
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Automated Support to Capture and Validate Security
Requirements for Mobile Apps

Noorrezam Yusop
1

, Massila Kamalrudin
1

, Safiah Sidek
1

, and John Grundy
2

1

Innovative Software System and Services Group,
Universiti Teknikal Malaysia Melaka, Malaysia

p031320001@student.utem.edu.my,{massila,
safiahsidek}@utem.edu.my

2

School of Information Technology, Deakin University,
Geelong, Australia

j.grundy@deakin.edu.au

Abstract. Mobile application usage has become widespread and significant as it
allows interactions between people and services anywhere and anytime. How-
ever, issues related to security have become a major concern among mobile users
as insecure applications may lead to security vulnerabilities that make them easily
compromised by hackers. Thus, it is important for mobile application developers
to validate security requirements of mobile apps at the earliest stage to prevent
potential security problems. In this paper, we describe our automated approach
and tool, called MobiMEReq that helps to capture and validate the security at-
tributes requirements of mobile apps. We employed the concept of Test Driven
Development (TDD) with a model-based testing strategy using Essential Use
Cases (EUCs) and Essential User Interface (EUI) models. We also conducted an
evaluation to compare the performance and correctness of our tool in various
application domains. The results of the study showed that our tool is able to help
requirements engineers to easily capture and validate security-related require-
ments of mobile applications.

Keywords: security requirements; security attributes; validation; test driven de-
velopment; mobile apps; model based testing strategy; euc; eui.

1 Introduction

Mobile phones have been used widely as they allow interactions between people and
things anywhere and anytime. The use of mobile application is rapidly growing, espe-
cially in performing online transactions, such as online purchasing, flight booking and
hotel booking. There are also a plethora of applications being developed to fulfil the
needs of mobile users. However, many mobile application developers tend to ignore
the security aspect of the application during the early stage of development, leading to
malicious attacks and security breaches. It is also found that most of the requirements
engineers fail to capture correct security related requirements during the elicitation

3rd Asia-Pacific Requirements Engineering Symposium (APRES) 2016, 10-12 November 2016, Nagoya, Japan, (c) Springer 2016

phase as they face difficulties to understand the terms and knowledge of the security
[1]. Further, the process of capturing correct and consistent requirements from client-
stakeholders is often difficult, time consuming and error prone [2][3]. Therefore, there
is a need for automation support to capture and validate security related requirements
at the early stage of mobile application requirements engineering. In our previous work
[4], we have conducted a user study to gauge requirements engineers’ ability in captur-
ing the security related requirements from a set of business requirements of a mobile
application. The study found that the participants captured almost 60% incorrect secu-
rity attributes for each of the requirements given. This result indicates that requirements
engineers face difficulty to capture the security related requirements, especially in ex-
tracting the security attributes [4][5]. Further, it was found that the longest time taken
by the participants to extract the security attributes is more than 45 minutes, which
means that more effort is needed to perform this task. These challenges have motivated
us to: 1) develop an automated tool support for capturing and validating security re-
quirements, and 2) evaluate the tool to demonstrate its ability to enhance the accuracy
and usability for capturing and validating security requirements of mobile apps.
This paper describes the approach and an automated that captures and validates security
requirements for mobile applications using Test Driven Development (TDD) with a
model-based testing strategy using the Essential Use Cases (EUCs) and the Essential
User Interface (EUI) models. We present background for this study, our prototype tool,
and an experiment comparing its performance in extracting security attributes and val-
idation from security requirements. Finally, we discuss implications and future work.

2 Background

2.1 Test Driven Development (TDD)

Test-driven development (TDD) is a development strategy that has been popularized
by extreme programming [6]. The three important stages in TDD are (1) writing the
test before adding the code, (2) writing the simplest code that passes the test, and (3)
repeating this cycle until the software is matured. TDD also allows each of the require-
ments to be transformed to a test and it helps the engineers to think through the require-
ments or design before writing the functional code. TDD promotes a style of incremen-
tal development, where it identifies any behaviour that has been correctly implemented
or remains undone. This approach enhances the analysis and the design of software as
it allows the software to be tested at any time under automation [7].

