
In Proceedings of 2nd Australasian Conference on Computer Science Education, Melbourne, July 2-4 1997, ACM Press.

A Comparative Analysis of Design Principles for
Project-based IT Courses

John C. Grundy

Department of Computer Science
University of Waikato

Private Bag 3105, Hamilton, New Zealand

jgrundy@cs.waikato.ac.nz

Abstract

Project-based courses have become increasingly
popular in Information Technology (IT)
curricula. We have found the design of such
courses needs to take into account a variety of
desired learning outcomes in order to maximise
the effectiveness of such courses. This paper
describes four quite different project-based
courses we have developed and run over several
years, and are continuing to develop. We
compare and contrast the different course
objectives, group management, project
characteristics, course content and student
assessment used in these courses. We also
reflect on the evolution of these courses and
how feedback from different kinds of course
evaluation is used to continue their refinement.
We have our experiences will be useful for
others designing or refining their own project-
based courses.

1 Introduction

Project-based courses have become popular in
Information Technology (IT) curricula [9, 15]. This is
usually due to the fostering of a “real-world” style of
software development [9], the experience of working
within groups on large(ish) projects [4], and the
“immersion” style of learning these courses foster [3].
Such courses can be usefully utilised in many specialised
IT subfields, including Software Engineering [4, 7],
Information Systems [9, 12], Computer Technology and
Artificial Intelligence, as well as in more introductory
program design and implementation courses.

While project-based courses are seen by many as an
essential component of an IT curriculum, it is often
difficult to balance the wide variety of conflicting design
principles that can be used when developing such courses
[8, 15, 17].

For example, should such a course use industry [9]
or “made up” projects [15]? Should project work be
group-based [15, 10], individual [11], or a combination
[17]? Should groups be self-selected [9] or organised by
the lecturer [17]? How long should projects be – a whole
year [10], one semester [9] or part of a semester? How
should projects be managed – by students [17] or the
lecturing staff [4]? Should such courses have lectures and
tutorials, and if so what material should these cover [14]?
Do students need preceding or subsequent “theory”
courses to prepare them for or build upon their project
course experiences [8, 16]? How can project work,
particularly group work, be most effectively and fairly
assessed – by the lecturer, by peer-review, by industry
clients or a combination [9, 14]? Our experiences in
project-based course development suggests these issues,
and others, need careful consideration in order to achieve
effective course outcomes for students.

There has been much written in recent academic
literature on different aspects of project-based course
design and deployment [4, 7, 15, 17]. Related topics,
such as problem-based learning [1], where learning is
facilitated via problem-oriented curricula, have also been
widely studied for a range of disciplines. To date, there
has been little analysis of the differing organisational
approaches which can be used for project-based courses,
particularly for IT courses. This paper attempts to address
this issue by a comparative analysis of the design of four
project-based, or part-project based, courses. One is a
Year 3 Software Engineering project course, one a Year 3
Information Systems project course, the third a Year 4
general Computer Science project course, and the fourth
a Year 2 Program Design and Implementation course.
We compare and contrast the quite different natures of
these courses, how the project-based aspects of the
courses have been designed and refined over time, and
what general course design issues need to be considered
for different aspects of these courses.

2 Overall Course Objectives

The most important thing to clearly determine, and
document, when designing project-based courses is the
learning outcomes for the course. What kind of things
should students have seen and done before they enter the
course, what things should they encounter while taking
the course, and what should they know and be able to do
once completing it? The specific subject areas of the

course need to be determined, and a course’s relation to
other courses, both prior and subsequent, be clearly
understood. As courses with a high project-based content
have heavy workloads in comparison to more traditional
courses with small assignments and more lectured
material, workload considerations are very important,
particularly with course semesterisation [7]. Often degree
requirements are important to consider during course
planning, such as requirements for industry-based work
experience, for which project-based courses are often ideal
[16].

