Reproduction of
Defect Reporting in Industrial Software Development,” in 2011
International Symposium on Empirical Software Engineering and
Measurement, 2011, pp. 197–206.

[3] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects – Do Reporters Report What Software Developers
Need ?,” in Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, 2016.

[4] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for
bugs in large open source projects,” in Proceedings of the 7th
International Conference on Predictive Models in Software
Engineering - Promise ’11, 2011, pp. 1–8.

[5] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug
characteristics in open source software,” Empir. Softw. Eng., pp.
1–41, 2013.

[6] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D.
Poshyvanyk, “Auto-completing Bug Reports for Android
Applications,” Proc. 2015 10th Jt. Meet. Found. Softw. Eng., pp.
673–686, 2015.

[7] S. Zaman, B. Adams, and A. E. Hassan, “Security Versus
Performance Bugs : A Case Study on Firefox,” in Proceedings of
the 8th Working Conference on Mining Software Repositories,
2011.

[8] V. Garousi, E. G. Ergezer, and K. Herkilo, “Usage , usefulness and
quality of defect reports : an industrial case study,” in Proceedings
of the 20th International Conference on Evaluation and
Assessment in Software Engineering, 2016.

[9] Z. M. Jiang, “Automated analysis of load testing results,” in
ISSTA10 Proceedings of the 2010 International Symposium on
Software Testing and Analysis, 2010, pp. 143–146.

[10] A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing
performance bugs,” in 2013 10th Working Conference on Mining
Software Repositories (MSR), 2013, pp. 237–246.

[11] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An
empirical analysis of bug reports and bug fixing in open source
Android apps,” in Proceedings of the European Conference on
Software Maintenance and Reengineering, CSMR, 2013, pp. 133–
143.

[12] S. Lal and A. Sureka, “Comparison of Seven Bug Report Types: A
Case-Study of Google Chrome Browser Project,” in 2012 19th
Asia-Pacific Software Engineering Conference, 2012, pp. 517–
526.

[13] S. Davies and M. Roper, “What’s in a bug report?,” in Proceedings
of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement - ESEM ’14, 2014, pp. 1–
10.

[14] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have
Things Changed Now ? – An Empirical Study of Bug
Characteristics in Modern Open Source Software,” in Proceedings
of the 1st workshop on Architectural and system support for
improving software dependability, 2006.

[15] M. S. Zanetti, I. Scholtes, C. J. Tessone, and F. Schweitzer,
“Categorizing Bugs with Social Networks : A Case Study on Four
Open Source Software Communities,” in Proceedings of the 2013
International Conference on Software Engineering, 2013, pp.
1032–1041.

[16] M. B. Twidale and D. M. Nichols, “Exploring Usability
Discussions in Open Source Development,” in Proceedings of the
38th Annual Hawaii Internatioal Conference on System Sciences,
2005, pp. 1–10.

[17] C. Wilson and K. P. Coyne, “The whiteboard: Tracking usability
issues: to bug or not to bug?,” Interactions, pp. 15–19, 2001.

[18] T. S. Andre, H. Rex Hartson, S. M. Belz, and F. a. Mccreary, “The
user action framework: a reliable foundation for usability
engineering support tools,” Int. J. Hum. Comput. Stud., vol. 54, pp.
107–136, 2001.

[19] M. Theofanos and W. Quesenbery, “Towards the Design of
Effective Formative Test Reports,” J. usability Stud., vol. 1, no. 1,
pp. 27–45, 2005.

[20] M. G. Capra, “Usability Problem Description and the Evaluator
Effect in Usability Testing,”. PhD Thesis. Viginia Tech,
Blacksburg, VA, 2006.

[21] K. Hornbaek and E. Frokjaer, “What Kinds of Usability-Problem
Description are Useful to Developers?,” in Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, 2006,
vol. 50, no. 24, pp. 2523–2527.

[22] B. J. S. Dumas, B. R. Molich, and B. R. Jeffries, “Describing
usability problems: Are we sending the right message?,”
Interactions, pp. 0–4, 2004.

[23] G. Cockton, A. Woolrych, L. Hall, and M. Hindmarch, “Changing
analysts’ tunes: The surprising impact of a new instrument for
usability inspection method assessment,” Proc. HCI 2003 People
Comput. XVII, pp. 145–162, 2003.

[24] S. G. Vilbergsdottir, E. T. Hvannberg, and E. L. C. Law,
“Assessing the reliability, validity and acceptance of a
classification scheme of usability problems (CUP),” J. Syst. Softw.,
vol. 87, pp. 18–37, 2014.

[25] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability
Defects : Limitations of Open Source Defect Repositories and
Suggestions for Improvement,” in Proceedings of the ASWEC
2015 24th Australasian Software Engineering Conference, 2015,
pp. 38–43.

[26] F. P. Simões, “Supporting End User Reporting of HCI Issues in
Open Source Software,”. PhD Thesis. Pontificia Universidade
Catolica, Do Rio De Janeiro, 2013.

[27] J. Howarth, T. Smith-jackson, and R. Hartson, “Supporting novice
usability practitioners with usability engineering tools,” Int. J.
Human-Computer Stud., vol. 67, no. 6, pp. 533–549, 2009.

[28] S. L. Keenan, H. R. Hartson, Dennis G. Kafura, and R. S.
Schulman, “The Usability Problem Taxonomy : A Framework for
Classification and Analysis,” Empir. Softw. Eng., vol. 4, pp. 71–
104, 1999.

[29] V. Lelli, A. Blouin, and B. Baudry, “Classifying and qualifying
GUI defects,” in 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation, ICST 2015 -
Proceedings, 2015.

[30] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck,
“Comparing Mining Algorithms for Predicting the Severity of a
Reported Bug,” in 2011 15th European Conference on Software
Maintenance and Reengineering, 2011, pp. 249–258.

[31] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, B. K.
Ray, and D. S. Moebus, “Orthogonal Defect Classification - A
Concept for In-Process Measurements,” IEEE Trans. Softw. Eng.,
vol. 18, no. 11, pp. 943–956, 1992.

