
 
 

A Visual Programming 
Environment for Object- 

Oriented Languages 
 
 

 

 

 

John Collis Grundy 

 

 

 

 

 

A thesis submitted in fulfilment of the requirements for the degree of 

Master of Science in Computer Science 

 University of Auckland February 1991 





  Page i 

Abstract 
 

 

 

Visual programming environments provide more integrated, high-level, user friendly 
frameworks in which to construct and maintain software. Visual programming is 
particularly appropriate to object-oriented languages, due to the inherently visual nature 
of their structure. 

The concepts of visual programming and current research in this area are summarised in 
this thesis. Object-oriented concepts and development are discussed, along with some 
representative object-oriented languages. Ispel, a visual programming environment for 
object-oriented languages, is developed and described. Ispel allows programmers to 
graphically represent and manipulate the high-level, object-oriented aspects of programs. 

Two prototypes of Ispel have been implemented. The first was implemented in Prolog, 
and was used to refine the user interface and visual programming facilities of the 
environment. Evaluation and enhancement of this prototype has determined the value of 
visual programming for object-oriented languages. The second prototype was 
implemented in Eiffel, an object-oriented language, and assisted the development of an 
object-oriented implementation model for Ispel. The second prototype also assisted the 
development of a formal definition of Ispel. This is a concise, high-level notation for 
describing the behaviour of Ispel, and provides a formal framework for integrating future 
extensions. 

Possible enhancements to Ispel are described which would improve the visual 
programming environment it provides. The abstraction of aspects of Ispel to provide an 
environment for other languages, and for use in other applications, is also discussed. 
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Chapter 1 
Introduction 

 
Object-oriented programming has gained popularity in computing (Booch, 85, Coad and 
Yourdon, 91, and Meyer, 88). This research enhances object-oriented programming by 
improving the development environments for object-oriented languages. This is achieved 
by utilising visual programming techniques to represent and manipulate these programs. 

This chapter discusses the rationale for this research. Visual programming, object-oriented 
programming, and programming environments are introduced. The contributions of this 
research are summarised, and an outline of the structure of this thesis is presented. 

1.1 Rationale for Research 

Programming computers is a complex task, which becomes more difficult as programs 
and software systems get larger. To address this problem, new techniques to assist 
software construction are being developed (Henderson and Notkin, 87). Two important 
areas of research are programming languages and programming environments (Dart et al, 87). 

Two current technologies which are gaining popularity are object-oriented programming and 
visual programming. Most current object-oriented programming languages have poor 
programming environments which do not assist software development. In this research, 
object-oriented programming is assisted by using visual programming to provide an 
improved environment for these languages. 

1.1.1 Using Visual Techniques in Computing 

Human-computer interaction is very important (Fischer, 87). Instructing computers can 
be achieved in many ways. As technology advances, new methods of communication are 
being developed which enhance the human-computer interaction process. Interactive 
graphical user interfaces have become available with the widespread use of personal 
workstations (Ambler and Burnett, 89, Raeder, 85, and Wasserman and Pircher, 87). These 
provide a multidimensional visual interface between a human and computer software. 

Graphical interfaces allow users to interact with computers in a more natural and 
meaningful way. Direct manipulation interfaces, which provide a mouse device for pointing 
at objects and manipulating them, also help to make computers easier to use (Myers, 90). 
Graphical interfaces have the advantage that they can represent information and allow 
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information to be manipulated at higher levels of abstraction. This results in a more 
powerful interface for specifying commands and obtaining information than is provided 
by purely textual interfaces. 

1.1.2 Object-Oriented Languages 

Computers can be instructed using a large variety of programming languages. As 
programs grow larger, they become more difficult to construct, understand, and 
maintain. Conventional programming languages, such as Pascal or C, are structured around 
procedural and functional components of software systems. These are the aspects of 
software that are most prone to change (Meyer, 88), and often the most difficult to 
conceptualise. 

Object-oriented programming allows programmers to structure programs around data. 
Data, and the operations that operate on data, are encapsulated together. Real world and 
abstract objects are modelled in this way, and classes of these objects can be defined. A 
variety of inter-class relationships are present which assist in structuring programs, 
reusing information, and categorising objects. Object-oriented techniques and languages 
assist the design, construction, and maintenance of large software systems (Booch, 87, 
Coad and Yourdon, 91, and Meyer, 88). 

The two representative object-oriented languages used in this thesis are Class Language 
and Eiffel. Class Language was developed at the University of Auckland (Hamer, 90), and 
Eiffel was developed at Interactive Software Engineering (Meyer, 88). These languages 
and their environments are described in more detail in Section 3.3. 

1.1.3 Improving Programming Environments 

Most of the existing programming environments for object-oriented languages only give 
limited assistance to programming in this paradigm. To exploit its advantages, 
programmers require good environments and tools to assist them. The programming 
environments for object-oriented languages are enhanced in this research by using visual 
techniques. 

The current environments for both Class Language and Eiffel are deficient in many ways. 
This research designs and prototypes Ispel, a visual programming environment for these 
languages. The high-level aspects of object-oriented languages can be represented well 
using graphical techniques (Wasserman et al, 90, and Wilson, 90). By constructing these 
aspects in a visual programming environment, the design and implementation processes 
can be enhanced. Other programming environments, such as those for conventional 
languages, can also be enhanced using visual programming. 
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There is a growing interest in research in this area. Many visual programming systems 
have been developed which exploit similar ideas to those presented in this thesis. These 
include PECAN (Reiss, 85), Graspin (Mannucci et al, 89), TANGO (Stasko, 89), and others 
(Ambler and Burnett, 89, Myers, 90, and Raeder, 85). 

1.2 Outline of Thesis 

The following chapters are organised thus: 
• Chapter 2 defines visual programming and programming environments. A 

taxonomy of programming environments is presented which forms a survey of 
research in this area. 

• Chapter 3 introduces object-oriented language concepts and object-oriented 
development techniques. Class Language and Eiffel are described. The concepts 
of the Ispel visual programming environment are presented. 

• Chapter 4 describes a Prolog prototype of Ispel. This provides a visual 
programming environment for Class Language. The user interface, visual 
programming facilities, and implementation of this prototype are discussed. 

• Chapter 5 evaluates this Prolog prototype, describes its advantages and 
deficiencies, and presents some enhancements to it. Some visual programming 
techniques developed using Ispel are also discussed. 

• Chapter 6 describes an Eiffel prototype of Ispel, which was used to refine an 
implementation model. Object-oriented development of this prototype, using 
Eiffel, is discussed. 

• Chapter 7 presents a formal definition of Ispel. 
• Chapter 8 draws conclusions from this research. 
• Chapter 9 discusses some future extensions of Ispel. It also presents some 

future directions for research.
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Chapter 2 
Visual Programming Environments 

 
The concepts of programming environments and visual programming environments are 
introduced in this chapter. The advantages of visual programming techniques over 
conventional, textual ones are discussed. A taxonomy of visual programming 
environments is presented, which is illustrated with examples of representative languages 
and systems. This taxonomy forms a survey of the current research on visual 
programming and visual programming environments. 

2.1 Programming Environments 

“Computer scientists have created numerous development tools for other 
disciplines, such as computer-aided design and computer-aided manufacturing. 
Only relatively recently, however, has the need for computer scientists to aid 
themselves been recognised.” 

(Henderson and Notkin, 87) 

Programming environments are software and hardware tools which a system developer 
uses to build software systems (Dart et al, 87). When developing programs, a 
programmer works within an environment which facilitates the programming task. 
Programming environments provide tools which allow a programmer to edit, compile, 
and execute programs. They also provide additional facilities to assist this development 
process. 

Dart et al (87) make a distinction between programming environments and software 
development environments. 

• Programming environments support only the coding phase of the software 
development cycle. For example, programming in the small1 tasks such as editing 
and compiling. 

                                                

1“Programming in the small” refers to single programmer tasks accomplished on one 
machine. For example, editing and compiling a program are single programmer tasks, 
but there may be several programmers working on the same software system. 
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• Software development environments augment or automate all the activities 
comprising the software development cycle. This includes programming in the 
large2 tasks such as project and team management, and long term maintenance 
of software. 

The focus of this thesis are programming environment issues. However, some software 
development environment aspects are discussed. 

Dart et al (87) and Henderson and Notkin (87) give a taxonomy of programming 
environments. This can be used to classify programming environments and to 
understand the technological trends that have produced existing environments (Dart et al, 
87): 

• Language-centred environments. These are built around one language and provide 
a programming tool suitable for that language. These environments are highly 
interactive and focus on a narrow set of software development activities. 
Examples include InterLISP, Smalltalk, and Cedar (Dart et al, 87), Trellis/Owl 
(O’Brien et al, 87), THINK Pascal (Symantec, 89), and LPA MacProlog (LPA, 
89a). 

• Structure-oriented environments. These environments focus on the manipulation 
of structures rather than programs. The notion of structure editing produced 
structure-oriented editors and the notion of environment generators. Examples 
include the Cornell Program Synthesizer (Reps and Teitelbaum, 87), and the 
PECAN system (Reiss, 85). 

• Toolkit environments. These are loosely interrelated collections of tools for 
“programming in the large” tasks. The environment does not constrain the use 
of these tools in any way. For example, Arcadia (Dart et al, 87), and Gandalf 
(Henderson and Notkin, 87), are generators for toolkit environments. 

• Method-based environments. These environments provide tools for a broad range 
of software development activities. They also include tools for particular 
specification and design methods. Examples include Software through Pictures 
(Wasserman and Pircher, 87), Graspin (Mannucci et al, 89), and a variety of 
CASE tools (Dart et al, 87). 

The majority of the programming environments discussed in this chapter are language-
centred environments. The Ispel visual programming environment presented in Section 

                                                

2“Programming in the large” refers to multiple programmer tasks accomplished over 
several networked or distributed machines. For example, the management and co-
ordination of many programmers working on different aspects of a single system. 
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3.5 is a language-centred environment with some structure-oriented and method-based 
design aspects. 

2.2 Visual Programming Environments 

“With the availability of graphic workstations has come the increasing influence of 
visual technology on language environments.” 

(Ambler and Burnett, 89) 

New graphics workstations and their wide availability means powerful graphics facilities 
are now available to programmers (Ambler and Burnett, 90, Myers, 90, and Raeder, 85). 
The graphical facilities provided by these workstations can be utilised to assist the 
software development process. The use of graphics to construct or view programs is 
called visual programming. Environments that utilise an aspect or aspects of visual 
programming are called visual programming environments. 

Visual programming environments use graphical techniques for all, or part, of program 
construction and visualisation. They allow a programmer to specify a program in a two 
(or more) dimensional fashion, whereas conventional textual languages are only one 
dimensional (Myers, 90). Some two-dimensional visual aspects are utilised for textual 
programming, such as indentation. However, textual programming usually lacks the 
high-level abstraction that visual programming can provide. Programs such as MacDraw 
are not visual programming environments as they do not create programs (Myers, 90). 

Ideas related to visual programming include program visualisation and example-based 
programming. In program visualisation, a program is specified in a conventional, textual 
manner. Graphics are used to illustrate aspects of the program or its run time execution. 
Myers (90) makes a clear distinction between visual programming systems and program 
visualisation systems. Program visualisation systems can be classified into data 
visualisation and code visualisation systems, depending on the aspect of a program they 
model. Data visualisation can also be classified into static and dynamic modelling systems. 
Static program visualisation can only take snapshots of a running program, but dynamic 
systems can model changing program data. Abstract visualisation, or algorithm 
animation, models an algorithm as it is executed, instead of, or in addition to, its code and 
data. 

Example-based programming allows a programmer to specify examples of input and 
output during the programming process. There are two types of example-based 
programming systems, called programming by example and programming with example. 
Programming by example uses examples to try and infer a program which can construct 
them. Programming with example requires the programmer to specify everything about 
a program, and nothing is inferred. Test data and results are given to example-based 
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programming systems before execution, rather than comparing output with expected 
values, as with conventional programming. 

A visual programming environment can be defined as utilising some form of visual 
programming. In addition, this visual construction of programs can be augmented with a 
program visualisation or example-based programming component. 

2.3 Advantages of Visual Programming 

It is desirable for programming environments to provide several facilities to assist a 
programmer during program development. These include: a good user interface, a clear 
representation of programs, versatile program navigation, and a variety of integrated 
tools. Visual programming environments can assist in providing these facilities in a better 
form than conventional environments (Raeder, 85). 

2.3.1 User Interface 

The user interface presented to programmers is improved by using visual techniques. 
Conventional interfaces are difficult to learn and use (Myers, 90, and Raeder, 85). They 
often do not provide a clean and concise method of specifying actions and obtaining 
information. Visual interfaces provide an interface which is more natural, more flexible, 
and easier to use, as they utilise both graphics and text. This allows for a more expressive 
description of commands, and a more powerful and user-friendly method for presenting 
and manipulating information (Myers, 90, and Raeder, 85). 

The direct manipulation interface has become popular and visual programming helps to 
utilise this technology to its fullest (Myers, 90). Elements of visual programs can be 
pointed to and operated on. This gives the programmer the impression that they are 
directly constructing a program. They are no longer abstractly designing a program, but 
constructing it from visual base elements. 

The provision of a consistent user interface with the same behaviour in different aspects 
of program development, contributes to the seamless integration of an environment. A 
visual interface is easier to keep uniform than a textual one. Different parts of a software 
development environment can utilise a similar interface with the same look and feel 
aspects. This assists the software development process (Raeder, 85, and Wasserman and 
Pircher, 87). 

2.3.2 Visualisation of Programs 

A graphical user interface shows more of a computer’s internal state, and is a more 
expressive medium of communication (Raeder, 85). The transfer rate of information is 
improved by using graphics where it is more natural to describe something visually than 
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with text. The human visual system is designed to process multidimensional data. 
However, conventional languages and programming environments only provide a single 
dimensional textual form. 

Two-dimensional pictorial displays for data structures are very helpful, although little 
research has been done on programming using a visual representation of data structures 
(Myers, 90, and Raeder, 85). Visual programming allows the structure of programs, the 
flow of information, and the data structures that comprise the program, to be modelled. 
An environment utilising graphical program representations allows a programmer to 
process data in a format closer to the way objects are manipulated in the real world 
(Myers, 90). 

Graphics often provide a higher level description of information, and provide a higher 
level of abstraction (Myers, 90, and Raeder, 85). Issues such as syntax, or some semantic 
constraints, can be factored out of the programming process. This can result in improved 
productivity in program development. Often, graphical representation is a more 
appropriate and meaningful way of presenting information. For example, data is 
described and manipulated well using visual techniques. 

2.3.3 Program Navigation 

Navigation throughout a program during its development is based around the structure of 
the program (Fischer, 87, and O’Brien, 87). Many conventional programming 
environments provide little or no assistance to the programmer in moving between 
different parts of a program. Often, programmers want to focus on one aspect of a 
program during development, then move to a more or less abstract context, or a related 
context. Visual programming can utilise the visual representation of a program to provide 
a meaningful and flexible method of moving between different contexts (Ambler and 
Burnett, 90). 

2.3.4 Integration of Tools 

A program development environment consists of a variety of tools which are utilised 
during program construction and refinement. Examples include an editor, compiler, run-
time system, project database, cross referencer, and documentation facility. These tools 
must be integrated in both their look and feel aspects (user interface), and their 
communication and data storage (underlying representations). 

Many conventional environments consist of quite distinct tools with very few common 
user interfaces and representational formats. Often, some tools are completely distinct 
from the rest of the environment, and the information provided by them is utilised only 
as the programmer sees fit. Examples are the increasingly popular CASE tools, which are 
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usually visual tools used for the design and analysis processes. However, information 
from them is stored in a format that can not be utilised by other tools in the environment, 
such as the editor and compiler. 

Visual programming environments have a common user interface between the different 
aspects of the environment, and the tools are often tightly integrated. For example, the 
Trellis/Owl environment provides a standard interface between tools for both user 
interaction and tool communication (O’Brien et al, 87). Most visual programming 
environments provide a good framework for integrating the user interfaces of tools. 
However, many existing environments require improved tool communication and data 
integration (Myers, 90). 

2.4 Taxonomy of Programming Environments 

This section presents a taxonomy of programming environments ranging from 
conventional text-based environments to integrated visual programming environments. 
Examples of representative environments and languages are given for each category. 

Several survey papers are available which provide definitions of visual programming and 
describe various systems. Some also compare and contrast different environments and 
evaluate their relative merits and deficiencies. Myers (90) and Raeder (85) provide a 
comprehensive survey of visual programming systems and describe visual programming 
and its advantages. Ambler and Burnett (90) and Dart et al (87) describe some 
representative visual programming environments and programming environments 
respectively. Other surveys are available in Ambler et al (88), Chang (87), and Henderson 
and Notkin (87). 

2.4.1 Conventional Environments 

Conventional programming environments utilise a textual representation for programs. Many 
are not well integrated and can be difficult to use (Myers, 90). The editor, compiler, and 
run-time system are usually quite distinct and have different user interfaces and data 
storage mechanisms. These environments do not provide many tools to assist program 
development. 

2.4.1.1 Class Language and Eiffel 

The environments for Class Language and Eiffel are both conventional in nature. Class 
Language programs are constructed and compiled as text, and then a run-time system is 
invoked to execute a program. Eiffel programs are also constructed in text and compiled. 
The compiled program can then be executed. The Eiffel environment provides a limited 
range of development tools and a program browser, although this is not particularly 
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useful. Neither environment is tailored to the particular needs of the languages being 
used. 

Both environments store programs as text files which can be accessed and modified by 
other utilities. However, this does not constitute integration, as there is no format to the 
text and the programs can be modified in an unconstrained way. The user interfaces of 
the editor and operating system are quite distinct. A programmer using the environment 
must move between different tools with different user interfaces and behaviour.  

Section 3.3 describes the environments for Class Language and Eiffel in detail. 

2.4.1.2 Unix C and C++ 

The standard environments for C and C++ on Unix (Winblad et al, 90) are similar to those 
of Class Language and Eiffel. They are not integrated, are fully textual, and provide few 
tools to assist program development. Debugging tools are provided, but the range of 
program aspects they can describe is limited. No universal tools for structuring or 
visualising code at higher levels of abstraction exist. No navigation facilities based on 
program structure are available. 

2.4.1.3 Other Conventional Environments 

Other examples of languages with conventional environments include older versions of 
BASIC, Fortran, LISP, Pascal, and Prolog (Myers, 90). Many of these languages now have 
more integrated environments, which provide improved facilities for program 
development. 

2.4.2 Integrated Environments and Browsers 

Integrated environments that do not utilise visual programming techniques are the most 
common development environments (Myers, 90, and Winblad et al, 90). Some of these 
environments provide browsers which allow a programmer to view and navigate through 
programs. These browsers may show a visual representation of a program, but the 
diagrams can not be modified. Programs can not be constructed using visual 
programming techniques with these systems. 

Many of these environments are language-centred and tightly integrated. Most focus on 
programming in the small tasks, which are all completed within one application 
framework. The environment provided has a consistent user interface throughout, and 
many use a Macintosh-like desktop interface.  

Some environments are less tightly coupled, and have a tool approach. The environment 
is described as a set of integrated tools which have the same user interface and common 
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underlying representation. Extensibility is important in these environments. New tools 
can be added which can communicate and interface with existing tools in a consistent 
manner. Some environments allow existing tools to be tailored to the user by providing 
“preferences”, or a method of specifying operations to perform and how these operations 
are selected. 

2.4.2.1 THINK Pascal 

THINK Pascal on the Macintosh is a good example of a tightly-integrated, non-extensible, 
language-centred programming environment (Symantec, 89, and Winblad et al, 90). The 
environment supports programming in Object Pascal, and is a single Macintosh 
application. Editing, compiling, and executing programs take place within a single 
environment. All aspects of the environment use the Macintosh desktop metaphor, and 
thus have a consistent user interface. Programs can be debugged interactively, with the 
source code used for displaying the program statements being executed. Figure 2.1 shows 
an example screen dump from an application programmed in THINK Pascal. 

THINK Pascal also provides a browser for viewing object hierarchies. This allows for a 
limited form of program visualisation and navigation. Unfortunately, there are no 
facilities provided for visual programming, nor for viewing standard Pascal code visually. 
THINK Pascal can neither be interfaced to, nor included within, another environment 
framework. CASE tools used with THINK Pascal cannot use the programs stored by the 
THINK Pascal environment. 
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Figure 2.1 An example screen dump from THINK Pascal. 

2.4.2.2 LPA MacProlog 

LPA MacProlog (LPA, 89a) is a version of Prolog for the Macintosh. The development 
environment for LPA MacProlog (LPA) is a tightly-integrated, extensible, language-
centred environment. Prolog programming is done within the one application, and all 
aspects of the environment have a consistent user interface. As with THINK Pascal, the 
desktop metaphor of the Macintosh is used. The LPA environment is extensible, as aspects 
of the environment can be changed. For example, a new menu option can be added to 
find and display Prolog predicates in a window, and the code to perform this new 
operation is written in Prolog. A graphical browser, which shows the Prolog call graph, is 
provided. Figure 2.2 shows an example screen dump from LPA. 

Development in the LPA environment is assisted by the incremental compilation of LPA. 
Prolog programs can be modified, and the changed parts re-compiled, while programs 
are running and being debugged. This greatly reduces the turn-around time between 
editing, compiling, and executing programs. The gap between these processes is reduced 
and almost merged within the LPA environment. Tools such as the window editor and 
the graphics libraries can be used in other Prolog applications. Like THINK Pascal, the 
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LPA environment can not be used for programming other languages, nor can it be 
interfaced to other tools outside the environment. 

 

Figure 2.2 An example screen dump from LPA MacProlog. 

2.4.2.3 Smalltalk-80 

Smalltalk (Goldberg, 84, and Goldberg and Robson, 84) not only helped to popularise 
object-oriented programming, but also helped to introduce the desktop metaphor for 
user interfaces (Ambler and Burnett, 90). Smalltalk has a graphical user interface that has 
menus and windows for input and output with the programmer. In addition, the concept 
of program browsers is used. This allows a programmer to view selected portions of a 
program while the program is under construction, and during the maintenance of a 
program. However, graphics are not used to display elements of programs, and Smalltalk 
programs are displayed and manipulated in text. 

The Smalltalk environment is written in Smalltalk itself, and many aspects of the 
environment can be changed. This means that the Smalltalk environment is very 
extensible. The environment is not as tightly integrated as the LPA and THINK Pascal 
environments. Many aspects of the environment are programmed in Smalltalk and 
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communicate via Smalltalk objects. These can be modified, and new tools and facilities can 
be added. 

2.4.2.4 Trellis/Owl 

The Trellis/Owl programming environment for the Trellis language (O’Brien, 87) is 
composed of several programming tools. These tools share a common form of user 
interface, and are not tightly coupled. These tools are integrated into an environment 
which is designed specifically for object-oriented programming in Trellis. New tools can 
be added to the environment, or existing tools modified, so long as they conform to both 
the user interface and the communication standards of the environment. 

Trellis provides a variety of tools such as an editor, compiler, debugger, cross referencer, 
and class library catalogue (O’Brien, 87). The browser provided uses only text to display 
class names, and does not use a visual representation. Programs can only be constructed 
and viewed in text. 

2.4.2.5 Other Integrated Environments 

Ambler et al (88) describe several programming environments ranging from integrated 
environments to visual programming systems. Other examples of integrated 
environments are: 

• ObjTalk (Fischer, 87) which provides an integrated environment and graphical 
program browser for an object-oriented language. 

• Cedar (Ambler and Burnett, 90, Ambler et al, 88, and Myers, 90) which is a 
complete programming system based around graphical representations. 

• Aloe (Ambler and Burnett, 90, and Ambler et al, 88) is a structure-oriented editor 
generator used in the Gandalf project. It can be integrated with external 
packages to form a programming environment. 

• InterLISP (Ambler et al, 88, and Winblad et al, 90) is a programming 
environment for a dialect of LISP which is tightly integrated and extensible. 

• Cornell Program Synthesizer (Ambler et al, 88, and Reps and Teitelbaum, 87) is a 
structure-oriented editor generator which can be used to generate 
environments. 

