
In Proceedings of the 2010 Asia-Pacific Software Engineering Conference (APSEC2010) Doctoral Symposium

A High-Level Visual Test Specification Model for DSVL

M. F. Jaafar*, J. Grundy**, J. Hosking***

* Department of Electrical and Computer Engineering,
*** Department of Computer Science,

The University of Auckland, Auckland 1142, New Zealand.
** Department of Computer Science and Software Engineering,
Swinburne University of Technology, Victoria 3122, Australia.

Emails: mjaa001@aucklanduni.ac.nz, jgrundy@swin.edu.au, john@aucklanduni.ac.nz

Abstract

Domain-Specific Visual Languages (DSVLs) have
captured the attention of the programming language
world with their simplicity and high-level
abstraction. This has encouraged many to use
DSVLs as a way to write programs. With little or no
programming knowledge, many end-users can
program tasks that would be beyond them with
conventional programming. Despite their benefits
however, DSVLs need validation, just as
conventional programs do. Tests are typically done
manually and few DSVLs support testing processes
inside the language or tool. Motivated by this, we
propose a high-level visual test specification model
that resides inside DSVL programs. This
specification model enables users to design tests
within their domains, providing a way to validate
their development models.

Keywords: Test Specification Model, Domain-
Specific Visual Language, Testing, Meta-Tool,
Automated Test Generation.

1 Introduction

Domain-specific visual languages or DSVLs are
special types of programming language that use icons
and graphical notations to code programs. With their
simplicity and high-level abstractions, visual languages
have been promoted as better than text-based
programming [ref?? – perhaps Shu?]. The use of
DSVLs in the programming world can be seen in
various fields including the financial, engineering, and
medical domains [1].

The reason behind their success is that they combine the
power and flexibility of programming languages with
the ease of graphical interfaces. They help users who
have little or no understanding of programming to
express their intentions using high-level representation.
Another reason DSVLs have gained momentum is
because of the existence of the DSVL meta-tools, tools
that help to create DSVL tools. Marama [2] and
Microsoft DSL [3] are two examples of these meta-
tools. Using these tools, a developer can create new

DSVLs based on the templates and graphical
representations provided. Even end-users can now
create a DSVL tool and share it with others.
Unfortunately, with all these advantages, the validation
problem remains open. Testing is still being done
manually or with the help of third-party testing tools.
End-users are required to use the saved time (while
creating the programmes) to create tests.

2 Research Question and Motivation

While there is a growing number of large IDE’s for
writing codes, there are fewer for testing [4]; this is also
an issue in the DSVL domain. Current meta-tools are
excellent for supporting the creation of DSVL tools,
and yet, fail to assist the user with the verification and
validation process. Meta-tools like Marama and
Microsoft DSL only support testing to the extent of
text-based testing. It is awkward to use text-based
testing for DSVL programmes where almost everything
is achieved visually. End-users are required to fill in
programme codes and test data manually, which means
that they have to revert to something that they have
moved away from.

Although visualization reduces the complexity in
programming language, it brings new problems. Lack
of attention or misunderstanding of notational
characters may cause unintentional errors [5] or, in this
case, unintended tests. Creating test support for DSVLs
is not an easy task and, in general, it is a huge concept
to start with. DSVLs can be developed for different
domains. Specific DSVLs contain attributes that are not
presented in other DSVLs. Flexibility in a generic
DSVL test support tool is therefore required. Our key
research questions are:

• Can DSVL approaches be used to model tests for
DSVL programs at high-levels of abstraction?

• Can such DSVL test models be used to generate and
run automated test tool scripts?

• What domains can such approaches be applied to?

• Can a DSVL meta-tool be extended to specify and
generate such visual approaches in order to test
programs created by the DSVL tools implemented?

Testing is a tedious task and requires much effort.
Having an IDE that could facilitate testing and its
processes would reduce this effort. The need to have a
test design tool has been clearly documented in [6].
Even, researchers in [7] have discuss combining
requirements engineering and interaction design to help
with development processes. It seems that requirements
engineering have reached a new level and need visual
interaction for assistance. This has motivated us to
explore the possibility of assisting the DSVL program
testing process since most DSVL users lack any deep
programming or testing knowledge.