2.2 Essential Use Cases (EUCs)

The EUC approach was defined by Constantine and Lockwood as a “structured nar-
rative, expressed in a language of the application domain and of users, comprising a
simplified, generalized, abstract, technology free and independent description of one
task or interaction that is complete, meaningful, and well-defined from the point of view
of users in a role or some roles in relation to a system and that embodies the purpose or

intentions underlying the interaction” [8]. Its main objectives are to support better com-
munication between the developers and stakeholders via a technology-free model and
to assist better requirements capture. These objectives can be achieved by allowing only
specific details relevant to the intended design to be captured [9]. EUCs enable users to
ask fundamental questions, such as "what's really going on" and "what do we really
need to do" without letting implementation decisions get in the way. These questions
often lead to critical realizations that allow users to rethink, or reengineer the aspects
of the overall business process. Figure 1 shows an example of natural language require-
ments (left) and an example of EUC (right) when capturing the requirements. The nat-
ural language requirements (highlighted) are shown on the left hand side.

Fig. 1. l Natural Language Requirements (left) and Essential Use Case (EUC) (right) [8][10]

When capturing requirements from natural language text, the EUC model is found to
be more suitable than the conventional UML use case. An equivalent EUC description
is generally shorter and simpler than a conventional UML use case as it only comprises
the essential steps (core requirements) of user’s intrinsic interest. It contains the user’s
intentions and the system responsibilities to document the specific interaction without
the need to describe the user’s interface in detail. It is reported in [5] that EUCs are
beneficial for capturing security requirements.

2.3 Essential User Interface (EUI)

EUI prototyping is a low fidelity prototyping approach [11]. It provides the general
idea behind the UI instead of its exact details. Focusing on the requirements rather than
the design, it represents UI requirements without the need for prototyping tools or widg-
ets to draw the UI [12]. EUI prototyping extends from and works in tandem with the
semi-formal representation of EUCs that also focuses on the users and their usage of
the system, rather than the system features [13]. It thus helps to avoid clients and REs
from being misled or confused by chaotic, evolving and distracting details. EUI also
allows some explorations of the usability aspects of a system. Figure 2 shows examples
of EUI prototype developed from EUC models.

Fig. 2.Examples of EUI proto-
type from EUC models

 Fig. 3. The relationship
between SecEUC model

and SecAttrributes

Table 1. Example of SecEUC
Pattern Libraries

2.4 SecEUC and SecEUI

SecEUC is a security pattern library comprising security related EUC, while SecEUI
is the security related EUI. Yahya et al. [5] have developed the security pattern library,
called the SecEUCs and security related essential interaction termed as the SecEI pat-
tern library. Examples of the SecEI and the SecEUC are shown in Table 1. They used
EUC model to capture security requirements to allow requirements engineers to iden-
tify and capture the security requirements. This pattern library recognises that there is
a direct relationship between the SecAttributes and SecEUC pattern library. As shown
in Figure 3, the relationship is one SecEUC to many SecAttributes (one to many). The
main purpose for choosing the SecEUC and SecAttributes pattern library as well as
their model is to conduct an in-depth analysis that could help to capture and validate
security requirements from the business requirements. The SecEUC library patterns are
based on EUCs generated from normal business requirements, while SecEI library pat-
terns are based on the essential interactions found in security-related requirements.

Currently, both patterns only support the software/system development, but not the
mobile application development. Further, the development of SecEUC patterns was
adapted from the works of [14][15][16] and the identification of associated security
elements are based on the definitions from the basic security services.Table 1 shows
the example of SecEUC pattern libraries together with the relationship between many
SecEI to one SecEUC and SecEUI. As shown in Table 1, the three SecEI identified as
“check username”, “check password” “verify username” are related to one SecEUC
“Identify self”, which is related to one SecEUI “ID”. Similarly, the two SecEI, which
are “Make payment” and “Complete payment form” are related to one SecEUC “Make
payment”, which is related to one SecEUI “Payment Type”.

3 Our Approach

The purpose of this study was to develop an approach and an automated tool to assist
requirements engineers to automatically capture and validate the security-related re-
quirements of mobile application. Our key research questions were: 1. Can an auto-
mated approach using TDD methodology with EUC and EUI models able to facilitate
the extraction and validation of security attributes for security related requirements of
mobile application? 2. Does the automation incorporated in the tool allow requirements
engineers to quickly and accurately capture and validate the security attributes for se-
curity related requirements of mobile application? 3. How do the target users evaluate
the usefulness of the automation tool in facilitating the extraction of security attributes
and validation of the security requirements of mobile application?