• Other Pascal and C systems, such as Objective-C (Winblad et al, 90), also have 
environments similar to the THINK Pascal environment. 

2.4.3 Visual Programming Environments 

Visual programming systems provide a method for constructing and viewing programs 
using graphical techniques. The environment provided is usually tightly-integrated and 
language-centred. By manipulating a visual representation of a program, the 
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programmer constructs the program using graphics rather than text. The graphical 
representation can also provide a basis for navigation throughout a program. 

Most visual programming systems are code or structure-oriented (Myers, 90, and Raeder, 
85). Few systems use data-oriented program display, although Raeder (85) and Myers (90) 
point out that data structures often provide the most interesting forms to display 
graphically. In addition, data structures provide a good means of abstraction and 
structuring within a program (Myers, 90). As object-oriented programs are based on data 
structures, visual representation is suitable for them (see Section 3.6). 

Examples of visual programming systems are described in Ambler and Burnett (90), 
Ambler et al (88), Myers (90), and Raeder (85). 

2.4.3.1 PECAN 

The PECAN environment (Reiss, 85) provides a development environment for Pascal. The 
environment is tightly-integrated and language-centred, and has a common user interface 
throughout. The major contribution of PECAN was the notion of multiple views of 
program structures. A program can be viewed in PECAN in a variety of ways, and the 
program structure, semantics, and its execution, are displayed.  

The multiple views idea has been utilised by many systems (Ambler and Burnett, 90). 
Programs are represented as abstract syntax trees, and textual views are linked to this 
structure. When part of this structure is modified, all affected views are updated to reflect 
the change. Some graphical representations of programs are proposed which will allow 
the program dataflow and data structures to be displayed. In addition, views which can 
show the program execution, symbol table, and types, are proposed. 

The PECAN environment stores operations which are performed, and provides an undo 
facility to reverse operations. A list of operations is provided which can be edited and 
operations re-executed by the programmer. 

2.4.3.2 Prograph 

The Prograph system (Gunakara, 89) integrates object-oriented concepts with a dataflow 
language and an application builder. Prograph is visually programmed by constructing 
classes and methods. Methods are implemented using a dataflow language. The 
environment provided for Prograph is similar to the THINK Pascal environment in that it 
uses the Macintosh desktop metaphor. It is tightly-integrated and not extensible, although 
the method and class libraries provided can be extended by adding new methods and 
classes. Prograph has a consistent user interface and provides a range of facilities for 
building new user interfaces, including a sophisticated application builder. The object-
oriented aspects of Prograph are not well developed, and the dataflow and object-
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oriented aspects do not have a seamless integration. Figure 2.3 shows an example screen 
dump from the Prograph environment. 

 

Figure 2.3 An example screen dump from Prograph. 

2.4.3.3 Garden 

Garden (Reiss, 87) is an automated design system used for prototyping new textual or 
visual languages and their environments. It is an abstraction of the ideas of PECAN (Reiss, 
85) and is intended to be a general purpose environment generator for a variety of 
languages. Garden also supports multiple views, and allows a language to be defined and 
executed using a variety of views and construction techniques. 

2.4.4 Program Visualisation 

Program visualisation systems use graphics to represent some aspect of an executing 
program. Program visualisation may be combined with visual programming. There are 
three categories of program visualisation: code visualisation, data visualisation and 
abstract (or algorithm) visualisation. In addition, data visualisation may be static or 
dynamic. 
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Program visualisation systems are described in Ambler et al (88), and Myers (90). 

2.4.4.1 GraphTrace  

GraphTrace (Kleyn and Gingrich, 88) allows object-oriented programs to be debugged 
using a visual representation of the run-time objects. These objects are viewed in a visual 
hierarchy, which can be traversed by the programmer. Programs are constructed using 
InterLISP in text. When running, they can be debugged using the GraphTrace object 
monitor. The programming environment used is the InterLISP environment, which is for 
programming using a dialect of LISP. The GraphTrace views are static visualisations, and 
are displayed when the user requests them. 

2.4.4.2 PV 

PV (Program Visualisation) is both a visual programming and program visualisation 
system (Myers, 90). Its intention is to assist programmers in forming a clear and correct 
image of a program’s structure and function (Brown et al, 85). PV allows a programmer 
to construct a program visualisation which can be viewed when the program is executed. 
Both static and dynamic diagrams are supported, and both textual and graphical diagrams 
are utilised. PV uses a form of multiple views and allows a programmer to move from 
one view to another during program execution. 

The PV environment is a collection of loosely coupled tools which are built around a 
project library where information is stored. These tools do not share a common user 
interface and the system is menu driven from one of its components. Further tools can be 
integrated into the environment, although this requires modification of the PV system 
(Brown et al, 85). 

2.4.4.3 BALSA 

BALSA (Myers, 90) is an algorithm animation system. It runs on a Macintosh and provides 
a tightly-integrated, language-specific environment. BALSA provides sophisticated views 
of programs during execution, and provides dynamic animation facilities. BALSA 
provides a library of existing views which can be utilised by a programmer to animate 
programs. However, if a new view is required, this must be constructed by programming 
using the Macintosh toolbox routines (Stasko, 89). BALSA can only be used to animate 
programs written in the BALSA programming language. 

2.4.4.4 TANGO 

TANGO (Stasko, 89) is an algorithm animation system. TANGO supports two-
dimensional animations on a graphics workstation. Programmers can produce real-time 
views of their programs using an algorithm animation design language or a direct 
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manipulation animation design tool. TANGO animates a program during execution using 
a graphical representation of the algorithms of the program. 

TANGO is used to augment existing environments as a system for animating programs. 
TANGO can be integrated into other programming environments and is driven by a 
message-passing system. This loose system integration allows any program to be 
animated by generating events which drive the animation. 

2.4.4.5 The Object-Oriented Diagramming System 

The Object-Oriented Diagramming System (Myers, 90) allows a programmer to view 
objects at run-time and observe message-passing between objects. Objects are displayed 
as boxes, and arrows are drawn between boxes and elements of boxes. These show 
whether a method was handled by the object or a super-class of the object. 

2.4.5 Example-Based Programming 

Example-based programming uses examples of input and output to derive or specify 
programs. Examples are often provided using a graphical user interface, and programs 
constructed using graphical techniques. The environments provided by these systems are 
usually language-specific and tightly-integrated. 

Some example-based programming systems are described in Ambler et al (88), and Myers 
(90). 

2.4.5.1 Rehearsal World Theatre 

Rehearsal World Theatre (Ambler et al, 88) is a visual programming environment for 
non-programmers. The basic components of the environment are performers which 
interact with each other on a stage. The screen is a stage upon which performers (objects) 
perform actions they have been taught for a production (program). All the interactions 
with Rehearsal World Theatre are visual in nature. They consist of selecting a performer 
or sending a cue to a performer. Programming is undertaken by auditioning different 
performers by sending them cues and seeing how they respond. The cues and creation of 
performers are the examples the system receives and infers a program from. 

2.4.5.2 Fabrik 

Fabrik (Ingalls et al, 88) is a visual programming environment based on the dataflow 
programming paradigm. Fabrik programs are constructed by connecting low-level 
primitives together with wires, and thus building higher level program constructs. This is 
analogous to the Prograph dataflow component (Gunakara, 89). Fabrik allows the 
programmer to build user interface components, which are displayed on the screen and 
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manipulated by a user of a Fabrik program. The system allows a user to input sample 
data and continually adjust the output based on the input so far. All boxes, or low-level 
components, are active while a program is being constructed. They produce output using 
data from their input pins continually. The output data can be displayed to the 
programmer, and programs can be adjusted interactively if the desired output is not 
obtained. 

2.4.5.3 THINKPAD 

THINKPAD (Ambler et al, 88, and Myers, 90) is an example-based programming system 
which generates Prolog code to model graphical manipulations performed by the 
programmer. A diagrammatic representation of a data structure is manipulated, and this 
is used to demonstrate operations on the data. Data structures are represented by their 
graphical properties. Operations on data structures are specified by graphical examples of 
the data structure in use. The visual aspects of THINKPAD do not extend to program 
execution. While there is a mapping from the visual elements to a Prolog program, there 
is not one from the program to its visual representation. 

2.4.6 Computer-Aided Software Engineering 

Computer-Aided Software Engineering (CASE) technologies have become important for 
assisting the analysis and design of programming systems (Coad and Yourdon, 91). These 
systems assist programmers and analysts to design software using formal methodologies. 
The use of formal specification, design, and analysis techniques enhances the program 
development and maintenance processes (Chikofsky and Rubenstein, 88, and Coad and 
Yourdon, 91). 

CASE tools primarily cater for the design and analysis of programs, but do not usually 
cater for program construction. Some systems allow program templates to be generated 
from a design, but don’t allow subsequent changes to the design or program to be 
integrated. Thus diagrams for the design of programs can become out of date with the 
code. CASE systems have well-developed graphical user interfaces and provide 
sophisticated diagramming techniques. Their graphical representation and manipulation 
facilities are more advanced than most visual programming systems. 

Examples of CASE tools and environments are discussed in (Chikofsky and Rubenstein, 
88, Dart et al, 87, and Henderson and Notkin, 87). 

2.4.6.1 Software through Pictures 

Software through Pictures (Wasserman and Pircher, 87) is a design and analysis tool for 
program development. Software systems are designed in Software through Pictures and 
then implemented in an appropriate language. Software through Pictures does not 
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directly support program implementation. However, it does provide an environment 
framework in which editors and compilers can be integrated. The environment is 
comprised of several independent tools which share a common database repository for 
project information. 

The diagramming tools provided by Software through Pictures include a structured 
analysis tool, an entity-relationship modeller, a dataflow diagram, and a structure chart 
editor. All of these tools share a common user interface and a common project database. 
A user interface prototyping system is provided, and output from the diagramming tools 
can be obtained in a variety of forms. 

The Software through Pictures environment has limited extensibility and can be 
customised to suit the needs of particular users. A tool information file is provided which 
can be updated. This allows other tools (like compilers and editors) to be used, and 
existing tools’ behaviour to be modified in a constrained way. 

2.4.6.2 Graspin 

Graspin (Mannucci et al, 89) is similar to Software through Pictures. It is a development 
environment generator for analysis and design. Graspin provides several tools, which are 
integrated into a single environment. Graspin is based on a kernel machine, which 
provides facilities for general purpose diagramming and data representation. There are 
several tools which are generic and general purpose in nature, and can be configured for 
different tasks. These can be modified to suit different applications. There are some 
language-specific tools which are programmed using the kernel facilities of Graspin. These 
can only be used for a specific language or application. 

The tools provided by Graspin are similar to those provided by Software through 
Pictures, but they are implemented differently. The main part of Graspin is a structure-
oriented editor, which can be tailored to different tasks. Graspin supports both textual and 
graphical languages, which are defined in an abstract syntax language.  

The diagrams produced in Graspin and Software through Pictures are automatically laid 
out for the programmer. Although Mannucci et al (89) claim this is an advantage, 
Wasserman and Pircher (87) note that it leads to inflexibility in the environment produced. 
Reiss (87) and Myers (90) also claim that an environment should allow a programmer to 
lay out programs as they desire. 

2.4.6.3 OOATool 

OOATool™ (Object-Oriented Analysis Tool) is a class structure editor with facilities to 
produce documentation for programs (Coad and Yourdon, 91). Object-oriented programs 
are designed by defining classes and their inter-relationships. The features of classes are 
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divided into methods and attributes, and these can be added to class representations. The 
OOATool™ provides options to display different aspects of a program. It has a similar 
notion to PECAN views (Reiss, 85), called subjects. Figure 2.4 shows an example diagram 
from the OOATool™. 

Programs cannot be constructed using the OOATool™. The tool is only for analysis and 
design, and then a program based on this design can be implemented using a suitable 
object-oriented programming language. The tool cannot be integrated with existing tools, 
as it has its own internal data storage mechanism. The environment provided is similar to 
the Prograph environment (Gunakara, 89), and it also runs on the Macintosh. 

The class structures produced by the OOATool™ differ from those used in other research 
in this area (Mugridge, 88, Wasserman et al, 90, and Wilson, 90). However, all of these 
diagramming techniques can be used to represent the same object-oriented program, 
although in different formats. 
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Figure 2.4 An example diagram from the OOATool™. 
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2.4.7 Other Visual Modelling Systems 

There are a large range of diagramming systems and visual modelling systems available. 
Although these are not visual programming environments, they share some common 
aspects. Examples include the user interfaces they provide and the diagram construction 
techniques they employ. 

Some examples of these include: 
• Entity-relationship modellers which are used to graphically model a relational 

database model (Czejdo et al, 90). 
• Drawing packages which allow users to construct complex diagrams on 

computers. Examples include MacDraw (Claris, 89) and MacPaint. 
• Computer-Aided Design (CAD) systems allow users to construct technical 

drawings with a range of environment facilities and tools to assist the drawing 
process. 

• Other systems like Hypercard and EDGE (Newbery, 88), a generic graph 
editing package, have aspects which could be utilised for visual programming 
environments. 

2.5 Summary 

This chapter defined the concepts of a programming environment and visual 
programming environments. Visual programming has several advantages over 
conventional programming. These include better program visualisation and navigation, 
improved user interfaces, and improved environment integration. A taxonomy of 
programming environments was given and illustrated, with a discussion of example 
languages and environments. The environments included in the taxonomy include 
conventional textual environments, to integrated environments with graphical browsers, 
to visual programming systems. Visual programming, program visualisation, and 
example-based programming systems are current areas of research. Related areas include 
interactive CASE tools, diagramming packages, and other visual modelling systems.
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Chapter 3 
Visual Programming for Object-Oriented 

Languages 
 

The basic concepts of object-oriented programming and object-oriented program 
development are described in this chapter. Class Language and Eiffel are introduced as 
the two representative object-oriented languages used in this research. The environments 
for these languages are deficient, and can be improved by using visual programming 
techniques. The concepts of Ispel, a visual programming environment designed for Class 
Language, are described. This description forms the basis of the specification for two 
prototype environments of Ispel, presented in Chapters 4 and 6. 

3.1 Object-Oriented Programming Concepts 

“‘Object-oriented’ is the latest in term, complementing or perhaps even replacing 
‘structured’ as the high-tech version of ‘good’. As is inevitable in such a case, the 
term is used by different people with different meanings.” 

(Meyer, 88) 

The concepts of object-oriented programming are briefly described in this section, and the 
terminology used in this thesis is introduced. The object-oriented programming paradigm 
is still evolving, particularly design methodologies and program development (Booch, 86, 
and Wasserman et al, 90). This description of object-oriented programming follows the 
definitions used for Eiffel and Class Language (Mugridge, 90). For a comprehensive 
definition of object-oriented programming and object-oriented languages, refer to Booch 
(86), Meyer (88), and Winblad et al (90). 

3.1.1 Object-Oriented Design 

Object-oriented design is a methodology which results in software systems being based on 
the objects they manipulate, rather than the functionality of how those manipulations are 
performed. Object-oriented systems are based around the data structures that comprise a 
system. This contrasts with conventional programming languages and design techniques, 
which are structured around procedures and functions which manipulate data.  
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3.1.2 Objects and Classes 

The central concept of object-oriented programming is the object. Objects are collections of 
data elements of software systems. For example, the roof of a building may be 
represented as an object, which has attributes such as its length and height. 

Classes describe sets of objects which share common attributes. When organising systems 
around data structures, the items of interest are classes of data structures rather than 
individual objects. For example, the class of all roofs describes the common properties of 
all roofs of buildings. This is opposed to the roof of an individual building, which is an 
object. 

The distinction between objects and classes is important. Classes are a static concept, 
which are part of an object-oriented program. Objects are a dynamic concept, not part of 
a program, but part of the memory of a computer executing the program. They are 
created during the execution of a program. 

Smalltalk and other object-oriented languages have a concept of meta-classes. Classes in 
Smalltalk are objects, as Smalltalk is an interpreted language. This concept is defined in 
Goldberg and Robson (84), but is not applicable to either Class Language or Eiffel. 

3.1.3 Type Aggregation 

Classes encapsulate data structures and services on these data structures, called features. A 
feature of a class is a named, typed attribute of the class. The name of a feature identifies 
the particular service on a data structure that the feature provides. The type of a feature is 
an abstract data type.  

An abstract data type describes a class as a set of features, and the formal properties of 
those features. Every class represents a particular abstract data type implementation, or a 
collection of implementations. Abstract data types are used to describe classes as they are 
implementation independent. A class is viewed as a set of features which operate on data 
structures, rather than how these features are implemented. For example, a roof class has 
features which determine the length and area of a roof object. How these features are 
implemented is independent from the services they provide.  
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Object-oriented design can be described as: 

“...the construction of software systems as structured collections of abstract data 
type implementations.” 

(Meyer, 88) 

Different kinds of feature implementations are possible. For example, the length feature 
of a roof class could be the value of the length attribute of a roof object. The area feature 
of a roof class could be the value of a function which calculates the area of a roof object 
from its length and width feature values. 

Features can be hidden from other classes in a system. The set of features which are 
visible to other classes is the interface of a class. Classes using this interface are unaware of 
the implementation of features, only the services they provide. Classes that have features 
of other class types are called client classes, and the other classes that provide these types 
are called supplier classes. 

Smalltalk and other object-oriented languages view classes as collections of methods and 
data elements. Messages are passed between classes to invoke methods which provide 
services on data. Message-passing and methods are described in more detail in Goldberg 
and Robson (84). The method/message terminology is not used in this thesis. 

Eiffel and Class Language are both statically typed object-oriented languages. Un-typed 
languages such as Smalltalk and Trellis provide slots for data values of any type. Type 
checking in these languages is performed at run-time rather than compile-time (Goldberg 
and Robson, 84, and Winblad et al, 90). 

3.1.4 Genericity 

Genericity describes the technique of parameterising classes using arbitrary types. This is 
useful for classes which represent general data structures. For example, a list class 
represents lists of objects of some type. A list class parameterised by the type roof 
classifies objects which are lists of roof objects. 

3.1.5 Generalisation 

Classes can inherit information from other classes via the generalisation mechanism. This 
mechanism classifies related classes which inherit information in a hierarchical manner. 
This enhances re-usability of classes and allows them to inherit features, and thus 
eliminate common code between related classes (Meyer, 88). 

A class which inherits information from another class is called a specialisation of the second 
class. An inheriting class is designated the sub-class or child class. Any class it inherits from, 
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whether directly or indirectly through another class, is designated a generalisation class, 
super-class, or parent class. For example, the roof class can be specialised into the classes of 
flat roofs and non-flat roofs. All roofs have the features of the roof class. However, these 
specialisation classes can re-define these features or provide new ones specific to them. 

Polymorphism is the ability of a feature to refer to different types of objects at run-time. 
This is constrained by inheritance. A feature which is a specialisation class can behave as 
one of its generalisation classes, but a more general class can not behave as a more 
specialised class. For example, a flat roof is always a roof and can be used as a roof, but a 
roof can not be used as a flat roof. 

Dynamic binding refers to the rule which determines the version of a feature used for an 
object service at run-time. For example, the feature of an object with type roof could have 
a dynamic type of roof , flat roof, or non-flat roof at run-time. If both the roof and flat 
roof classes define an implementation for the area feature, the implementation used for 
area will be determined by the dynamic type of a roof feature at run-time. 

3.1.6 Classification 

Dynamic classification is a type classification mechanism particular to Class Language 
(Hamer, 90). This allows objects to classify themselves to classes via classification features. 
For example, the roof class could be dynamically classified into either the flat roof or non-
flat roof classes at run-time, depending on the type of roof under consideration. Only 
classes that have a type (inheritance) relationship can be related using classification. 
However, classification is not the inverse of inheritance (Hamer, 90). 

3.2 Object-Oriented Development 

“Object-oriented development is a partial life-cycle software development method 
in which the decomposition of a system is based on the concept of an object.” 

(Booch, 86) 

This section outlines some of the common techniques used when designing and 
implementing object-oriented programs. Some techniques used during this research are 
described in Section 6.5. Further discussion of object-oriented design can be found in 
Booch (86) and Meyer (88). An alternative approach to abstract data type object-oriented 
design is discussed in Wirfs-Brock and Wilkerson (89). Further design methods and 
techniques are presented in Mugridge and Hosking (88), and Winblad et al (90). 

Some examples of design methodologies include the HOOD (Hierarchical Object-Oriented 
Design) approach (Booch, 86), and the OOSD (Object-Oriented Structured Design) 
notation (Wasserman et al, 90). An alternative approach for design are CRC (Class, 
Responsibility, and Collaboration) cards (Beck and Cunningham, 89). 
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3.2.1 Software Development Life-cycle 

Software progresses through several phases during development. These include 
specification, requirements analysis, design, implementation, verification, and 
maintenance (Chikofsky and Rubenstein, 88, Luqi, 89, and Wasserman and Pircher, 87). 
Object-oriented programming applies to the design, implementation, and maintenance 
phases of software development. Once a specification for a program has been produced, 
an object-oriented design and implementation can be developed for this. Like most 
software development, this process has feedback between the different phases. 

3.2.2 Identifying Objects and Classes 

The objects and classes that comprise an object-oriented system can be determined in 
many ways. Some of these include: 

• Deriving objects from real-world objects. Classes of these objects can be used to 
classify objects with common properties. Meaningful external objects describe 
concrete or abstract objects being modelled (Booch, 86, and Meyer, 88). For 
example, the roofs of various buildings are concrete external objects. The roof 
class describes the set of all roof objects. 

• Classes can be adapted from existing classes by using inheritance. If a more 
specialised form of an existing class is to be used, then a new class can be 
defined which can be generalised to the existing class. For example, the flat roof 
class is a specialisation of the roof class. 

• New classes should be created when existing classes become large, its 
behaviour becomes complex, or a subset of its services are likely to be used by 
other classes. 

• Existing classes should be used when they describe the objects that are to be 
modelled. Reuse of existing classes is an important aspect of object-oriented 
programming, which requires a comprehensive class library facility. For 
example, the list class is a generic class which defines lists of objects, and can be 
reused for all list features. 

Classes correspond to meaningful data abstractions (Meyer, 88). Thus care should be 
taken when designing classes that neither excessive nor deficient numbers of classes are 
created. Object-oriented design is often an incremental process, where an existing design 
is analyzed and improved during development. Classes should be designed not only for 
the current program being constructed, but, if possible, for reuse by other applications 
(Meyer, 88, and Winblad et al, 90). 

Booch (86) describes a simplistic grammatical technique for isolating classes. Wasserman 
et al (90) describe several approaches that utilise a diagrammatic technique to assist 
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design. Coad and Yourdon (91) discuss more abstract analysis techniques for object-
oriented programs. 

3.2.3 Class Interface Design 

When the classes have been identified, the features of a class that are both visible to other 
classes and private to the class itself are selected. Some guide-lines for interface design 
should be followed: 

• Identify the services of a class that are required by other classes. This 
determines the interface the class must have. 

• Identify the services a class requires from other classes. This helps to determine 
the interfaces of the other classes. 

• Keep a class interface implementation independent. 
• Features should be designed with a single purpose. 
• If a feature implementation becomes large, the feature should be divided into 

several features, or the class abstracted in some way. 
• If a feature requires extending, a new feature can often be provided for the new 

operation. 
• Classes should be designed for reuse where possible. The class interface should 

be made general enough for other applications, and not just the current context 
it is required for. 

A common error is to design classes which should be implemented as features. A class 
with only one feature or service should be a feature of another class (Meyer, 88). 

3.2.4 Inheritance Hierarchies 

Generalisation is used to organise classes into inheritance hierarchies where common 
features are shared. Generalisation reduces code duplication and allows categories of 
classes and class interfaces to be defined. A class which requires features of another class 
can obtain those features via inheritance, or contain a feature of the other class type. The 
following rules can be used to determine the approach to use: 

• Inheritance means a class is some specialised form of the other class. A feature 
means that the class has an element of the other class. 

• Inheritance allows features from a parent to be reused and their 
implementations re-defined, if necessary. It provides a more flexible approach 
to the reuse of features. 