The main aim of this study is to propose, implement
and validate whether a meta-tool can be extended with
test specification support for DSVLs built using the
meta-tool. We want to extend a current meta-tool’s
potential from just domain-specific language and
application creation to support the DSVL testing
processes.

3 Existing Work

Various methods have been introduced to create tests
automatically, either from program codes [8, 9] or
development documents [10-12]. Testing tools like
JUnit and NUnit focus on textual programming
languages like Java and C#. One example for test
support in the end-user programming domain is the
ability to create tests for spreadsheet applications [13].
Here, the “What you see is what you test” (WYSIWYT)
methodology was used to assist test creation. We
believe this method is relevant in designing a test
specification model for DSVLs, as it is concerned with
creating tests from artefacts that users see (in the DSVL
case, the development model). With this method, end-
users can reuse the development model and specify
tests from it.

In more recent examples, tests have been created based
on user requirements. The first example is where a test
is generated from the viewpoint of an end-user who has
created a security requirement [14]. The system has the
ability to suggest to the end-user if there is any lack in
their system. The same is true in [15], where a model is
created from a document specification and then kept as
abstract as possible to match the textual specification.
Other researchers [16, 17] have derived test cases from
a DSVL. The created test is independent of any
programming language and is transferable across
platforms. We believed that creating test specifications
that are independent of a programming language better
empowers end-users.

As well as creating test cases, we are interested in
exploring visual approaches in test reporting which is
an important part of testing. Test reporting is the
communication point between end-users and the
application created. Existing testing tools provide test
report to a certain extent [8]. A report typically consists
of the number of pass, fail and unexercised tests. Only a

few exceed this stereotype. For instance, [10] describes
a report showing the defects and test paths that were
exercised during the test activity. Users are allowed to
select the path node and see the failed test details too.

Alternatively, [18] illustrates the testing process with
animation. This helps the user to identify improper use
of modelling constructs. A recent study by [19] has
created another approach for visualizing the test
execution. Although this is promising, we believe it
should have more interactive capabilities allowing the
end-users to select and rerun the fail tests with new
data. [20] and [21] suggest that visualization enables the
user to understand faults and how to debug the
programme. These examples indicate that visualization
plays an important role in helping end-users to
understand their application more effectively.

Fig. 1 Overview of testing life cycle in DSVL

Fig. 2 Framework for creating test from DSVL

4 Proposed Solution

The aim of our research is to design a generic high-
level visual test specification meta-tool prototype that
allows users (developer and end-users) to create

Test
Specification

Model

Concrete Test
Case

Development
Model

SUT

Result

specific test specification models and tools. By taking
this approach, we hope to eliminate the need to use
textual testing specifications and scripts. In addition, the
same model can be used to examine execution results
within the development environment.

Figure 1 shows the life cycle of the proposed testing
process for DSVL. The process starts with the DSVL
development model and follows by creating the test
specification model. Then, concrete test cases are
generated and given to the system under test (SUT).
Finally, the test results are gathered and visualized
within the development model.

Illustrated in figure 2 is the framework for creating test
from DSVL. The test should be generated from any
type of DSVL development model combined with a test
specification. These combinations are then fed to a test
generator to create concrete test cases which will be
executed by the SUT. The test execution results
gathered are fed to the test model specification for
result annotations. Within this framework, the test
specification models have two functions:

(i) specifying tests, and

(ii) annotating test results.

5 Contributions

This research focuses on how a DSVL can be used to
support the validation process for other DSVL
programs. The framework will provide guidelines for
creating a test specification model for a DSVL
programme, realised by a DSVL tool developed using a
meta-tool. Listed are the expected contributions from
this research:

• Modelling and visualizing tests using a DSVL

• Generating and executing concrete tests from DSVL
test models

• Extending a DSVL meta-tool to support the testing
process

Currently, we have demonstrated that concrete tests can
be produced from a DSVL test specification model. We
also have confirmed that the test specification model
can be used to annotate test results. Our work is on-
going to identify what types of DSVL are suitable for
use with our proposed test models.