Guided by these research questions, we developed an approach and a tool support,
MobiMEReq, that automatically capture and validate the security requirements of mo-
bile application. Here, the mobile application specific concerns and characteristics that
reflected to this proposed approach are authentication, authorization and confidential-
ity. As shown in Figure 4, our approach is depicted in the box labeled as A and our tool
support is depicted in the box labeled as B. In this approach, we adopted the TDD
methodology with a model-based testing strategy using EUCs and EUI models.

Fig. 4. Overview of our approach

As shown in Figure 4, the approach is divided into three stages: capture the security
requirements (a), generate the security attribute (b), and generate test (c). The first stage
of our approach begins when the textual requirements are analyzed and traced to the
EUCs patterns library for appropriate abstract interaction in a form of EUC model (1).
Then, the SecEUC (2) and SecEUI (3) are derived from the generated EUC models
based on the categorization of their attribute related to the security element as defined
in the SecEUC pattern library. The second stage involves generating the security attrib-
utes. At this stage, each security attribute is generated from the SecEUC and SecEUI
based on a defined security attribute library (4). Next, a workable prototype is generated
to visualize the security requirements based on the generated SecEUI (5). This helps to
validate the captured requirements with the textual captured requirements. Further, the
security requirements are validated by the generated test that comprises test require-
ments (7) and test cases. This validation approach can also be done reversely from the
generated and workable application prototype run in mobile to MobiMEReq (1) where
all the test components, security requirements attributes as well as EUC and EUI mod-
els are traced back. To realize our approach, we developed two pattern libraries, namely
the mobile SecAttributes Pattern library and the Mobile Security Pattern Library. This
approach also adopted the concept of fuzzy logic to prioritize the test requirements and
test cases to validate the security requirements. The following section describes the
development of these two libraries and the test prioritization.

3.1 Mobile SecAttributes Pattern Library

We developed the Mobile SecAttributes Pattern Library [17], consisting of SecEUC,
SecEUI and related security attributes for mobile apps. Here, a security attribute is de-
fined as any piece of information that may be associated with a controlled implicit entity
or user for the purpose of implementing a security policy. Then, the SecEUC and Se-
cEUI in this library were derived from a collection of security attribute requirements of
mobile apps from industry security requirements and other published material [18].

3.2 Mobile Security Pattern Library

We developed a mobile security pattern library to support the extraction of the secu-
rity related attributes from the security requirements. This pattern library consists of
SecAttributes patterns with Test requirements and test cases. As shown in Figure 5, it
is found that one SecEUC is associated with one to many security attributes and many
test requirements. In this case, one test requirements is associated with many test cases.
For now, we have stored almost 280 of sec attribute and 185 of test requirements and
370 test cases. They are all from the requirements collected from industry and real pro-
jects. Examples of our mobile security pattern library are shown in Table 3.

Fig. 5. The relationship of SecEUC with Sec Attributes and Test Requirements

Table 2. Sample of our SecAttributes Pattern and Test Requirements

3.3 Test Prioritization using Fuzzy Logic

Considering that a test case prioritization approach is able to improve the rate of
faulty detection during the testing phase [19], we adopted the concept of test prioritiza-
tion to prioritise the test requirements and test cases to validate the security require-
ments. In this case, the level of importance of the test case that runs during the test
execution is identified according to the scale of high, medium and low, which has been
validated by the experts. Further, the test case prioritization should be based on the
captured requirements. In cases where the requirements are not prioritized, the test
group is required to propose the prioritization to clients for reviews. To do this, Fuzzy
logic is adopted to our work. Fuzzy logic uses the ‘uncertainty principle’ that recognizes
the use of an approximation rather than a fixed or exact value, which uses a range of
true values instead of true or false value. It also uses a form of many-valued logic that
has different ranges of membership between 0 and 1 defined by a fuzzy set [20]. This
approach helps to automatically select the best test cases for each of the test require-
ments and helps to reduce the number of test cases [21].Figure 6 shows the step-by-
step procedure of applying the fuzzy logic to conduct test prioritization in our security
requirements validation work. The algorithm as shown in Pseudo-code1 was applied to
prioritize the test case from the generated test requirements.

Fig. 6. Test requirement for prioritization

test case algorithm Flow chart

Pseudocode 1: Pseudo code algorithm to
prioritise test case

Pseudocode algorithm.