• Inheriting information from a class is more committing than using the class as a 
feature. The interface, implementation, and private features are inherited. Only 
the interface is used for a feature, and a change to the implementation does not 
affect a client class. 
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Meyer (88) and Winblad et al (90) discuss further techniques for utilising inheritance. 

3.2.5 Implementing Classes 

Once the classes and features of classes are defined, the implementation of class features 
can be carried out. The implementation of a feature is not visible to external classes. 
Design of an object-oriented system should ensure this principal is maintained, and each 
class is responsible for the implementation of its services. As redesign may be required 
during implementation, feedback to the design process is required. 

3.3 Class Language and Eiffel 

The two representative object-oriented languages used in this thesis are Class Language 
and Eiffel. These languages were chosen as implementations of these languages were 
available, and they both conform to the definition of object-oriented programming in 
Section 3.1. In addition, there are several significant differences between the languages. 
This allowed a contrast of language design philosophies to be investigated, and the 
subsequent effects of this on elements of this research to be determined. 

3.3.1 Class Language 

Class Language was developed at the University of Auckland and is designed to support 
code of practice conformance checking (Hamer, 90, and Mugridge, 90). The language was 
developed by John Hamer (Hamer, 90), and extensions to the language, in particular the 
functional and user interface aspects, are proposed in Mugridge (90). It is a typed, object-
oriented programming language with some procedural and functional aspects. The 
language was originally intended for constructing expert systems, with an object-oriented 
representation of the components of a system. 

Class Language is a single assignment language. It models a consistent state of a system, 
which occurs in programs that check for conformance to codes of practice. Lazy evaluation 
is used to give values to features of objects during program execution. Objects are created 
when values for their features are required by other objects. Rules and expressions within 
the class of the object are used to evaluate the value for its features. 

The object-oriented aspects of Class Language are the most well developed. Class 
Language supports information-hiding, abstract data types, and multiple inheritance. 
Class Language also provides object parameters and a multiple, dynamic classification 
mechanism. Class Language does not allow state changes like most object-oriented 
languages, because it is a single assignment language. 

The procedural aspects of Class Language are limited, and are used for directing the flow 
of control. Procedures to produce output are provided, and constructs for conditional and 
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iterative execution. The functional aspects of Class Language are simplistic, with functional 
evaluation of expressions for feature values. Mugridge (90) proposes some extensions for 
the language to increase its functional power. 

3.3.2 Eiffel 

Eiffel was developed at Interactive Software Engineering, and is designed as a general 
purpose, object-oriented programming language (Meyer, 88). Eiffel is imperative rather 
than single assignment, and has better developed procedural aspects than Class 
Language. Eiffel is well defined, and the object-oriented and procedural aspects are well 
integrated. 

Like Class Language, Eiffel provides class encapsulation of features, selective information 
hiding, abstract data types, multiple inheritance, genericity, and polymorphism. Eiffel 
does not have the concepts of classification nor object parameters. Eiffel provides a pre-
defined set of features for all classes, and some basic class types. 

Eiffel has the notions of assertions and class invariants for further specification and 
constraint of features. It also provides exceptions for handling error cases. The Eiffel 
environment provides a comprehensive set of class libraries, which permits class re-
usability. 

3.3.3 Development Environments 

One of the main reasons for developing a visual programming environment for Class 
Language and Eiffel is because their existing environments are deficient (Clausen, 89, and 
Plumpton, 91). Neither environment is well designed for object-oriented programming. 
Nor do they give adequate assistance during the program development process. 

3.3.3.1 Class Language 

The Class Language programming environment is very limited. Class Language runs 
under the Unix and VMS operating systems. A standard text editor supplied with the 
operating system is used to edit Class Language programs, and these programs are 
stored as text files on disk. The compiler takes these text files and generates virtual 
machine code, which can then be interpreted by the Class Language run time system to 
execute the program. This process of constructing programs means that the edit-compile-
run cycle of program development is not integrated. The programmer must enter and 
leave programs with substantially different user interfaces for each phase of the cycle. 

The user interface provided by Class Language is simplistic, and input and output is 
purely textual. This user interface is mirrored in the Class Language development 
environment, where only textual dialogue between the programmer and system occurs. 



Chapter 3 Visual Programming for Object-Oriented Languages Page 33 

There are no tools provided by the environment to assist the programmer, except the 
general purpose facilities provided by the operating system and the editor being used. 

3.3.3.2 Eiffel 

The Eiffel environment is very similar to the Class Language environment in that it is 
textually oriented and lacks integration. Eiffel is implemented in C and runs under Unix. It 
uses the standard Unix command line interface for user input and output (Interactive, 
89c). Editing is performed using an editor supplied with the operating system, and 
compilation is invoked via the command line interface. An Eiffel program is compiled to a 
standard Unix executable file. This can be invoked in the same way as other Unix 
commands. 

The user interface provided by Eiffel is also textually oriented, but an interface to the X 
windows system is provided. Eiffel provides a collection of libraries that supply a range of 
classes to perform operations such as list handling, input and output and numerical 
computation (Interactive, 89b, and Meyer, 88). 

Some tools are provided by the environment to assist the programmer. These include a 
class abstracter and hierarchy flattener. These allow the programmer to view the 
complete set of features for a class, and assist in the documentation of classes. A 
compilation manager is provided. This determines what classes have been changed since 
the last compilation, and what classes are affected by these changes, and thus need to be 
re-compiled. 

Two browsing tools are provided, although both are of poor quality. One, called eb, is a 
simplistic textual browser which allows the programmer to move through the class 
aggregation and inheritance structures. The other, called good, is a graphical browser 
which displays these structures visually and allows the programmer to move about the 
structures by manipulating the display (Interactive, 89c). Unfortunately, this tool has a 
poor user interface which is cumbersome to use. Figure 3.1 shows an example of the good 
browser being used to display an Eiffel program. 
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Figure 3.1 An example of the good browser being used to display an Eiffel program. 

An additional problem with Eiffel is that the compiler is extremely slow. This means there 
is a significant delay between the compile and execute phases of the program 
development cycle. This delay can be very frustrating for a programmer, and hinders the 
development of programs (Raeder, 85). 

3.4 Other Object-Oriented Languages 

Many other object-oriented languages have been developed which utilise some or all the 
concepts of object-oriented programming described in Section 3.1. In addition, some 
languages have other concepts particular to themselves, or other classes of object-
oriented languages. A brief overview of some other object-oriented languages is given 
here. More complete surveys can be found in Meyer (88), and Winblad et al (90). 

Smalltalk was developed at Xerox PARC and was the first popular object-oriented 
language (Goldberg and Robson, 84). Smalltalk introduced many object-oriented concepts 
and also introduced a user interface idea which utilised multiple windows. Only single 
inheritance is supported by the language, and every data element is viewed as an object, 
including classes. 
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Prograph (Gunakara, 89) has both object-oriented and dataflow aspects, which are 
integrated within a visual programming environment. The object-oriented aspects of 
Prograph are not as well developed as those of Eiffel and Class Language, and the 
language only supports single inheritance. 

Object C and Object Pascal  provide simple object-oriented extensions to the C and Pascal 
programming languages (Winblad et al, 90). Only single inheritance is provided, and the 
concept of information hiding is not supported. They do not provide dynamic memory 
management for objects. These are examples of hybrid object-oriented languages, which 
provide both procedural and object-oriented aspects, loosely integrated within one 
language. 

Other examples of object-oriented languages include C++ (Winblad et al, 90), Trellis/Owl 
(O’Brien et al, 87), and CLOS (Winblad et al, 90) for Common LISP. 

3.5 Class Structure Diagrams 

“Class diagrams are useful tools for program design, documentation, and analysis 
of existing programs. They are relatively language-independent, and provide a 
very high-level descriptive technique for describing how an object-oriented 
application is structured.” 

(Wilson, 90) 

The structure of object-oriented programs has an inherently visual nature. The classes, 
features, and relationships that comprise a program can be naturally and clearly 
expressed by using diagrammatic techniques. Class structure diagrams are a convenient 
method for representing the various relationships between classes.  

Class structure diagrams are comprised of boxes and lines. These are laid out and 
connected to present a meaningful representation of part of a Class Language program 
for a programmer. Figure 3.2 shows a class structure diagram from the Wallbrace system 
showing some of the major classes of Wallbrace. Wallbrace is an expert system written in 
Class Language. It assists a building designer or building inspector to check conformance 
of a building with the wall bracing requirements of a code of practice for timber frame 
houses. Examples from Wallbrace are used throughout this thesis to illustrate aspects of 
object-oriented programs. Wallbrace is described in Mugridge (90) and Expert Systems 
and Codes of Practice are described in Hamer (90). 
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Figure 3.2 A class structure diagram from the Wallbrace system. 

The Building class is represented by a box with a name inside it. The Wings feature of 
Building is represented by a box with the feature name and type (Wing) inside it. The 
shading behind the Wings, Sections, and Storeys boxes indicates list features, i.e. the 
feature is a list of objects of the feature type. Figure 3.3 shows the Roof inheritance 
hierarchy from Wallbrace. This diagram represents generalisation from the different types 
of roof classes to the Roof class. The arrows on the end of the lines represent a class being 
generalised to another class. 
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Figure 3.3 A class structure diagram for generalisation. 

Class structure diagrams are useful for four main areas (Wilson, 90): 
• Design. Class structure diagrams provide a good software engineering tool for 

object-oriented languages (Wasserman et al, 90). They can be used to assist in 
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choosing classes, features, and generalisations, and aid program structuring. 
When designing and implementing an object-oriented program, class structure 
diagrams are drawn by programmers to enable them to visualise a program’s 
structure. 

• Documentation. Diagrams are useful in presenting a finished design to others to 
help them understand or maintain programs. 

• Analysis. Diagrams present the structure of a program for programmers to 
understand (Coad and Yourdon, 91). They are also used during the 
maintenance and modification of an object-oriented program. 

• Teaching. A description of the overall structure of an application makes 
understanding easier. 

3.6 The Ispel Visual Programming Environment 

The development environment of Class Language is deficient to the point that it makes 
programming difficult (Clausen, 89, and Mugridge, 90). These deficiencies can be rectified 
by using visual programming techniques. 

3.6.1 Current Use of Class Structure Diagrams 

The class structure diagram concept provides the basis for a visual programming tool for 
Class Language and other object-oriented languages. At present, when Class Language 
programs are developed, the main type aggregation and inheritance relationships are 
sketched on paper using class structure diagrams. When coding of the program begins, 
these diagrams provide a framework for the programmer’s initial class construction. They 
also provide a diagrammatic visualisation of the program structure. When this program 
structure is modified during the development process, any changes affecting the class 
structure diagrams need to be reflected back to the diagrams on paper. This is an ad-hoc 
process that may be delayed or omitted by the programmer for various reasons. This can 
result in difficulties in interpreting old diagrams in the context of new code, or create an 
incomplete collection of structure diagrams for programs. 

3.6.2 Construction of Class Structure Diagrams 

Class structure diagrams also make a good documentation tool for object-oriented 
programs, and can be constructed using drawing packages. The high-level, structural 
aspects of object-oriented programs are inherently visual, and visualisation of programs, 
via class structure diagrams, is an important design technique. This raises the possibility of 
transferring class structure diagrams to computer as part of a design tool. Such a tool 
allows the programmer to construct and modify diagrams on computer rather than on 
paper (Coad and Yourdon, 91, Wilson, 90, and Wasserman et al, 90). 
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3.6.3 Visual Programming Using Class Structure Diagrams 

The construction of class structure diagrams on computer can take place during the 
development of programs. Diagrams could be used simply for documentation and 
browsing (Fischer, 87), but this can be extended to direct assistance of the development of 
programs. As class structure diagrams reflect the object-oriented structure of a program, 
the construction and modification of these diagrams can be used to construct and modify 
an object-oriented program. From this a visual modelling tool can be derived, which 
allows the programmer to construct the high-level aspects of programs. This uses visual 
programming techniques by manipulating class structure diagrams on a computer. These 
diagrams also provide a visualisation of the object-oriented program, which is always 
consistent with the actual structure of the program. 

This concept of a visual modelling tool can be extended to provide a visual programming 
environment for Class Language. The current environment for Class Language can be 
replaced with an environment based around a visual programming tool, provided by a 
class structure diagram modeller. 

3.6.4 Ispel 

The remainder of this chapter describes a visual programming environment called Ispel3. 
This is based around a multiple class structure diagram modeller, and is designed for 
object-oriented programming in Class Language. 

3.7 The Basic Concepts of Ispel 

The Ispel visual programming environment was designed as a replacement for the 
existing Class Language development environment. The concepts presented in this 
section have been developed by refinement of the original specification of Ispel using two 
prototypes. Visual programming environments provide many advantages over 
conventional textual programming, which have been utilised in Ispel. 

3.7.1 Overview of Ispel 

This section outlines the basic features of Ispel. 

                                                

3Ispel is used as a concise name to refer to the concepts of the visual programming 
environment described in this chapter. The name is not an acronym. 



Chapter 3 Visual Programming for Object-Oriented Languages Page 39 

3.7.1.1 Visual Programming with Classes 

Ispel allows the high-level, object-oriented aspects of Class Language programs to be 
represented and manipulated through a graphical user interface. Classes, and the inter-
class relationships of type aggregation and generalisation, have visual representations, 
and these representations can be viewed and manipulated by the programmer. 
Modification of these visual representations results in a change to the Class Language 
program under construction. Thus the object-oriented aspects of Class Language are 
programmed visually rather than textually. 

3.7.1.2 Selective Views of Programs 

In addition, Ispel provides a mechanism, called multiple views, for the programmer to 
view selected parts of the Class Language program under construction. The programmer 
is also able to move between different parts of the program as required, using these 
views. The object-oriented aspects of the program are represented as class structure 
diagrams, which provide a meaningful and natural way of viewing the program 
(Mugridge, 90). The programmer can view and modify several diagrams at a time, as well 
as being able to change focus and view different diagrams. 

3.7.1.3 Graphics and Textual Consistency 

Ispel allows the object-oriented aspects of Class Language to be programmed visually. 
The remainder of the language is programmed in text, although the visual representation 
of a program still has a textual equivalent. Elements of the language, such as expressions 
and procedural and functional aspects, are programmed in text. The object-oriented 
aspects of Class Language are the most natural to represent and manipulate visually, and 
it is acceptable to view and manipulate the functional and procedural aspects as text. This 
is because these are less abstract, implementation aspects and are more low-level (Myers, 
90). Ispel is different from most other diagramming systems in that it ensures the 
graphical and textual representations are always consistent. It also allows changes to a 
program to be made in both graphics and text. 

3.7.2 Programs as an Underlying Representation 

There are two major elements of Ispel: the visual representation of a Class Language 
program, and the Class Language program itself. Ispel models an object-based system 
composed of objects (classes and features of classes) and relationships between objects 
(feature and generalisation). The programmer sees representations of this underlying 
Class Language program in the form of class structure diagrams. These are the visual 
representation of the program, and a textual representation of classes is available. 
Manipulation of the visual or textual representations changes the underlying 
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representation, which allows the programmer to construct a Class Language program. 
These textual and graphical representations are kept consistent via the underlying 
representation (Class Language program). 

3.7.3 Multiple Views of the Underlying Representation 

Ispel introduces the concept of having multiple class structure diagrams for a Class 
Language program. These diagrams can be viewed and moved between by the 
programmer as they are developing a program. 

3.7.3.1 Views 

Ispel refers to class structure diagrams as views, and Ispel allows for multiple views of a 
Class Language program. A view is a particular focus on part of a Class Language 
program and provides a visual representation of the program. Views can overlap and one 
view may contain the same classes and features as another view. The union of all the 
views is a subset of the Class Language program which is being represented. 

Each view has a class as the focal point of the view. The class which is the main focus of a 
view is called the primary class of the view. For example, Figure 3.4 shows the main classes 
of the Wallbrace system, with the Building class as the main focus, or primary class, of 
this view.  
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Figure 3.4 The main classes of Wallbrace, with Building as the primary class. 

Classes can also be the focal point of more than one view. If this is the case, classes have 
one view, which is the primary view for the class, and other views called secondary views. 
Information is shared between views, and so classes can appear in more than one view. 
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For example, Figure 3.5 shows the Roof class in a different view with the features of 
Roof. 
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Figure 3.5 A view of the Roof class and its features. 

The concept of multiple views of an underlying representation was developed from the 
desire to provide multiple class structure diagrams for visualisation and manipulation on 
computer. Other researchers have also found the multiple views concept useful for visual 
programming. The concept is used in the PECAN system (Reiss, 85) and in Software 
through Pictures (Wasserman and Pircher, 87). Multiple views are particularly useful for 
viewing an underlying representation of a program structure at different levels of 
abstraction (Dart et al, 87). 

3.7.3.2 Appropriate Representation 

Ispel provides both graphical and textual views of Class Language programs. Graphical 
views show several classes, and the interrelationships between the classes, while textual 
views show the text for a single class. Graphical views give a high-level view of the 
program structure, while textual views focus on one class and its features and 
generalisations. Ispel allows the programmer to decide which representation is most 
appropriate for the implementation of programs. This approach of providing both 
graphical and textual views of a program has been useful in the Forms VBT system 
(Avrahami et al, 89), and the Garden system (Reiss, 87). 

3.7.3.3 View Consistency Always Maintained 

A key feature of views is that textual and graphical views are both linked to the 
underlying representation, and changes to this representation are reflected in both views. 
When the underlying representation is changed by manipulating a view, these changes 
are immediately propagated to other affected views. Thus views are always an accurate 
visual representation of the Class Language program, and consistency is maintained.  

Some visual programming systems parse the graphical representation of a program, 
rather than build an underlying representation interactively (Avrahami, 89, and Reiss, 85). 
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However, most recent visual programming environments use an incremental program 
construction technique similar to the one used in Ispel (Ambler and Burnett, 90). This 
approach is more interactive and more appropriate for the visual construction of 
programs (Myers, 90). Using this approach in Ispel ensures views are always up to date, 
and gives a more integrated and interactive feel to development. This compares with 
many current CASE systems, which allow program templates to be generated from 
diagrams. However, subsequent changes to diagrams or code is not kept consistent. 

3.7.3.4 Views for Browsing 

Views give the programmer a context to work in, and a class and the relationships to this 
class to focus on. Since there are multiple views of the program for the programmer to 
work with, a mechanism for moving between these views must be provided. This allows 
the programmer to navigate through a Class Language program. The navigation facilities 
provided must make context-switching to another view easy and meaningful to the 
programmer, and allow them to browse the program as they require. Ispel provides 
facilities for the programmer to create and modify views of the program, and facilities to 
move between these views in a meaningful way. 

3.7.3.5 Windows 

Windows are used to display views in, and provide an encapsulation mechanism for the 
visual representations of a program. Windows allow multiple views to be displayed at 
one time on the screen and be viewed and manipulated by the programmer. Navigation 
between different windows is a simple task, and different views can be displayed in a 
window. The use of windows is common to all visual programming environments 
(Ambler and Burnett, 89). 

3.7.3.6 Applications 

A Class Language program in Ispel is comprised of the program itself (the underlying 
representation), and views and windows (the visual representation). An Ispel Class 
Language program is called an application. Applications can be stored on disk and saved 
and reloaded from the Ispel environment. 

3.7.4 Elements of Views 

Views in Ispel are comprised of boxes and lines. These are graphical representations of 
classes, features, and relationships between them. These graphical figures are displayed in 
windows and can be viewed and manipulated by the programmer in order to build a 
program. Views are not automatically laid out in Ispel. Automatic layout constrains a 
programmer to fixed formats, and the Ispel approach allows programmers to lay out 
their diagrams in a manner they choose. This improves the flexibility of the environment.  
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There are several different formats for class structure diagrams, as described in Section 
3.5. It is essential that Ispel displays views of a program, and allow views to be updated in 
a meaningful way for programmers. It is also desirable to allow programmers to be able 
to tailor the representation to their individual needs (Mannucci et al, 89, Reiss, 87, and 
Wilson, 90). The boxes and lines used in Ispel are based on the conventions described in 
Mugridge (88 and 90). 

3.7.5 User Interface 

A visual programming environment is an interactive piece of software, and dialogue with 
the programmer is important. The user interface of Ispel refers to the “look and feel” 
aspects of the environment: how programs are presented; how operations are selected; 
and how the system behaves. 

Discussions of further desirable features of visual programming environments and 
programming environments in general can be found in Ambler and Burnett (89), Myers 
(90), Raeder (85), and Wasserman and Pircher (87). 

3.7.5.1 The Desktop Metaphor 

A consistent user interface throughout an environment is highly desirable (Myers, 90). It 
reduces the amount of information a prospective programmer needs to learn, and 
simplifies and standardises the user interface. A consistent user interface reduces the 
number of user interaction errors, and leads to a seamless user interface integration 
between different tools (O’Brien et al, 87 and Reiss, 87). 

Ispel uses the desktop metaphor introduced by the Smalltalk environment (Goldberg, 84) 
and popularised by the Macintosh desktop interface. This user interface was chosen as it 
provides a productive and consistent interface for a programmer. It makes a 
programming environment easy and effective to use (Ambler and Burnett, 89). This user 
interface provides a range of facilities including bit-mapped graphics, windows, menus, 
dialogues, icons, gadgets, and buttons. Ispel uses windows and graphics to display 
representations of Class Language programs. Menus, dialogues, and icon buttons are 
used for accepting the programmer’s commands, and dialogues are used to present 
information and report errors to the programmer. 

3.7.5.2 Ambiguities and Flexibility 

In visual programming, there are many ambiguities. The programmer may request the 
environment to perform some action, but the environment lacks sufficient information to 
carry out the task precisely. Alternatively, the computer’s interpretation of what is 
required may differ from the user’s. For example, a programmer requests that the name 
of a class be changed. The programmer may in fact be requesting the environment to use 
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a different class instead of the existing one, rather than actually renaming the class itself. 
Steps must be taken to ensure that ambiguous interaction is identified and extra 
information obtained to correct it (Fischer, 89). 

An environment should attempt to do something sensible with all user commands 
(O’Brien et al, 87), or ensure the programmer is informed of problems in a clear and 
concise fashion. Where possible, an environment should anticipate the type of commands 
a programmer will use. This reduces the amount of information that needs to be supplied. 
For example, default settings for attributes should be able to be set by the programmer, 
and a sensible arrangement of diagrams automated where possible (Mannucci et al, 89). 

Flexibility is a key element in a visual programming environment (Reiss, 87). To constrain 
the programmer to one, unchangeable method for viewing or manipulating their 
programs can make an environment difficult to use and hinder program development. 
Ispel is designed to be flexible enough to enable programmers to lay out and view their 
programs in the manner they wish. 

3.7.5.3 Environment Performance 

A major deficiency of many existing environments is their poor performance, in terms of 
speed of execution and response time to programmer requests. One of the most 
frustrating aspects of programming is the slow turn around time between program edits, 
compilation, and execution. In addition, the slow feedback of errors at the compilation or 
execution phase makes error correction difficult. This gives a non-interactive feel to the 
programming environment, which reduces programmer productivity. 

3.7.5.4 Visual Manipulation Constraint 

Invalid Class Language programs should be identified and errors reported to the 
programmer by Ispel as soon as possible. This is an important aspect of the PECAN 
system (Reiss, 85). In addition, the underlying representation constrains the visual 
manipulation of a program so that, where possible, invalid programs are not constructed. 
This provides the programmer with immediate feedback from program construction, and 
identifies the exact context and nature of errors. 

3.7.6 Well Integrated Tools 

Many environments do not provide good integration between the tools that comprise the 
environment. This means the programmer must move between parts of a programming 
environment that have a distinctly different feel about them and that behave in different 
ways. Different behaviours between aspects of an environment hinders software 
development (O’Brien et al, 87). 
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Many environments suffer from a lack of support for various parts of the software 
development life cycle, and a lack of adequate programming tools. This makes them 
difficult to use, or inadequate for the programming task. The more of the programming 
load borne by the environment being used, the easier and more accurately software can 
be developed. Ispel integrates the visual programming, text editing, compilation, and 
execution of Class Language programs into one environment. The Ispel environment 
provides a framework for integrating other tools to assist the programmer. However, the 
tools must conform to the conventions used by Ispel to provide a consistent user 
interface.  