6 Methodology

This research uses the methodology listed below:

• Conduct a literature review on model-based testing,
test generation, and visual test reports to
understand current approaches;

• Design initial test specification model and test
report layout;

• Implement the test specification model functions
inside a meta-tool;

•••• Generate and support execution of the concrete test
cases and test scripts;

• Evaluate the model and accompanying tool using
real world examples and representative end-users
group.

Iterative and incremental development methodologies
are used to prove our framework. This cycle starts with
designing the test specification model, implementing it
in a DSVL meta-tool and then evaluating it in order to
verify the effectiveness of the model. The result is then
used in the next iteration development. A complete test
model specification will be implemented and evaluated
in the last development cycle.

6.1 Designing the Modelling Language

In order to create a test specification model that co-
exists with DSVLs, several criteria need to be
addressed. To help us with this, we have followed the
guidelines provided in [22] and have also conducted a
literature review on past methods used to create tests
from model-based testing and UML notations (as UML
is an example of a DSVL). At the moment, we are
investigating several approaches to identify the best
method for visualizing test execution results.

6.2 Implementing the Design

Marama has been chosen as the meta-tool to help us
prove this framework. It has model generation
capabilities, which allow customizable functions and a
usable GUI. In addition, Marama supports model
integration, which can be used with our test
specification model, in order to identify and implement
the test specification model. Marama is:

(i) used to create DSVLs prototypes,

(ii) used to design and create test specification models,
and

(iii) extended to support test specification creation and
test generation and execution visualisation in a
DSVL meta-tool.

6.3 Evaluating the Model

In order to demonstrate the validation of the proposed
model, we have selected two criteria [23, 24] that are
relevant for end-users. They are briefly explained:

Model representation: This is concerned with the
representation used for defining the test specifications
or contributing towards in the creation of tests.

Usability: This addresses the effort required to learn
and use the test specification language provided. We
also aim to identify the effectiveness of designing test
specifications using the model and tool provided.

We will apply the test specification model with several
case study examples and conduct a user survey. For the

case study, the test specification model should be able
to be used to:

(i) generate an intended test, and

(ii) find errors seeded in the programme.

We will deliberately seed a number of different errors
into the programme. All of these errors will be logic
errors that can occur in programming. We skip syntax
errors because these should be catered for by the
language editor and compiler. We expect that the tests
generated will be able to find all the seeded faults.

We will also undertake a survey on each DSVLs
prototype to obtain end-user feedback on the model and
accompanying tool usability. The survey will ask
questions related to the ease of use and the support
given by the test specification model and accompanying
tool.

The evaluation will be conducted in two stages:

(i) During the initial prototype development. A quick
survey will ask end-users about feasibility and
practicability of the test specification model and
accompanying tool for specifying tests. Results

obtained will be reviewed for a possible significant
research improvement.

(ii) At the last stage of development, when we will fully
validate our proposed meta-tool model.

7 Progress

Until now, we have developed two working prototypes
of DSVLs to evaluate our test model. The first
prototype is MaramaEUC, used for modelling essential
use cases. The second prototype is MaramaFB, created
for drawing function block diagrams design based on
IEC 41699 standard. Both of these DSVL prototypes
were developed using the Marama meta-tool.

7.1 MaramaEUC

Essential use cases or EUCs are an extended version of
use case but from the user view [25]. They are simpler
than UML use case models only requiring users to
specify their intention and the possible system response
at an abstract level. Thus, it tries to capture
requirements without relying on a technology or
implementation bias [26].

Fig. 3 Drawing essential use case with MaramaEUC

Fig. 4 MaramaEUC with Test Specification Model

MaramaEssential is a visual modelling tool for
specifying EUCs. In MaramaEssential, users can create
two main entities; User Tasks and System Responses,
which can be linked with a connection arrow (to show
the flow of process). Figure 3 shows an example of an
essential use case model.

In this prototype, our approach was to specify tests with
a small set of icons that extend the DSVL
“programming” environment and can be used to
explicitly annotate the DSVL programme with test
specification information. Figure 4 presents the
extended version of the essential use case with a test
specification model shown alongside (fig. 3).