The set of Test Requirement is denoted by T
For each Test Requirement
Calculate Weighted Prioritization Value

(WPV) using eqn (1)
End For
Arrange by sorting T in descending order
For each test case
Choose test case based on T (Test Require-

ment)
End For
Output:
Our final reduced test cases is T’

The step by step to prioritize test case is shown in Figure 6 and described below:
Step 1: To assign weight to the requirements, four prioritization factors (PF) are con-
sidered using fault severity as proposed by Kumar et al. [19]. We use this factor as an
input parameter to the security requirements to embed in our fuzzy logic for target test
requirements. These factors are: i. Business Value Measure (BVM): BVM is a measure,
in which security requirements with the highest level of importance are the critical re-
quirements to customer’s business. The range of each requirement is from 1 (low) to
10 (high). Use cases can also be used to analyze the security requirements. ii. Project
Change Volatility (PCV): PCV is based on how many times a customer modifies the
project security requirements during the software development cycle. PCV is one of the

criteria that help to assess the changes in the security requirement at the early stage after
implementation of project is start. PCV is increase test efforts and the project is difficult
to complete on time. iii. Development Complexity (DC): Each security requirement is
analyzed based on the complexity of its implementation. Factors, such as development
efforts, technology, environmental constraints and security requirement feasibility ma-
trix are considered when measuring the complexity of the implementation. iv. Fault
Proneness of Requirement (FPR): FPR is a measurement based on the error prone in-
cludes number or occurrence of in-house test failures found and also security require-
ments failures reported by the customer. Table 4 below show example an assignment
low-high value for related test requirements based on four input factor.

Step 2: Figure 6 [2] shows the Priority Factor (PF) ruled based used as four input

parameters to assign Priority Factor Weight. As shown in Table 5, there are: 4 param-
eters = BCM, PCV, DC, FPR. 3 memberships = Low, Medium, High; Rule-Based= 4
the power of 3= 4x4x4=64 rules. Thus, based on the range applied in this study, 64
rules or less can be used. The pseudo-code algorithm for the rule based in our fuzzy
algorithm is shown in Pseudo-code 2 below.

Pseudocode 2: Rule-based Pseudo code algo-
rithm
If (BVM is low && PCV is low && DC is high

&& FPR is low) Then Weight is low

If (BVM is low && PCV is medium && DC is

high && FPR is low) Then Weight is low

If (BVM is low && PCV is low && DC is low

&& FPR is low) Then Weight is low

If (BVM is high && PCV is high && DC is high

&& FPR is high) Then Weight is high

End IF
 Step 3: Based on the four input parameters provided in the security requirements and
the rule based, fuzzy inference system and defuzzification are then used to prioritize
the test cases. The metric equation used for the prioritization of the test case is shown
below.

WPV= (!"#$%&'(
)*+, ∗ !".'/0ℎ2)……………….. (1)

where, WPV is the weightage prioritization for each test case calculated based on the
four input parameters. PF value is the value assigned to each test case. PF weight is the
weight assigned for each input parameter. The weights are obtained from the fuzzy

Table 3. Low-High Assignment Test Requirements

Table 4. Weight Prioritization value based on
Test Requirements

rules and the WPV is calculated from Eq(1) which in turn gives the value of the prior-
itization order.
WP [TestReq1] = 2x 0.25+5x 0.25 + 5x 0.25+5x0.25=4, WP [TestReq2] = 2x 0.25+10x
0.25+3x 0.25+6x0.25=5.5,WP [TestReq3] = 2x 0.25+10x 0.25+3x 0.25+3x0.25=4.5

Step 4: Table 6 shows the sample results of the weight prioritization of test cases for
the three functional requirements from the test requirements. Based on the calculation,
the descending values of WPV are TestReq2, TestReq3, and Test Req1.

Step 5: The selection number of test case from test requirements is selected as shown

Figure 8 based on the test requirements from ordering of WPV (Test Requirement).

4 Implementation

We have developed a prototype tool called MobiMEReq to realise the approach of
automatically capture and validation of security requirements as discussed in the pre-
vious section. This prototype tool is an extension of our earlier [14] tool that runs in
both mobile and web applications. Figure 8 shows the tool usage based on the overview
of our approach as shown in Figure 4 and the role of the SecAttributes Pattern Library
and the embedded fuzzy logic in validating the security requirements of mobile apps at
the early stage of requirements validation. By implementing the TDD methodology and
model based testing strategy, our approach is divided into two main parts: 1) Capturing
security attributes from a set of mobile application requirements and 2) Validating the
quality of security requirements.

