
Parametric Statecharts: Designing Flexible IoT Apps

Deploying Android m-Health Apps in Dynamic Smart-homes

Roopak Sinha
IT & Software Engineering

Auckland University of
Technology

Auckland, New Zealand
roopak.sinha@aut.ac.nz

Ayush Narula
IT & Software Engineering

Auckland University of
Technology

Auckland, New Zealand
developeron29@gmail.com

John Grundy
Deakin University
Geelong, Australia

School of Information
Technology

j.grundy@deakin.edu.au

ABSTRACT
Mobile apps can integrate sensors and actuators in Internet-
of-Things systems to achieve novel and diverse functionali-
ties, for example self-management and monitoring functions
to help patients manage a large number of health conditions
within their (smart-) homes. However, each smart-home
may contain a different and often dynamic sensor-actuator
configuration and it is undesirable to write new code for
every new installation or change. Statecharts present an ap-
propriate formal and visual design model to design apps and
support automatic code generation. However, these designs
assume a specific and static sensor-actuator configuration.
We propose parametric statecharts, an extension to state-
charts that can be automatically customised to a dynamic
smart-home’s configuration. We develop a translator to con-
vert parametric statecharts into standard statecharts cus-
tomised to a given system configuration, and then a custom
compiler to generate Android code. Experimental results
confirm the flexibility of the proposed approach.

CCS Concepts
•Software and its engineering → Syntax; Source code
generation; Application specific development environments;

Keywords
IoT, statecharts, m-health apps, smart-homes, mobile apps,
automatic code generation, design

1. INTRODUCTION
Internet-of-Things (IoT) architectures have opened up the

potential for software apps to orchestrate a diverse range of
devices and achieve novel functionalities like home automa-
tion, remote monitoring, and health care. In this paper, we
consider the example of mobile-Health (m-Health) applica-
tions help patients manage a number of health conditions at
home at low cost. Such applications, such as rehabilitation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSC Melbourne, Australia
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

plans, are currently delivered as paper-based instructions,
and the rate and accuracy of their adherence can vary widely
[17]. Using a patient’s mobile phone to implement these apps
within a smart-home can potentially help increase their ef-
fectiveness.

Technically, running rehabilitation m-Health apps on smart-
phones is seemingly quite easy, given the ability of even low-
end smart-phones to host apps that can issue reminders,
connect to the Internet, interact with patients, and even or-
chestrate sensors and actuators within a smart-home. How-
ever, there are some key challenges that remain unaddressed.
Firstly, we cannot expect to write custom apps for each pa-
tient and their smart-home configuration (the set of sensors
and actuators they have). Secondly, m-Health apps tend
to be highly control-dominated [8] and manually changing
deeply nested if-else code when the overall app functional-
ity changes can easily introduce bugs. Thirdly, while apps
can easily interface with available sensors and actuators in
a given IoT system such as a smart-home, the configuration
of a user’s smart-home may not be static. In fact, sensors
may go down, and new devices may be added. An app must
then adapt to these changes, which is a time-consuming ex-
ercise considering the coding effort and expertise required to
handle each change scenario manually.

A number of solutions address some of these problems in
isolation. CodeBlue [6], a remote patient tracking and mon-
itoring tool, uses sensors to capture and transmit patient
related data to clinicians. Odin [24] is an intermediate plat-
form that can be used to develop systems for remote health
services more easily. None of the existing solutions provides
the flexibility and level of automation required for deploying
flexible apps in dynamic smart environments. Sensor fusion
and aggregation techniques can potentially help [21], but re-
quire an additional service layer to maintain the registry of
devices and fusion algorithms.

In this paper, we propose a solution to design and auto-
matically deploy applications in IoT systems with dynamic
configurations. We choose a formal model that is useful for
visual design and yet amenable to automatic code genera-
tion. We use statecharts [1], a popular formal model used
in a range of applications areas. We develop an automatic
tool that can read a statechart and generate Android code
for a m-Health apps. However, statecharts are too static to
solve the final problem of handling changing sensor-actuator
configurations. We therefore extend statecharts to paramet-
ric statecharts to help design apps more flexibly. Parametric
statecharts models are independent of configurations but can

later be automatically translated to traditional statecharts
models customised to a specific smart-home configuration.
Hence, an app can be easily deployed to different or changing
configurations. Parametric statecharts can just as easily be
used in other application areas, such as home automation,
where software must flexibly interact with dynamic sets of
sensors and actuators.