In figure 4, test specification is conducted by linking a
test case icon to the essential use case icon. Test oracles
(input and expected output) are specified inside the test
case icon. The collection of test cases is placed inside a
test suite icon to organize the test. Finally, concrete test
cases are generated based on the chosen template. At
this stage, JUnit is our main test template, as our initial
SUT was implemented using Java. For a complete list
of test specification models and examples of generated
concrete tests, please refer to the Appendix.

We have mentioned test visualization in our proposed
solution. Hence, in the MaramaEUCTest prototype, the
test case icon (besides functioning as test case) also
functions as the test result reporter. The test case icon
changes colour from yellow (the default colour) to
green (for a passed test) or red (for a failed test). By
doing this, we help to reduce the need to refer to the

text-based test report. Furthermore, we have reused the
test specification model to facilitate results reporting.

7.2 MaramaFB

Fig. 5 Drawing function block diagram with MaramaFB

A function block diagram describes functions between
input and output variables [27] and is used mainly to
describe the programming logic control inside an
embedded application. MaramaFB is our version of a
function block diagram tool created using Marama.

In MaramaFB, users can draw a block diagram using a
provided set of icons, which can be divided into two
categories;

(i) Interface icons – this represent the function block
components. They consist of a Block icon
(representing a basic block), an Event icon
(representing an event), and a Data icon
(representing an event variable).

(ii) Execution Control Chart (ECC) icons – these
represent the logic control inside a basic block. This
consists of a State icon and a Transition link.

Figure 5 shows an example of a function block diagram
model. MaramaFB was chosen as the second prototype
since it has different characteristics from the first
prototype, MaramaEUC. MaramaEUC is a high-level
abstraction model that works with user requirements.
MaramaFB works with visual languages that directly
specify control logic programming. With different types
of domain-specific language, we will be able to observe
if the test specification model is applicable to other
domains.

Fig. 6 MaramaFB with Test Specification Model

The same test specification model was used but with
some modification to the test oracle. We need to
explore the possibility of having more than one input
(or expected output) in the test (this was not present in
the first prototype). Figure 6 shows MaramaFB with its
test specification model.

Another improvement that we are implementing in the
second prototype is the effect of changing the test suite
icon colour according to the number of test case results.
At this point of development, the test suite icon does
not contribute anything to the visualization test result.
We believe the test suite icon could be extended into
something similar to the test case icon. The idea here is
to use a simple colour calculation method and change
the icon colour based on the number of test cases
passed or failed. If the number of test passes is more
than the number of test failed, it would have a colour
that leans more towards green. It is vice versa if the
number of failed test is more.

Currently, we are working on generating and proving
that concrete tests can be produced from function block
diagrams and test specification models. The process is
however more complicated, mainly because each
diagram contains more than one input and expected
output. To solve this problem, a model checker is added
to the test case generator. Model checking is a
technique for verifying models based on given formulae
specification. The results from the model checker are
fed to the test generator and used to produce concrete
test cases.

8 Future Directions

We will continue to implement and improve our
proposed test specification model on other types of
DSVL domains and are keen to explore the possibility
of using our test specification model on web-based
DSVLs (or embed it inside an existing DSVL). We plan
to embed it into MaramaMTE (Middleware Testing
Environment) which is a tool for modeling complex
software architectures and generating performance test
beds [28]. This will prove whether the test specification
model can be used on other testing tool or not.

The current prototype uses our built-in test generators.
Although the test generator works fine for now, we
would like to see whether the test specification model
can be used effectively with other test case generator.
To achieve this, we are planning to create an export
function that converts the test specification model into
an XML data file. XML is chosen because most of the
current testing tools share data (or specifications) using
this format.

As mention earlier, an evaluation will be carried out to
examine the possibility of using the test specification
model to assists users in creating tests. We will examine
both users’ opinions on the model and the tool ability to
create concrete tests from given specifications. The
results will help us to design a generalized high-level
visual test specification model meta-tool.

Finally, we would like to explore the prospect of
modelling and generating DSVL test support from the
DSVL meta-tool. By doing this, it can increased and
broaden the scope DSVL meta-tool from just
supporting the creation of DSVL to validating its
content. This will definitely make DSVLs a pure visual
programming language.

