
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Capturing Security Requirements Using Essential Use
Cases (EUCs)

Massila Kamalrudin 1*, Syazwani Yahya 1*, Safiah Sidek 1 John Grundy2

Innovative Software System and Services Group,
Universiti Teknikal Malaysia Melaka, Malaysia 1
Faculty of Science, Engineering and Technology

Swinburne University of Technology
Melbourne, Australia2

massila@utem.edu.my,syazwaniyahya13@gmail.com
safiahsidek@utem.edu.my,jgrundy@swin.edu.au

Abstract. Capturing security requirements is a complex process, but it is crucial
to the success of a secure software product. Hence, requirements engineers need
to have security knowledge when eliciting and analyzing the security require-
ments from business requirements. However, the majority of requirements en-
gineers lack such knowledge and skills, and they face difficulties to capture and
understand many security terms and issues. This results in capturing inaccurate,
inconsistent and incomplete security requirements that in turn may lead to inse-
cure software systems. In this paper, we describe a new approach of capturing
security requirements using an extended Essential Use Cases (EUCs) model.
This approach enhances the process of capturing and analyzing security re-
quirements to produce accurate and complete requirements. We have evaluated
our prototype tool using usability testing and assessment of the quality of our
generated EUC security patterns.

Keywords: Software Engineering, Requirements Capturing, Security Require-
ments, Secure Software Development, Essential Use Case (EUC)

1 Introduction

There is an increasing need to look at the cost, reliability and safety of software sys-
tems. With the increase of threats and vulnerabilities in many software systems, secu-
rity issues involving software have become widespread, frequent and serious. We
believe that enumerating accurate security requirements can help system architects or
security engineers to develop realistic and meaningful secure software [1]. Security
requirements elicitation is usually conducted during the early phase of the system life
cycle. Often these are only generic lists of security mechanisms, such as password
protection, firewalls, virus detection tools and SSL layer (for cryptographically pro-
tecting communications) [1, 2] [12]. However, these security requirements often do
not present a complete solution to the security problems of the target application un-
der development. It is crucial for software engineers to accurately capture the essen-

jgrundy
In 1st Asia-Pacific International Conference on Requirements Engineering (APRES 2014),
Auckland, New Zealand, April 28-29 2014, © Springer.

jgrundy

tial security mechanisms (such as access control) and implement the correct design
solutions for security (such as robust design and good technology choices) that makes
software attacks much more difficult. In our experience, we have found that security
requirements elicitation and analysis necessary for a better set of security require-
ments seldom happens. According to Salini [12], even if it is done, the security re-
quirements are often developed independently from the rest of the requirements engi-
neering activities: They are not integrated into the mainstream of the requirements
engineering activities. As a consequence, security requirements that are specific to the
application of software or system and the protection of essential services and assets
are often neglected. A lot of requirements engineering research and practice have tried
to address the security capabilities that a software or system should provide. Howev-
er, they have limited focus since they tend to describe design solution in terms of
protection mechanisms only. They lack of making declarative propositions [12] with
regards to the required level of protection that can be accurately established by captur-
ing the correct security requirements in the first place.

Thus, a lot of attentions are given to the functional requirements of the system
from the user’s view, whilst less attention is given to security requirements. [6][12].
Many practices do not tackle security requirements at all, but rather focus on the im-
plementation mechanisms intended to satisfy unstated requirements and assumptions.
As a result, security requirements that are specific to the system and that provide pro-
tection of essential services and assets are often neglected. This can cause substantial
security problems at a later stage [2, 3]. In practice, when capturing security require-
ments from clients, requirements engineers frequently use some forms of natural lan-
guage, written either by clients or themselves. This forms a human-centric representa-
tion of the requirements accessible to both the engineers and clients. However, due to
the ambiguities and complexities of the natural language and the process of capture,
these requirements often have inconsistencies, redundancies, incompleteness and
omissions which can lead to the development of inaccurate secure software. Our re-
search described in this paper introduces a new, more effective approach using semi-
formal models called Essential Use Cases (EUCs) that support requirements engineers
in capturing security requirements. This study is an extension of our earlier work
[34][36] to provide better supports for the capturing of security requirements that can
enhance the correctness and completeness of the captured security requirements.