The primary contributions of this research are:

1. The formulating of parametric statecharts to capture
the inherent flexibility of software that must interact
with dynamic sensor-actuator configurations in IoT
systems.

2. A tool to generate highly customised and contextu-
alised mobile code for apps in smart environments.

3. Demonstrating an application of our approach using a
case study concerning m-Health apps in smart-homes.

The next section presents motivation and related works
and a rationale for choosing statecharts as the model of
choice for this work. Subsequent sections present the details
of generating mobile code from statecharts (Sec. 4), para-
metric statecharts formulation and conversion to traditional
statecharts (Sec. 5), and preliminary experimental results
from a variety of m-Health case studies (Sec. 6). Conclud-
ing remarks appear in Sec. 7.

2. MOTIVATION

A fall detection plan: m-Health apps can range sim-
ple medication and exercise reminder schedules, to manag-
ing potentially life threatening situations such as real-time
monitoring and resolution of falls in old or ill patients [16].
We choose a simplified fall assessment and detection plan,
which can be listed as a sequence of following steps:

1. If the patient is awake, monitor their movement or
request feedback from the patient at regular intervals.

2. If the patient is moving or standing, monitor any sud-
den change of altitude.

3. If the patient has been moving or standing for an ex-
tended period of time, remind them to sit down.

4. If a fall occurs, report it immediately and monitor pa-
tient’s vital signs.

5. If the fall is not serious, the patient can override the
alerts.

The steps above are typical of m-Health apps - they tend
to be repeating sequences of decisions. In smart-environments,
a fall assessment and detection app can use a wide variety
of sensors, ranging from image processing via video surveil-
lance [16] to custom on-body sensors [25]. A crucial chal-
lenge is to take a generic design and customise it to the kinds
of sensors available in a patient’s smart-home. A further
challenge is to re-use an existing design in case the available
sensors and actuators (alert mechanisms) change. We focus

Figure 1: Overview of the proposed solution

on these challenges and present a solution to flexibly deliver
m-Health apps in smart-homes.

Fig. 1 shows an overview of our approach. The app can be
designed visually using a parametric statechart. This para-
metric statechart is stored in a database hosted on a server.
The user logs-in to a shell application on their phone, which
sends the configuration of the smart-home (features and de-
tails of sensors and actuators) to the server. The server
then finds the relevant design, and generates first a static
statechart from the parametric statechart. This static stat-
echart is customised to the user’s smart-home configuration
and includes the code to read/write to/from the the sen-
sors/actuators in the smart-home. The static model is then
compiled into Android code, which is installed as an update
to the shell-application. Any subsequent change in the con-
figuration is sent to the server, which can re-generate code
and send it through as another update to the application.

3. RELATED WORK
IoT offers a dynamic platform where well-designed soft-

ware can achieve novel functionalities. The focus of our
chosen case study is the deployment of m-Health apps in
dynamic smart environments. m-Health apps, such as reha-
bilitation plans help achieve goals that align with an individ-
ual’s work and day schedules, specific conditions they need
to manage, and their physical and mental capacity [7]. m-
Health apps help address issues regarding the unavailability
of real-time patient-related data during home-care [15], re-
inforcing healthier habits [23], and high costs of traditional
healthcare [12]. A carefully designed solution can improve
several other key quality attributes at the individual, orga-
nizational and contextual levels [5].

Choosing the right model for designing apps for IoT sys-
tems such as smart-homes is a critical decision. The model
must be easy to use, preferably visual, and use language
that can be understood by domain-experts. It must also
be formalised to some extent, so that we can translate it
into mobile code without further manual effort. There is a
plethora of modelling languages used to design and develop
workflows for various types of systems. Since most IoT apps
integrate and orchestrate a diverse range of devices, a ma-
jority of them tends to be control-dominated. Such apps
contain sequences or nestings of decision making, and that
is often the case with m-Health apps. Hence, we rule out
data-driven formal models and constrain ourselves to the
class of control-dominated IoT apps.