The four project-based courses we describe in this
paper span Year 2 to Year 4 in our Computer Science
Curriculum at the University of Waikato. Figure 1
illustrates the relationships between the courses.
Program Design and Implementation (PDI) is a core Part
2, B semester course which all majoring students take.
This contains three small individual projects carried out
during the course. Software Engineering Project (SEP) is
an A-semester Year 3 introductory Software Engineering
course which students in the Software Engineering
Programme take. Students work in groups on a single
lecturer-specified project for the whole course.
Information Systems Project (ISP) is a B-semester Part 3
course which students in the Information Systems
Programme take. Students work in groups on an
industry-based project for the duration of the course.
Report of an Investigation (ROI) is a whole-year, double
weighted Part 4 course which students doing Honours
take. Students work individually on a single project for
the whole course, under the supervision of a lecturer.

Program Design
and Implementation

(PDI)Year 2

Year 3

Year 4

(all students take)

Software Engineering
Project (SEP)

(SE programme
students take)

Information Systems
Project (ISP)

(IS Programme
students take)

Report of an
Investigation (ROI)

(all Honours
students take)

Figure 1: The project-based courses studied.

The goal of PDI is to give Year 2 students
experience in building medium-sized software systems,
and follows on from a data structures programming
course which contains small assignments. SEP and ISP
are intended to introduce Software Engineering and
Information Systems Development, with students
working in groups on large projects for the duration of
the course. ROI is intended to be an in-depth project on a
specialised topic, chosen by the student, with individual
supervision. In order to achieve these quite different
course goals, we have had to design and deliver these four
courses in very different ways.

3 Group Management

One of the first things to consider for a project-based
course is whether the project work will be conducted
individually or in groups (or whether to have some
projects or parts of projects done individually and others
in groups) [11, 4]. Single-person projects necessitate
much more assessment (if a large course) and supervision
overhead, but a single student by necessity gains an in-
depth understanding of all of the project material. Single-
person projects usually need to be smaller than group-
based projects, and assessment issues are often
simplified. However, if all students are doing the same
project, unwanted collaboration may occur and be
difficult to detect and avoid.

Group projects usually allow students to tackle
larger, more complex problems, and give students
valuable experience of working with others. Close
supervision of several small groups is more realistic for
lecturing staff than trying to manage many more
individual projects, and there is usually less material to
assess. Trying to assign differing grades to group work is
very difficult [2], however, and working in a group
introduces high communication and organisational
overheads, reducing the actual amount of work that can
be done in a course [9].

The selection of group members can be by students
[9] or by lecturing staff [15, 17]. The former has the
advantage that students often choose those they know
they can get along with, but often group ability becomes
skewed i.e. the strong students group together and weaker
students group together. Lecturer-selection can result in
more balanced groups, but in our experience students can
react against these “enforced” groupings.

There are a variety of ways to manage project work.
Recording of progress is often useful, and can be made
mandatory for purposes of assessment or process
improvement [17]. Project management often requires
meetings of students (if group work) and possibly with
the lecturer(s) (if the project work is specialised or close
project supervision is needed). Project management
documentation can be left to students or groups, or be a
part of the assessment process. Use of project
management metrics can also be used to assist students
in improving their work processes, which is an
important part of some project courses [17].

Group vs. Individual • Individual
• Group size:

• large (4-6 people)
• small (2-3 people)

Group Selection • Self-selecting
• Lecturer-selected

Project
Management

• Done by student/group
• Checklists provided
• Meetings with lecturer
• Documentation required

Figure 2: Project Organisation Approaches.

For our project courses, PDI has individually
conducted and assessed projects. No explicit project
management documents are provided or expected with the
completed design and programming work. Students

individually manage their time on the projects, which are
essentially large assignments. As the course has a large
number of students (approx. 150), this approach
minimises project management overhead for lecturing
staff while giving students larger design and
programming problem experience than in our other Year
2 courses.

In contrast, SEP and ISP, work is conducted in self-
selected groups on a single, large project. This approach
was taken in order to “immerse” students in a single,
large group project situation, with most learning thereby
done experimentally. A key aim of both courses is the
development of group work skills, not an aim of PDI.