Thus, this study contributes to the enhancement of the quality of software intended
to be developed. The essence of the approach is to support capturing security ele-
ments from the normal business requirements expressed in natural language. To allow
requirements engineers and stakeholders to detect security requirements, we adopted
the concept of essential interactions patterns and essential use case patterns. We high-
lighted the potential of this tool for quality security requirements by annotating a vis-
ual, semiformal model of the security requirements and normal business requirements
depicted in our support tool. We evaluated the usability of our prototype tool using a
survey conducted with a sample of target end users. An evaluation of our security
requirements patterns by experts was also conducted.

2 Background

The Essential Use Case (EUC) approach was developed by Constantine and Lock-
wood [37]. EUCs are designed to resolve problems which occur in conventional Use
Case modeling and they have important benefits over that approach [41]. An EUC is
defined as a “structured narrative, expressed in a language of the application domain
and of users, comprising a simplified, generalized, abstract, technology free and inde-
pendent description of one task or interaction that is complete, meaningful, and well-
defined from the point of view of users in some role or roles in relation to a system
and that embodies the purpose or intentions underlying the interaction” [37]. An EUC
is thus a form of dialogue between a user and a system which supports better commu-
nication between the developers and the stakeholders. An EUC is shorter and simpler
as compared to a conventional use case as it comprises an abstraction of only essential
steps and the user’s intrinsic interest. An EUC aims to identify “what the system must
do” without being concerned on “how it should be done”.

EUCs are made up of a set of organized “abstract interactions” and EUCs extracted
from natural language specifications can be compared against templates of “interac-
tion patterns” to detect requirements quality problems. Requirements engineers need
to derive appropriate essential interactions from the requirements at a correct level of
abstraction. Biddle et al. [42] and Kamalrudin et al. [5] found that almost all users
have problems defining the right level of abstraction and exerted that the abstraction
process to be time consuming. These problems are some of the reasons why it is diffi-
cult to check security requirements for consistency and completeness. In this case, we
anticipate a Security Essential Interaction Library can mitigate these problems. This
library consists of important key phrases (security essential interactions) and map-
pings to appropriate essential security requirements (security abstract interactions).

A key reason why we choose to use the EUC model is that it lends itself to a deep-
er analysis enabling identification of security requirements by extracted from the
normal business requirements. Once a EUC model has been extracted, it can be com-
pared against a pattern in our SecEUC Interaction Pattern Library.

3 Motivations

Many studies have found that most software engineers have poor training in eliciting,
analyzing, and specifying the security requirements. This is due to a considerable lack
of security knowledge [1] [15] [16] [17] [18]. New security challenges are growing
along with today’s complexity and interoperability software systems development.
Requirements are provided by a variety of project partners; thus, the specifications are
voluminous and contain many requirements. Further, the process of manually eliciting
requirements is tedious [3]. To correctly capture security requirements, good skills
and knowledge in both the requirements and security areas are required. Shielding
security loopholes and establishing correct and accurate security requirements are
considered to be a difficult task. Yet, this essential element is taken for granted by
many. It is of the utmost importance for requirements engineers to understand that

security requirements are more than just dealing with security solutions that provide
strong passwords, configure SSL, or validate user input. It involves a process of accu-
rately capturing the right security controls for what the applications and business real-
ly needs. However, requirements engineers often fail to pay sufficient attention to
security concerns, treating them just as one more non-functional requirement [4]. The
majority of software projects deal with the security when the system has already been
designed and sometimes even when it has been put into operation. In extreme cases,
the actual security requirements themselves are never well understood [4]. Require-
ments engineers without sufficient experience in security face the risk of over-looking
security requirements leading to security vulnerabilities that are easily exploited [3]. It
is widely known that security requirements need to be considered at the early stage of
software development.

Recognizing the importance of security requirements in achieving a secure soft-
ware development, Microsoft has adopted a systematic security assurance process, the
Security Development Lifecycle (SDL). As a company-wide initiative and a mandato-
ry policy since 2004, the SDL has a significant role in embedding security and priva-
cy in the software and culture at Microsoft. During the software development life
cycle (SDLC), security requirements are elicited at the most early phase, which is at
the requirement phase, as shown in Figure 1 [13]:

Fig. 1. The Microsoft Security Development Lifecycle – Simplified [13]

In a software organization, it is common to have a project team that consists of re-
quirements engineers and security engineers. The primary responsibilities of require-
ments engineers or system analysts are to gather, analyze, document and validate the
needs of the project stakeholders [14]. They are responsible at the requirement phase
which is to capture security requirements from clients. Security engineers, on the
other hand are responsible for designing, developing and deploying security related
systems and security in systems. Their responsibilities and skills can be very specific
such as designing a hardware security appliance [19]. The task of a security engineer
is usually centered at the implementation or design phase.