Finite state machines are visual and naming conventions
for states and events triggering transitions between states
can easily be adapted to domain-specific constraints. They
are also conducive to code generation. However, they lack
the concurrency that is required in orchestrating several de-
vices in IoT systems. We therefore choose statecharts, which
extend finite state machines to provide hierarchy and con-
currency support [9]. Statecharts have been previously used
in healthcare for developing graphical diagrams representing
work flows in surgical care operations [20]. They have also
been used to build mobile software [4] and adopted in many
popular design frameworks, such as UML statecharts [10]
with several works on creating statecharts from other mod-
elling languages [26].

The advantage of using statecharts over other modelling
languages in m-Health applications comes from the way these
applications are specified. These apps typically mention spe-

cific states (awake, asleep, time of day etc.) and events that
trigger transitions between these states. statecharts can also
isolate specific functionalities, such as the generation of an
event by fusing information from multiple sensors, and have
the ability to visually model control flow. We do not tar-
get the creation of a clinician-friendly template language for
designing statecharts-based m-Health app designs in this pa-
per, but given the compatibilities listed above, the creation
of such a template language looks feasible.

There are tens if not hundreds of variants of statecharts.
These variants differ in their execution semantics which deal
with issues such as inter-level transitions, lifetime of events,
determinism, etc. [22]. We use the Yakindu tool [13] to
model statecharts in this paper. Yakindu supports a cyclic,
and hence deterministic execution semantics of statecharts,
which could be useful in the m-Health context. Yakindu also
supports a Java compiler which is more compatible for An-
droid code generation targeted in our case study. However,
we aim for a more general approach, where any statecharts
variant can be used as per domain-specific preferences.

While statecharts adequately capture the logic of IoT apps,
they are not sufficient for capturing the dynamic nature of
the devices in an IoT system. Each system, such as a smart-
home, contains a different set of sensors and actuators that
an app may exploit to achieve a specific functionality. Using
a smart-home’s sensor-actuator network or its configuration
can help m-Health apps collect data and broadcast alerts
automatically. Unfortunately, very little work exists in the
area of allowing mobile apps to interact with dynamic con-
figurations. In [2], a mobile assistance system that could be
personalized and is context-aware for prevention and reha-
bilitation of cardiovascular diseases is proposed. The system
adapts itself based on a patient’s ECG records. While this
is somewhat similar to the goals of this research, it cannot
adjust to dynamic changes in smart environments, such as
when a sensor goes offline. Unfortunately, even traditional
statecharts based designs are too static for these cases, as
generating mobile code from them requires explicit informa-
tion about each sensor and actuator.

It is possible to use a sensor-fusion approach [19] to al-
low an app to discover and use a smart-home configuration.
This service would run on the operating system and the
app can make service-calls to interact with the smart-home.
However, this poses two problems. Firstly, the sensor-fusion
required for an app might be closely intertwined into its
control-flow, as is the case for many m-Health apps. Sec-
ondly, the availability of an additional sensor-fusion service
becomes a pre-requisite for the app being deployed, and
this may limit the number of platforms where the app can
be installed. Controlling sensor-fusion activities within the
app can also ensure smaller code and possibly faster perfor-
mance.

Our research uses statecharts for modelling and automatic
code generation of flexible IoT apps in general and m-Health
apps specifically. We formulate parametric statecharts to in-
fuse more flexibility in IoT app designs. Domain experts can
design apps visually using appropriate templates, without
having to know details about a user’s smart-home. A design
can then be automatically customised to a given smart-space
configuration and then translated into Android code run-
ning on the user’s phone. Parametric statecharts can just as
easily be used in other application areas, wherever software
needs to interact with dynamic sensor networks. Parametric

statecharts do not compete with the many statechart vari-
ants. They can simply be unrolled into statecharts that can
then be interpreted over any of these semantics.