In SEP groups must document their progress and
hand in a variety of project management information.
They also meet with the course lecturer on a weekly
basis to discuss progress. The idea of Project
Management, Software Processes and Process
Improvement are thus covered as an integral part of
project work.

In ISP, students meet frequently with their industry
client, as well as with group members every week and
the course lecturer every two weeks. Checklists are used
to guide work, but less project management information
is expected to be handed in than with SEP, with groups
having responsibility for most of the project planning
and organisation. This is in contrast to SEP, as in ISP
the topics of Project Management and the Software
Processes are not explicitly covered. Groups were
originally formed by the lecturer, but most groups are
now self-selected. All students have taken an introductory
Year 2 Analysis and Design course in which a small
group project is done, and often groups from this course
carry over into ISP. Group members are thus often
already experienced at how others work and how to
successfully manage a project together.

In ROI, students work individually and are
supervised by a member of the lecturing staff. Two
progress reports and a presentation, as well as weekly
meetings with the supervisor, are used to monitor
progress. This approach was chosen as it allows more
freedom to mange time and project tasks than in the SEP
and ISP project courses, but closer supervision than the
PDI course projects. Individual projects are used in ROI
to allow a greater range of possible project topic choices,
and to reduce the overheads of work coordination inherent
in group projects, giving students more time to persue
actual project work.

4 Project Characteristics

A wide variety of projects can be chosen for use in
project-based courses. Industry-based courses offer the
advantages of “real world” problems, a real client to
discuss the project work with, and for students a
satisfying feeling of solving real problems [9]. Care
must be taken to ensure such projects conform to the
general scope of a course, and that clients are willing and
able to liaise with students or groups for the whole
course. Academic-designed projects, can be more
carefully tailored to cover all or most of the material the
course aims to address, which can be difficult to achieve
with industry-based projects [15]. Academic projects may

suffer from lack of reality, however, and students feel
less of an achievement in solving them.

Projects can last for an entire course and try to cover
all course topics, or be somewhat smaller in size and
scope. Large projects have the advantage of full (or
almost full) coverage of course topics, and of giving
students an “immersion” experience in the course topics
[3, 4]. They also give students important experience in
dealing with “big” problems, which most traditional IT
courses do not [4]. Smaller, more scoped projects do not
give such experiences, but can more precisely target
topics of interest to the course, ensuring students gain
more specialised experiences. Projects can even span
more than one course (if semesterised courses are used),
although this can be difficult to manage and usually
requires students to take both courses in the same year
[10].

Care must be taken to ensure multiple projects
within a single course are not disjointed, and that
workload does not become too great. Large projects, too,
need to be carefully managed to ensure student workload
pressures do not detract from the learning the project is
intended to foster [7]. Often it is unwise to schedule two
project-based courses in the same semester when a
student may be expected to take both concurrently, often
dramatically increasing their workload.

Project Definition • Industry-based and defined
• Academic-defined
• Student-defined

Project Selection • Self-selected
• Lecturer-assigned

Project Duration • Entire course
• Part of course
• Multiple projects
• Spans multiple courses

Project work • Group work
• Individual work
• Limited collaboration

Deliverables • Reports
• Software
• Presentations
• Project management materials

Figure 3: Various Project Characteristics.

Project work can be group-based or individual, and
individual projects may still allow students to collaborate
in limited ways. We have found it easiest in terms of
assigning, managing and assessing work to make group
projects contain mostly group work i.e. most work is
done by all group members and assessed jointly.

Various kinds of deliverables are possible in project-
based IT courses. Software and designs are usually
always required, and form an important component of the
deliverables, but often other written technical documents,
such as Requirements documents, Evaluation and Testing
reports, and comparative analyses are appropriate [6, 13].
Quality project management documents may also be
important deliverables. We consider oral presentations to
also be of key importance, to give students experiences
in presenting their work through interactive forums and
not just software or written documents [9, 13].