Although both engineers have complementary responsibilities in capturing re-
quirements, they do not communicate effectively with each other; hence, there is a
lack of integration on the work done between them. This condition can lead to incon-
sistency and incorrectness of the developed software and it fails to fulfill the needs of

the stakeholders. Additionally, the existing standard, such as the Common Criteria
(ISO) has been identified as extensive, complex and difficult to comprehend by re-
quirements engineers [27]. Current techniques, such as interviews and brainstorming,
are time consuming and fail to accurately identify security requirements. In this case,
captured security requirements using the present standards and techniques are prone
to be inaccurate, inconsistent and incomplete which can lead to instances of insecure
software systems.

4 Our Approach

We explored the use of semi-formal model Essential use cases (EUCs) to develop a
new approach for capturing security requirements. We automate the capturing process
of security requirements from the business requirements using Essential Use Cases
(EUCs) model. Further, a rapid prototyping approach was adopted to ensure the pro-
duction of accurate and secure software. Next, pattern libraries called Security Essen-
tial Use Cases (SecEUC), Security Essential Interactions (SecEI) and Security Con-
trols Patterns (SecCtrl) library were developed to assist the capturing process for se-
curity requirements. This is a lightweight approach that allows requirements engineers
to identify and capture the security requirements and keep them consistent within the
business requirements. The following section describes the pattern library for captur-
ing security requirements.

4.1 SecEUC Pattern Libraries

Our security pattern library consists of three library patterns, named as Security Es-
sential Use Cases (SecEUC), Security Essential Interaction (SecEI), and Security
Controls (SecCtrl) patterns. The SecEUC library patterns which is based on EUCs
generated from the normal business requirements, while the SecEI library patterns is
based on the essential interactions found in the textual requirements that are related to
security elements. The development of the SecEUC patterns is adapted from the
works of Kamalrudin et al, 2011 [34] [36]. Through the extraction process, phrases
from the textual natural language requirements are analyzed and matched to the es-
sential interaction pattern library to find an appropriate abstract interaction. The ab-
stract interactions that are associated with security are called SecEUC. Essential In-
teractions that contain the security elements are called SecEI.

The identification of associated security elements are based on the definitions from
the basic security services [38]. It is found that, multiple security essential interactions
are associated with one SecEUC. For example, the essential interaction “key in
username and password” and “log in” are identified as security related and mapped to
a SecEUC “identify self”. This is because all of them have the attributes of security.
Other examples of the pattern library are shown in Table 1.We then designed our
SecCtrl library patterns based on basic security services [38], such as the access con-
trol (authorization), authentication (integrity), confidentiality (privacy), availability
and accountability (non-repudiation). The SecCtrl is developed for the purpose of

mapping it to the prototype generation and providing the mandatory security controls.
This pattern library helps us to identify the security controls that are relevant to a
particular SecEUC. The association between the SecEUC and SecCtrl is that one Se-
cEUC can have one or more than one SecCtrl. For example, “Identify Self” of SecEuc
is mapped to “Authentication” and “Authorization” SecCtrl. Other examples of the
pattern library are shown in Table 1.

Table 1. Examples of our security-oriented EUC pattern libraries

 SecEI SecEUC SecCtrl

Check password Identify Self Authentication
Authorization Check username

Verify username
Make payment Make payment Authentication

Transaction Complete payment form

4.2 Using Our Approach

Figure 2 shows the overview of our approach that enhances the process of capturing
security requirements. The process of our approach begins after the requirement engi-
neer gathered the requirements from the stakeholders. The collected requirements are
in the forms of textual natural language requirements. The followings are the se-
quence of the process.