4. STATECHARTS-BASED APP DESIGN
We begin with a formal definition of statecharts [3].

Definition 1. A statechart is a tuple SC = 〈S, T,E〉 where
S is a set of states, T ⊆ S×E×S is a set of transitions where
E is a finite set of events. The function children : S → P(S)
maps states to children states. States have types, described
by the function type : S → {BASIC,OR,AND}. BASIC
states have no children, OR states are in one of their chil-
dren states at any time, and AND states are in all children
states at the same time. It has a root state s0 which is of
type OR and has no parent. Function default : S → S
identifies one of the children of an OR state as its default
child. The root ∈ S is the root state of the statechart, which
has no parent and is of the type OR.

Fig. 2 shows an abbreviated statechart for the fall assess-
ment and detection plan described in Sec. 2. The root state
of the statechart is not shown, but its default child is state
Init, indicated by the incoming arrow with no source state.
The plan moves to the state Connected after performing
some initialization and then to state Idle. We use the short-
hand Init

Person.connect−−−−−−−−−−→ Connected to describe a transition
from a source state to a destination state. We use s

1−→ s′

to describe transitions that are always enabled. If the user
is awake, the statechart moves to the state Awake to mon-
itor falls. This state is an AND-type state and incorpo-
rates an OR-type state called main region as its only child.
This relationship models the hierarchy between Awake and
the state-machine contained within main region. In default
state Monitor of this embedded state-machine, the plan
monitors the user’s presence every 200 seconds and moves to
state Find location when the user is detected to be present
in the home. It then checks for falls by computing the rate of
change in the user’s position as an event altitude. altitude is
computed by reading an appropriate sensor and translating

Figure 2: Static statechart plan for fall detection

the raw data into a score ranging from 0 to 10, with a score
greater than 5 indicating a potential fall. This internal com-
putations are hidden in the design, as they depend on the
set of available sensors. If a fall has occurred, the statechart
moves to the state Alert to issue relevant alerts before termi-
nating. Otherwise, it resets back to the state Monitor. The
user-reset function has been removed to ensure readability.

We use the Yakindu toolkit [13] to draw statecharts-based
rehabilitation plans. Hence, in this case study we use the
cyclic execution semantics of Yakindu which guarantees de-
terministic execution [13].

Yakindu allows statecharts to be drawn using event inter-
faces, and these event interfaces can later be contextualised
for specific implementations. E.g., Fig. 2 refers to an inter-
face Person, which represents the set of input and output
events the statechart exchanges with a user. However, some
of these events need to be translated into code that performs
input/output operations. E.g., the event altitude relates to
reading information from an appropriate sensor and then
carrying out further internal computations. We hide these
details from the designer, and instead provide event inter-
faces listing available events. These interfaces are managed
in an interface library that maps events to any operation
sequences that may be required to evaluate them. In case a
designer adds newer events, the event interface library will
need to be updated in the back-end. However, these updates
are expected to be more stable and less frequent, and once
in place, can be reused for a range of m-Health apps.

Yakindu also provides a compiler to generate Java code
from a statechart. We use this compiler to create generic
Java code which is then customised using the backend inter-
face library mapping events in the event interfaces to code
that implements them. This code can include interfacing
with sensors using Bluetooth or Wifi. This is done using a
custom compiler, which also generates Java and XML code
that is customised to run in an Android app. This code can
then be packaged as an update to a shell application running
on the user’s phone.

The ability of a domain-expert in designing an app using
statecharts depends on their domain. While a designer of a
home automation app may be reasonably expected to draw
statecharts, a clinician prescribing a rehabilitation plan will
not have the skills to draw a statechart. Hence, provid-
ing appropriate tool-support as well as developing domain-
specific template languages for designing apps are promising
future directions of this research.