1. Capturing the Security Attributes [A]: Here, the Mobile SecAttributes Pattern Li-
brary is used by the tracing engine to analyse the textual mobile requirements and then
match it to the set of abstract interactions of SecEUC (A1). This approach allows Re-
quirements Engineers (REs) to capture the important security attributes from the textual
mobile requirements gathered from client-stakeholders A(1). Then, the textual require-
ments are mapped to SecEUC A(2) and SecEUI model A(3). As shown in second stage,
Figure 4 A[b], the SecAttributes is generated to visualize the security attributes (Figure
8 A(4)) that best fit to the generated SecEUC and SecEUI model as described at first
stage, Figure 4 A[a] based on the defined attributes in the Mobile SecAttributes Pattern
Library. Next, the RE can visualise the security requirements as a form of workable
rapid prototype model of the targeted mobile app [14].

Table 5. Samples of Weight Prioritization va-
lue based on Test Requirements

Fig. 7. Selection test case from test re-
quirements

2. Validating the quality of the security requirement consist of two parts: Part 1. Vali-
dation from MobiMEreq workable prototype [A].RE can visualise the security require-
ments in a form of workable rapid prototype model of the targeted mobile app. This
allows the client-stakeholder to check the quality of the generated security requirements
in terms of its correctness and consistency with the original security related require-
ments. Further, to validate the correctness of the security requirements, RE can insert
the test data into the workable prototype, Figure 8 A(5). As shown Figure 4, the results
of the test review (labelled as A[c]) allow the execution of the test data and the display
of the test status. RE can then perform the mobile Security Execution (SecExec) A[c](6)
(Figure 8, A(6)). Here, Test requirements A[c](7) are used based on the associated Se-
cEUC. In order for RE to view the results of the test validation, the test cases A[c](9)
are generated to visualise the validation based on the proposed fuzzy logic approach
A[c](8). The results of the validation are also displayed as Pass or Fail as shown in
Figure 8, labelled as A(8) for each of the generated test data. Part 2. Validating the
generated mobile apps with MobiMEReq [B]: Another utility provided by our Mobi-
MEReq tool allows the generated mobile apps to be validated reversely to Mobi-
MEReq. Both the RE and client-stakeholder can validate the functionality of the apps
by inserting a random test data through their mobile apps and the associated compo-
nents such as test cases A(7), test execution A(6), security attributes A(4) and both
EUCs A(3) and EUI model A(2) and textual requirements A(1) as shown in Figure 8.
For large scale can view in this link1.

Fig. 8. Example of tool usage for integration security attributes and visualization tool

1 https://drive.google.com/drive/folders/0B5QVa-tMkodvNXZnVlc3SGxMbkE

5 Evaluation

Designed to be used by requirements engineers, we have conducted three studies to
evaluate the accuracy and usability of our new automated tool in capturing and validat-
ing security requirements of mobile application. First, we conducted an accuracy test
to evaluate the accuracy of the tool with three participants to check manually by apply-
ing a new set of security requirements. Secondly, we conducted a usability study with
50 undergraduate students to get their feedback based on four aspects, namely the use-
fulness, ease of use, ease of learning and satisfaction. Here a flight booking require-
ments that comprises security requirements such as login, payment and TAC code is
used for the study. Finally, we requested two experts in the field of requirements engi-
neering to test our tool and were later interviewed to collect their feedback.

5.1 Accuracy Test

We evaluated the accuracy of the tool by applying a new set of security requirements
to check the false positive rate for the tool. False positive rate is used to calculate the
ratio of the pass and fail for particular test. All of the related Test requirements were
generated and they produced all correct false positive rate based on the prioritization of
both test requirement and test case. The accuracy is measured based on the false-posi-
tive result of security requirements that provided by the tool compared to the sample
answer prepared by the authors. The sample answer was first verified by the expert in
the field of software engineering. Based on the results of the accuracy test shown in
Table 7 (refer link to the accuracy test 2), the MobiMEReq tool reported 100% correct-
ness ratio based on the ten test requirements applied in the tool. This result indicates
that the tool is able to facilitate requirements engineers to validate security requirements
at the early stage of Software Development Life Cycle (SDLC).