3.8 Summary 

This chapter has described the concepts of object-oriented languages and object-oriented 
program development. Eiffel and Class Language were introduced as representative 
object-oriented languages. These are used throughout this thesis to illustrate examples of 
object-oriented programming. Their environments are deficient and can be enhanced by 
utilising visual programming techniques. Class structure diagrams are a valuable design 
and documentation tool for object-oriented languages. They also provide a basis for Ispel, 
a visual programming environment for Class Language. The basic concepts of the Ispel 
programming environment have been described. Ispel provides multiple views of Class 
Language programs, and an integrated, consistent user interface. Important issues such as 
program navigation, environment performance, and environment integration, have been 
discussed in the context of Ispel.
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Chapter 4 
The Prolog Prototype 

 
This chapter describes a Prolog prototype of Ispel. Chapter 5 evaluates its performance 
and deficiencies, and discusses some enhancements. The development process, a 
description of the user interface aspects, and the implementation details of this prototype 
are given here. 

4.1 A Prolog Prototype for User Interface Aspects  

Once the main concepts of Ispel described in Chapter 3 were formulated, a prototype 
visual programming environment was designed and implemented. This initial prototype 
of Ispel was specified with several key aims: 

• To determine if a visual programming environment is appropriate for object-
oriented languages, and for Class Language in particular. 

• To identify the major implementation aspects of Ispel. 
• To determine and refine the user interface aspects of a visual programming 

environment. 
• To verify that the major concepts of Ispel are valid, or re-define these concepts 

if they are not. 
• To determine future directions for research by evaluating the prototype’s 

performance. 

The first prototype was implemented in Prolog, and is a development environment for 
Class Language. This prototype is a cut down version of a real development 
environment. Programs can be built graphically and viewed graphically or as text. 
However, programs cannot be built using text, nor can they be compiled and run. 

4.2 The Development Process 

The Prolog prototype for Ispel was initially specified, a design for this specification 
produced, and the prototype was implemented based on this design. At this stage, many 
of the basic concepts for Ispel described in Section 3.7 were developed. On completion of 
the implementation, the prototype was evaluated, and while it performed well, many 
deficiencies were discovered. Enhancements were made to this initial prototype to 
overcome some of the deficiencies, and these are described in Section 5.4. 
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4.2.1 Specification and Design 

Use of good software engineering techniques significantly enhances the quality and 
development process of software (Chikofsky and Rubenstein, 88). Thus it was important 
to prepare a good specification for Ispel, and to design the first prototype from this 
specification. The specification of the Prolog prototype was not rigourous, due to the 
experimental nature of this research. Many aspects of Ispel could not be determined 
without a working prototype to test them. A variety of approaches to providing facilities 
were considered during development. The specification consists of a description of the 
user interface aspects of Ispel, and a collection of different approaches that could be taken 
to provide various facilities. This initial specification of the prototype is provided in 
Appendix A. Both the design and specification were modified considerably during 
development of the prototype. This specification was also used as the basis for a second 
prototype of Ispel (see Section 6.1). 

When implementation of the prototype began, the specification for various features were 
found lacking in many respects. This is not a criticism of the initial specification, rather it 
demonstrates that the process of specifying and then implementing a prototype visual 
programming environment is not straightforward. Many user interface issues cannot be 
properly determined without a working prototype to test them. For example, the 
connection of boxes with lines, and how navigation between different views is provided 
can be implemented in several ways. 

In addition, the inherently visual nature of Ispel meant that the textual specification lacked 
sufficient descriptive power. The Lean Cuisine notation (Apperley and Spence, 88) was 
used to design some of the user interface, but most of Ispel lacked a concise, graphical 
description. Implementation of the prototype resulted in a large range of issues becoming 
apparent that were thought to be insignificant when initially specifying the prototype. 

4.2.2 Rapid Prototyping 

Rapid prototyping was employed in the development of the Prolog prototype. To rapid 
prototype, a cycle of specification, design, prototyping, evaluation, and refinement is 
employed. When the specification and design are suitably detailed and precise, a 
production system can be implemented (Kreutzer, 90, and Luqi, 89). This technique is 
used to improve the definition of a problem, and thus enhance the specification and 
design of a program.  
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4.2.3 The Implementation Language 

The first prototype was implemented in LPA MacProlog (LPA, 89a) on a Macintosh IIx 
computer. This section explains the choice of LPA MacProlog (LPA) as the implementation 
language. 

4.2.3.1 LPA 

LPA on the Macintosh was chosen as the implementation language for the first prototype 
of Ispel for a variety of reasons: 

• LPA has a good development environment which facilitates quick construction, 
debugging, and maintenance of programs. Thus LPA is suitable for rapid 
prototyping. 

• LPA provides direct access to the Macintosh desktop interface which would 
allow many of the features of Ispel to be easily implemented.  

• LPA provides sophisticated, yet easy to use, graphics facilities for drawing 
pictures in windows. 

Both C and Pascal were considered as possible implementation languages. However, they 
do not provide access to the Macintosh desktop interface as simply as LPA. The ease of 
program construction and debugging in LPA is superior to these languages. Thus LPA 
was adjudged to be the most appropriate tool available to implement Ispel. The decision 
to use LPA affected the way some of the features of Ispel described in its specification 
were provided. The effect of LPA on these features is explained in Section 4.3 under the 
various feature descriptions. 

The only major disadvantage of Prolog is the lack of data structures, program structuring, 
and scoping. The LPA environment partially addresses code structuring by providing 
program windows. These allow sections of a Prolog program to be bundled together and 
compiled separately from the rest of the program. However, there are no data structures 
provided except lists and Prolog predicates. There is no restriction of access to any 
predicate from other parts of a program. 

4.2.3.2 The Graphics Facilities of LPA 

LPA provides a rich variety of graphical functions to open graphics windows, add, update, 
and remove pictures from windows, and process mouse operations (LPA, 89b). An 
important feature of the LPA graphics system is the notion of graphics windows and the 
various operations that can be performed on pictures in these windows. Each window has 
a set of tool icons, which are similar to the tool palette provided by MacDraw (Claris, 89), 
and a set of named pictures. 
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LPA uses a Graphics Description Language (GDL) to build a description of pictures for 
display in graphics windows (LPA, 89b). GDL is quite expressive and much of its power is 
derived from the programmer’s ability to define and manipulate picture descriptions with 
ease. These descriptions of pictures are built up in predicates and are then displayed using 
LPA routines. 

4.3 User Interface 

This section provides a description of the user interface aspects of the Prolog prototype. 
Examples from the Wallbrace system (Mugridge and Hosking, 89) are used to illustrate 
how Class Language programs are represented and constructed using the Prolog 
prototype. Figure 4.1 shows a screen dump from the Prolog prototype of Ispel, with the 
major aspects of the prototype labelled. 

Menus

Tools

Box
View

Window

Line

 

Figure 4.1 Screen dump from the Prolog prototype of Ispel. 

4.3.1 Visual Representation of a Program 

In the Prolog prototype, views are comprised of boxes and lines, which are a visual 
representation of part of a Class Language program. These boxes and lines are laid out in 
a window to describe a program using a similar format to the class structure diagrams 
described in Section 3.5. This format was modified where required to assist representation 
and manipulation of the diagrams on computer. The Class Language diagram format was 
retained because of its conciseness and clarity, and its ease of implementation. 
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4.3.1.1 Boxes 

Figure 4.2 shows the three types of boxes used in the Prolog prototype. 

Roof Roof
theRoof

Roof
theRoofs

Class Box Feature Box List Feature Box  

Figure 4.2 The three types of box in the Prolog prototype. 

Class boxes represent classes, and contain the name of a class. Feature boxes represent a 
feature of a class, and contain the name of a feature and its type. List feature boxes 
represent list features which are lists of objects, and contain the name of the feature and 
type of the list objects. 

Boxes are constructed as a GDL picture, made up of a rectangle, and one or two text 
strings. In addition, features have a line between the text strings. List features have a 
shaded rectangle behind the rectangle of the box, to illustrate multiple objects. 

4.3.1.2 Lines 

Figure 4.3 shows the two types of lines in the Prolog prototype. 
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Figure 4.3 The two types of line in the Prolog prototype. 

Generalisation lines represent one class being generalised to another class. Feature lines 
represent the connection between a class and its feature. Lines are drawn from the 
bottom centre of the first box to the top centre of the second box. Generalisation lines are 
drawn in a bigger pen size to distinguish them from feature lines4. 

                                                

4 The current class structure diagrams, as described in (Mugridge, 90), have an arrow on 
the end of generalization lines pointing to the parent class, to represent a child class 
inheriting from a parent. The Prolog prototype can draw arrows on the end of lines, but 
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Originally, a feature name was to be displayed next to the line connecting a class to its 
feature. Currently, feature names are contained in the feature box and are displayed 
above the feature type. This improves the clarity of diagrams and is consistent with how 
class names are displayed. 

4.3.1.3 Connection and Format of Boxes and Lines 

Boxes and lines are connected together to form a class structure diagram which is drawn 
from the top of the screen to the bottom. Diagrams are laid out in this manner for 
consistency with class structure diagrams currently in use. In addition, this layout of an 
object-oriented hierarchy is natural for a programmer to work with (Wilson, 90). An 
object-oriented system is inherently hierarchical, and this structure is captured by a 
representation similar to the one used in the Prolog prototype. Alternative layouts for 
diagrams are proposed in Wasserman et al (90) and used in the GraphTrace system 
(Kleyn and Gingrich, 88), and EDGE graph editor (Newbury, 88). These include laying out 
diagrams from left to right, or from the bottom of the screen to the top. 

4.3.2 User Input and Output 

The Prolog prototype uses predicates provided by LPA to access the Macintosh graphical 
interface. Thus it behaves like a normal Macintosh application, and uses the mouse, 
menus, and dialogs for user input, and dialogs for output. This is important, as the user 
interface of Ispel should behave like other Macintosh programs. This assists integration 
with other Macintosh software, and provides new users of Ispel with a standard interface. 

The mouse is used to manipulate pictures in views, in addition to selecting menus and 
dialogue buttons. LPA provides facilities to determine when the mouse button has been 
clicked, and to allow GDL pictures to be moved around in graphics windows.  

Menus are used to select various operations. There are five menus in the menu bar of the 
Prolog prototype: File, Edit, Compile, Views, and Windows. Edit and Compile have no 
options, but were provided for future extensions to the prototype. Figures 4.4 to 4.6 show 
the appearance of the File, Views, and Windows menus in the Prolog prototype. 

                                                
these get quite cluttered if there are several classes being generalized to one class in the 
same view. The arrows have been removed to enhance the readability of the diagrams. 
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Figure 4.4 The File menu of the Prolog prototype. 

The File menu has six options: New creates a new Ispel application, Open allows the 
programmer to choose an application from disk, and Close closes the current application. 
Save saves the current application to disk, and Save As allows the programmer to rename 
the current application and save it to disk. Quit allows the programmer to exit from Ispel. 

 

Figure 4.5 The Views menu of the Prolog prototype. 

The Views menu has five options: Create creates a new view, and Kill deletes the current 
view. Containing displays the previous current view, Next moves to the next view of the 
primary class (for the current view), and Previous moves to the previous view of the 
primary class. 

 

Figure 4.6 The Windows menu of the Prolog prototype. 
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The Windows menu has three options: Create creates a new window with a default size and 
tools, Kill deletes the current window, and Redraw redraws the GDL pictures in the 
window. 

Dialogues are used to obtain user input (for example, the name of a class), and to display 
messages to the programmer. Dialogs provided by LPA are the simplest method of 
obtaining input from the programmer and presenting output to them. They also give a 
consistent Macintosh-like interface to the Prolog prototype. 

4.3.3 Applications, Views, and Windows 

Boxes and lines are attributes of views, and views are displayed in windows. The Prolog 
prototype supports multiple views, windows, and applications. 

4.3.3.1 Applications 

The Prolog prototype allows multiple Class Language programs (applications) to be 
constructed and viewed simultaneously. Each application has its own set of classes, 
features, windows, views, boxes, and lines. An application has a distinct name, and also 
has a file on disk to which the application can be saved to and loaded from. When an 
application is saved to, or loaded from, disk, the name of the disk file to use is requested 
using the standard Macintosh file dialogue. When an application is created, Ispel requests 
the name of the application and an initial class for the application from the programmer. 
A default window and a view are created to contain the initial class. 

4.3.3.2 Views and Windows 

Each application is made up of a collection of views of the Class Language program. 
Figure 4.7 shows three overlapping views from the Wallbrace system in their windows. 
The front one is the Building view, the second is the Roof inheritance hierarchy view, 
and the third the LeanTo view. 
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Figure 4.7 The Building, Roof, and LeanTo views from Wallbrace. 

Each view has a primary class which is the main focus of the view. Views for the same 
primary class are numbered consecutively. The first view is the primary view for the class, 
and the remaining views are secondary views. The Building view in Figure 4.7 is the 
primary view for class Building, hence it is called Building/1. Secondary views for 
Building are called Building/2, Building/3, and so on. Classes that are not primary classes 
of any view have the view they were created in as their primary view. Wing and Section 
in Figure 4.7 have the view Building/1 as their primary view. The view in the front 
window of Ispel is called the current view, and any operations selected act upon this view.  

Each application has a collection of windows which contain the views that make up a Class 
Language program. Each view is assigned to a window, and when this view becomes the 
current view, it is displayed in its window, which becomes the front window. There is a 
one-to-many relationship between windows and views, and each window has one current 
view. 

During development, several variations on this window and view system were 
implemented. Initially, there was only one window per application. However, this was 
found to be too restrictive, and navigation between views was difficult. In addition, it was 
not possible to have two views in two windows side by side, which was found to be 
useful when developing programs, and has been useful in other research (Ambler and 
Burnett, 89, and Raeder, 85). Another method of having one window for every view was 
also implemented, but this resulted in too many windows being used and the screen 
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became quite cluttered. The current method provides the programmer with more 
flexibility, creating windows and views as necessary. In addition, the other two methods 
can still be used within the framework of the current method, if desired. This use of 
windows for multiple views is analogous to the approach used in Graspin (Mannucci et al, 
89), PECAN (Reiss, 85), and Software through Pictures (Wasserman and Pircher, 87). 

Windows were implemented as LPA graphics windows. This resulted in some 
modifications to the original specification of Ispel. LPA graphics windows have a built in 
set of features which were utilised to provide the facilities Ispel required. Figure 4.8 shows 
an example window, with various parts of the window labelled. This window contains the 
Roof inheritance hierarchy view of Figure 4.7 from Wallbrace. 

Close Box Drag Bar Title Zoom Box

Resize BoxScroll BarTools

View

 

Figure 4.8 A window from the Prolog prototype. 

A feature of LPA windows that was used was the tool concept. Tools are icons that are 
displayed on the side of a graphics window, and can be selected by clicking on them with 
the mouse. Then, when the mouse is clicked in the tool window itself, a Prolog predicate, 
corresponding to the selected tool, is called with information about the location of the 
mouse click. This provided a very convenient way of allowing the programmer to select 
operations on views, and the original specification was modified to incorporate this 
method of selecting operations. 
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Some of the additional features provided by LPA include a window close box. When 
clicked, the window is removed from the screen. The window directly below it becomes 
the current window, and its view becomes the current view. Windows can be re-sized, 
zoomed to the full screen size, and scrolled horizontally and vertically to display other 
parts of a view. The name of a window is specified by the programmer when the window 
is created. Window names must be unique within each application. The application name 
is appended to the front of this name so all windows in Ispel have unique names, and the 
application a window belongs to can be easily identified. 

The original specification intended that there would be one palette for all windows in 
Ispel, but LPA provides a tool palette for every graphics window. This proved to be 
convenient, as the different palette settings in each view mean the programmer doesn’t 
have to change the currently selected tool to perform different operations in different 
views. 

Every LPA graphics window has a list of GDL pictures associated with it, and these 
pictures are the boxes and lines of Ispel which comprise a view. In addition, the windows 
have a list of pictures which are selected. Selected pictures are highlighted by four boxes at 
their corners. By clicking on a picture using the mouse, the picture becomes selected. 
Some operations, such as dragging a box from one location to another, refer only to the 
currently selected boxes and lines within a view. 

4.3.3.3 Navigation 

The Prolog prototype has a limited range of navigation methods between windows and 
views. This is an area of the original specification that was not well thought out, being one 
of the hardest to design without a working prototype to test ideas with. 

A variety of navigation methods were proposed, and two of the simplest were 
implemented. Some possible methods of moving between views are: 

• Using menus to select named views. 
• Double-clicking on a box to get the primary view for the class that the box 

represents. 
• Iconic buttons in the window to select or move between different views. 
• Menu dialogs to list views by name and allow the programmer to choose one. 
• Pop-up menus on the boxes to select named views. 

The first method implemented was to allow primary views for classes to be selected by 
double-clicking in a specific area of a class or feature box. Class and feature boxes have 
“click areas”, which, when double-clicked, result in different operations being performed, 
depending on the click area. This is analogous to the Prograph (Gunakara, 89) click areas 
idea. This method of selecting views was chosen as it is very quick to use, and view 
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switching is a commonly performed operation when a program is being constructed or 
browsed. Figure 4.9 shows the click areas on a class box. 

Roof
Select
Primary
View

Change Class Name

Edit Class Text  

Figure 4.9 Click areas on a class box. 

In addition, if a class is the primary class of more than one view, these can be moved 
between by selecting the Next and Previous menu options under the Views menu. If the 
programmer wants to move back to the view that the current view was selected from, 
the Containing menu option is selected. 

Windows can be moved between by clicking on a visible part of a window. The window is 
then moved to the front of the Macintosh windows, and it becomes the current window 
and its view the current view. In addition, if a primary view for a class is selected by 
double-clicking on a box, then the window for the view is brought to the front and the 
view displayed. If the window is already at the front, then its current view is changed to 
the selected view. 

4.3.3.4 Creation and Deletion 

Views are created by selecting a box and then selecting the Create option in the Views 
menu. A new view is created for the class that the box represents. If the class already has a 
primary view, the new view is given a sequence number one more than the last view for 
that class. The newly created view becomes the current view for the current window. 
Views are deleted by selecting the Kill option in the Views menu. All the lines and boxes 
for the view are discarded, along with the view itself. If the window for the view has no 
other views, then it is also discarded. 

Windows are created by selecting the Create option in the Windows menu. If there is only 
one view for the current window, then an error is reported, as it is not valid to create two 
windows for one view. If there is more than one view for the window, the current view is 
displayed in the new window, and one of the other views displayed in the current 
window. The newly created window becomes the current window, and the current view 
remains the same. Windows are deleted by selecting Kill in the Windows menu. All the 
views of the deleted window are assigned to another window, and the current window is 
deleted. The window to which the views of this deleted window were assigned becomes 
the current window, and the current view remains the same. 



Chapter 4 The Prolog Prototype Page 59 

4.3.4 Textual Views of Classes 

The Prolog prototype has both a visual and textual representation of Class Language 
programs. The textual form of a Class Language program is derived from the underlying 
representation, and is displayed in an LPA text window. This view of the program can be 
edited using the text editor built into LPA. However, changes to the text are ignored, as 
the prototype does not include a Class Language parser. The textual view of a class is 
displayed when the right hand side of a class or feature box is double-clicked. Figure 4.10 
shows both the visual and textual views of the class Roof. 

 

Figure 4.10 Visual and textual views of the Roof class in Wallbrace. 

There are several alternative approaches for selecting the textual view of a program. 
These include: 

• Double-clicking on a class to get its primary view and then double-clicking on it 
again to get its textual view. 

• Using the Prograph (Gunakara, 89) idea of a left and right side of a box to select 
different views. 

• Using the Prograph icons on icons concept, where a box would have an edit text 
icon, which, when clicked, would select the textual view for the class the box 
represents. 

• Using a menu option to select the textual view for the currently selected box. 

The click areas idea was used, as selecting the class text for editing and viewing is quite a 
common operation, so selecting this operation must be easily achieved. In addition, this is 
consistent with the method of moving between different graphical views of a program. 
Icons on the boxes would be functionally equivalent and as easy to use. However, they 
would add more complexity to the implementation. 
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4.3.5 Visual Manipulation Using Tools 

The methods used to select operations to perform in the Prolog prototype are menus and 
LPA graphics window tools. Menus are used to select operations to perform on 
applications, views, and windows. Tools are used to select operations to perform on boxes 
and lines in the current view. Figure 4.11 shows the tools used in the Prolog prototype. 

Selection Tool

Add List Feature Box

Add Generalization Line

Delete Line

Add Class Box

Add Feature Line

Add Feature Box & Line

Delete Box
 

Figure 4.11 Tools used in the Prolog prototype. 

4.3.5.1 Selection Tool 

The selection tool allows pictures (boxes and lines) in the current window to be selected, 
dragged, and double-clicked. It is also used when boxes are double-clicked to either select 
their primary view, change their class or feature name, or to edit their class text. The 
selection and drag operations have been implemented following the general Macintosh 
style of selecting and dragging icons. When a box is selected, it is highlighted, and the box 
can be dragged to a new location. The lines connecting the box to other boxes are 
automatically redrawn. A group of boxes can be selected and dragged to a new location. 
This is achieved by holding the shift key, selecting several boxes, and then dragging one 
of the selected boxes to a new location. Figure 4.12 shows the result of re-positioning the 
class Roof in its view. The lines to the other boxes from Roof need to be redrawn once 
Roof has been re-positioned. 
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Drag Sections

 

Figure 4.12 Example of a box being dragged to a new location. 

Another method of selecting boxes, using the selection tool, is the marqui. The 
programmer can click on a point in the graphics window and enclose one or more boxes 
with a dashed rectangle, called a marqui. When the programmer releases the mouse 
button, all pictures inside this rectangle are highlighted. Few other visual programming 
systems allow the programmer to layout a visual representation of their program in as 
flexible a manner as Ispel. 

4.3.5.2 Addition Tools 

The Prolog prototype provides tools for the addition of class boxes and list feature boxes, 
connecting boxes with feature and generalisation lines, and adding a feature box and line 
to an existing box. 

Boxes are added by selecting the class box tool or list feature box tool. When the mouse is 
clicked in the graphics window, a new box is created at this position. When a box is added, 
the class name must be provided (by entering the name in a dialogue box). If the box is a 
feature, the name for this feature must be supplied as well. 

When a new class box or new list feature box is added, the Class Language program 
(underlying representation) may be updated. If the new class box has the name of a class 
that doesn’t exist in the Class Language program, then this class is created. Similarly, if a 
list feature box is added, a new feature may be added to the Class Language program. 

Lines are added by selecting the generalisation line tool or feature line tool, then selecting 
the first class and “rubber-banding” a line to the second class. Figure 4.13 shows two class 
boxes being connected by a generalisation line. The generalisation line tool is selected, then 
the Roof box is clicked. While the mouse button is held down, the mouse is dragged on 
top of the FlatRoof box, with a dotted line (rubber-band) following the mouse. When the 
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mouse button is released, the new connection between the boxes is established (if it is 
valid). 

 

Roof

FlatRoof
 

Figure 4.13 Example of connecting two boxes with a generalisation line. 

Other possible approaches to connecting boxes include: 
• Using the Prograph (Gunakara, 89) and Grafix (Benson, 90) pins concept. 

Connections are made by clicking on pins attached to boxes, and then a line 
dragged from a pin on one box to a pin on another. 

• Using the pin idea, but the pins are invisible. 
• Default connection points that can be changed by using pins. 
• Connecting lines to one point on a box. 

The method used in the Prolog prototype was the only method implemented, and was 
chosen for simplicity. However, this method of connecting boxes proved to be flexible 
enough for the applications implemented using the Prolog prototype.  

If the programmer adds a feature connection between two boxes, then the second box 
must be a class box or list feature box. If it is a class box, then the programmer is 
prompted for the new feature name by a dialogue box. The class box is then changed to a 
feature box, with both feature and class names displayed. 