5. PARAMETRIC STATECHARTS
Statecharts-based app designs cannot cope with differing

configurations of sensors and actuators in an underlying IoT
system. E.g., two types of sensors can be used for the m-
Health app shown in Fig. 2. Presence sensors located in
individual rooms can be used to locate where the user is, and
altitude sensors signal if a fall has occurred. A smart-home
may have multiple presence sensors (one in each room), and
similarly have more than one sensor to measure a user’s
altitude, such as a sensor built into a user’s cane or an on-
wrist barometric pressure sensor. It is also possible that
any of these sensors could go offline at any time, or the user
might add new sensors to their home. The activation of
any of the presence sensors will signal the user’s presence
in the home, whereas we may want to aggregate all the
altitude sensor readings to compute the probability of a fall

Figure 3: Parametric statechart design for fall detection

happening more accurately [14]. So, not only must an IoT
app be aware of multiple sensors or actuators in a given IoT
system, it must also know how they are to be used. Hence,
we need to add more flexibility to statecharts, which we
do using parametric statecharts. A parametric statechart is
defined as follows.

Definition 2. A parametric statechart SC = 〈S, T,E〉 is
a statechart as defined in Def. 1. The set of events E of
a parametric statechart contains a set of interface opera-
tion events HE ⊂ E. Each event e ∈ HE is of the form
feature aggr endOp where feature represents a sensing or
actuating feature (e.g. read temperature, etc.), aggr repre-
sents how multiple devices supporting the same feature need
to be aggregated, and endOp is a user-provided function that
processes the data obtained from one or more sensors.

Fig. 3 shows a parametric statechart for the fall-detection
app, which is quite similar to the static statechart shown in
Fig. 2. It only differs in the naming of the events relating to
the presence and altitude sensors, noted in boxes labelled 1
and 2. Event Person.inPresence OR LogPos corresponds
to an event from the interface Person where inPresence re-
lates to the reading of a presence sensor, OR relates to read-
ing any sensor in case there are multiple sensors of the same
type available. Aggregation operations aggr can be of types
OR, AND, or any user-defined operation such as count-
ing aggregations depending on desired sensor fusion require-
ments. LogPos refers to the logging of the last sensor read-
ing to more accurately track where the user is in their home.
Similarly, the event Person.inAltitude AND conjunction ∈
HE corresponds to an event from the interface Person where
inAltitude relates to reading an altitude sensor, AND re-
lates to reading all sensors if there are multiple sensors
available, and conjunction is a user-defined function that
aggregates the results from all sensors to compute the meta-
variable altitude.

The parametric statechart shown in Fig. 3 is independent
of the actual numbers of presence and altitude sensors avail-
able. However, to customise the design to work in a given
smart-home, we require the precise configuration of the sen-

Algorithm 1: Convert Converts a parametric state-
chart to a static statechart

Input: Parametric statechart SC = 〈S, T,E〉, and IoT
system configuration C = 〈Esh, F 〉

Output: Static statechart SC′ = 〈S′, T ′, E′〉
1 S′ = S, T ′ = T , E′ = E;

2 for Transition t = (s
e−→ s′) ∈ S′ do

3 if e ∈ HE = feature aggr endOp then
4 if aggr = OR then
5 Remove t from T ′;
6 for Each operation o ∈ Operations(feature)

do

7 Add transition s
o−→ s′;

8 end
9 Add operation endOp to s′;

10 end
11 else if aggr = AND then
12 Remove t from T ′;
13 Create unique state s f of type AND and

state s j of type BASIC;

14 Create transitions s
1−→ s f and s j

1−→ s′;
15 for Each operation o ∈ Operations(feature)

do
16 Create state s o of type OR as a child of

s f ;

17 Add transition s f
o−→ s a;

18 Create states s o1, s o2 of type BASIC
as children s o and make s o1 the
default child of s o;

19 Create transitions s o1
o−→ s o2 and

Create transition s o2
o−→ s j;

20 end
21 Add operation endOp to s j;
22 end
23 end
24 end
25 return C;

sor and actuators available. In general, the configuration of
an IoT system is defined as follows.

Definition 3. An IoT system configuration is defined as
the tuple C = 〈Esh, F 〉 where Esh = Er

sh] Ew
sh is a set of

supported read and write operations and F = F r] Fw is
a set of supported read and write features. Each feature is
mapped to a set of operations via the function Operations :
F → P(Esh).