5.2 Usability study

A survey to investigate the usability of the tool was also conducted with 50 partici-
pants. The questionnaire3 was designed to gather participants’ feedback regarding its
usefulness, ease of use, ease of learning and satisfaction. In addition, the participants

2 https://drive.google.com/drive/folders/0B5QVa-tMkodvb2ZuX3ROMzRGUWc

3 https://drive.google.com/drive/folders/0B5QVa-tMkodvYlVDQk9uelc0X1k

Table 6. Sample of correctness of the automated validating tool

were requested to write their comments on the four aspects. Results of the study are
shown in Figure 9. With respect to usefulness, 80% of the participants felt that the tool
is useful for capturing and validating security requirements. Only 1% of the respondents
disagreed that the tool is useful and 19% of the participants were neutral. These results
indicate that the majority of the participants agreed that the tool is useful. They also
recommended that the tool need to be improved for better visualization so that users
can view the summary result of test case at early of process of SDLC. With respect to
ease of use, 77% of the participants agreed that the tool is easy to use, while only 5%
disagreed with the statement. 18% of the respondents were indifference. These results
also indicate that the majority of the participants agreed that the tool is easy to use.
Among the comments given by the participants are that the tool helps users to simplify
their use case and test requirement and they are proud to have a tool that can assist a
new developer or requirements engineer to validate the requirements. In ease of learn-
ing, 78% of the participants agreed that the tool is easy to learn. 20% of the participants
were neutral, while only 2% disagreed that the tool is easy to learn. The results indicate
that the majority of the participants agreed that the tool is easy to learn. The participants
further commented that they need the tool to overcome the difficulties of the learning
process so that they can learn aspect of security requirements especially security attrib-
utes and validation process at early. The respondents were also requested to state their
satisfaction of the tool. In this regard, 83% claimed that they were satisfied with the
tool. 16% of the participants were indifference and only 1 % were dissatisfied with the
tool. The results indicate the majority of the participants were satisfied with our tool.
However, we did not get 100% agreement from the participants that they are satisfied
with the tool. Those who were dissatisfied with our tool commented that the tool needs
to improve the process to complete testing. Based on the results of the survey, we can
conclude that the tool is useful, user friendly and easy to learn. In general, most of the
respondents were satisfied with the MobiMEReq tool.

Fig. 9. Usability study for capture and validating security requirements on mobile app.

5.3 Expert review

We also carried out interviews with two experts in order to get their opinions regard-
ing the usability of our prototype tool. We selected two experts in field of requirements
engineering and quality assurance. They have between three to ten years working ex-
perience in the information technology (IT) industry. They are from MIMOS and IBM
Malaysia and both are experienced in software requirements and test. Expert 1 has 8

years and Expert 2 is 3 years experience. Prior to the interview, we informed them the
purpose of the interview and defined the different terminologies and definitions used in
our interview questions to ensure the consistency of responses. We provided a brief
description of our prototype tool and gave them the access to a link to explore the tool
using samples of real-life requirements from their recent projects. Table 8 describes the
profile background of the two experts.

Based on the interviews, they agreed that MobiMEReq tool helps to reduce time and
human effort in capturing and validating security requirements for mobile apps. They
found the tool to be simple, easy to understand and learn. Nevertheless, they provided
some constructive comments and feedbacks that are valuable for our research study.
Expert 1 (E1) suggested that the tool with mobile apps should be applied for non-enter-
prise application as the tool can be used as a platform to test single mobile apps to
validate user’s needs or satisfaction rather than for the organization to access the mobile
apps. This may help us to take less elapsed time to implement and validate in a small
business application instead of cross of organization. In this case, the validation of se-
curity requirement with single test can be focus for whole process of business require-
ments. E1 also recommended that the security algorithm should be embedded in the
tool for better testing execution efficiency. By producing this security algorithm, this
may help to protect the privacy of the user’s sensitive information and data. Expert 2
(E2) highlighted that the tool is useful for testing mobile apps during eliciting the re-
quirements in terms of functionality and security considering that both RE and Software
Developer are not involved at the testing stage in SDLC, in current practice. This tool
allows them to perform testing at the early stage of SDLC. E2 felt that the RE can use
the tool for demonstrations to clients. He also recommended that the tool could be ap-
plied by a Software Developer for testing their work in the back-end process, such as
web services when used by the mobile apps.