In our project courses, PDI uses three small projects
to give students experience in designing and coding

software using functional and object-oriented techniques.
Projects are mostly independent, but the different
approaches used are intended to be compared and
contrasted by students. Deliverables are mainly software
and design documents, but also include user manuals and
some comparative analysis of different project results and
experiences. Group projects were not included to allow
students to experimentally develop skills by themselves.

SEP has a single lecturer-defined project which all
groups of students study for the duration of the course.
This is carefully designed so all aspects of the course
material are exemplified in the project work. Deliverables
are four reports and software, with all reports closely
related. Two oral presentations are given by each group.
Project management documents are handed in for
assessment and used for process improvement analysis.

In contrast, ISP has a group-located industry-based
project, and each group of students work with their
different industry clients on often very different projects.
Projects need to conform to a basic form, but are often
quite distinct, with both small and large organisations
studied. This approach was used to ensure students
interact with real clients and tackle real-world problems.
ISP deliverables include reports and software, and two
oral presentations. Project management notes are
submitted but not used in the manner of SEP. Because
each group has a very different project, the content of
documents and the software developed is often quite
different.

We chose to have ISP students study different
industry-based project and SEP students a single,
lecturer-specified project because of the quite different
aims of the two courses. SEP aims to provide a
grounding in a range of important Software Engineering
techniques and give students experiences in using these
on a carefully scoped, medium-sized project. ISP is
intended to give students experience in applying
previously-learnt IS Development techniques on a real-
world projects with real clients.

ROI has a double-weighted project which is chosen
by students and supervised by individual lecturers. The
main deliverable and assessment item is a report, but
other items include progress reports and an oral
presentation. All projects are very different in nature and
focus on specialised areas of Computer Science.
Individual assessment is required for this course, and as
projects are so different, group work is not usually
allowed. On a few occasions, when projects are similar,
students have done limited work together before writing
separate reports.

5 Course Content

The content of IT courses can range from very theoretical
groundings, to the development of practical techniques,
to building experience in applying practical techniques.
Project courses usually try to build experience in
applying practical techniques to a large problem, and
may introduce new practices to students. For advanced
projects, new theoretical insights may also be necessary
to give sufficient background to the practical material.

Project-based courses often need to drawn upon
theoretical and/or practical techniques developed in
preceding courses, as trying to teach this material along

with students carrying out a large project using it is
impractical in both timing and workload [7, 16]. We
have found that preceding courses which have smallish
projects and some group work, along with practical
material used in the project course, are an excellent
grounding for students to conduct a large project [9].
Follow-on courses which further develop the experiences
of project-courses are often useful. These might be more
advanced project-based courses, or may delve further into
the theoretical and/or practical techniques introduced in
the project-based course.

Choice of software for designing and coding
systems, producing documents and giving presentations
can be varied. Some project-based courses may wish to
make extensive use of particular CASE tools,
programming environments and
documentation/presentation software [9, 10]. Others may
reject these tools for a more basic, and often more
flexible, approach to producing project deliverables [18].
Often this decision is made not only on the availability
of tools but also whether the course itself wants to foster
the use of tools, review tool usage on a project or do a
comparative analysis of different tools and
methodologies. Often communication tools, such as E-
mail, Lotus Notes and news groups can be used to
facilitate group project management or discuss project-
related issues.

Project-based courses usually have less of a need for
lectured material than other IT courses. It may be
possible to dispense with lectures altogether. Often
lectures are a useful way to present examples and case-
studies, or to chart expected project progress [9, 17]. If
the project-based course is using techniques from another
course, a brief review of these techniques through
lectures is often useful [7]. If new practical techniques or
theories are being introduced as part of the course,
lectures are an appropriate way to introduce this material.

Focus of course
content

• Theoretical issues
• Practical techniques
• Experience in using techniques

Preceding and
subsequent courses

• Cover theory/practice used
• Build upon project experiences

Software choice • CASE tools
• Programming languages/tools
• Documentation/report writing
• Presentation tools
• Communication tools

Lectures etc. • Lectures on theory/practice
• Tutorials for case studies, tools
• Labs for tool usage
• Meetings with students/groups

Course materials • Textbook(s)
• Lecture notes
• Manuals (for tools)
• Case study examples
• Project management materials

Figure 4: Project-based Course Content.