Fig. 2. Overview of our approach

The process starts when the textual requirements are analyzed and traced to the EUCs
patterns library for appropriate abstract interaction in a form of EUC model (1). Then,
SecEUC are derived from the generated EUC Models based on the categorization of
their attribute related to the security element as defined in the SecEUC pattern library
(2). Each SecEUC is mapped to EUI pattern library (3) for the generation of abstract
prototype in a form of EUI model. Then, each EUI model is verified with a defined
mandatory security control in the SecCtrl library patterns (4). Next, a recommenda-
tion of graphical user interfaces (GUI) is provided to visualize the security require-
ments based on the generated SecEUC (5). This helps to ensure the consistency and
correctness of the captured security requirements with the original business require-
ments provided by the end-user.

5 Tool Support and Usage Example

5.1 SecMEReq : Prototype Tool

We have developed a prototype tool to support our EUC-based requirements capture
and analysis process, an extension of our earlier MEReq [7] tool. Figure 3 shows our
extended version of MEReq, called SecMEReq. The tool allows requirements engi-
neers to automate the elicitation process towards capturing security requirements. The
selected phrases in the textual requirements show the resulting extracted security es-
sential interactions. The selected essential interactions also show the sources from
which the textual natural language phrases were derived. This provides a traceability
support mechanism between the textual natural language requirements and the de-
rived security EUC models.Engineers can then modify the generated security EUC
model and/or the original textual natural language requirements. This includes adding
phrases and interactions, re-ordering phrases and interactions, uploading and re-
uploading requirements, deleting phrases and interactions and modifying phrases and
interactions descriptive texts. Users (engineers) are also allowed to re-extract the es-
sential interactions and associated traceability links. In this case, engineers need to
have a basic understanding of the Essential Use Case concept and methodology only.
To demonstrate, our tool key features, user scenario and figure of the tool support are
provided as below:

Nancy, a requirements engineer, would like to validate the security requirements
which mix the business and security requirements, which she has collected from a
client, Nick, who is a car rental information manager. To do this, as shown in Figure
3, she types the requirements in a form of user scenario or copies them from an exist-
ing file on the textual editor (1). Once she has finished typing or copying the require-
ments, the tool generates the model of the essential requirements (abstract interac-
tions) and the screen will show the EUC models containing the user interaction and
system responsibility side by side to the chosen requirements (2). On the same display
screen, she verifies the list of abstract interactions provided by the tool as shown in
figure 4. From the generated EUC, she then captures the security requirements from
the business requirements in a form of SecEUC which is presented in the green color
boxes. Further, she checks the consistency and dependencies between the SecEUC

components and the SecEI by performing a trace back using the “capture SecEI” (3)
event handler. From here, she could verify the consistency between the captured secu-
rity requirements with the original textual requirements. At this stage, the associated
SecEI are highlighted with yellow colors at the textual requirements (3A). In order to
further validate her captured security requirements and to ease the discussion process
with Nick, she has the tool map the SecEUC model to the low-fidelity prototype -
EUI prototype (3B). As shown in Fig 3(3B), the EUI model that has the relation with
security is also colored in green. From the EUI prototype, the tool then provides her
with a set of mandatory security control for the captured SecEUC (4). In order to
visualize the captured security requirements, she then has the tool translate the EUI
prototype to a more concrete UI view (5).From here, she then verify the consistency
and the correctness of the captured security requirements with the client-stakeholder.

Fig. 3. Requirements Example and a SecMereq Usage Example

Fig. 4. SecMereq Tool Support in use

1 2

3A

3

3

4

5

5.2 Tool Architecture

Fig. 5. A High-level architecture of SecMereq

We have enhanced our Mereq [7] tools by adding a new module and functions to
capture security requirements. Figure 4 shows the high-level architecture of the proto-
type tool that consists of three tiers. The first tier of the architecture contains the
front-end that handles the interaction with users. Users are able to view the prototype
tool either from a mobile or a web browser. A textual documentation of the require-
ment is inserted and the mandatory security controls are provided along with the rec-
ommendations for suitable graphical user interfaces (GUI). The middle-tier contains
the rules for the processing information. A dynamic content processing and genera-
tion takes place at this level. Apache tomcat servers are utilized as the middleware or
platform for the development at this stage. To build the Java applications, Eclipse
Juno was selected for the IDE as it is recognized to provide a superior Java editing
with validation and code assistance. Java Server Pages (JSP) allows writing a text
using client’s languages, which are the JavaScript and HTML5. Tier 3 manages the
access to the database that stores the patterns library: the essential use cases (EUCs),
essential interactions (EI), security essential use cases (SecEUC) and security essen-
tial interactions (SecEI). These patterns are used to capture the security requirements
and to recommend the mandatory security controls as well as to generate security
requirements prototype.