An IoT system configuration links features expected in a
parametric statechart app design to operations supported
by available sensors and actuators. E.g., the configuration
of the smart-home of a user following the fall detection app
in Fig. 3 may have three presence sensors and two altitude
sensors. We can denote the configuration of this smart-
home as C = 〈Esh, F 〉 where Esh = {ps1, ps2, ps3, as1, as2}.
ps1 . . . 3 are read operations for the three presence sensor,
and as1 and as2 are read operations for the two altitude
sensors. All these operations are read operations. Also,
F = {inPresence, inAltitude} as the smart-home allows a
mobile app to sense both presence and altitude. Finally,
Operations maps these features to the set of available oper-
ations, i.e., Operations(inPresence) = {ps1, ps2, ps3}, and
Operations(inAltitude) = {as1, as2}.

Figure 4: Static statechart generated by Alg. 1 from parametric statechart in Fig.3

Once a system configuration is known, we can generate a
static statechart from a parametric statechart using Alg. 1.
Fig. 4 shows the statechart generated when the parametric
statechart in Fig. 3 is processed with respect to the smart-
home configuration C described above. The algorithm pro-
cesses each transition in the parametric statechart relating
to a sensing or actuating event e ∈ HE (line 2) and replaces
it with a customised statechart snippet.

For events that relate to OR type sensors or actuators,
the transition is replaced with multiple transitions from the
source state to destination state, each labelled by the pre-
cise operation the given configuration supports (lines 4–9).

E.g., the transition Monitor
Person.inPresence OR LogPos−−−−−−−−−−−−−−−−−−−−−→

FindLocation shown in Fig. 3 (labelled as box 1) is removed
and is replaced by multiple transitions between these states
labelled by the operations Person.ps1 . . . P erson.ps3. This
is labelled as box 1 in Fig.4. The logging function LogPos
is moved into state FindLocation and is used to log the last
position the user was found to be present in.

For events that relate to AND type sensors or actuators, a
transition is replaced by a nested statechart with concurrent

state-machines (lines 11–21). Consider the transition

Checkforfalls
Person.inAltitude AND conjunction−−−−−−−−−−−−−−−−−−−−−−−−−−−→ CheckAltitude

shown in Fig. 3 (labelled as box 2). Since there are two
sensor operations as1 and as2 that support the inAltitude
feature, we replace the transition with the nested statechart
snippet in box 2 in Fig. 4. This allows the statechart to
read asynchronously from both sensors before moving to the
next state conjunction, which relates to the user-defined
conjunction operation used for computing the meta-variable
altitude.

Once Alg. 1 terminates, a static statechart is obtained that
can be converted into Java code using the process described
in Sec. 4. Note that Alg. 1 can only process successfully
process parametric Statechars containing transitions of the
form s

e−→ s′ where s has no other outgoing transition. This
is a limitation of the theoretical framework, but this does
not limit the modelling of apps as sensing/actuating oper-
ations are almost always done exclusively with subsequent
transitions handling decision making.

(a) A parametric statechart design for diabetes management

(b) Customising the diabetes plan with different numbers of
OR and AND sensor aggregations

Figure 5: Additional m-Health app designs using ReHash

6. RESULTS
A tool-chain implementing the translation of parametric

statecharts to static statecharts and then to Android code
has been implemented in Java. The overall system, called
ReHash, contains a a number of parsers to perform these
translations1.

To carry out a preliminary analysis of our approach, we
modelled a number of m-Health using our formalism. These
include a more details version of the fall assessment and de-
tection plan shown in Fig. 3, a diabetes management plan
shown in Fig. 5a, a weight management plan, and a medica-
tion reminder plan. Overall the parametric statecharts were
similar in size to the plans shown in Fig. 3 and 4.