There is a limited form of constraint of the visual manipulation in the Prolog prototype. 
For example, if two boxes already have a generalisation connection between them, 
another generalisation connection is invalid. Similarly, if a feature box already has a 
feature line connecting it to the class it is a feature of, then trying to add a feature line 
connection to another class is invalid. 

One common operation is adding a new feature box to an existing class. The add feature 
and line tool allows the programmer to select an existing class, and add a new feature box 
and line. The programmer selects the tool, clicks on the existing class, and drags the 
mouse to the position for the new feature box. When the mouse button is released, the 
programmer is asked for the feature name and class name for the new feature, and the 
feature box is displayed. This process is simpler than adding a new class, connecting the 
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two classes and supplying a feature name. As it is a common operation, this tool is useful 
for speeding up program construction. 

4.3.5.3 Deletion Tools 

The deletion tools provided by the Prolog prototype are line removal and box removal. 
These allow the programmer to remove boxes and lines from the graphical 
representation of the Class Language program. If a box is clicked while the delete box tool 
is selected, the box is removed from the view. Similarly, when a line is clicked while the 
delete line tool is selected, the line is removed. The deletion of boxes and lines does not 
affect the underlying Class Language program in the Prolog prototype. 

When a box is removed from a view, all the boxes and lines that depend on this box being 
displayed are also removed. Thus any boxes that represent features or sub-classes of the 
removed box must be removed, along with any lines connected to them. This is a 
recursive process, where boxes dependent on these removed boxes are also removed. 
When a line is removed from a view, only that line needs to be removed. Figure 4.14 
shows a view and the resulting view once the Sections feature has been deleted. 

Delete Sections

 

Figure 4.14 The deletion of a box in a view. 

A box is dependent on another box if it represents a feature or specialisation of the other 
box. If a box is dependent on more than other box in a view, then it is not removed unless 
all the boxes it depends on are removed from the view. 

4.3.5.4 Conversion Operations 

If a feature box is highlighted, and the list feature tool selected, then the feature is 
converted into a list feature. Similarly, if a list feature box is highlighted, and the class box 
tool selected, then the list feature is converted into a feature. These conversion operations 
allow the programmer to change the kind of a feature without having to delete the 
feature from a class and then add it again using a different tool. 
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4.3.6 Class and Feature Names 

When a new box is added to a view, a name for the class the box represents must be 
supplied by the programmer. When a feature is added, the feature name and type must 
be provided. 

4.3.6.1 Naming Classes and Features 

The original specification intended class and feature names to be typed in within their 
boxes in the graphics window. This process would be similar to naming a file in the 
Macintosh desktop interface. However, LPA does not provide sufficient facilities to enable 
implementation of this naming process. Instead, the Prolog prototype uses dialogue 
boxes to obtain the names for features and classes. This solution turned out to be most 
satisfactory to use. It is also more general and allows for easier future extensions to the 
prototype. Figure 4.15 shows the Class Name and Feature Name dialogs for the Prolog 
prototype. 

 

Figure 4.15 The Class Name and Feature Name dialogs. 

4.3.6.2 Renaming Classes and Features 

If a feature or class name is double-clicked, then the name can be changed. However, this 
operation is ambiguous. The programmer could be renaming a class, or could be selecting 
another class to take its place. The Prolog prototype simply renames the class, but this 
issue is properly addressed in Section 5.4. When a feature is renamed, the name of the 
feature is changed. The box representing this feature is redrawn in its view to reflect this 
name change. 

4.3.7 Saving and Restoring Applications 

Ispel application programs are stored in files so they can be used again. Each application 
has a file which contains the information that together comprises a Class Language 
program and a graphical representation of this program. 
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4.3.7.1 Saving Application Files 

An application is saved to disk by selecting the Save or Save As option in the File menu. If 
the application has been created but never saved before, then a name for the disk file is 
requested. If the programmer selected Save As, a new name for the application is 
requested, and then a name for the disk file. 

The Save file format used by the Prolog prototype is simple, and is described with some 
examples in Appendix B. 

4.3.7.2 Re-loading Application Files 

Applications are re-loaded into Ispel by selecting the Open option in the File menu. Two 
applications with the same name can not be open simultaneously. When an application is 
re-loaded, the old Class Language program is read from the disk file along with its 
graphical representation. The windows are re-opened and re-displayed, and their current 
views are redrawn in them. On a re-load of an application, Ispel is restored to the same 
state it was in when the application was saved to disk.  

4.4 Implementation 

This section describes the implementation aspects of the Prolog prototype. The main 
components of the prototype are presented and their interactions described. The 
relational database approach used to store data is discussed and a relational model for the 
Prolog prototype is given. 

4.4.1 Structure of the Prolog Prototype 

The prototype is structured by isolating various parts of the implementation into LPA 
code windows. These are similar to graphics windows except they contain Prolog code 
rather than tools and pictures. Due to the rapid prototyping approach employed in the 
development of the prototype, and lack of an initial, well defined design, its structure is 
somewhat ad-hoc in places. One of the reasons for implementing the prototype was to 
determine the major elements of an implementation of Ispel, and how these should fit 
together. 

The Prolog prototype has five major components: 
• A database repository where information about data elements of Ispel are stored. 

This includes the data needed to represent applications, classes, features, views, 
windows, boxes and lines. It also includes information about how to construct 
box and line pictures, menus, tool icons, dialogs, and default settings. 

• A views component for manipulating the visual representation of a Class 
Language program. This includes facilities to add, move and delete boxes, the 
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ability to connect boxes with lines, and facilities to provide multiple views of a 
program. 

• The representation of the Class Language program, which the visual and textual 
representations map onto. This underlying representation is altered by the 
programmer manipulating the visual representation. 

• An LPA specific component which handles mouse, menu, and dialogue input, 
and provides an interface to the graphics windows and pictures within these 
windows. 

• A textual component for displaying the textual representation of a class and 
allowing editing of it. 

Figure 4.16 shows these five components of the Prolog prototype. The lines connecting 
the various components represent the transfer of information between these elements of 
the Ispel system. An arrow entering a component means that it receives information from 
the other component. The textual representation of a program does not pass information 
back to the Class Language representation of the program, as there is no parser in the 
Prolog prototype. 

Relational
Database

LPA
Specific
routines

Views
Representation

and Manipulation

Class Language
Representation

and Modification

Textual 
Representation

 

Figure 4.16 Major components of the Prolog prototype. 

4.4.2 Relational Model 

The database used to store the data Ispel requires is a relational database implemented on 
top of the LPA Prolog database. This database stores two types of information: the 
elements of the views component, and the Class Language program being modelled. A 
set of general access routines is provided so elements can be added to, deleted from, and 
updated in this database. These Prolog predicates are written so the internal 
representation of the database is hidden, and the database can be modified and extended 
without Prolog code outside the database requiring modification. 
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The original reason for choosing a relational model was the generality it offers for storage 
of information (Nijssen and Halpin, 89). Other representations were considered, such as 
storing boxes and lines hierarchically as part of a view predicate in Prolog. However, the 
relational approach was chosen as it is a simple, unstructured mechanism to implement, 
store, and retrieve data. This model was the most appropriate for the kind of data being 
stored, and to provide access to this data. 

Figure 4.17 is an entity-relationship diagram for the relational database which shows the 
data entities for Ispel and their named relationships. The entity attributes are described in 
the following sections. Appendix B describes the structure of the Prolog prototype in 
more detail. 
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Figure 4.17 An entity-relationship diagram for the relational database of the Prolog prototype. 

4.4.2.1 Storage of Visual Information 

For a view, the following information is required: a list of boxes and lines contained in the 
view, its primary class, its sequence number for that class, and its displaying window. A 
box requires: which view contains it, its X and Y co-ordinates within that view’s window, 
and what class or feature it represents (i.e. a link to the underlying representation). A line 
requires: the two boxes it connects, and the type of connection it represents 
(generalisation or feature). 

In addition, the prototype also stores data for applications and windows. Applications 
require: the application name, the file name the application is stored in, and a path to the 
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file name. Windows require: the name of the window, the name of the corresponding 
LPA graphics window, and the view being displayed in the window. 

4.4.2.2 Storage of the Class Language Program 

Class Language programs are also stored in the relational database, although this data is 
conceptually quite distinct from the visual information. The visual information represents 
a Class Language program stored in the database, and there are links between both types 
of data. Class Language programs are stored as classes and features of classes. For classes, 
the class name, the primary view for the class, and lists of the features and generalisations 
for the class, are stored. For features, the feature name, the feature type, and attributes 
for the feature (for example, list, public, or private features), are stored. This method of 
storage models the type aggregation and generalisation relationships between classes in a 
Class Language program. 

Appendix B contains a description of the Prolog data structures used to implement the 
relational database. 

4.4.2.3 Access Predicates to the Database 

The storage of, and access to, data follow the standard naming terminology for relational 
database querying (Nijssen and Halpin, 89). The access routines to the data fall into four 
categories: 

• Insertion. An element is inserted into the database. 
• Selection. Elements are selected from the database, and the requested attribute 

values are provided. 
• Update. An element in the database is updated with new values for its attributes. 
• Deletion. An element in the database is deleted. 

Each Ispel database entity has its own set of predicates to provide these access functions. 
This interface to the database was consistent and was not affected by changes to database 
entities, nor to the implementation of the database itself. The stability of these access 
predicates was an important contribution to the ease with which the database, and Prolog 
code to implement Ispel, could be modified independently. This approach to isolating the 
structure and implementation of a Prolog program, and providing well defined access to 
data storage predicates, enhances program construction and modification. 

Appendix B contains a more detailed description of the database access predicates of the 
Prolog prototype, and examples of their use in the Prolog code which implements various 
facilities of Ispel. 
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4.4.2.4 Saving and Loading Ispel Applications 

One consequence of the relational model is that it affects the way Ispel applications are 
saved to, and loaded from, files. The entities that comprise the database have unique 
identification numbers, so individual elements can be retrieved. When an application is 
saved to a file, these identification numbers for the entities are saved as they are, along 
with the other attributes of each entity. However, when reloading an application from a 
file, these identification numbers are no longer valid. An application already in memory 
may have been assigned some or all identification numbers of the application in the file. 
Thus the identification numbers for entities must be re-allocated when an application is 
loaded from a file. 

4.5 Summary 

A Prolog prototype for Ispel was developed, which produced an environment for Class 
Language. This was used to determine if visual programming is appropriate for object-
oriented languages, and to test many initial ideas about visual programming 
environments. This prototype was primarily used to determine the user interface aspects 
for a visual programming environment. The development process of this prototype 
refined much of the original specification for Ispel, and identified some important issues. 
These included the importance of rapid prototyping, and the difficulties involved in 
accurately specifying a very visual and interactive piece of software. The Prolog prototype 
provides a graphical user interface, multiple views of programs, and the ability to 
navigate between these views. Programs are constructed graphically, and viewed using 
graphics and text. Implementation and use of this prototype clarified many visual 
programming issues.
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Chapter 5 
Evaluation and Enhancement of the Prolog 

Prototype 
 

Chapter 4 described a Prolog prototype for Ispel, and this chapter evaluates the 
performance of that prototype as a visual programming environment. The Prolog 
prototype has some deficiencies, which are identified and described in this chapter. Some 
enhancements made to this prototype are also presented. In addition, some visual 
programming techniques developed while using this prototype are discussed. 

5.1 Evaluation 

Implementing the Prolog prototype, and refining its specification, was only part of the 
development process. Once a working prototype was developed, it was evaluated by 
using it to construct several Class Language programs. As this first version of Ispel has no 
compiler, nor any run time system to execute Class Language programs, the programs 
could not be run. Rather, the construction of these programs, using the environment 
provided by the Prolog prototype, enabled this prototype’s performance to be analyzed. 

Analyzing the performance of a piece of software can be done in several ways 
(Henderson and Notkin, 87). For a development environment, the ease of use of the 
software and the capacity to construct and view programs is of primary importance (see 
Section 2.3). The environment must aid the programmer and provide a range of helpful 
services to facilitate the software development process. As the nature of the environment 
is interactive and visual, it must allow a programmer to select operations easily and 
represent information in a clear, concise, and meaningful way (Raeder, 85, and 
Wasserman and Pircher, 87). 

5.1.1 Some Applications for the Prolog Prototype 

Several Class Language programs were constructed using Ispel. The Wallbrace system 
(Hamer, 90, Mugridge, 90, and Mugridge and Hosking, 88) was the major Class Language 
program constructed, and it is the application used in this thesis to present examples of 
the use of Ispel. Several different versions of Wallbrace were constructed during 
implementation and evaluation of the Prolog prototype, and during the enhancement of 
this prototype as described in Section 5.4. Wallbrace is a large Class Language program, 
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and has a wide variety of classes, inheritance hierarchies, and classification structures. This 
makes it ideal to construct and view visually.  

The concepts of Ispel were also found to be appropriate for other applications. The Prolog 
prototype and the enhanced version of this prototype were both used in the design 
process of the Eiffel prototype described in Chapter 6. Eiffel and Class Language are both 
object-oriented languages, and their type aggregation and generalisation structures are 
the same. Thus the Class Language prototype could be used to construct Eiffel classes and 
relationships, in a similar manner to the Eiffel convention (Meyer, 87 and 88). 

An object-oriented implementation model for Ispel was developed during the 
implementation of the Eiffel prototype (see Section 6.4). As this object-oriented model is 
object-based, the enhanced prototype was used during its construction and refinement. 

The Prolog prototype was also useful for constructing class structure diagrams for a 
report on the prototype and for many of the diagrams in this thesis. In addition, an 
outline of the report was initially constructed using Ispel, as it provides a flexible method 
of laying out document sections, and then browsing and manipulating them. 

5.1.2 Program Efficiency 

Efficiency issues were not a major concern when developing the Prolog prototype. The 
main reason for its development was to produce a prototype development environment 
to test the basic concepts. However, had the prototype been very slow and cumbersome 
to use, it would have impaired the evaluation process and further enhancement, so a 
usable performance was necessary. 

A visual programming environment must be able to provide adequate performance so as 
not to hinder program construction (Dart et al, 87, and Raeder, 85). The Prolog prototype 
performed well in terms of speed and the response time to requests was more than 
adequate. Hence it provided a usable environment. 

The prototype was not very efficient in memory usage, and large applications like 
Wallbrace required significant amounts of memory. This is due to the way data is stored 
in the Prolog database, and also due to some inefficiency in the garbage collector built into 
LPA. 

5.1.3 Performance as a Visual Programming Environment 

For visual construction of a Class Language program, the Prolog prototype performed 
well. Even with the limited facilities provided, the main object-oriented aspects of a Class 
Language program can be built and represented with ease. 
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A visual representation of Class Language programs on computer proved to be a 
significant enhancement to the development process of programs. The ability to construct 
a class structure diagram on-line, and have the major classes and relationships built 
simultaneously, aids the programmer’s understanding of a program and improves the 
development process. Construction of parts of Wallbrace indicated that developing the 
major classes of a Class Language program in a visual, interactive way on a computer is 
superior to the current method of drawing classes and then implementing them using 
text. The usefulness of a diagramming tool for class design has been found in other 
research (Coad and Yourdon, 91, and Wilson, 90). 

Having multiple class structure diagrams available makes context switching to another 
focus of attention more straightforward. In addition, being able to manipulate these 
diagrams easily, and construct new views and windows as necessary during 
development, simplifies the task of navigation through a large program. 

The more complex the application, the more applicable visual program construction and 
browsing techniques are. The flexibility of a large range of views of a program, and the 
natural method of viewing and manipulating the program visually, become even more 
useful when there are many classes and relationships. These results have been confirmed 
by other researchers in this field (Mannucci et al, 89, Myers, 90, Reiss, 85, and Wasserman 
and Pircher, 87). 

A consequence of the development of programs visually with Ispel is that much of the 
program error checking is performed as the program is built. Some potential errors have 
been eliminated by the provision of a visual programming environment. Compilation of 
classes can be done after a class has been modified, and classes affected by the change can 
also be re-compiled. This gives the programmer an improved turn-around time between 
program construction and compilation, compared with the present Class Language 
environment. 

5.2 Some User Interface Deficiencies 

The deficiencies of the Prolog prototype are due to its development process, the lack of a 
full specification, and the nature of interactive programming environments. These 
deficiencies are described below along with examples where appropriate. Section 5.4 
describes some enhancements made to the Prolog prototype to eliminate many of these 
deficiencies, and Section 9.1 proposes some future extensions to the enhanced prototype 
to remove the others. 
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5.2.1 Visual Manipulation 

A problem with part of the visual manipulation of Class Language programs is that the 
deletion tools are ambiguous. For example, if a box is to be removed from a view, the 
programmer may be requesting that the box be hidden (i.e. change its visual 
representation). Alternatively, they may require the feature or class that the box 
represents be cut from a class or an inheritance hierarchy (i.e. change its underlying 
representation). This means there must be an unambiguous method for the programmer 
to specify whether they want the box deleted from a view or cut from the program. The 
Prolog prototype simply changes the view when a box or line is deleted. 

The process of constructing diagrams with the Prolog prototype is inefficient in some 
aspects. For example, when building a diagram, a class box is added first, then another 
class box, and then a generalisation line connected between the two boxes. This method of 
diagram construction is tedious, and as it is a very common operation, it should be 
simplified (O’Brien et al, 87). 

There is no facility for having diagrams automatically laid out by Ispel. While allowing the 
programmer to layout diagrams in a format they wish proved extremely flexible, in some 
situations the layout of diagrams follows a standard pattern. In others, the programmer 
may want Ispel to format the diagram in some pre-defined or default manner, for 
example when loading old textual Class Language programs into Ispel. This means the 
programmer does not have to format the diagrams and can concentrate on the 
construction of programs (Mannucci et al, 89). 

When a visual representation is modified by the programmer, there is no facility to 
reverse the modification. This means that if the programmer makes a mistake, they must 
correct the mistake manually rather than have Ispel reverse the changes made. An Undo 
facility to allow a user to undo the previous operation is provided in many interactive 
pieces of software (Benson, 90, and Reiss, 85). Use of the prototype showed that this 
facility is almost essential in a visual programming environment. It is very easy to make 
errors, which can not be reversed by Ispel, and the provision of an Undo facility would 
enhance programmer productivity. 

5.2.2 Constraint of Class Language Program Construction 

The Prolog prototype uses the syntax and semantics of Class Language to constrain the 
visual manipulation of views. The relational model stores the Class Language program 
being constructed, so as changes to a view are made, they can be verified against the 
program. This process is carried out by using the database and checking the operations 
being performed, not as part of updating the database or the operations themselves. Thus 
this process is ad-hoc, and the checks on the visual manipulations being performed are 
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actually coded in Prolog in the first prototype. The code to do the checking is invoked in 
the middle of the predicates that perform the visual manipulations and database updating. 
This is unsatisfactory, as it is difficult to change both the operation code and constraint 
code independently. This caused considerable problems when modifying many of the 
operations during prototype enhancement. 

An additional problem is the incorrect timing of some checks and error reporting. For 
example, if an attempt is made to add a feature which exists in a class, the new feature 
name and type are requested. An error is not reported until after the type of the feature is 
supplied. It is possible to add code to check for this situation, and to report an error 
immediately after the feature name is entered. However, if other special cases are 
introduced or removed from the prototype, the code will become complex and unwieldy. 
Thus another approach to constraining visual manipulation and reporting errors is 
required. 

5.2.3 Visual Representation 

When a box has many connections to other boxes in a view, the resulting diagram can 
become cluttered. The layout of diagrams in the Prolog prototype is somewhat restricted, 
as boxes positioned beside other boxes are still connected from the bottom of one box to 
the top of the other. Figure 5.1 shows an example of poor visual layout resulting from this 
restriction. The problem of laying out program structures in a clear and concise fashion is 
discussed in Kleyn and Gingrich (88). 

Roof RoofDirection
across

RoofDirection
along

 

Figure 5.1 An example of poor visual layout of diagrams in the Prolog prototype. 

The Prolog prototype has a limited range of Class Language features that can be 
represented, as only public features and generalisations can be programmed visually. 
Class Language has object-oriented aspects such as class parameters and procedural and 
functional features, which can only be represented in text using the Prolog prototype. 
Also, the unique Class Language feature of classification cannot be represented visually in 
the prototype, although it is suitable for visual representation and manipulation. Other 
features of Class Language, such as the proposed generic class extensions (Mugridge, 90), 
do not have a visual representation. This restricts the proportion of programming that 
can be done visually, forcing the programmer to revert to textual programming. It also 
restricts the amount of a program that can be represented visually. 
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5.2.4 Navigation 

The navigation facilities provided by the Prolog prototype to move between views and 
windows are poor. Double-clicking on a box to select its primary view is a good method 
of moving to other views, but it is too inflexible. Using menus to move between views for 
the same class has the disadvantage that it uses a different form of user input than the 
other methods to select graphical and textual views. This gives an inconsistent appearance 
to view navigation, which is an undesirable characteristic in an interactive piece of 
software (Raeder, 85). 

There is no facility to select a view or window by name, or to select a view that the 
primary class of the current view is contained in. A class may appear in several views, and 
thus its primary view can be selected from any of these views. However, the Prolog 
prototype does not allow the programmer to return to any of these views, only the 
immediate prior one that the current view was selected from within. This is restrictive 
when constructing a program, as it is often useful to be able to view a class in different 
contexts while constructing or viewing the class itself (see Section 5.5). 

5.2.5 Renaming Classes and Features 

In the Prolog prototype, classes cannot be renamed or re-selected due to the ambiguous 
nature of this process. Features can be renamed, but only the box in the current view that 
represents the feature is re-drawn. Classes need to be able to be globally renamed, and 
another class must be able to replace an existing class. 

5.2.6 Underlying Representation 

When boxes and lines are removed from a view, and changes to the Class Language 
program are made, all views that are affected by the changes must be updated. For 
example, a feature box is removed from a view, and the programmer wants the feature 
to be deleted from its class. The Class Language program must be changed so the class no 
longer has a feature of this name. In addition, all boxes that represent this feature in any 
other views must be deleted. All other boxes and lines in these views that are dependent 
on the deleted feature box must also be deleted. When a class or feature is renamed or re-
selected, the Class Language program must be changed and these changes propagated to 
the appropriate views (see Section 3.7). 

The Prolog prototype allows invalid Class Language programs to be built, as the visual 
manipulation operations are not fully constrained. Figure 5.2 shows an example of an 
invalid Class Language program which the Prolog prototype allows to be constructed. 
There is no check made to see that when a generalisation is created, the child class is not 
inheriting information from itself or a descendant of itself. A visual programming 
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environment should detect errors and invalid program constructs as soon as possible to 
assist program development (Myers, 90). 

Roof

FlatRoof

Roof
 

Figure 5.2 An example of an invalid Class Language program. 

The standard classes built into Class Language are integer, float, boolean, and text 
(Hamer, 90, and Hosking et al, 88). In the Prolog prototype, when the programmer uses 
any of these classes, they are defined and treated like all other classes. This means the 
programmer can mistakenly add features to these classes, or make them specialisations of 
other classes. These standard classes should be treated as special cases, or as library 
classes, and the programmer should not be able to alter them. 

The primary class concept is not well defined in the Prolog prototype. Primary classes are 
the focus of a view, but the box representing the primary class can be deleted from the 
view, which can be confusing for the programmer. The view still has the deleted class as 
its primary class, but this class no longer has a box representing it in the view. 

5.2.7 Lack of a Parser and Run Time System 

The Prolog prototype has no parser to process changes to the textual representation of a 
class, nor does it store the text for a program. A parser is required so changes to the text 
can be deciphered and be propagated to the visual representation. In addition, any 
changes to the visual representation must be reflected in the text. The lack of a parser 
means that the Prolog prototype is only useful for constructing the visual, high-level 
aspects of Class Language programs. 

As there is no compiler nor run time system in the Prolog prototype, the environment is 
not complete, and programs cannot be run. A compiler and run time system should be 
integrated with the rest of the Ispel environment. 