Lectures and meetings with students or student
groups can be complemented with tutorials and/or
laboratory sessions. As much of the assessment and
deliverables of the project-based course are practical
development work, keeping tutorial and laboratory

requirements to a minimum is often necessary to keep
student workload to acceptable levels. Tutorials and labs
are a possible alternative to lectures for introducing
practical techniques or presenting case studies or
examples of tool usage.

Additional course materials, ranging from text
books, case study documents and systems, and on-line
resources can be used to complement lecturing. Often
project-based courses can most usefully utilise textbooks
or notes focusing on case studies or practical examples,
rather than theoretical issues. Recommended and/or
required readings and various on-line or library resources
are useful to provide background information for course
topics.

For our project courses, PDI has three lectures a
week plus a tutorial for all students. Lectures cover both
theoretical and practical material, and the project work for
the course is intended to give students experience with
applying the practical techniques on well-scoped example
problems. Laboratories are staffed by demonstrators who
assist students with tool usage. Particular programming
and documentation tools are used (C++, Gofer, Netscape
and MS Word), as well as a News reader and course-
specific news group. A programmers textbook for C++
and a Gofer manual are used. Example programs and a
course manual are provided on-line via the World Wide
Web.

SEP has two lectures per week, which focuses on
mainly Software Engineering theory and practice
material, in addition to weekly meetings of groups with
the course lecturer. No tutorials or laboratories are used,
and students are expected to reuse many practical
techniques taught in PDI and other Year 2 courses.
Timesheets are used to monitor student workload.
Students are given freedom to choose particular CASE
tools, programming tools and documentation tools. Part
of the course content is a comparative analysis of tools,
and discussion of experiences in using different tools on
the project. Considerable new Software Engineering
theory and practical techniques are introduced, including
Requirements Engineering, Specification, Software
Architectures, Implementation choices, Testing and
Maintenance. Lecture material covering these topics is
complemented by a textbook focusing on Software
Engineering theory and practice, and a variety of on-line
resources are used. Course material is distributed via the
World Wide Web. Lectured material is kept to a
minimum with students expected to make use of these
other resources.

ISP has two lectures per week and meetings with the
course lecturer and demonstrator on alternate weeks. ISP
uses practical techniques and tools taught in the
preceding Year 2 Analysis and Design course. Particular
CASE tools (Deft), programming tools (MS Access),
communication tools (E-mail) and documentation tools
(MS Works) are used extensively. ISP introduces limited
new theory and practical techniques in the areas of
Information Systems Planning and Project Management.
A textbook focusing on Information Systems
Development practice is used to complement lectured
material. All lectures focus on a case-study problem of a
fictitious ISP group going through a project. This was
found to be much more successful and useful for students

than abstracted theoretical and practical Software
Development methodology examples (as used in SEP).

ROI has one lecture per week for the whole year,
used to chart expected progress for students. Students
also take turns at giving an oral presentation during this
time. As all ROI projects are so different, no material is
taught in lectures, but students are expected to do all
work and manage their project with the individual
supervisor’s assistance. This approach provides some
guidance to students, and gives students an opportunity
to review other students’ project progress. The course
coordinator is also an experienced member of staff who
can give high-level support and encouragement for this
individual project work.

6 Student and Project Assessment

Assessing project-based courses, particularly the
assessment of group work, is recognised as one of the
major potential difficulties of project-based courses [2].

Group work can be assessed equally for all group
members, with all members receiving the same grade for
their work [9, 15]. This is usually the easiest way to
assess group work, but can result in unfair grades for
members who have done better work or contributed more
to the project than others. Attempting to take into
account the amount and quality of work on a group
project can be very difficult. It is almost essential to
require detailed project management information from
groups if this is to be done [17, 18].

In most project-based courses, the lecturer is
responsible for most or all of the assessment. Peer
assessment and assessment by an industry client can also
be incorporated.