6 Evaluation

6.1 Tool Usability

We conducted a preliminary evaluation of our developed prototype to evaluate its
usability. The participants of this study were 40 students, comprising 16 males and 24
females. The average age of the students was 22 years old They were final year stu-
dents from the Bachelor of Computer Science majoring in Software Engineering..

TIER 1

TIER 2

TIER 3

The selected students were those who have sufficient understanding of requirements
engineering and familiar with the concept and methodology of essential use cases and
security .To explore the functionality of the tool, the students were provided with a set
of requirements on “online car rental registration”. They were informed that they will
be observed and they are free to say aloud their feedback of the tool while completing
the task. The purpose of the observation was to identify the problems and misconcep-
tions faced by the participants when using the tool. While the say aloud evaluation of
the tool provided us with the users’ spontaneous responses and suggestions for im-
provement. After the completion of the task, students were requested to answer four
questions related to the usability [5] which consists of the usefulness, ease of use,
ease of learning and satisfaction of the tool based on a five-level Likert scale. Stu-
dents responses for these questions were analysed and the results of the survey are
shown in Figure 6.

Fig. 6. Preliminary Usability Test Results

More than 90% of the respondents agreed that the tool is useful, 70% agreed that the
tool is easy to use, 80% percent agreed that the tool is easy to learn, and 70% were
satisfied with the tool. None of the respondents expressed disagreement to the four
aspects evaluated in this survey. In general, it can be concluded our prototype tool is
useful, easy to use, easy to understand and able to satisfy users for this sample popula-
tion and set of tasks. There are some enhancements that we need to consider for the
refinement of our tool. The suggestions given by the respondents were mostly related
to the improvement of the interface design of the tool. They also suggested for the
provision of a user manual or a tutorial for users. Additionally, we plan to integrate
the tool with existing security tools with the security features to ease the design and
development phase. This stage is closely related to the work of the security engineers.
Key threats to validity are the selection bias due to our method of selecting the sam-
ple. The selection of participants for the preliminary study was based on two groups
of students. Hence, the subjects in both groups were not homogenous with regards to
the preference of the interface design. However, they were similar in one or more of
the subject-related variables, such as the agreement towards the easiness of using the
tool.

6.2 Preliminary SecEUC Patterns Evaluation

We also conducted an evaluation of our SecEUC patterns using five experts in re-
quirements from IBM Corporation from India, Austria, France and Malaysia. They
were invited to evaluate the representations of the patterns of library developed. For
this purpose, the security requirements, security abstract interactions and security
essential interactions were compared to the identified security controls. The results of
the evaluation were recorded and tabulated as shown in Figure 7.

Fig. 7. Preliminary Patterns Evaluation Results

The patterns were classified into a few basic security controls which are confiden-
tiality, integrity, availability, authentication and authorization controls. As shown in
Figure 6, all of the general security controls have the elements of disagreement. Based
on this feedback, the disagreement does not mean that we have provided incorrect
selection, but they would prefer some other security control classifications for each of
the SecEUC. They requested more options of security controls for more complex set
of requirements. For example, the security requirements “login” are currently mapped
to the security controls “Authorization”. Thus it should be mapped to other security
control such as Authentication. They also offered some recommendations for correct
and relevant security controls associated to a particular SecEUC. Here, we will update
the the security patterns from time to time in accordance to the feedback. Based on
this study, it shows that dependency on basic security services is not purely relevant
for capturing more complex security requirements. Therefore a further study on the
patterns relates to more establish security standards is required.

7 Related Work

Many methods, approaches, techniques and tools have been used to capture security
requirements. Viega [22], showed how to build security requirements in a structured
manner that is conducive to iterative refinement. If this structured procedure is fol-