5.2.8 Location and Documentation of Existing Classes 

When constructing object-oriented programs, it is necessary to be able to view the 
existing classes and features of these classes. Documentation about the facilities provided 
by the classes should be available (Coad and Yourdon, 91, and Meyer, 88). The Prolog 
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prototype does not provide any method of locating existing classes, nor does it allow the 
programmer to document the classes and view this documentation. 

Most programming environments provide libraries of useful functions, program 
fragments, or classes that can be reused by the programmer (O’Brien et al, 87). Reuse of 
existing classes is especially important in object-oriented programming (Fischer, 87, and 
Meyer, 87 and 88). Ispel currently has no notion of class libraries, and classes cannot be 
documented, abstracted, or stored in a library for future perusal, retrieval, and reuse. 

5.3 Evaluation of the Relational Model 

There are some deficiencies with the relational model used for the Prolog Prototype, and 
with the relational model concept itself. Some enhancements were made to the model to 
improve the prototype performance and allow some enhancements discussed in Section 
5.4 to be made. 

5.3.1 Advantages of the Relational Model 

The relational model performed well in many situations, and implementation of the 
prototype proved it to be a flexible method of storing data. During the early stages of 
development, the model could be substantially modified with no significant effect on the 
remaining Prolog code. This was due to the generality of the model and standardised 
access routines to the database. The predicates to use the database were well designed, 
and the relational model was a natural way to conceptualise the data that made up the 
Ispel environment. This simplified the construction of code that required database access.  

5.3.2 Deficiencies of the Relational Model 

During development of the prototype, the relational model had to be modified, due to the 
lack of design of the model. One consequence of this lack of design was that during 
development and enhancement of the prototype, some entities were found to lack 
important information. Attributes such as the distinction between class and feature boxes, 
and a list of boxes and lines contained in a view, needed to be added to the relational 
model. An effect of adding these attributes to the database during development was that 
applications saved in files using the old database model could not be re-loaded using the 
new model, due to the differing attributes. This proved to be a most inconvenient side 
effect, as testing of the prototype during its development and enhancement required 
some substantial applications, which had to be reconstructed several times. 

Enhancement of the prototype identified a major problem with the relational model used. 
This was the lack of links between some entities. For example, there is no link between 
classes and all the views a class is contained in. There are also no links from a class to its 
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specialisation classes, but only to its generalisations. These links allow some operations, 
such as an Expand operation, to be implemented more efficiently. 

Most entities used a uniquely generated identification number to identify individual 
elements. However, the application and class entities used the application name and class 
name respectively, which caused problems when a class or application was renamed. To 
implement the class rename operation, the class names used in every other entity had to 
be changed. Applications were provided with two names: their file name and the actual 
application name. Neither of these approaches is satisfactory, as the renaming of class 
names in entities is both time consuming and inefficient. Application names should be the 
same as their file names, which is consistent with other Macintosh applications. A solution 
would be to give class and application entities unique identification numbers that are 
never seen by the programmer. 

The major disadvantage of the relational approach to modelling Ispel data elements is that 
this data is modelled as separate entities which are linked together, rather than as related 
data objects. The relationships between the entities are purely abstract for the relational 
database, and it is up to the programmer to make sense of them and use them correctly. 
In addition, there are no consistency checks on the data, nor are there any checks to 
ensure that the data is constructed and linked together in a valid way. This lack of 
consistency checking, and the ability to construct and use the data incorrectly, contributed 
to a large number of errors being made during development of Ispel. These errors were 
neither detected nor disallowed by the relational database when data was added, updated, 
or deleted. 

5.4 Enhancements 

Once the Prolog prototype had been implemented and evaluated, it was enhanced to 
improve the programming environment it provides. In addition, some enhancements 
were made to explore further areas of visual programming, and to examine more 
implementation and user interface aspects of Ispel. 

The following sections detail the enhancements made to the Prolog prototype, and give 
examples of the improved performance when constructing and viewing Class Language 
programs. Some enhancements required structural modification of the prototype 
implementation and, in addition, some deficiencies of the implementation were identified. 

5.4.1 Line and Box Addition 

The process for adding lines and boxes was modified to generalise it and to simplify the 
construction of programs. The specialisation line tool was modified to behave in the same 
way as the add feature and line tool, which superseded the feature line tool. To add a 
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specialisation to an existing class, the specialisation line tool is selected and then an existing 
box is clicked. A line from this box is then rubber-banded to either another existing box or 
an empty location. If the mouse is on an existing box when the mouse button is released, 
then a generalisation line between two existing boxes is created. If the mouse is on an 
empty location, then a new class box is created at this location. A name for the class is 
requested from the programmer and then a generalisation line between the existing box 
and new box is created. This process is similar to the addition of features. Figure 5.3 shows 
the new addition tools for the Prolog prototype. 

Add Feature Box and Line Add Class Box and Line
 

Figure 5.3 The addition tools for the enhanced prototype. 

5.4.2 Cutting of Boxes and Lines 

A cut box tool and a cut line tool were added to the Prolog prototype, and the hide box tool 
was retained. Thus the ambiguities between hiding a box from a view and cutting a box 
were removed, as the programmer can now select a distinct tool to perform each 
operation. If any boxes are highlighted when the cut box tool is selected, then these boxes 
are cut from the view. Figure 5.4 shows the removal tools for the Prolog prototype. 

Cut Line Cut Box
 

Figure 5.4 The cut box tool and the cut line tool. 

When a line or box is cut, the Class Language program is updated. Other views affected 
by this change are also updated. For example, if a feature is cut from a class, then any 
boxes in other views that represent this feature are deleted from their views. 

5.4.3 Parameters, Procedures, and Functions 

To increase the degree to which Class Language can be programmed visually, class 
parameters, procedures, and functions were added to Ispel. Parameters and functions 
have a name and a type, while procedures have a name and a void or procedure type. In 
addition, visual representation and manipulation of information hiding was supplied, and 
all features are either public or private to their class. Figure 5.5 shows how these new 
visual programming features are represented in Ispel. 
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Figure 5.5 Parameters, procedures, functions, and public and private features. 

In addition to a visual representation, all of these have a textual representation. Figure 5.6 
shows an example class with various features, and the text for this class. 

Some of these extra visual programming facilities are implementation details of a Class 
Language program, while others are design details. For example, the kind of a feature 
(procedure or function) is an implementation detail, while the class interface (public or 
private features) are design decisions (Coad and Yourdon, 91). Currently, Ispel does not 
distinguish between this design and implementation information, although this would be 
useful for program development (see Section 9.1). 
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Figure 5.6 The Roof class and its textual representation. 

When adding features, the features can have other attributes in addition to a name and a 
type. A method of specifying the attributes of a feature was required and the Feature 
Name and Type dialogue was modified to provide this. When a feature is added, the 
programmer specifies the attributes of the feature using this dialogue, which makes the 
list feature tool redundant. Figure 5.7 shows the Feature Name and Type dialogue for the 
enhanced Prolog prototype. 
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Figure 5.7 The Feature Name and Type dialogue box. 

5.4.4 Visual Layout 

To assist program construction and layout, an automatic gridding system was added so 
boxes could be lined up on an invisible grid. This makes laying out of boxes easier, and it 
is analogous to the auto grid in MacDraw (Claris, 89). Automatic gridding can be switched 
off by the programmer if it is not required.  

A facility to enable lines to be attached to the side of a box was added to improve the 
layout of diagrams. In addition to making the diagrams less cluttered, this provides a 
more flexible way of constructing diagrams. Diagrams can be viewed from left to right 
and from right to left, as well as from top to bottom. 

Initially, the prototype was modified so if a line was connected from the bottom of one 
box to the top of another, and the line overlapped one or both of the boxes, then the line 
was redrawn to connect from the side of one box to the opposite side of the other box. 
However, this had a draw back in that Ispel automatically decided which method of 
display it would use, depending on the location of the boxes. This resulted in some lines 
being connected to the top of boxes, and some being connected to the sides, which is not 
usually the desired way of viewing a diagram. This was altered so the programmer 
explicitly selects which way lines should be connected to boxes, via highlighting a line and 
choosing a menu selection. Lines are connected side to side or top to bottom, depending 
on the default connection setting. Figure 5.8 shows two different layouts of diagrams. This 
is similar to the EDGE graph editor, which allows graphs to be laid out in any horizontal 
or vertical direction in a window (Newbery, 88).  
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Figure 5.8 Lines connected from top to bottom and from side to side. 

There are some parameters of Ispel that the programmer should be able to change. These 
include the automatic gridding size, the default connection point on boxes, and the default 
attributes of new features. A Preferences dialogue was added so the programmer can 
change these settings. Figure 5.9 shows this Preferences dialogue. The Preferences facility 
enhances productivity as the programmer does not have to re-specify attributes of 
features, nor line connection points for individual features and lines. 

 

Figure 5.9 The Preferences Dialogue. 

A new menu was added to the prototype to enable the programmer to bring up the 
Preferences dialogue, and also to change the connection points of lines and turn gridding 
on and off. Figure 5.10 shows this Preferences menu. There are five options in the 
Preferences menu: Settings brings up the Preferences dialogue so the programmer can 
change the default settings, Bottom and Side specify the location on a box which the 
highlighted lines will be connected to, Grid Off or Grid On toggle between having the auto 
gridding on and off, and Grid Boxes relocates all of the selected boxes so that they are on 
the grid. 
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Figure 5.10 The Preferences Menu. 

An omission from the Prolog prototype was a visual indicator on a class or feature box to 
inform the programmer that a class has a view other than the one it is currently displayed 
in. This is useful when navigating through a program to indicate which classes can be 
displayed in different views. A view icon (a small, unfilled circle) was added to the class 
and feature box pictures to indicate the presence of primary views associated with the 
class. Figure 5.11 shows the Building view from Wallbrace. The view icons on the Roof 
and Storey boxes indicate that Roof and Storey have other views that can be displayed. 

Building

Wing
Wings

Section
Sections

Roof
Roof

Storey
Storeys

 

Figure 5.11 An example of boxes with view icons. 

5.4.5 Expansion of Class Features and Generalisations 

In the Prolog prototype, there is no facility to have the features and generalisation 
relationships for a class expanded in a view. If a class has features or generalisations, it is 
useful for the programmer to have all, or a selection of these, displayed when reusing the 
class in another view. This saves the programmer from reconstructing the features by 
hand. As it is a very common operation, a facility to enable the programmer to expand 
classes was added to the Prolog prototype. 
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The expand tool is a dialogue box which is shown in Figure 5.12. This consists of a set of 
check boxes and radio buttons which allows the programmer to specify which features 
and generalisations of a class are to be expanded. A class is first highlighted and then the 
programmer chooses the details of the class to expand. Features and generalisations of 
the selected class are found and the appropriate boxes and lines are created and displayed. 
The expand operation checks to see if the details being expanded are already present in 
the current view and, if so, then it does not expand them again. 

 

Figure 5.12 The Expand dialogue box. 

This expand operation has some flaws, mainly due to the complexity of the expansion 
operation itself. The positions of the new boxes added to the view are computed by Ispel 
and laid out accordingly. However, it does not consider that a class being expanded may 
have other views which contain these class details. For example, Ispel always lays out 
expanded boxes from top to bottom. However, in another view, the boxes may be 
arranged from left to right, and this is probably what the programmer wants repeated in 
the current view. The positions of the details of a class in other views are ignored, when 
the programmer may want these details displayed in the same manner.  

Use of this expand facility has shown that, while the provision of an expand operation is 
almost essential, an improved method of specifying the options would be advantageous. 
This is because the current dialogue for selecting the options is difficult and cumbersome 
to use. The ability to expand more than one level of details for a class is required, as often 
the programmer will want several levels of the type aggregation or inheritance 
hierarchies expanded. 
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5.4.6 Views and Windows 

To enhance navigation between views and windows, view selection and window selection 
menu options were added to the Prolog prototype. These allow the programmer to 
choose from a list of all the views and windows in the system the view or window they 
want displayed. The Prograph (Gunakara, 89) and Trellis/Owl (O’Brien et al, 87) 
environments use a similar method for selecting classes to browse. Figure 5.13 shows a 
view being selected using the View Selection dialogue. These are a useful enhancement to 
navigation between views and windows, although the navigation methods provided by 
the enhanced prototype are still not as flexible as they should be. Section 9.1 proposes 
some further enhancements to the navigation facilities. 

 

Figure 5.13 The View Selection dialogue. 

A menu option to allow the programmer to change the primary view or default view of a 
class was provided. This is required so the programmer can re-specify the primary view 
for a class, by selecting a view with the view selection dialogue. The deletion of windows 
was modified so when a window is deleted, the programmer is asked for a window to 
which the views for the window being deleted should be allocated. A view can be 
displayed in another window by the selection of a menu option. 

5.4.7 Renaming and Re-selecting Classes and Features 

Classes and features can be re-selected and renamed in the enhanced prototype. The 
changes that occur to the Class Language program are propagated to other views that are 
affected by the change. The distinction between renaming a class and selecting another 
class in its place is drawn by asking the programmer to specify which operation to 
perform. The Class Name dialogue was modified so the programmer has two buttons to 
select. One renames the selected class, the other selects the given class in place of the 
current one. When a new class is selected, the generalisations and features of the previous 
class are removed from the view. 
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5.4.8 Consistency with Underlying Representation 

Some further constraints were added to the Prolog prototype to ensure that the 
programs constructed are consistent and are valid Class Language programs. For 
example, when a new feature is added, the name, type, and attributes of the feature are 
checked against any features of the class with that name. If the types are not consistent, 
then an error is generated, and if the attributes are different, the existing attributes for the 
feature are retained. 

5.4.9 Standard Classes 

The standard classes integer, float, boolean, and text are defined by Ispel rather than the 
programmer. Constraints were added so they can no longer be altered by accident. These 
classes are treated as a special case, although they should be implemented as library 
classes in future prototypes (see Section 9.2). Extra code was added to check that a class 
being altered is not a standard class. 

5.5 Some Visual Programming Techniques 

A variety of visual programming techniques were formulated during development and 
evaluation of the Prolog prototype. This section describes these techniques and their 
applicability to the construction of Class Language programs using Ispel. 

5.5.1 Multiple Views of a Program 

Multiple views of a program proved to be the most important aspect of the Ispel 
development environment. Being able to visualise a program, both graphically and 
textually, work within specific contexts for classes, navigate easily between these contexts, 
and create and modify these views, is a major advancement on the existing Class 
Language environment. Good use of multiple views by a programmer is essential during 
program development using Ispel and other visual programming systems (Ambler and 
Burnett, 89, Dart et al, 87, and Reiss, 85 and 87). 

5.5.1.1 Liberal Use of Views 

The multiple views concept provided by Ispel allows a program to be viewed at different 
levels of abstraction. Most classes which are composed of type aggregations require at 
least one view for which they are the central focus (primary class). This allows both the 
class, and its relationships to other classes, to be viewed within the context of the class 
itself. A class can also be viewed in the context of other classes as a feature type, 
generalisation, or specialisation. 
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Constructing a large range of views allows a programmer to view elements of a program 
from many different angles. Multiple views provide a flexible mechanism for diverse 
program visualisation. They allow a programmer to view parts of a program in a context 
which is useful for the programmer at specific stages of program construction and 
browsing (Dart et al, 87). The liberal use of multiple views during program development 
aids both the development and maintenance of the program (Reiss, 85). This was verified 
by using Ispel to construct the Wallbrace example and an object-oriented implementation 
model for Ispel (see Chapter 6). 

A useful guide-line is to create views for a class when there is no longer room in the 
window for the details of the class. If a diagram becomes cluttered, confusing, or no 
longer aesthetically pleasing, then views focusing on a subset of the classes in the view 
should be created and the view rearranged. During construction of a class or classes 
relating to it, it is often useful to be able to have more than one view displayed on the 
screen at one time. This provides contexts focusing on different classes and allows the 
programmer to visualise the relationships in a clearer manner than a single view. For 
example, viewing the Roof inheritance hierarchy in Figure 5.14 and each view for the 
different specialisations of Roof simultaneously is useful. 

Roof

FlatRoof

NonFlatRoof

StarRoof RidgedRoof LeanTo OtherRoof
 

Figure 5.14 The Roof inheritance hierarchy. 

When views become difficult to understand, information spread over two or more views 
is clearer for the programmer to understand and utilise than if it is contained in a single 
view. The generalisation and type aggregation hierarchies for Wallbrace and the Ispel 
object model are clearest at a depth of two or three levels from the primary class, 
depending on the number of expanded class details in the view at each level. Once views 
grow beyond this depth, or if they have a large spread of classes from one level to 
another, they become difficult to read and multiple views are required. For example, the 
Roof view from Figure 5.14 becomes difficult to read if more than three levels are fully 
expanded. 
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With the emergence of new technology (for example, larger bit-mapped screens for 
computers), new visual programming techniques for Ispel may be developed. On a large 
screen, Ispel diagrams can be drawn and displayed which don’t become cluttered as 
quickly as diagrams on smaller screens. In addition, the use of colour in diagrams to 
distinguish different types of information could be utilised.  

5.5.1.2 Navigation Using Views 

It is important to structure the use of views so program navigation is as simple and 
natural as program visualisation. The primary view for a class should be its view that is 
most frequently used. Double-clicking on the class view icon should display the view most 
likely to be required by the programmer. The ability to reassign the primary view of a 
class is important during program construction, and should be used where appropriate.  

For example, the view of Roof showing its major features is the most useful view when 
using the Roof class as a feature of other classes. A programmer can change the primary 
view for Roof to be this type aggregation diagram. The programmer can also change it to 
the inheritance hierarchy view when specialisation classes of Roof are constructed. 
Sometimes it is useful to make the primary view for a class a view where it is not the 
primary class. For example, when it is used as a feature, generalisation, or specialisation of 
another class. Section 9.1 discusses some proposed enhancements to view navigation that 
could improve the flexibility of this process. 

A useful technique for selecting related views, used for the object model for Ispel, is to 
add an unconnected class box to a view and use it as a button for double-clicking on to 
select the primary view for the class. This can be useful when constructing views for 
specialisation classes, and wanting to access the inheritance hierarchy of the class. 

5.5.1.3 Views for Different Information 

Views can be used to distinguish between kinds of features for a class or between feature 
and generalisation relationships for the class. It is often useful to have views which show 
the generalisation hierarchy for a class and another view for the features of the class 
without generalisation. For example, the Roof generalisation hierarchy is shown in Figure 
5.14, and part of the Roof type aggregation hierarchy is shown in Figure 5.15. 
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Figure 5.15 Some features of the Roof class. 

Views can also be used to distinguish between the important features of a class and simple 
class features. When constructing views, it is important to utilise a good distribution of 
information over multiple views for a class. This aids understanding of a program and 
helps to modularise information. Important classes, or classes with a large number of 
features and generalisations, require several views to divide information about the class 
into distinct aspects. This ability to focus on different aspects of a class or classes should be 
utilised when constructing programs as it significantly enhances the visual representation 
of programs. 

Some useful divisions of views of classes for Class Language programming include: 
• A generalisation hierarchy view, for example, the Roof view of Figure 5.14. 
• One or more views which show related features for a class in a specific context. 

For example, there are three views for the Building class features in Wallbrace 
which focus on different aspects of Wallbrace. 

• One or more minor, or less important, feature views. 
• A view containing the procedures of a class, i.e. feature implementation details. 

Classes with many features can have shallow views which display only the class and its 
features, and can also be cluttered. Multiple views improve program visualisation and the 
amount of information presented by providing several views for a class with many 
immediate features, generalisations, or specialisations. An alternative approach is to split 
the class into several classes or increase the generalisation used. However, use of multiple 
views allows the program to be viewed in a modular way despite many class 
interrelationships. 

Care must be taken when creating views so a balance is achieved and not too few or too 
many views are used. Insufficient views are evident when views become complex and 
difficult to follow, and programmers find they often cannot visualise a program in a 
desired way. Too many views can occur when views are kept quite shallow and only the 
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features of the primary class are shown. This reduces the context and information about a 
class provided by a view, and hinders navigation as many switches to other views are 
required. 

5.5.1.4 Flexibility Provided by Views and View Consistency 

The flexibility of having partially constructed programs and the underlying program 
structure built during programming is valuable. Only partially complete Class Language 
programs can be constructed, and the programmer can move to another view, leaving a 
previous view un-finished. This ability should be exploited during development as it 
allows a programmer to build programs in a flexible, interactive manner. Program 
development can follow the programmer’s thoughts and not be constrained by the 
necessity to parse or compile views. 

The maintenance of consistency between views is crucial to this facility, as the 
programmer can change context when class implementation is incomplete. Any further 
views containing the class and its details will be consistent with the incomplete view, and 
changes to these views will still affect the first view. The programmer does not need to 
parse views before moving to others, as in other systems, being confident in the continual 
consistency of the visual and underlying representations. This provides an interactive 
appearance to program construction which enhances the development process (Raeder, 
85). 

5.5.1.5 Free-Format Layout of Views 

Ispel is unlike most other visual programming and diagramming systems in that it allows 
programs to be laid out in a completely free format. While some argue that automatic 
layout of diagrams is an advantage (Mannucci et al, 89), most researchers agree that some 
form of flexible layout is useful (Ambler and Burnett, 89, Myers, 90, and Reiss, 85 and 87). 

The ability of programmers to lay out diagrams how they require is an advantage in 
many situations. A diagram may not be clear, meaningful, or asthetically pleasing in one 
form of layout. In Ispel, the programmer can rearrange elements of it to improve its 
appearance. A diagram that is clear and easy to understand is more useful than one that 
conforms to a standard layout but is cluttered and unclear. However, it would be useful 
for Ispel to layout diagrams automatically if a programmer requires this. 

Ispel allows diagrams to be arranged hierarchically, from the top of a window to the 
bottom, or from one side of a window to the other. These layouts can even be combined 
within the same diagram. Care should be taken when positioning elements of views so 
that the diagram does not become too complex or cluttered. Overlapping boxes and lines 
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are often confusing and should be avoided where possible. If views become difficult to 
understand, new views should be created to solve the problem. 

5.5.2 Multiple Windows 

Multiple windows allow multiple views to be viewed simultaneously on the screen. They 
also assist in view navigation as windows can be partially overlapped and moved in front 
of and behind each other. If multiple views are to be displayed simultaneously, multiple 
windows are created and the views placed in different windows. Different named 
windows can be used for displaying certain types of views. For example, a window for 
displaying inheritance hierarchies and one for views derived from each major class of a 
program proved useful during the construction of Wallbrace and the Ispel object model. 
Multiple windows are used in most visual programming systems, and the modularity 
they provide for screen work areas is important (Ambler and Burnett, 89). 

The scroll bars provided on LPA windows did not prove useful during program 
development. When part of a view became obscured, the window size was increased, or 
another view created to display the information. The window re-sizing and dragging 
abilities are useful, and the layout of windows on the screen to show the desired amount 
of information is important. It is useful to have windows arranged without overlap if 
possible. However, if many windows are visible, keeping the window title bars and 
primary classes for views visible aids window navigation. Windows which are not in use 
for any significant amount of time should be closed to avoid clutter. 

5.5.3 Graphical and Textual Representations 

Utilising the graphical and textual views of a program where appropriate aids 
development productivity. The graphical representation of a program is useful for 
programming and viewing its structure and for navigating throughout a program, 
whereas text is applicable for programming feature implementation details. The textual 
representation can be used to construct a program (if a parser was included in the Prolog 
prototype), but the graphical representation is far more suitable. Visual programming is a 
more natural method of constructing the object-oriented aspects of Class Language and 
should be used in preference to textual programming where appropriate. However, Ispel 
does not force a programmer to use graphics if they prefer text. 

5.6 Summary 

Chapter 4 described the development of a Prolog prototype of Ispel. This prototype has 
been evaluated in this chapter and its performance as a visual programming environment 
found to be good. Constructing and viewing Class Language programs using the Prolog 
prototype is a significant improvement on the current environment for Class Language. 
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However, this prototype has a number of user interface, visual programming, and 
implementation deficiencies, which have been identified and discussed. 