9 Conclusions

This research aims to create a high-level visual test
specification model that can be used by DSVLs’ end-
users to specify and create tests alongside their DSVL
programs. To achieve this, the past model-based
approaches to test case specification, generation and
visualization were analysed and their strengths and
weaknesses are explored. As a result, we have
developed two prototypes to help us understand the
challenges in developing a visual test annotation. Up to

now, the progress shows that this is achievable and has
the potential to succeed.

Appendix

Table 1 shows the test specification model and its
functions for MaramaEUC.

Table 1 Test Specification Model

Shapes Descriptions

The test suite shape
represents test suite in
testing. It is a place to
group test cases together.
It must contain at least one
test case.

The test case shape
represents test case in
testing. It is place inside
test suite to symbolize that
the test belongs to the test
suite. The shape color can
change depends on test
execution result.

Test case container shape
is equivalent to test case
shape. The different is that
it can be used as container
for input and expected
output.

Input shape represents the
input value for testing. It
can take any kind of data.
User needs to specify the
value and its data type.

Same like input shape,
expected shape represents
the expected output value
for testing.

Fig. 7 Concrete test for Case1

These are the examples of the concrete test cases and

test suite created from our built-in test generator, based
on the test specification model in Figure 3. Figure 7 and

8 show the generated concrete test cases.

Fig. 8 Concrete test for Case2

Fig. 9 Concrete test suite for Case1and Case2

Figure 9 shows the concrete test suites generated.

Acknowledgments

The author would like to thank his supervisors,
Professors John Grundy and John Hosking, for their
guidance and contributions to the research. In addition,
special thanks to Dr Partha Roop for his advice and
comment. We would like to extend our gratitude to the
Malaysian Ministry of Higher Education, Universiti
Putra Malaysia, the University of Auckland and FRST
for funding the research.

References

[1] W. Hui, "Grammar-driven generation of domain-
specific language tools," in Companion to the 21st
ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and
applications Portland, Oregon, USA: ACM, 2006.

[2] J. Grundy and J. Hosking, "Supporting Generic
Sketching-Based Input of Diagrams in a Domain-
Specific Visual Language Meta-Tool," in Software
Engineering, 2007. ICSE 2007. 29th International
Conference on, 2007, pp. 282-291.

[3] S. Cook, G. Jones, S. Kent, and A. C. Wills,
Domain-Specific Development with Visual Studio
DSL Tools (Microsoft .NET Development Series).
Boston: Pearson Education, Inc., 2007.

[4] B. Haugset and G. K. Hanssen, "Automated
Acceptance Testing: A Literature Review and an

Industrial Case Study," in Conference on Agile,
2008. AGILE '08., 2008, pp. 27-38.

[5] S. Morris and G. Spanoudakis, "UML: an
evaluation of the visual syntax of the language," in
System Sciences, 2001. Proceedings of the 34th
Annual Hawaii International Conference on, 2001,
p. 10 pp.

[6] A. Hartman, M. Katara, and S. Olvovsky,
"Choosing a Test Modeling Language: A Survey,"
in Hardware and Software, Verification and
Testing, 2007, pp. 204-218.

[7] H. Kaindl, L. Constantine, O. Pastor, A. Sutcliffe,
and D. Zowghi, "How to Combine Requirements
Engineering and Interaction Design?," in
International Requirements Engineering, 2008. RE
'08. 16th IEEE, 2008, pp. 299-301.

[8] A. J. S. Mills, "JUnit Testing Utility Tutorial,"
2005, p. 6.

[9] C. Poole, "NUnit Cookbook." vol. 2009, 2005.
[10] B. Hasling, H. Goetz, and K. Beetz, "Model Based

Testing of System Requirements using UML Use
Case Models," in Software Testing, Verification,
and Validation, 2008 1st International Conference
on, 2008, pp. 367-376.

[11] D. Arnold, J.-P. Corriveau, and W. Shi, "Scenario-
Based Validation: Beyond the User Requirements
Notation," in 21st Australian Software
Engineering Conference (ASWEC 2010)
Auckland, New Zealand: Computer Society Press,
2010, p. 75.