0%#

20%#

40%#

60%#

80%#

100%#

CONFIDENTIALITY, INTEGRITY, AVAILABILITY, AUTHENTICATION, AUTHORIZATION,

stongly,agree, agree, neutral, disagree, strongly,disagree,

PRELIMINARY#PATTERNS#EVALUATION#
RESULTS#

lowed correctly according to the metrics for evaluation, it would serve as a framework
that provides a significant improvement for the traditional methods that do not con-
sider security at all. They also provided an example using a simple three-tiered archi-
tecture. The basic idea behind the way that CLASP handles security requirements is
the performance of a structured walkthrough of resources, determining how they ad-
dress each core security service throughout the lifetime of that resource. While it is
obviously far more effective than any ad-hoc treatment of security requirements, this
methodology is still new and immature. Hussein and Zulkernine [23], proposed a
framework for developing components with intrusion detection capabilities. The first
stage of this framework is the requirement elicitation, in which developers identify
services and intrusions. That is, they capture users requirements regarding the services
and functionalities provided by the components, and identify the unwanted or illegal
usage of components by intruders. Intrusion scenarios are elicited through the use of
misuse-cases of a UML profile called UMLintr. Yet, their proposed framework still
needs an extension scope on UMLintr to other security requirements. UMLintr can be
extended by exploring how to specify and handle other security requirements like
authentication, authorization, integrity, etc. Their framework is also considered as
complex intrusion scenarios. While Agile Security Requirements Engineering propos-
es the extension of agile practices to deal with security in an informal, communicative
and assurance-driven spirit, it has its own limitation. It is only partially support con-
sistency and does not support correctness and validation checking between the securi-
ty requirement and business requirement. Many organizations have realized that secu-
rity requirements need to be addressed early in the lifecycle process and intuitively
feel that attention to this area will pay off supporting their business goals. For exam-
ple, Microsoft has a security requirements engineering method which is incorporated
into their life- cycle processes. However, at present, there is still no consensus on a
single best approach to security requirements engineering [12]. i* frame is a modeling
and analysis frame for organizational environments and their software systems are
based on the intentionality relations between agents. Tropos [26] adopts the i* model-
ing framework and is an agent- oriented software system development methodology.
However, it focuses on describing both organizational environment of a system and a
system itself. A secure Tropos framework to model and analyze the security require-
ments is then built using the Secure Tropos methodology [27]. It especially addresses
the problem of modeling security requirements through ownership, permission and
delegation among the actors or agents involved in the software system. In our previ-
ous research [26] we reviewed a few related tools, such as STS-Tool [27], SecTro
[28], SecReq [31], SREPPLine [30] and ST-Tool [31]. Many researchers have done
great works on their research of security requirements engineering, particularly in-
volving a tool that supports the security requirement engineering. We found that most
of the works used modeling approach, such as use cases, misuse cases, and UMLsec
to handle security requirements. UML models are the most commonly used [34],
especially use case diagrams that are widely used by developers and requirements
engineers to elicit and capture requirements. Kamalrudin et al. [7], [34] have shown
that EUCs are useful to capture and validate the quality of requirements. EUCs also
benefit the development process as they fit a problem-oriented rather than solution–

oriented approach, thus they have the potential to allow designers and implementers
of the user interface to explore more possibilities. This approach allows for a more
rapid development, whereby when using EUCs, it is no longer necessary to design an
actual user interface. Although EUCs simplify captured requirements as compared to
the conventional UML use cases, and it is beneficial to integrate the requirements and
design [35][39], they still are not explored in the process of capturing security re-
quirements. As in the case of MaramaAI tool, it does not cover security.

8 Conclusion and Future Work

We have described a new approach to supporting security requirements cap-
ture and analysis using Essential Use Case models. Our prototype tool, SecMereq,
provides supports for extracting EUCs and security requirements from natural lan-
guage text, prototype generation including security interfaces, and validation of ex-
tracted security requirements using a library of security related patterns. We have
evaluated our tool in terms of both its usability for target end users, and for quality of
the encoded EUC-based security patterns.
 In future, we plan to enhance our security pattern library based on a-well-
established standard: Common Criteria. Then we intend to compare the efficacy of
our tool with the manual approach. Additionally, we will work on the possibilities of
automating the complicated usage of the standard to a simpler practice by using our
tool support. Thus, this approach creates a possibility to allow a complete and con-
sistent capturing of the security requirements from normal business requirements.

9 ACKNOWLEDGMENTS

The authors also would like to acknowledge Universiti Teknikal Malaysia Melaka and
the Ministry of Education Malaysia of the scholarship Mybrain15. We also would like
to thank the funding of this ERGS research grant:
ERGS/2013/FTMK/ICT01/UTEM/E00026 for funding this research.