Some enhancements were made to the prototype to improve its visual programming 
performance. These included facilities to enhance program construction, full propagation 
of change, including class and feature renaming, a preferences option, and an expand 
facility. During implementation and evaluation of the prototype, some visual 
programming techniques were developed. These were explained to illustrate the benefits 
of using Ispel for constructing object-oriented programs.
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Chapter 6 
The Eiffel Prototype 

 
The Prolog prototype determined the need for a structured implementation model for 
Ispel. An Eiffel prototype was developed to refine an object-oriented model for the 
implementation of Ispel. It also provided an opportunity to explore the use of an object-
oriented programming language and its environment. In this chapter, the user interface 
and implementation aspects of this prototype are described, and its performance 
evaluated. The Eiffel language and programming environment are discussed, and the 
appropriateness of an object-oriented solution to implementing Ispel is examined.  

6.1 The Eiffel Prototype 

A brief overview of the development process and concepts of the prototype are given, 
and the reasons why an object-oriented approach was adopted are discussed are given in 
this section. 

6.1.1 Rationale for the Eiffel Prototype 

The Prolog prototype was developed to refine the user interface aspects of Ispel. 
However, implementation of this prototype indicated that a more structured model of 
Ispel would assist construction and modification of the environment (see Section 5.3). 
Thus the Eiffel prototype was implemented to develop and refine a structured model for 
Ispel, and identify the elements of a formalism for Ispel (see Chapter 7). In addition, the 
development of this prototype provided a large application to implement using an object-
oriented language. It also provided an opportunity to evaluate the programming 
environment of Eiffel. 

The Eiffel prototype was intended to have the same user interface as the Prolog 
prototype, while providing a programming environment for Eiffel, instead of Class 
Language. This was to determine whether the principles of Ispel could be applied to other 
object-oriented languages in addition to Class Language. An additional aim was to 
produce a replacement visual programming environment for Eiffel. The existing Eiffel 
environment is deficient as it provides little specific support for object-oriented 
development. 
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6.1.2 The Development Process 

The Eiffel prototype’s specification was based on the specification used for the Prolog 
prototype of Ispel. The only major modifications to this specification were to take account 
of the different user interface provided by Eiffel. The differences between the syntax of 
the object-oriented aspects of Class Language and Eiffel only affected the textual 
representation of programs. 

The Eiffel prototype was implemented on a DECstation 2100 running Unix and using the 
X windows graphical user interface. This differs in some ways to the interface provided by 
the Macintosh, and these differences were taken into account. This was a valuable 
abstraction, as it allowed the principles of Ispel to be examined in not only a different 
language environment, but also using a different user interface standard. 

An initial object model for Ispel was produced which served as a design for the Eiffel 
prototype. This was implemented as Eiffel classes, and the Eiffel prototype was developed 
around this initial structure. The enhanced Prolog prototype proved valuable for assisting 
the definition of the major classes of the Eiffel prototype, and for viewing and 
manipulating these class structures during development. 

6.1.3 The Object-Oriented Approach 

An object-oriented approach was used in the formulation of the model as Ispel models an 
object-based system. Hence it was a natural way of expressing the system being modelled 
and the structure of Ispel. This approach has also been used successfully in the Arcadia 
system (Rosenblatt et al, 89). 

6.1.3.1 Alternative Approaches 

An alternative approach would be to use abstract syntax trees and attribute grammars to 
define the system. This has an advantage that aspects of language-based editors and 
diagramming tools can be specified in grammars and then generated from these. The 
Cornell Synthesizer Generator (Reps and Teitelbaum, 87) and Graspin (Mannucci et al, 89) 
adopt variants on this approach. 

However, the OROS (Object, Relationship, and Operation System) model for Arcadia is a 
more general approach, and can be used for all aspects of an environment (Rosenblatt et 
al, 89). Goguen and Mariconi (87) argue that the attribute grammar approach is useful for 
language-based editors, but is not flexible enough for other aspects of programming 
environments. For example, the user interface and operations of Ispel would have to be 
represented in a different form. A unified approach to the structure of Ispel was desired in 
order to be able to refine integrated implementation and formal models of the 
environment. Parts of the environment specified as attribute grammars would need to be 
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integrated with another model for other aspects of the environment. In addition, no 
generator for attribute-grammar based systems was available. 

6.1.3.2 Objects to Model Ispel Elements 

The Eiffel prototype is based on using classes to describe the object elements of Ispel, for 
example, boxes, classes and views. Classes are also used to describe operations performed 
on these objects and the framework of the Ispel system itself. The framework of Ispel 
refers to aspects such as the decoding functions to interpret a programmer’s commands, 
and the graphical user interface facilities. Ispel objects are divided into three groups: 
objects (for example, classes and boxes), relationships (for example, class to box 
dependency and generalisation), and operations (for example, create object, display view 
object, and rename class). A similar classification of software development environment 
components is used in the Arcadia system’s OROS type model (Rosenblatt et al, 89). The 
division of Ispel into these fundamental categories was performed to classify the elements 
of the system. 

6.1.3.3 Underlying Representation as the Central Element 

An important difference between the Eiffel prototype’s model and the Prolog relational 
model is the view this model takes of an Eiffel program and its visual representations. The 
link between the different data elements of Ispel was purely conceptual in the Prolog 
prototype. The relational model did not imply that any data depended on other data or 
was affected when other data was modified. The propagation of change throughout 
views when a program was updated was encoded in Prolog, and bore little relationship to 
the change in the data itself. The process of propagating change was entirely up to the 
programmer of Ispel. There was no assistance given by the relational model to maintain 
consistency between data. 

The object-oriented model introduced a more structured view of the underlying 
representation (an Eiffel program). The underlying representation is viewed as the central 
data element of Ispel, and the visual representations of the program have concrete links 
to this underlying representation. Elements of the visual representation depend on 
elements of the underlying representation. Modification of this underlying representation 
is always propagated to the appropriate visual representations. For example, a box 
representing a feature is a visual representation of part of the underlying representation, 
and is affected by changes to the feature it represents. 

6.1.3.4 Encapsulation and Structuring 

Using an object-oriented approach for the model means that the objects that comprise 
Ispel encapsulate information specific to each object. This allows Ispel to be structured in a 
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more modular way than the Prolog prototype, and eliminates many errors that occurred 
during the development of the Prolog prototype. For example, an object representing a 
class has references to box objects which are the visual representation of this class. If the 
class is changed in any way, for example deleted, the class encapsulates the code to notify 
the boxes of the change. 

6.1.3.5 Generalisation 

A further reason for an object-oriented approach was the use of generalisation. 
Generalisation is a useful relationship for describing categorisation of elements of Ispel. 
Different categories of classes share different attributes, and this division of Ispel assists 
understanding of different elements of the environment, and provides a structure to fit 
new elements into. It also allows commonalties between classes of objects to be factored 
out and shared at a higher level of abstraction. 

6.2 User Interface 

The user interface provided by the Eiffel prototype was intended to be similar to the one 
provided by the Prolog prototype. However, Eiffel runs on Unix machines and uses the X 
windows graphical interface, and hence the user interface needed to be redesigned to suit 
this environment. 

6.2.1 Appearance 

The same concepts were used to provide an interface as for the Prolog prototype, with 
the use of windows, menus, dialogues, mouse, and graphics, and the same operations 
were provided. However, the appearance of the Eiffel prototype is substantially different 
to the appearance of the Prolog prototype, and the method of selecting some operations 
is quite different. Figure 6.1 shows a screen dump of the Eiffel prototype, which contains 
the main classes of the Wallbrace system. The window used is provided by the Eiffel 
libraries, and has a different appearance and functions to the LPA windows. 
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Figure 6.1 Screen dump of the Eiffel prototype showing the major features of Ispel. 

The Eiffel prototype was not completed, as the model for Ispel was sufficiently refined 
during the development of this prototype that further development of the Eiffel 
prototype was not worthwhile. This prototype does not provide the facility to save and 
load an application to and from files, and only allows one application to be constructed at 
a time. There is only one window and one view that can be manipulated by the 
programmer, and so there are no navigation facilities provided. 

6.2.2 Views 

Views and view elements are the same as for the Prolog prototype of Ispel. Class 
structure diagrams for Eiffel programs are represented in exactly the same way as for 
Class Language programs in the Prolog prototype. The standard appearance of Eiffel class 
structure diagrams (Meyer, 88) is quite different to Class Language diagrams (Mugridge, 
88), but Eiffel programs can be described using Class Language diagrams. Class Language 
diagrams represent the object-oriented aspects of programs well (see Section 3.4). They 
are also more similar to diagrams used by other researchers than Eiffel diagrams 
(Wasserman et al, 90, and Wilson, 90), and so were retained as the visual format of Eiffel 
programs. 
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The textual representation of a class is provided, but this is generated from the underlying 
representation, as with the Prolog prototype. Text cannot be edited in this prototype and 
a parser is not provided. The text for a class is displayed in the same window that the 
prototype was invoked from, and Figure 6.2 shows the text for the Section class displayed 
in Figure 6.1. As this prototype is a development environment for Eiffel and not Class 
Language, the Eiffel syntax is used. 

class Section 
  
 feature 
  Roof : Roof; 
  Storeys : Storey; 
 
end -- class Section 

Figure 6.2 The text for a class from the Eiffel prototype. 

6.2.3 User Input and Output 

Pop-up menus are used instead of the pull-down menus used in the Prolog prototype, as 
the Eiffel libraries do not provide any facilities to implement pull-down menus. In 
addition, the palette concept of the Prolog prototype could not be implemented in Eiffel, 
so a comparable approach using buttons attached to the window was provided. This 
behaves the same as a palette, except text rather than an icon is used to describe the 
button’s operation. In addition, the button area is not distinct from the graphical drawing 
area of the window. Neither the use of pop-up menus nor buttons for a palette affects the 
functionality of the Eiffel prototype. However, it does provide a different feel to the user 
interface for Ispel. 

Dialogue boxes are not provided in the Eiffel prototype. All user interaction, such as 
obtaining the names for classes and features and reporting errors, is conducted using text. 
This text is displayed within the text window which Ispel was invoked from. This is 
because there are no Eiffel libraries provided to implement dialogue boxes using X 
windows, and writing good dialogue box code in Eiffel using the graphics facilities 
provided would have been difficult. Unfortunately, this lack of dialogs for user interaction 
makes the Eiffel prototype difficult to use. 

6.2.4 Different Facilities from the Prolog prototype 

Marquis and rubber-banding could not be provided because the interface to X windows 
provided by the Eiffel libraries does not allow individual lines and boxes to be drawn. 
When a change is made within a window, the whole window must be redrawn. Boxes can 
still be selected by enclosing them within a box, and boxes are connected with lines in the 
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same manner as for the Prolog prototype. However, a marqui box and a rubber-band 
line are not drawn. 

Additional facilities provided by the Eiffel prototype include the Undo operation and a log 
file for the operations previously applied during the construction of a program. The Eiffel 
prototype allows the programmer to reverse every operation back until the beginning of 
the editing session for an Eiffel program. This is useful when errors are made, as it allows 
the programmer to revert to a previous state of the program. Two types of Undo 
operation are provided. Undo reverses the previous operation and records this reversal. 
Hard Undo reverses the previous operation and deletes it from the operation list. This 
allows a programmer to reverse a sequence of previous operations. 

6.3 Implementation 

Design and implementation of the Eiffel prototype identified some deficiencies in the 
initial design of the prototype. Thus the structure of the prototype was substantially 
refined and modified during development. The structure of the Eiffel prototype is 
presented here along with the important classes. Some issues that arose during 
development are discussed along with their implications on the design of the prototype. 
The structure of the Eiffel prototype provides an object-oriented implementation model 
for Ispel. 

The following sections describe the four categories of Ispel classes used in the Eiffel 
prototype: framework, object, operation, and relationship. 

6.3.1 Framework 

The Ispel system is divided into three sections: 
 • A visual component, which includes the visual representation of a program and 

the classes to process user input and output. 
 • A textual component, which includes the textual representation of a program 

and the editor and parser to process this.  
• A language component, which is the underlying representation of an Eiffel 

program.  

Figure 6.3 shows the main classes that comprise the Ispel system. Note that all class names 
are in upper case, which follows the Eiffel convention for naming classes and features 
(Meyer, 88). 
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Figure 6.3 The main framework classes of the Eiffel prototype. 

The visual component of Ispel is comprised of an application, a class which provides 
dialogue with the user, and a history log. Each operation in the history log stores 
information to reverse each of the operations previously performed in Ispel. The VISUAL 
class also provides features to undo the previous operation and print a list of all the 
previous operations (the history log list). Figure 6.4 shows the classes that comprise the 
visual component of Ispel in the Eiffel prototype. 
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Figure 6.4 The visual component of the Eiffel prototype. 

The textual component of Ispel was not fully implemented in the Eiffel prototype. The 
only feature it provides is the facility to generate and display the text for a class in the text 
window Ispel was invoked from. 
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6.3.1.1 Windows 

Interaction with the programmer is performed via windows using dialogs, menus, 
buttons, and the mouse. In addition to buttons and pop-up menus, Eiffel graphics 
windows can have a list of figures attached to them. These are graphical objects similar to 
LPA GDL pictures. The window provided in the Eiffel prototype is an object of 
ISPEL_WINDOW type, and any subsequent windows would be further objects of this 
type. 

User input events, such as mouse clicks and menu selections, are processed through the 
window provided by the Eiffel graphics libraries (Interactive, 89b). Decoding these events 
requires that the user input part of Ispel be structured around the graphics windows. 
Code which processes the window events such as selecting a box, dragging boxes, and 
connecting boxes with lines, is invoked from events in the graphics window. This code 
uses features of the window to obtain and modify data, so the place for this code is in the 
window class itself. 

ISPEL_WINDOW

WINDOW_DECODE WINDOW_FIGURES

WINDOW_SELECTED

WORLD
world

WINDOW
window

VIEW_OBJECT
selected

DECODE
decode

 

Figure 6.5 The classes for Ispel windows in the Eiffel prototype. 

Originally, windows were implemented as only one class, but a problem arose as the class 
became very large. To solve this, the ISPEL_WINDOW class was abstracted into four 
classes, as shown in Figure 6.5:  

• WINDOW_SELECTED contains the selected boxes and lines, which are stored 
as a list. Features are provided to highlight boxes and lines, un-highlight them, 
and perform operations on all highlighted items. 

• WINDOW_DECODE contains the features which implement the selection tool, 
i.e. selecting boxes and lines, dragging boxes, marquiing, and rubber-banding. 
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The decode feature of this class implements the mouse, menu and button 
operations. 

• WINDOW_FIGURES contains features to add and remove figures from the 
window, and to redraw the window. The window and world features of this 
class are classes from the Eiffel graphics libraries which interface to the X 
windows system. 

• ISPEL_WINDOW inherits the features of WINDOW_SELECTED, 
WINDOW_DECODE, and WINDOW_FIGURES. 

6.3.1.2 Menus and Buttons 

Menus and buttons are attached to graphics windows. When a button is clicked or a menu 
selected, a command is executed to perform an operation. Menus have COMMAND 
objects which have a standard set of features, and when a menu item is selected, the 
command associated with it is executed. Buttons also have commands, which were 
extended for Ispel to provide two commands. One is used when the button is clicked, 
while the other is used when the button is the currently selected button and the mouse is 
clicked in the window. 

6.3.1.3 Dialogues 

In the Eiffel prototype, dialogs are not implemented graphically, but use textual input and 
output. This form of user interaction is very deficient and graphical dialogs should be 
used. However, the Eiffel libraries do not provide sufficient facilities to implement these 
properly. Dialogues should be provided which conform to the user interface standards of 
Ispel, and must be integrated with the rest of the Eiffel prototype. At present, the 
DIALOG class simply provides features to ask questions and obtain information. 

6.3.1.4 File Storage and Navigation 

The Eiffel prototype does not provide file storage facilities, nor does it provide navigation 
facilities. These would need to be provided in a development environment, and both 
could be implemented as additional features of the application, visual, and textual classes. 

6.3.2 Objects 

Ispel objects are part of a class hierarchy which describes the different categories of 
objects, and assists in the isolation of common features. Figure 6.6 shows the object 
hierarchy for the Eiffel prototype. 
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Figure 6.6 The object hierarchy for the Eiffel prototype. 

The classes OBJECT, LANGUAGE_OBJECT, VISUAL_OBJECT, and VIEW object 
describe common features for the classes that are specialisations of them. For example, all 
objects have create, delete, unlink, and relink features. Unlinking is similar to deleting an 
object, but can be reversed by relink. Visual objects can be displayed and erased, and view 
objects can be dragged, selected, de-selected, and double-clicked. 

As well as these common features, the object classes are also generalised to other classes. 
Some objects always have other objects which are linked to them and use information 
from them. The linked objects are dependent upon changes to the information in the 
objects they are linked to. For example, all language objects have a visual representation, 
and the boxes and lines representing them are affected by changes to the language 
objects. The concepts of objects which have dependents, and objects which are dependent 
upon other objects, can be used to represent these relationships. These objects have links 
to each other so changes to objects with dependents can be propagated to dependent 
objects. 

In addition to the concept of dependency between objects, some objects are visual 
representations of other objects, with common features between them. For example, 
boxes and lines are visual representations of language objects. When a language object, 
such as a feature, is renamed, all boxes that represent this feature need to be redrawn in 
their views. 

Figure 6.7 shows the object hierarchy with multiple inheritance illustrating further 
generalisations made to the object classes. 
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Figure 6.7 Additional generalisation classes of objects. 

6.3.2.1 Classes, Features, and Generalisations 

The CLASS, FEATURE, and GENERALISATION classes contain features for information 
similar to their relational entities in the Prolog prototype. Figure 6.8 shows the major 
features of these classes. 
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Figure 6.8 The major features for the CLASS, FEATURE, and GENERALISATION classes. 

In addition, CLASS objects provide features to locate named features and generalisations 
of the class, generate text for the class, and rename or re-select the class. Feature objects 
provide features to implement renaming of a feature, cutting a feature from its class, and 
changing the type of a feature. 
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6.3.2.2 Windows and Views 

In the Eiffel prototype, a distinction is made between graphics windows, called Ispel 
windows, and window objects, called view windows. View windows contain a feature 
which is the Ispel window a view is displayed in. There are also features which provide 
and change the current view for the window. 

The major features of VIEW objects are shown in Figure 6.9. In addition, the VIEW class 
provides features to add boxes and lines to their lists, remove boxes and lines, and select 
and de-select objects in the view. It provides an interface to the Ispel window figure 
display routines, and figures are only added, removed, or modified if the view is the 
current view for its window. 
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VIEW_WINDOW
window

BOX
boxes
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lines

VIEW_OBJECT
selected

 

Figure 6.9 The major features of Ispel VIEW objects. 

Many of the object classes in the Eiffel prototype use lists for storing references to other 
objects. Some classes, such as the VIEW class, contain several lists and several access 
routines to insert, delete, search for elements, and iterate over these lists. Many features 
to access these lists have to be provided.  

This approach lacks generality, and an attempt to generalise the list operations was made. 
Only one set of access features to the lists was provided, and these determined the list to 
use from the type of object passed as a parameter. This approach was also used in the 
class, application, and language classes. The approach works well in that it significantly 
reduces the number of features of a class with several lists, the number of distinct 
operations for lists, and the amount of code duplication. However, the method used to 
implement these generalised list routines is counter to the object-oriented philosophy. 
This is because Eiffel does not provide discrimination functions to determine the types of 
parameters (Mugridge, 90). These would allow the run-time types of objects to be 
determined, and an appropriate function to be invoked for an object of a particular type. 
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6.3.2.3 Boxes 

The BOX class, like the ISPEL_WINDOW class, became large during development and 
required abstraction to several classes. Figure 6.10 shows the box classes from the Eiffel 
prototype and the major features supplied by each class. The VIEW_OBJECT class 
supplies features to all objects which can be displayed in views. The BOX_SHAPE class 
contains the features for box that represent and construct a graphical representation of 
the box. It also contains features which determine the action of double-clicking on 
different parts of the box’s graphical representation. The BOX_LINES class contains lists 
of the lines connecting the box to other boxes, and features for manipulating these lists. 
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INTEGER
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LINE
to_lines

VIEW
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COMPLEX_FIGURE
figure
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Figure 6.10 The box classes and their features. 

The graphical representation of a box is constructed from simple graphical objects in a 
similar manner to GDL picture descriptions in LPA. 

6.3.2.4 Lines 

The LINE class is specialised into FEATURE_LINE and GENERALISATION_LINE 
classes, which contain features to build the graphical representation of a line. Figure 6.11 
shows the line inheritance hierarchy and major features of line. 
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Figure 6.11 The line inheritance hierarchy and major features. 

6.3.3 Operations 

Operations represent changes of state in Ispel objects or relationships, and are 
implemented as Eiffel objects. This is a different approach from the Prolog prototype, 
which viewed operations as Prolog predicates, and operations in this prototype were 
implemented in an unstructured manner. Operations were described as objects for two 
reasons: 

• To determine a method of categorisation for operations. 
• To enable an Undo facility to be implemented, which allows the programmer to 

reverse operations. 
• To allow partially complete sequences of operations to be reversed if some 

error is detected. 

Expressing the operations provided in a programming environment as objects has also 
been used in the OROS type model (Rosenblatt et al, 89). 

To provide an Undo operation, the modifications made by applying an operation need to 
be recorded by Ispel so they can be reversed, and hence the operation undone. All 
operations that change the state of Ispel must be objects which contain the object that was 
modified, the information changed, and a method of reversing the change. Complex 
operations are made up of a list of simpler operations, and each operation only stores the 
information that it changed. Figure 6.12 shows the features common to all operations. 
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Figure 6.12 Common features of Ispel operation objects. 

Create is used to create a new object, and is given the object and its feature value changed 
by the operation. Execute adds the operation to a list of performed operations, while 
undo reverses the operation and hard_undo reverses the operation without storing 
information to reverse this undo. 

Operations do not encapsulate the code which implements a change. A class, which has a 
feature which can be modified, provides another feature which implements the 
modification. An operation is used to record the modification, and another feature is 
provided to reverse the change. For example, the FEATURE class provides a routine 
which changes the name of a feature. This same routine can be used to rename the feature 
back to its old name. 

The two basic types of operations in the Eiffel prototype are simple and history operations. 
Simple operations represent one state change, while history operations are a sequence of 
operations, and thus represent multiple state changes. A history operation is undone by 
undoing its component operations in reverse. 

History operations provide an undo feature, and construct a list of operations performed 
when the programmer selects an operation. Every feature of object and relationship 
classes that change the state of Ispel, and all operation features have at least two 
parameters: 

• history list. A history operation to add operation objects to. 
• undo history list. A history operation for the reverse of the routine. For example, 

if the reverse of the relink operation was just performed, i.e. unlinking a box, 
then this list will contain the operations which can be undone to relink the box. 

The undo history parameter was not originally used. During development of the 
prototype, it was added to enable the reversal of previous operations, by just reversing 
the previous operation’s history list. This eliminated the need for many complementary 
routines in classes to implement the reverse of a routine. For example, relinking an object 
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can be achieved by calling the unlink feature of the object with the undo history parameter 
set to the list of operations performed when the object was unlinked. 

An added advantage of history operations is that they can be used when an operation 
selected by the programmer has been only partially completed. If Ispel determines that 
the operation cannot actually be performed (i.e. it is invalid), then the operations 
performed up to this point can be reversed. This is achieved by undoing the history list 
which has been used to record them. This was valuable when implementing relationships, 
as the constraints for a relationship do not all have to be performed at the start of the 
relationship establishment. This was a problem with the Prolog prototype, where 
constraints are performed at the wrong time, or code had to be duplicated to make sure 
an operation was valid before it was begun. 

6.3.4 Relationships 

During development of the Eiffel prototype, the relationship concept was introduced. 
Originally, the Eiffel prototype constructed links between different objects, using 
dependency lists and lists specific to each object class. The code to add object elements to 
these lists and remove them was contained within the classes with the lists. The code to 
check that creating these links was valid, and to remove all the links if an object was 
deleted, was also encapsulated with the class. 