[12] P. Baker and C. Jervis, "Early UML Model Testing
using TTCN-3 and the UML Testing Profile," in
Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION,
2007. TAICPART-MUTATION 2007, 2007, pp. 47-
54.

[13] M. Burnett, A. Sheretov, R. Bing, and G.
Rothermel, "Testing homogeneous spreadsheet
grids with the "what you see is what you test"
methodology," Software Engineering, IEEE
Transactions on, vol. 28, pp. 576-594, 2002.

[14] J. Romero-Mariona, "Secure and Usable
Requirements Engineering," in IEEE/ACM
International Conference on Automated Software
Engineering Auckland, New Zealand: IEEE, 2009,
p. 4.

[15] J. Ernits, M. Kaaramees, K. Raiend, and A. Kull,
"Requirements-driven model-based testing of the
IP multimedia subsystem," in Electronics
Conference, 2008. BEC 2008. 11th International
Biennial Baltic, 2008, pp. 203-206.

[16] C. Yuhong, J. Grundy, and J. Hosking,
"Experiences integrating and scaling a
performance test bed generator with an open
source CASE tool," in Automated Software
Engineering, 2004. Proceedings. 19th
International Conference on, 2004, pp. 36-45.

[17] B. Ngoc Bao and J. Ross, "DSLBench: applying
DSL in benchmark generation," in Proceedings of
the 1st workshop on MOdel Driven Development

for Middleware (MODDM '06) Melbourne,
Australia: ACM, 2006.

[18] R. B. France, S. Ghosh, T. Dinh-Trong, and A.
Solberg, "Model-driven development using UML
2.0: promises and pitfalls," Computer, vol. 39, pp.
59-66, 2006.

[19] J. Grundy, Y. Cai, and A. Liu, "SoftArch/MTE:
Generating Distributed System Test-beds from
High-level Software Architecture Descriptions,"
Automated Software Engineering, vol. 12, pp. 5-39
pp., January, 2005 2005.

[20] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S.
Prabhakararao, M. Fisher, II, and M. Main, "End-
user software visualizations for fault localization,"
in Proceedings of the 2003 ACM symposium on
Software visualization San Diego, California:
ACM, 2003.

[21] A. J. James, H. Mary Jean, and S. John,
"Visualization of test information to assist fault
localization," in Proceedings of the 24th
International Conference on Software Engineering
Orlando, Florida: ACM, 2002.

[22] H. Alan, K. Mika, and P. Amit, "Domain specific
approaches to software test automation," in
Proceedings of the the 6th joint meeting of the
European software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering Dubrovnik, Croatia: ACM,
2007.

[23] M. Sarma, P. V. R. Murthy, S. Jell, and A. Ulrich,
"Model-based testing in industry: a case study with
two MBT tools," in Proceedings of the 5th
Workshop on Automation of Software Test Cape
Town, South Africa: ACM, 2010.

[24] A. Sinha and C. Smidts, "HOTTest: A model-
based test design technique for enhanced testing of
domain-specific applications," ACM Trans. Softw.
Eng. Methodol., vol. 15, pp. 242-278, 2006.

[25] R. Biddle, J. Noble, and E. Tempero, "Essential
use cases and responsibility in object-oriented
development," in Proceedings of the twenty-fifth
Australasian conference on Computer science -
Volume 4 Melbourne, Victoria, Australia:
Australian Computer Society, Inc., 2002.

[26] L. L. Constantine and L. A. D. Lockwood, "Usage-
centered engineering for Web applications,"
Software, IEEE, vol. 19, pp. 42-50, 2002.

[27] M. Karaila and T. Systa, " Applying Template
Meta-Programming Techniques for a Domain-
Specific Visual Language--An Industrial
Experience Report," in 29th International
Conference on Software Engineering, 2007. ICSE
2007., Minneapolis, MN, USA, 2007, pp. 571-580.

[28] C. Yuhong, G. John, and H. John, "Synthesizing
client load models for performance engineering via
web crawling," in Proceedings of the twenty-
second IEEE/ACM international conference on
Automated software engineering Atlanta, Georgia,
USA: ACM, 2007.