Peer assessment of project work allows other
students to comment on their colleagues work. Peer
assessment can be incorporated into a project-based
course in several ways. Presentations allow for comment
on others’ work, as do demonstrations of software. Peer
assessment may involve a student or group assessing
another group’s work, or may involve a student
assessing the work of other students in the same group.
All are valuable sources of feedback from other students.
Some care needs to be taken that peer assessment is
reasonable and fair, particularly if peer assessment is an
important component of overall course assessment.

Group work • same grade for group work
• items of individual assessment
• use project management notes

Individual
Assessment

• Tests
• Examinations
• Essays
• Individual reports, parts of

reports
Assessors • Lecturer/tutor/demonstrator

• Peers in other groups
• Peers in same group
• Industry clients

Process vs. Product • Product = quality of deliverables
• Process = quality of how done
(based on project management etc.)

Figure 5: Assessment Strategies.

Individual assessment of project work can be
valuable for distinguishing between individuals in the
same group, where work is demonstrably done by one
person. Tests and examinations are common individual
assessment techniques, but other approaches include
individually produced essays, reports or parts of reports.
Project management information can be used to isolate
aspects of group work performed by one individual for
purposes of assessment. If this is done, care must be
taken to ensure the project management information is
correct i.e. all group members agree it is an accurate
reflection of work on the project. We have found that
requiring all group members to sign such documents
helps to ensure group agreement on its accuracy.

There is some debate about the assessment of
process i.e. how project work was done vs. product i.e.
the end products of the work [17]. It is generally
acknowledged that assessing process is quite difficult, but
as the process needs to be repeated on different projects,
quality of the process can give a better reflection of
student capability than product [17, 18].

In our example courses, PDI requires three small
projects and a final exam, with all work being
individually carried out and assessed by the lecturer.
While this has proved to be a good approach, with 30%
of assessment from the exam and 70% from project
work, we are exploring the possibility of making one of
the projects group-based, to give PDI students an
introduction to working in groups.

SEP is internally assessed with four deliverables
(reports and software), two oral presentations, a test and
an individually assessed component. All deliverables and
presentations are group-assessed i.e. all group members
receive the same grade. The project management notes,
meetings with the lecturer and peer assessments are used
to determine the individual grade.

ISP is internally assessed with a final report and
software, test, two oral presentations and individually
assessed grade. Unlike SEP reports, the final report has
earlier feedback on drafts from both industry client,
demonstrator and lecturer. Peer assessment of
presentations (groups on other groups) and individuals
(group member on other group members). Industry
clients are asked to provide feedback on project quality,
the manner in which students conducted the project work
with the client, and suggestions for course improvement.
The lecturer determines the individually assessed grade
using peer assessments, client feedback and notes from
group meetings. Unlike SEP, the project management
information is not used as extensively and the final
product quality is weighted more highly than process.

ROI has the bulk of the assessment based on the
final report. The oral presentation is peer-assessed as well
as being assessed by members of the lecturing staff.
Interim reports are used as guidance of project progress,
not for assessment. This approach is used because of the
very disparate nature of the projects in this course.

7 Course Evaluation and Evolution

Like other courses, project-based courses need to be
constantly evaluated and improved, to ensure learning
outcomes are being achieved, and that delivery of

material and project-based experiences are suitable for
desired outcomes.

Evaluation of courses can be done by several people.
The lecturer needs to be proactive in reviewing courses
and in ensuring the projects chosen, project management,
course content and assessment approach achieve the
desired learning outcomes for the course. Students must
be given adequate opportunity to comment on the
projects they have done and suggest improvements in
course content, delivery and management. Feedback from
past students who are now in industry is often difficult to
obtain, but we have found this is very valuable in
validating course quality and various design principles
used. If a project is industry-based, obtaining feedback
from industry clients on the student’s progress and course
content is important.

Evaluation by colleagues in other institutions and
by professional bodies may also be appropriate [16]. If a
course or degree programme needs to conform to
recognised standards, then critical appraisal by these
external people is necessary to ensure continued
suitability of project-based courses.