Fig. 5b shows the size of the static statechart obtained
from Alg. 1 when a diabetes management app shown in
Fig. 5a was processed with varying numbers of OR and
AND operations based on the underlying smart-home con-
figuration. Instead of supporting multiple sensors for tem-
perature sensing, we used the OR case to log any of the
previous values read by the temperature sensor (stored on
a database) in the last few hours. Similarly, reading insulin
levels can be based on taking a current reading and a spec-
ified number of previous readings stored on the database.
Since these readings need to be averaged to compute the

1Software code for the project can be downloaded
from https://git.io/vPjB0.

meta-variable insulin, we require all these readings to be
read concurrently and then averaged. Fig. 5b shows that
the size of the static statecharts being generated rises lin-
early with an increase in OR and AND operations in a given
configuration.

Our tool consistently takes less than 500 milliseconds to
convert a parametric statechart to a static statechart, and
less than 2 seconds to generate the Android code. Hence, a
change in a smart-home configuration causes an automatic
re-translation which takes less than 2.5 seconds in total, ex-
cluding server and network delays. The size of the Android
code including the XML and Java code created for each app
was proportional to the size of the static statechart. Fur-
ther experiments will be carried out over different kinds of
application areas, such as home automation and industrial
automation, to more comprehensively evaluate the perfor-
mance of this solution.

Key future work includes formulating domain-specific lan-
guages that can convert apps designed by domain experts
such as health-care professionals into parametric statecharts
automatically, incorporating more complex sensor-fusion tech-
niques, and more extensive benchmarking of the ReHash tool.
Exploring the potential of our technique in designing suc-
cessful m-Health apps will require an evaluation of how well
these apps meet care requirements, and how easy it is for
clinicians to design these apps. The current tool requires
a few manual implementation-specific steps, such as creat-
ing a new update of the app once a design or configuration
changes. Robust tool support is therefore required to auto-
mate the complete process.

7. SUMMARY
We described the novel use of parametric statecharts for

designing apps for smart-spaces in a flexible manner. These
apps can be automatically customised to the configuration of
a given IoT system which is a possibly dynamic set of avail-
able sensors and actuators. Any change in the configuration
triggers and automatic code generation and deployment. An
end-to-end compilation or re-compilation of plans takes at
most 2.5 seconds for case studies considered in our research
so far.

8. REFERENCES
[1] W. Cazzola, A. Ghoneim, and G. Saake. Software

evolution through dynamic adaptation of its oo
design. In Objects, Agents, and Features, pages 67–80.
Springer, 2004.

[2] A. Chapko, B. Feodoroff, D. Werth, and P. Loos. A
personalized and context-aware mobile assistance
system for cardiovascular prevention and
rehabilitation. Lebensqualität im Wandel von
Demografie und Technik, 2013.

[3] R. Eshuis. Reconciling statechart semantics. Science of
Computer Programming, 74(3):65–99, 2009.

[4] G. Fortino, W. Russo, and E. Zimeo. A
statecharts-based software development process for
mobile agents. Information and Software Technology,
46(13):907–921, 2004.

[5] M.-P. Gagnon, P. Ngangue, J. Payne-Gagnon, and
M. Desmartis. m-health adoption by healthcare
professionals: a systematic review. Journal of the

American Medical Informatics Association,
23(1):212–220, 2016.

[6] T. Gao, D. Greenspan, M. Welsh, R. R. Juang, and
A. Alm. Vital signs monitoring and patient tracking
over a wireless network. In Engineering in Medicine
and Biology Society, 2005. IEEE-EMBS 2005. 27th
Annual International Conference of the, pages
102–105. IEEE, 2006.

[7] G. Gard and A. Larsson. Focus on motivation in the
work rehabilitation planning process: a qualitative
study from the employer’s perspective. Journal of
Occupational Rehabilitation, 13(3):159–167, 2003.

[8] C. V. Granger, B. B. Hamilton, R. A. Keith,
M. Zielezny, and F. S. Sherwin. Advances in functional
assessment for medical rehabilitation. Topics in
geriatric rehabilitation, 1(3):59–74, 1986.

[9] D. Harel. Statecharts: A visual formalism for complex
systems. Science of computer programming,
8(3):231–274, 1987.