10 REFERENCES

1. M. Alam, “Software Security Requirements Checklist,” International Journal of Software
Engineering, IJSE, Vol.3 No.1, pp. 53–62, (2010)

2. G. McGraw, “Building Security In: Software Security,” IEEE Security and Privacy, pp.
80–83,(2004)

3. K. Schneider, E. Knauss, S. Houmb, S. Islam, and J. Jürjens,“ Enhancing security require-
ments engineering by organizational learning,” Requirements Engineering, vol. 17, no. 1,
pp. 35–56, (2011)

4. E. Paja, F. Dalpiaz, M. Poggianella, P. Roberti, and P. Giorgini, “STS-tool: Socio-
technical Security Requirements through social commitments,” IEEE International Re-
quirements Engineering. Conference, pp. 331–332, (2012)

5. M. Kamalrudin, J. Hosking, and J. Grundy, “Improving requirements quality using essen-
tial use case interaction patterns,” Proceeding of the 33rd international conference on
Software engineering - ICSE ’11, p. 531, (2011)

6. G. Elahi and E. Yu, “A Semi-automated Decision Support Tool for Requirements Trade-
Off Analysis,” IEEE 35th Annual Computer Software and Applications Conference, pp.
466–475,(2011)

7. M. Kamalrudin, J. Grundy, and J. Hosking, “Tool Support for Essential Use Cases to Bet-
ter Capture Software Requirements,” pp. 327–336,(2010)

8. D. Mellado., et al. “A systematic review of security requirements engineering.” Computer
Standards and Interfaces,(2010)

9. W.Ding, and G. Marchionini, “A Study on Video Browsing Strategies” Technical Report,
University of Maryland,(1997)

10. B.Fröhlich, and J.Plate, “The cubic mouse: a new device for three-dimensional input.” In
Proceedings of the SIGCHI, (2000)

11. Firesmith, D. “Specifying reusable security requirements.” Journal of Object Technolo-
gy (2004)

12. Salini, P. “Survey and analysis on Security Requirements Engineering” in Journal Com-
puters and Electrical Electrical Engineering Available at:
http://linkinghub.elsevier.com/retrieve/pii/S0045790612001644 Accessed October 1, 2012

13. M. Corporation, “Simplified Implementation of the SDL.” pp. 1–17,(2010)
14. K. E. Wiegers, Software Requirements, O’Reilly, (2009)
15. A. Souag, C. Salinesi, and I. Wattiau, “Ontologies for Security Requirements!: A Literature

Survey and Classification” In Advanced Information Systems Engineering Workshops, pp.
61-69. Springer Berlin Heidelberg, (2012)

16. A.Rodríguez, et.al "Towards a UML 2.0 extension for the modeling of security require-
ments in business processes." Trust and Privacy in Digital Business. Springer Berlin Hei-
delberg, pp. 51-61,(2006)

17. Backes, M., Pfitzmann, B. and Waider, M.; Security in Business Process Engineering, In-
ternational Conference on Business Process Management (BPM). Vol. 2678, LNCS. Eind-
hoven, The Netherlands. pp.168-183,(2003)

18. Herrmann, G. et.al. “Viewing Business Process Security from Different Perspectives”,
11th International Bled Electronic Commerce Conference. Slovenia, pp.89-103., 1998

19. The SANS Institute, “Determining the Role of the IA / Security Engineer”, InfoSec Read-
ing Room ,(2010)

20. M.Kamalrudin, “Automated Support for Consistency Management and Validation of Re-
quirements”. PhD thesis. The University of Auckland, (2011)

21. Myagmar, “Threat Modeling as a Basis for Security Requirements,” in Proceedings of the
ACM workshop on Storage security and survivability, pp. 94–102. (2005)

22. J. Viega, “Building Security Requirements with CLASP,” in SESS ’05 Proceedings of the
workshop on Software engineering for secure systems building trustworthy applications
pp. 1–7, (2010)

23. M. Hussein and M. Zulkernine, “Intrusion detection aware component-based systems: A
specification-based framework,” Journal of Systems and Software, vol. 80, no. 5, pp. 700–
710, (2007)

24. Du, J., et al. “An Analysis for Understanding Software Security Requirement Methodolo-
gies” Third IEEE International Conference on Secure Software Integration and Reliability
Improvement, pp.141–149, (2009)

25. P. Giorgini, et al. “Modeling security requirements through ownership, permission and
delegation,” 13th IEEE International Conference on Requirements Engineering
(RE’05),pp. 167–176,(2005)

26. S. Yahya, M. Kamalrudin, S.Sidek “A Review on Tool Supports for Security Require-
ments Engineering,” IEEE Conference On Open Systems, Sarawak, Malaysia2013.