Carried out by • Course lecturer
• Students
• Other staff
• Industry clients
• Colleagues from other

institutions
• Professional organisations

Methods of
assessment

• Student evaluations
• Client evaluations
• Comparative analysis to

previous years
• Workload assessment
• Comparison to other courses

and other Institutions’ courses

Figure 6: Course Evaluation Approaches.

We have found a careful comparison of results to
previous years is often a valuable exercise. Project
deliverables, test results, individual assessments and
project management information can all be usefully
compared [15].

Improvements to project-based courses may be made
as a result of feedback from students, industry clients,
other staff, comparison to previous years’ results or other
external factors. We have found student feedback to be
the most valuable in our experience. A number of
project-based courses which have had external pressures
to reduce workload, particularly from other staff, have
required dramatic modifications, often resulting in
splitting courses up or drastically modifying their
content and/or nature [7].

In our project courses, PDI uses student feedback in
the form of evaluations of the course and review by other
staff, as it is a core Year 2 course. We have evolved this
course over the past two years to change the
programming languages used, to introduce different
design methodologies, and to revise the projects required.
We used to require four large projects as the entire course
assessment, but have reduced the project size and split
the first project into two smaller assignments. This has
reduced student workload and allowed us to provide a

better flow on from the first semester data structures
course that precedes PDI.

SEP has evolved considerably from a small
individual assignment-based, theory course to a practice
and experience group project-based course. This was in
response to both staff and student feedback, and in
examining trends at other Australasian Universities. Our
Software Engineering curriculum was lacking in a
project-based course to give students experience in using
theoretical ideas and practical techniques on a group
project, which SEP now provides.

ISP has evolved from lecturer-selected groups to
self-selected groups, and a range of case study and project
management materials have been introduced. Industry
clients and projects have always been used, but the
student projects are now more carefully managed with
closer project guidance from lecturing staff. These
changes were in response to industry client and student
feedback, and by comparison of results to previous years.
More recent comparison of results seems to justify these
changes, with improved projects, project management
and student evaluation feedback.

ROI has been modified to require attendance at the
weekly lecture/presentation, to require progress reports
and to give staff better guidelines for project report
assessment over the past couple of years. Previously the
course had been run in a very decentralised way and the
comparative quality of project work and reports was
unacceptable. Comparative results from 1995 and 1996
indicate the changes to this course have been very
successful. This course has undergone regular evaluation
by colleagues at another New Zealand University to
ensure quality of outcomes and assessment.

8 Summary

It is generally recognised that project-based IT courses
contribute significantly to students’ understanding of
applying theoretical ideas and practical techniques to
large problems. Group projects also foster valuable
development of cooperative work skills, and the
documentation and presentations required in project-based
courses develop often-neglected written and oral skills [5,
13]. Designing project-based courses needs to take into
account a range of factors, however, in order to achieve
desired learning outcomes for students in quite disparate
courses which use the project approach. Such
considerations include the overall goals of the courses, if
group projects are used and how projects are managed,
whether projects are industry-based or academic-designed,
what supporting lecturers, tutorials, tools and materials
are used, how assessment is carried out, and how the
courses themselves are evolved in response to various
kinds of evaluation.

We are continuing the development of the four
example courses described in this paper, but also
applying the design principles outlined above to other
courses we offer or plan to offer. The Year 2 Systems
Analysis and Design course project is being reviewed to
determine possible changes to improve learning of
SA&D and basic system implementation. A Year 3
Graphics and Multi-media project course is being
designed which will utilise individual G&MM projects
under lecturer supervision. A Year 4 Human-Computer

Interaction course being run this year is using a group
project approach to give students experience in applying
HCI theory and practical techniques on a large project.
We are also investigating the possibility of using small
group projects in Year 1 introductory courses, to show
students that group project work is an integral part of IT
system development.

References

[1] D. Boud and G. Feletti. Challenge of problem
based learning. London: Kogan Page, 1991.

[2] S. Brown and P. Knight. Assessing Learners in
Higher Education. London: Kogan Page, 1994.