[10] D. Latella, I. Majzik, and M. Massink. Towards a
formal operational semantics of uml statechart
diagrams. In Formal Methods for Open Object-Based
Distributed Systems, pages 331–347. Springer, 1999.

[11] N. Leveson, M. Heimdahl, H. Hildreth, J. Reese, and
R. Ortega. Experiences using statecharts for a system
requirements specification. In Proceedings of the 6th
international workshop on Software specification and
design, pages 31–41. IEEE Computer Society Press,
1991.

[12] Y. Masuda, M. Sekimoto, M. Nambu, Y. Higashi,
T. Fujimoto, K. Chihara, and T. Tamura. An
unconstrained monitoring system for home
rehabilitation. Engineering in Medicine and Biology
Magazine, IEEE, 24(4):43–47, 2005.

[13] A. Muelder. Yakindu. Yakindu Statechart Modeling
Tools, 2011.

[14] S. Patel, H. Park, P. Bonato, L. Chan, and
M. Rodgers. A review of wearable sensors and systems
with application in rehabilitation. Journal of
neuroengineering and rehabilitation, 9(1):1, 2012.

[15] G. Postolache, P. Silva GiraÌČo, and O. Postolache.
Applying smartphone apps to drive greater patient
engagement in personalized physiotherapy. In Medical
Measurements and Applications (MeMeA), 2014 IEEE
International Symposium on, pages 1–6. IEEE, 2014.

[16] C. Rougier, J. Meunier, A. St-Arnaud, and
J. Rousseau. Fall detection from human shape and

motion history using video surveillance. In Advanced
Information Networking and Applications Workshops,
2007, AINAW’07. 21st International Conference on,
volume 2, pages 875–880. IEEE, 2007.

[17] S. Saeki, H. Ogata, T. Okubo, K. Takahashi, and
T. Hoshuyama. Impact of factors indicating a poor
prognosis on stroke rehabilitation effectiveness.
Clinical rehabilitation, 7(2):99–104, 1993.

[18] P. R. Sama, Z. J. Eapen, K. P. Weinfurt, B. R. Shah,
and K. A. Schulman. An evaluation of mobile health
application tools. JMIR mHealth and uHealth,
2(2):e19, 2014.

[19] F. Sanfilippo and K. Pettersen. A sensor fusion
wearable health-monitoring system with haptic
feedback. In Innovations in Information Technology
(IIT), 2015 11th International Conference on, pages
262–266. IEEE, 2015.

[20] B. Sobolev, D. Harel, C. Vasilakis, and A. Levy. Using
the statecharts paradigm for simulation of patient flow
in surgical care. Health Care Management Science,
11(1):79–86, 2008.

[21] N. K. Suryadevara and S. C. Mukhopadhyay. Wireless
sensor network based home monitoring system for
wellness determination of elderly. IEEE Sensors
Journal, 12(6):1965–1972, 2012.

[22] M. Von der Beeck. A comparison of statecharts
variants. In International Symposium on Formal
Techniques in Real-Time and Fault-Tolerant Systems,
pages 128–148. Springer, 1994.

[23] D. L. Walters, A. Sarela, A. Fairfull, K. Neighbour,
C. Cowen, B. Stephens, T. Sellwood, B. Sellwood,
M. Steer, M. Aust, et al. A mobile phone-based care
model for outpatient cardiac rehabilitation: the care
assessment platform (cap). BMC Cardiovascular
Disorders, 10(1):5, 2010.

[24] I. Warren, T. Weerasinghe, R. Maddison, and
Y. Wang. Odintelehealth: A mobile service platform
for telehealth. Procedia Computer Science, 5:681–688,
2011.

[25] A. Weiss, T. Herman, N. Giladi, and J. M. Hausdorff.
Objective assessment of fall risk in parkinson’s disease
using a body-fixed sensor worn for 3 days. PloS one,
9(5):e96675, 2014.

[26] J. Whittle and J. Schumann. Generating statechart
designs from scenarios. In Software Engineering, 2000.
Proceedings of the 2000 International Conference on,
pages 314–323. IEEE, 2000.