6 Related Work

There have been many methods, approaches, techniques and tools used to validate
security requirements for mobile applications. For example, Rhee et al. [22] discussed
a methodology to test the Mobile Device Management (MDM) agent. The authors pro-
posed the items and method to identify security requirements, the process and the real
world test methods for android devices. Nevertheless, the security of the MDM agent
to strengthen the security of the mobile devices needs improvements in validating mo-
bile devices. Farhood et al. [23] proposed a data-centric model to protect all the vulner-
abilities to prevent application and malware threats. They proposed a model to ensure
the confidentiality, integrity and availability of data stored in mobile devices. However,
they did not include validation for security requirement in their study. Gilbert et al. [24]
applied the App Inspector, an automated security validation system that analyses appli-
cation and generates report for potential security and privacy violation. The authors
described the future need for making a more secured smartphones applications through
automated validation. However, testing of the application does not cover validation in
all aspects of security requirements. Gautam et al. proposed a novel secure data access

and monitoring framework with data stored on employee’s devices. The tool, referred
as Concord identifies critical organizational data that have been accessed by the user’s
access and theft or loss of mobile device using the cryptography format. However, this
tool does not provide a proper validation to confirm that the file is secure [25]. They
claimed that security concerns have become very important especially when perform-
ing financial transactions, hence the assault vectors in this application need to be exam-
ined with due diligence [26]. In this respect, both the users and law enforcement agen-
cies must tackle the issues of mobile security to reduce the risk of criminal misuse.
Kamalrudin et al. [27][28] developed a technique and toolset, MaramaAI to support
requirements capture and consistency management using EUCs. This tool is supple-
mented by end-to-end rapid prototyping support. The tool uses EUC patterns to validate
requirements consistency, completeness and correctness. However, it focuses on cap-
turing language requirements only, hence the application of this tool in mobile applica-
tion security requirements is beyond the scope of their work.

7 Summary

Security engineers need to validate security requirements for mobile application at
an early stage of development. We have developed an automated validation approach
and tool support called MobiMEReq for security requirements of mobile apps by adopt-
ing the idea of Test Driven Development (TDD) with model-based testing strategy us-
ing EUCs and EUIs prototype model. Evaluation of our prototype tool with real security
examples and end users shows positive results.

8 Acknowledgement

We would like to thank Universiti Teknikal Malaysia Melaka and Sciencefund grant:
01-01-14-SF0106 and also Ministry of Education (MOE), MyBrain15 for support.

References
1. Schneider, K., Knauss, E., Houmb, S., Islam, S. and Jurjens, J.: Enhancing security require-

ments engineering by organizational learning. Requirements Engineering 17(1). (2011)
2. Kamalrudin,M. and Grundy,J.: Generating essential user interface prototypes to validate re-

quirements, Proceedings of the 2011 26th IEEE/ACM International Conference on Auto-
mated Software Engineering, 564-567, (2011).

3. Paja,E., Dalpiaz, F., Poggianella, M. and Roberti, P. 2012. STS-tool: Socio-technical Secu-
rity Requirements through social commitments, Proceeding of the Conference 21st IEEE
International Requirements Engineering Conference (RE), 331-332, (2012).

4. Yusop, N., Kamalrudin, M., Yusof, M.M., Sidek, S.: Challenges in eliciting security attrib-
utes for mobile application development. In Proceeding of the Conference KSII The 7th
International Conference on Internet (ICONI), Kuala Lumpur, Malaysia (2015)

5. Yahya, S., Kamalrudin, M., Safiah, S., Grundy, J.: Capturing Security Requirements Using
Essential Use Cases (EUCs), First Asia Pacific Requirements Engineering Symposium,
APRES 2014, April 28-29, 2014, pp. 16-30. Auckland, New Zealand (2014)

6. Paja, E., Dalpiaz, F., Poggianella, M., Roberti, P.: STS-tool: Socio-technical Security Re-
quirements through social commitments. In Proceeding of the Conference 21st IEEE Inter-
national Requirements Engineering Conference (RE), 331-332, (2012)

7. SANS Institute, Determining the Role of the IA/Security Engineer, InfoSec Reading (2010)
8. Constantine, L. L. and Lockwood, L. A.: Software for use: a practical guide to the models

and methods of usage-centered design, Pearson Education (1999)
9. Biddle.R , Noble.J and Tempero, E.: Essential use cases and responsibility in object oriented

development. In Proceeding of the 25th Australasian Computer Science Conference.
Australian Computer Society, Inc. Chicago (2002), Vol. 24, No. 1, 7-16, (2002)