[3] N. Chrucher and A. Cockburn. An Immersion
Model for Software Engineering Projects. In
Second Australasian Conference on Computer
Science Education, Melbourne, July 2-4, 1997.

[4] R.F. Cohen and T. Menzies. Providing Software
Engineering Students with an Experience in 'Big
Computing'. In Proceedings of the 1994 Software
Engineering Education Conference, M. Purvis Ed,
pages 71-77, IEEE CS Press, Dunedin, New
Zealand, November 21-24 1994.

[5] S.J. Cunningham. Learning to Write and Writing
to Learn: Integrating Communication Skills into
the Computing Curriculum. In Proceedings of the
1994 Software Engineering Education Conference,
M. Purvis Ed, pages 306-312, IEEE CS Press,
Dunedin, New Zealand, November 21-24 1994.

[6] R.A. Day. How to write and publish a scientific
paper. Oryx Press, fourth edition, 1992.

[7] G. Dobbie and G. Bartfai. Teaching Software
Engineering in a Computer Science Department. In
1996 Software Engineering: Education and Practice
Conference, pages 58-63, IEEE CS Press, Dunedin,
New Zealand, January 24-27 1996.

[8] G. Ford. 1990 SEI Report on Undergraduate
Software Engineering Education. Technical Report
SEI-90-TR-3, Software Engineering Institute,
Carnegie-Mellon University, 1994.

[9] J.C. Grundy. Experiences with Facilitating Student
Learning in a Group Information Systems Project
Course. In 1996 Software Engineering: Education
and Practice Conference, pages 12-19, IEEE CS
Press, Dunedin, New Zealand, January 24-27 1996.

[10] S. Hope and J.E. Terry. A Recursive Student
Project to Reinforce the Principles of Software
Engineering. In 1996 Software Engineering:
Education and Practice Conference, pages 68-75,
IEEE CS Press, Dunedin, New Zealand, January
24-27 1996.

[11] E.A. Kemp. The role of the individual project in
teaching Knowledg Acquisition. In 1996 Software
Engineering: Education and Practice Conference,
pages 138-143, IEEE CS Press, Dunedin, New
Zealand, January 24-27 1996.

[12] S.E. Little and D.B. Margetson. A project-based
approach to Information Systems design for
undergraduates. Australian Computer Journal,
Volume 21, Number 2, 1989.

[13] J.G. Meinke. Augmenting a Software Engineering
project course with oral and wiritten
communications. SIGCSE Bulletin, Volume 19,
Number 1, pages 238-243, January 1987.

[14] M.J. Oudshoorn and K.J. Maciunas. Experience
with a Project-based Approach to Teaching
Software Engineering. In Proceedings of the 1994
Software Engineering Education Conference, pages
220-225, M. Purvis, IEEE CS Press, Dunedin,
New Zealand, November 21-24 1994.

[15] M.J. Oudshoorn, A.L. Brown and K.J. Maciunas.
Simulating Real-Life Software Engineering
Situations in the Classroom. In 1996 Software
Engineering: Education and Practice Conference,
pages 20-25, IEEE CS Press, Dunedin, New
Zealand, January 24-27 1996.

[16] G. Roy and V. Verarrt. Software Engineering
Education: from an Engineering Perspective. In
1996 Software Engineering: Education and Practice
Conference, pages 256-262, IEEE CS Press,
Dunedin, New Zealand, January 24-27 1996.

[17] V. Veraart and S. Wright. Software Engineering
Education – Adding Process to Projects: Theory,
Practice and Experience. In Proceedings of the 2nd
Asia-Pacfic Software Engineering Conference
(APSEC'95), pages 148-157, IEEE CS Press,
Bisbane, Australia, December 6-9 1995.

[18] V. Veraart and S. Wright. Experience with a
Process-driven Approach to Software Engineering.
In 1996 Software Engineering: Education and
Practice Conference, pages 406-413, IEEE CS
Press, Dunedin, New Zealand, January 24-27 1996.