27. E.Paja, et al. "STS-tool: Socio-technical Security Requirements through social commit-
ments." In Requirements Engineering Conference (RE), 2012 20th IEEE International, pp.
331-332. IEEE, (2012)

28. M. Pavlidis and S. Islam, “SecTro: A CASE Tool for Modelling Security in Requirements
Engineering using Secure Tropos” in CAiSE ’11: Proceedings of the CAiSE forum.,pp.89–
96.,(2011)

29. S. H. Houmb, S. Islam, E. Knauss, J. Jürjens, and K. Schneider,“Eliciting security re-
quirements and tracing them to design: an integration of Common Criteria, heuristics, and
UMLsec,” Requirements Engineering, vol. 15, no. 1, pp. 63–93,(2010)

30. D. Mellado, E. Fernández-medina, and M. Piattini, “Security Requirements Engineering
Process for Software Product Lines: A Case Study and Technologies SREPPLine” pp. 1–
6.,(2008)

31. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “ST-Tool: a CASE tool for se-
curity requirements engineering,” in Requirements Engineering, 2005. Proceedings. 13th
IEEE International Conference on, pp. 451 – 452., (2005)

32. M.Kamalrudin J. Hosking, John Grundy, "Improving Requirements Quality using Essen-
tial Use Case Interaction Patterns," in ICSE’11, Honolulu, Hawaii, USA, (2011)

33. H. Kaindl, L. Constantine, O. Pastor, A. Sutcliffe, and D. Zowghi, “How to Combine Re-
quirements Engineering and Interaction Design?” 16th IEEE International Requirements
Engineering, 2008. RE '08., Barcelona, Catalunya, Spain, pp. 299-301.,(2008)

34. M. Kamalrudin, J. Grundy, and J. Hosking, “Managing Consistency between Textual Re-
quirements, Abstract Interactions and Essential Use Cases,”,pp. 327–336. ,(2010)

35. S.Yahya, M. Kamalrudin and S.Sidek "The Use of Essential Use Cases (EUCs) to enhance
the Process of Capturing Security Requirements for Accurate Secure Software." e-
Proceeding of Software Engineering Postgraduates Workshop (SEPoW), (2013)

36. M. Kamalrudin, "Automated Software Tool Support for Checking the Inconsistency of
Requirements." Automated Software Engineering, 2009. ASE'09. 24th IEEE/ACM Inter-
national Conference on. IEEE, (2009)

37. Constantine, L.L. and Lockwood, A.D.L. Software For Use:A Practical Guide to the Mod-
els and Methods of Usage-Centered Design. ACM Press/Addison Wesley Longman, Inc,
(1999)

38. Develop functional security requirements in Document security-relevant requirements re-
trieve from https://www.owasp.org/index.php/Document_security-relevant_requirements
Accessed 15 July 2013

39. A.Blackwell,C.Britton,A.Cox,T.Green,C.Gurr,G.Kadoda,M.Kutar,M.Loomes,C.Nehaniv,
M.Petre,C.Roast,C.Roe,A.Wong and R.Young, “Cognitive Dimensions of Notations: De-
sign Tools for Cognitive Technology,” in Cognitive Technology: Instruments of Mind.
vol. 2117, Springer Berlin / Heidelberg, pp. 325-341(2011)

40. What is the Common Criteria (CC) in Common Criteria and Mutual Recognition retrieve
from http://www.cybersecurity.my/myc Accessed 5 August 2013

41. Biddle, R., Noble, J. and Tempero, E. “Essential use cases and responsibility in object-
oriented development,” In Proceeding of the twenty-fifth Australasian conference on
Computer science, Melbourne, Victoria, Australia, ACM, pp. 7-16.(2002)

42. Biddle, R, Noble J. and Tempero, E., Patterns for Essential Use Case Bodies, CRPIT '02
Proceedings of the 2002 conference on Pattern languages of programs, vol. 13, Australian
Computer Society, pp 85-98 (2002)