10. Constantine, L. L. and Lockwood, A. D. L.: Structure and style in use cases for user interface
design, in Object modeling and user interface design: designing interactive systems, Addi-
son-Wesley, pp. 245-279, Longman Publishing Co., Inc (2001)

11. Ambler, S.W.: Essential (Low Fidelity) User Interface prototypes. Available
from:www.agilemodeling.com/artifacts/essentialUI.htm (2016)

12. Constantine, L.L. and Lockwood, A.D.L.: Usage-centered software engineering: an agile
approach to integrating users, user interfaces, and usability into software engineering prac-
tice. In Proceeding of 25th International Conference on Software Engineering (ICSE'03)
2003, IEEE Computer Society, Portland, Oregon (2003)

13. Ambler, S.W.: The Object Primer: Agile Model-Driven Development with UML 2.0 (3rd
ed.), New York Cambridge University Press (2004)

14. Kamalrudin, M., Grundy, J., Hosking, J.: Tool Support for Essential Use Cases to Better
Capture Software Requirements. In Proceeding of IEEE/ACM international conference on
Automated software engineering, 327–336, (2010)

15. Kamalrudin, M.: Automated Software Tool Support for Checking the Inconsistency of Re-
quirements .In: 24th IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2009. IEEE (2009)

16. Kamalrudin, M.: Automated Support for Consistency Management and Validation of Re-
quirements”. PhD thesis. The University of Auckland (2011)

17. Yusop, N., Kamalrudin, M. and Sidek, S.: Capturing security requirements of mobile apps
using MobiMEReq, 3rd Asia Pacific Conference on Advanced Research, Melbourne, Victo-
ria, Australia (2016)

18. Yusop, N., Kamalrudin, M. and Sidek, S.: Security Requirements Validation For Mobile
Apps: A Systematic Literature Review, Jurnal Teknologi(Science & Engineering) 77:33,
123-137, (2015)

19. Kumar, Dr. V., Sujata and Kumar, M.: Test Case Prioritization Using Fault Severity. Inter-
national Journal of Computer Science and Technology (2010)

20. Novak, V., Perfilieva, I. and Mockor, J.: Mathematical principles of fuzzy logic Dodrecht:
Kluwer Academic (1999)

21. Bhasin, H., Gupta, S. and Kathuria, M.: Implementation of regression testing using fuzzy
logic. International Journal of Application or Innovation in Engineering and Management,
volume 2, issue 4, April 2013, (2013)

22. Rhee, K., Kim, H. and Na, H.Y. 2012. Security Test Methodology for an Agent of a Mobile
Device Management System. Int. J. of Security and Its Applications, vol. 6, no.2, (2012)

23. Dezfouli, F.N., Deghantanha, A., Mahmood, R., Sani, N.F.M., and Shamsuddin, S.: A Data-
centric Model for Smartphone Security, vol.5, 9-17, (2013)

24. Gilbert, P. and Cun, B. 2011. Vision: Automated Security Validation of Mobile Apps at App
Markets. . In Proceeding of the 2nd International Workshop on Mobile Cloud Computing
and Services(MCS 2011), 21-26, New York, USA (2011)

25. Singaraju, G., Hoon, B.: Concord: A Secure Mobile Data Authorization Framework for Reg-
ulatory Compliance. In Proceeding of the 22nd Large Installation System Administration
Conference (LISA '08). 91-102, (2008)

26. Ying, L., Dinglong, H., Haiyi, Z. and Rau, P. 2007. Users’ Perception of Mobile Information
Security. Hacker Journals White Papers. Computer Security Knowledge Base Portal (2007)

27. Kamalrudin, M., Grundy, J., Hosking, J.: Managing Consistency between Textual
Requirements. Abstract Interactions and Essential Use Cases. In Proceeding of 2010 IEEE
34th Annual Computer Software and Applications Conference, 327–336, (2010)

28. Kamalrudin, M., Grundy, J. and Hosking, J.: Improving Requirements Quality using Essen-
tial Use Case Interaction Patterns. In Proceedings of 2011 International Conference Soft-
ware Engineering. Honolulu, Hawaii, USA (2011)