As development of the Eiffel prototype proceeded, it became apparent that this method 
of representing and implementing relationships between objects was not adequate. This 
was for several reasons: 

• As the number of different relationships an object could have to other objects 
grew, more features and code were required in each object to implement a 
relationship. 

• As more constrained relationships were implemented (for example, the class 
and feature relationship), code to implement the constraints had to be included, 
which increased the class size. 

• The more relationships between classes there were, the more operations that 
were required, and code duplication occurred. 

• When changes to objects with relationships occur, for example, unlinking an 
object. These object changes need to be propagated to all the objects dependent 
on the object, and to objects it depends on. This propagation was implemented 
in the same way for each different object. 

The concept of relationship objects was introduced, which represented these 
interrelationships. Relationship objects encapsulate the code to perform the establishment 
and disestablishment of a relationship. They also contain code to check that the 
relationship is valid, which constrains the creation of relationships. This in turn acts as a 
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constraint on the visual manipulation of views. Figure 6.13 shows the features common to 
relationship objects. 

RELATIONSHIP

OBJECT
parent_object

OBJECT
child_object

establish

disestablish

BOOLEAN
valid

 

Figure 6.13 Features common to Ispel relationship objects. 

Relationship objects are divided into three categories: language to language object, visual 
to visual object, and language to visual object relationships. Figures 6.14a to 6.14c show 
these relationship categories. 

LANGUAGE_TO_LANGUAGE

RELATIONSHIP

TYPE_TO_FEATURE CLASS_TO_FEATURE

CLASS_TO_GENERALISATIONCLASS_TO_CLASS
 

Figure 6.14a The language object to language object relationships. 
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VISUAL_TO_VISUAL

RELATIONSHIP

ENDBOX_TO_LINE

STARTBOX_TO_LINE VIEW_TO_BOX

VIEW_TO_LINE

CREATE_GENERALISATIONCREATE_FEATURE
 

Figure 6.14b The visual object to visual object relationships. 

LANGUAGE_TO_VISUAL

CLASS_TO_BOX

FEATURE_TO_LINE FEATURE_TO_BOX

GENERALISATION_TO_LINE

RELATIONSHIP

 

Figure 6.14c The language object to visual object relationships. 

Most relationship objects are straightforward and represent one link between a parent 
and child object, for example, class to feature, endbox to line, and class to box. However, 
three types of relationship object are more complex, and create more than one 
relationship between objects: 

• Class to class generalisation creation. This relationship class is used to create a 
generalisation relationship, by creating two class to generalisation relationship 
objects and checking the validity of the generalisation. 

• Generalisation creation. This relationship class is used to create a generalisation 
between two boxes. It creates a new box (if necessary), a line, a new 
generalisation object (if necessary), and all the relationships required. 
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• Feature creation. This relationship class is similar to the generalisation creation 
class except it is for a new feature. 

The dependency relationships between objects are implemented by the classes 
DEPENDENT and HAS_DEPENDENTS. Figure 6.15 shows which objects are dependent 
on other objects. For example, boxes are dependent on classes, features and views. 
Conversely, classes have features, boxes, and generalisations dependent on them. 

CLASS

FEATURE GENERALISATION

BOX

LINE

VIEW

 

Figure 6.15 A dependency lattice for Ispel objects. 

Figures 6.16a and 6.16b show the inheritance hierarchies for dependent objects and 
objects which have other objects dependent on them. 

DEPENDENT

FEATURE

GENERALISATION

VIEW_OBJECT

BOX_SHAPE LINE
 

Figure 6.16a Objects which are dependent on other objects. 
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HAS_DEPENDENTS

VIEW BOX_SHAPE LANGUAGE_OBJECT

CLASS FEATUREGENERALISATION
 

Figure 6.16b The objects which have other objects dependent on them. 

When a parent or dependent object is unlinked, all its relationships to other objects must 
be disestablished. All its dependent objects must be unlinked as well. When relationship 
objects were added to the Eiffel prototype, the dependency lists for classes were modified. 
They no longer contain references to objects, but contain lists of relationships to other 
objects, so when an object is unlinked, the relationships for the object can be 
disestablished. Relationships are also used to propagate changes between objects. For 
example, when a class is renamed, the boxes that represent it are redrawn. Figures 6.17a 
and 6.17b show the features common to parents and dependents. 

DEPENDENT

RELATIONSHIP
depends_on

add_parent remove_parent

dependent_unlinked

 

Figure 6.17a Features common to dependent Ispel objects. 

HAS_DEPENDENTS

RELATIONSHIP
dependents

add_dependent remove_dependent

parent_unlinked

 

Figure 6.17b Features common to Ispel objects that have dependents. 
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The view objects of Ispel are a visual representation of language objects, and the visual 
representation class contains features common to all view objects, which are shown in 
Figure 6.18. 

REPRESENTS

RELATIONSHIP
the_relationship

change_representation

CLASS
the_class

FEATURE
the_feature

GENERALISATION
the_generalisation

 

Figure 6.18 Features common to visual representation objects. 

6.4 Evaluation 

At present, the Eiffel prototype provides a less capable environment than the Prolog 
prototype. However, the implementation of the Eiffel prototype is substantially more 
general and extensible. 

6.4.1 Performance as a Visual Programming Environment 

The user interface aspects of the Eiffel prototype were not considered important during 
development. The lack of dialogue boxes is a major deficiency, as communication with the 
programmer is poor. The Prolog prototype provides a more user-friendly interface with 
the use of an icon palette rather than a button one, and the provision of good dialogue 
boxes and windows. However, the Undo operation provided by the Eiffel prototype is 
very useful and is a significant improvement over the Prolog prototype. 

The Eiffel prototype is somewhat slower than the Prolog prototype. This is due to the 
high overhead of creating objects in Eiffel, and using operation objects for every change 
to an object requires many objects to be created. The lack of an interface to the Eiffel 
compiler means that the Eiffel prototype cannot be used to implement Eiffel programs in 
place of the current Eiffel environment. 

6.4.2 Implementation 

The Eiffel prototype has a better defined structure than the Prolog prototype, while the 
use of categorisation assists the reuse of common code and the addition of new facilities. 
The Eiffel prototype’s implementation reflects an improved definition of the concepts of 
Ispel, which simplifies the maintenance and enhancement of the prototype. 
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There are some deficiencies with the Eiffel prototype’s implementation which are briefly 
outlined in the following sections. 

6.4.2.1 Initial Design 

The main deficiency of the initial object-oriented design was its simplistic object and 
operation hierarchies. These did not describe the interrelationships between different 
parts of the system in sufficient detail. These inheritance hierarchies were substantially 
modified during development of the prototype. The lack of an adequate design for the 
prototype means that its structure does suffer from some over complexity and 
redundancy in places. The framework classes for the user interface, and operation objects 
in particular, need some restructuring. 

6.4.2.2 Restructuring and Abstraction 

To reduce code duplication in the prototype, better use of generalisation could be 
employed. The operation classes should be redesigned so they encapsulate the code for 
actually performing the operation that changes features of object and relationship classes. 
The Ispel window classes require redesign, especially the WINDOW_DECODE class 
which is large. As more user interface options are provided, the WINDOW_DECODE 
class should be further abstracted by generalising it to classes which implement each 
operation (for example, marquiing and dragging boxes). The object and dependency 
hierarchies require further refinement to isolate the common code into one class. 

The HAS_DEPENDENTS and DEPENDENT classes should be inherited by all objects, 
and objects of these types should not be used in relationship objects. This is because a 
conflict with multiple inheritance occurred for renaming features and classes, and cutting 
features from classes. Objects depending on CLASS and FEATURE needed to be 
modified, and features to do these modifications had to be added to the dependent 
classes. However, the OBJECT class had to be changed so these features were defined for 
all objects. This is because relationships used DEPENDENT and HAS_DEPENDENTS 
types, which should not have included these features. Redesign of the object and 
relationship hierarchies is required to solve these and other problems. 

6.4.2.3 Dragging Boxes 

When boxes are dragged in a view, each element of the diagram which is affected by the 
change is redrawn. This looks clumsy and is slow, and the re-display of view elements 
should be optimised. A further problem is that the current line erase feature of the Eiffel 
graphics library has an error. To solve this, lines have to be erased in such a way that a 
window needs to be redrawn several times when several lines are re-displayed. 
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6.4.2.4 Redundant Features and Operations 

Features such as relink are not necessary, as objects must always be unlinked first. Unlink 
can implement a relink, by being called with the undo history parameter set to the list of 
operations performed for the unlink. These can be reversed, and thus will achieve the 
same result as the relink feature. 

6.4.2.5 Further Use of Relationships 

Relationships are used for some propagation of change, but not for renaming features 
and classes and other modifications. This is due to structural deficiencies in the design of 
the prototype. Relationship links should be used for all propagation of change to other 
objects. 

The concept of complex relationships (similar to the history operation concept), should be 
introduced for feature and generalisation creation. Several different relationships are 
created in a hierarchical manner by these relationship classes. Some code and operations 
are duplicated between these classes, and this could be avoided. 

6.4.2.6 Feedback from Operations 

Some operations could fail due to constraints for a relationship being violated. For 
example, deleting the primary class’s box from a view should be invalid. However, the 
disestablishment of relationships does not provide a return value to indicate if the 
operation succeeded or not. 

6.4.3 Further Development of the Eiffel Prototype 

The Eiffel prototype can be further enhanced. Its development has contributed to the 
refinement of an object-oriented implementation model for Ispel. This model can be used 
as the basis for further development of Ispel prototypes and environments. The structure 
of this prototype needs modification which in some cases would require a large amount 
of code to be rewritten. Some clarification of the effect of view navigation on the 
operation and relationship objects could be examined by the implementation of multiple 
views for the Eiffel prototype. 

6.5 Object-Oriented Development 

Development of the second prototype of Ispel in Eiffel was substantially different from 
the development of the first prototype in Prolog. The development environments for the 
two languages are very different, and the languages themselves are based on two 
fundamentally different paradigms: logic programming and object-oriented 
programming. 
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6.5.1 Suitability of an Object-Oriented Language to Implement Ispel 

An object-oriented approach to describing Ispel proved to be suitable as the elements of 
Ispel have an object-oriented structure. Encapsulation of code within a class with the data 
it operates on was a more modular and natural method for most Ispel elements than the 
Prolog prototype’s structure. A hierarchical structure for the objects, relationships, and 
operations of Ispel proved more suitable than a relational approach.  

Generalisation proved to be a powerful technique for expressing the categories of Ispel 
elements and for factoring out common code. It also provided a structured framework in 
which new objects could be added. For example, implementation of the facility to add 
new features to a class was easier to implement in the Eiffel prototype than the Prolog 
prototype. Modification of many aspects of the Eiffel prototype were more 
straightforward than the corresponding aspects in the Prolog prototype. 

6.5.2 Eiffel and its Environment 

Due to the ease of representing most Ispel concepts in an object-oriented manner, Eiffel 
proved to be a good language in which to implement Ispel. The language is well defined 
and provides most object-oriented facilities in a consistent manner.  

Unfortunately, the Eiffel development environment provided is poor (Plumpton, 91), and 
greatly hindered the development of the prototype. Compared with the environment for 
LPA, the Eiffel environment is extremely deficient and lacks many useful facilities. Some 
of the deficiencies of the Eiffel environment include: 

• Little environment integration. The programmer must move between tools with 
different user interfaces which hinders development. 

• A lack of tools to assist in the design and implementation of programs. A visual 
programming environment would be helpful, and the Prolog prototype was 
used to develop and modify the structure for the Eiffel prototype. The graphical 
structuring tool good (Interactive, 89c) was essentially useless, as it does not 
allow Eiffel classes to be modified while browsing, and has a poor user 
interface. 

• A slow compiler and linker. This increased the turn-around time between 
program editing, compilation, and execution. 

• No on-line tools to help search the Eiffel libraries. The Eiffel libraries are difficult to 
use and a tool is required to help locate classes and features. 

• Poor user interface classes. The lack of dialogue boxes was a major problem, and 
the user interface classes supplied with Eiffel do not provide as many useful 
facilities as the LPA graphics functions. 
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• Common operations not automated. Many common operations during object-
oriented development, such as the renaming of features and classes, are not 
automated by the environment. 

Development of the Eiffel prototype indicated that a visual programming environment, 
such as the one provided by Ispel, would be a significant improvement on the existing 
Eiffel environment. 

6.5.3 Some Facilities for a Visual Programming Environment 

Development of the Eiffel prototype determined several facilities an environment for 
object-oriented programming should provide. These include: 

• A class location facility. The Eiffel library is hard to search by hand or using hard-
copy documentation. An on-line class locater would improve the access to this 
library. 

• Auto-update of renamed of features, classes, and parameters. This was a tedious and 
long task to perform when parts of the Eiffel prototype implementation were 
renamed. 

• Location of affected classes after a change. This is useful when the interface for a 
class has been changed. All affected classes need to be located and possibly 
updated. 

• A class abstraction facility. If was often necessary to determine where a feature 
had been defined, renamed, or re-defined. A facility to automate this is not 
provided by the current Eiffel environment. 

• Program navigation and visualisation facilities. This is a key advantage of a visual 
programming environment over the current Eiffel environment. 

6.5.4 Some Techniques Developed During Implementation 

During the implementation of the Eiffel prototype, several techniques were developed for 
object-oriented programming. These are of general applicability and are not confined to 
the implementation of Ispel in Eiffel. 

6.5.4.1 Selection of Classes 

The selection of classes to use when implementing object-oriented programs can be a 
difficult exercise (Meyer, 88). Some classes for Ispel were easily determined, especially the 
concrete classes that represented real world objects, such as the object classes which 
represent boxes, lines, classes, and features. These classes and their features are 
determined by the requirement for real objects to be represented. Similarly, the division 
of both operations and relationships into classes was straightforward, as there are several 
categories for each, and every operation and relationship is distinct. 
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More abstract classes such as the framework and user interface classes are more difficult 
to determine. For Ispel, the system was decomposed into logical sections at each step. For 
example, Ispel was divided into language, visual and textual elements, and the visual 
element into a decoder and visual representation. This modular decomposition can be 
used in other object-oriented designs. 

6.5.4.2 Class Abstraction 

Good use of abstraction is important in reducing code duplication, reusing information, 
and clear program structure (Booch, 85, and Meyer, 88). The inheritance hierarchies can be 
determined by analyzing which categories of classes share common features. In Ispel, the 
object, relationship, and operation classes could be further divided into subclasses with 
common features. 

Abstracting classes, such as the BOX class and ISPEL_WINDOW class, becomes necessary 
when classes become large or have too many features. A large class can be broken into 
separate classes with a division of responsibilities, and these can be linked using 
inheritance. The division of a class into sub-classes should be done with meaningful data 
abstractions (Meyer, 88). For example, the box class was split into aspects which 
represented the shape of a box, the lines connected to a box, and the other attributes of a 
box object. It is often necessary to use deferred features for some of these classes. Some 
features are required in more than one class, which can cause problems when using 
multiple inheritance. 

6.5.4.3 Use of Generic Classes and Inheritance 

Generic classes were used for some operations in Ispel, and for implementing lists. The 
Eiffel libraries supply a range of classes for list processing, and also classes for graphical 
input and output. Genericity can be used to good effect when objects with different 
feature types are required. For example, lists of boxes and lines in a view, create and 
unlink operations for objects, and feature to box and feature to line relationships. 
Genericity and inheritance assist reuse, and well designed class interfaces and class 
libraries assist the programmer in the application of re-usability (Burton et al, 87, and 
Meyer, 88). 

6.5.4.4 References to Other Objects 

The object-oriented style of programming is very modular, and there is no concept of 
global variables as in Pascal or C. In Ispel, there are some attributes which are useful for 
most classes, for example, default settings and common routines. In addition, some 
features of the main classes, such as the language and visual classes, were required in 
many Ispel objects. To make these available, references to these common objects needed 
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to be passed when creating new objects. This was done by using a class for defaults and 
common references, and passing a reference to this object to all other Ispel objects on 
creation. 

6.5.4.5 A Good Design is Important 

Development of Ispel proved the value of an adequate design for object-oriented 
programs. The initial object model for Ispel was useful for structuring the Eiffel prototype, 
but was not complete enough. Many changes to the structure of the prototype were 
required during development, and this hindered the development process considerably. 
The initial object-oriented model should have been more detailed, and all the classes and 
interfaces to the classes designed before implementation was begun. The development of 
this prototype would have been easier and quicker if this had been done. 

The most costly changes occurred when the interfaces to classes were not properly 
designed, or found to be insufficient. When different features for classes needed to be 
provided, or the number or type of parameters for features changed, a flow on effect to 
other classes occurred. In addition, restructuring of inheritance hierarchies or the addition 
of important concepts like history operations and relationship objects, can have major 
effects on the structure of programs. However, as Meyer (88) notes, object-oriented 
designs do change during development. 

An adequate design for object-oriented programs helps to reduce these problems. For 
example, the abstraction of the box and Ispel window classes had no effect on other 
classes in Ispel, because the interfaces to these classes remained the same. 

6.6 Summary 

A further prototype for Ispel was developed using Eiffel. This Eiffel prototype provides a 
visual programming environment for the Eiffel language. The prototype assisted in the 
development and refinement of an object-oriented model for the implementation of Ispel. 
The object-oriented model also provides a structured method for describing the main 
concepts of Ispel. The user interface aspects of the Eiffel prototype are described in this 
chapter. The environment it provides is not as good as the environment provided by the 
Prolog prototype. 

Ispel is divided into objects, operations, relationships, and framework classes, and these 
aspects were further refined during development of the prototype. Concepts such as 
visual representation, object dependency, history operations, and relationships were 
developed. The implementation of the Eiffel prototype is an improvement on the Prolog 
prototype, but still requires further refinement. Development of this prototype was 
evaluated, and some techniques for object-oriented programming identified. 
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Prototype development using an object-oriented language was useful for evaluating the 
current Eiffel environment. This was found to be deficient and not well designed for 
object-oriented programming. A visual programming environment for Eiffel, such as the 
one provided by Ispel, would be an improvement on the current environment for Eiffel.
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Chapter 7 
A Formal Definition of Ispel 

 
The Prolog prototype refined the user interface aspects of Ispel. It also helped to 
determine some of the facilities a visual programming environment for object-oriented 
languages should provide. The Eiffel prototype developed and refined an object-oriented 
implementation model for Ispel. However, neither of these prototypes addresses the 
problem of specifying exactly what the Ispel environment should do. They do not provide 
a method of describing how an object-oriented program is derived from an underlying 
representation. Nor do they define how the underlying representation is changed by 
operations applied to a visual representation of a program. 

This chapter presents a method for describing an object-oriented program, an underlying 
representation, and a visual representation in an abstract way. Mappings between these 
notations are defined, and operations on the visual and underlying representations are 
specified formally and described informally. 

7.1 The Need for a Formal Definition 

The design, implementation, and enhancement of the Prolog prototype indicated the need 
for a formalism of the concepts of Ispel. The lack of a formal model during 
implementation meant that many aspects of the environment were described in an ad-hoc 
manner. This resulted in some conflicts and inconsistencies, and no clear specification of 
what Ispel does. The relational model used in the first Prototype did not describe the 
interrelationships between different elements of Ispel in a constrained and structured 
manner. The data is more interdependent than a relational approach can model.  

The Eiffel prototype was developed to determine the elements of a formalism of Ispel. It 
was also used to assist the refinement of an implementation model for Ispel. The Eiffel 
prototype implementation structure was a significant improvement over the Prolog 
prototype, although this only describes the implementation aspects of Ispel. It is not 
sufficiently abstract to define the behaviour of Ispel in a concise manner. Nor does it 
provide a formal notation for this definition which can be shown to be complete and 
correct. 

It is difficult to describe informally how Ispel behaves. Chapters 4, 5, and 6 attempt to do 
this in the context of the two prototypes. However, a much more abstract and expressive 
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notation for Ispel would be more appropriate. A formal definition of the Ispel 
environment provides a concise specification which can be used to describe its appearance 
and behaviour. In addition, this formal definition will allow modifications and 
enhancements to the environment to be performed in a well defined and consistent 
manner. In addition, to provide a standardised interface from Ispel to other tools, a 
formal specification of the system is required. This will allow other tools to access and 
modify aspects of Ispel in a well defined manner. 

7.2 Predicate Calculus and Weakest Preconditions 

Conceptually, the Ispel environment models graphs which are manipulated by 
operations. The graphs that underlie Ispel can be abstracted out to model an object-
oriented program and a visual representation of this program. Operations on the visual 
representation can be mapped to the program. This formal definition describes these 
aspects of Ispel using a set notation. Semantic constraints are defined by the nature of the 
graphs, or in the operations which act upon the graphs. 

Operations on these graphs need to be modelled in some way and be expressed in a 
formal manner so that they can then be proved to be correct. The weakest precondition 
notation developed by Dijkstra (Gries, 81) can be used to formally prove the correctness 
of programs (see Appendix C). Ispel operations are expressed in terms of operations on 
graphs, and are formally defined using a form of the weakest precondition notation 
developed specifically for this task. Another method that could be used to describe 
operations is denotational semantics (Meyer, 90). This is a functional approach to the 
specification of state change. However, it was not used as a weakest precondition notation 
seemed a more appropriate method. 

7.3 Notation 

This formal definition of Ispel uses set notation and predicate calculus to describe the 
elements and operations that comprise Ispel. A brief summary of the notation used is 
given below. 

Predicate Calculus: 
• A∧B for the conjunction of A and B. 
• A∨B for the disjunction of A and B. 
• ¬A for the negation of A. 
• (∀i:i�Si:Ei)  for all values i in the range described by Si, the predicate Ei is true 
• (∃i:i�Si:Ei)  there exists a value i in the range described by Si such that Ei is true. 
• The notation: 

     Re
a

 
 indicates that a is replaced by e in predicate R. 
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• P1�P2  for predicate P1 true implies predicate P2 is true. 

Set notation: 
• S1≈S2  is the set union of S1 and S2. 
• S1-S2  is the set difference of S1 and S2. 
• E1�S1  denotes E1 is an element of S1. 
• E1�S1  denotes E1 is not an element of S1. 
• The notation: 

     
q(a)

a:p(a)
U

 
 denotes the set formed from the union of q(a) for all a given by the predicate 

p(a). 

Additional notation: 
• S1♦S2  denotes S1 becomes S2. 
• x←y  means that x is related to y in relation ℜ. 
• ←(x)  is the set { y | x←y } . If ℜ is a function, then this set will contain a single 

member {y}. 

A tuple notation is used. <t1,t2,...,tn>  is an n-tuple: the underlining is used for the names 
of the tuple items. t1(x)  refers to the first item of a tuple, t2(x)  the second, and tn(x) to the 
nth item. 

For further explanation of basic set theory and predicate calculus, see (Gries, 81). 

7.4 Structure of the Formal Definition 

Ispel is divided into four aspects. The core of Ispel is the underlying representation of 
diagrams. A visual representation of this underlying structure is comprised of views. 
These views are diagrams of part of the program which the underlying representation 
models. The actual object-oriented program being constructed and viewed in Ispel can be 
derived from the underlying representation. A graphical format of the visual 
representation (and hence the program) can be derived from each view, and a textual 
representation from the object-oriented program graph. These form a screen 
representation, which is the appearance of a program to a user of Ispel. Figure 7.1 shows 
how Ispel is divided into these four components. 
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Figure 7.1 The composition of Ispel. 

7.4.1 Object-Oriented Program 

An object-oriented program is defined as a directed, acyclic graph. Each vertex of the 
graph corresponds to a class, and each arc is a generalisation relationship between two 
classes. This is analogous to the approach used by Hamer to describe Class Language 
(Hamer, 90). 

7.4.1.1 Classes 

A class is a set of named expressions (features) f1,...,fn . The set of local features for class C 
is denoted by locals(C) . 

Object-oriented programs have some built-in classes, for example integer, boolean, and 
text. These can not have user-defined features or generalisations. 

7.4.1.2 Inheritance 

The arcs of the graph represent inheritance relationships between classes. This graph may 
be disconnected (i.e. consist of two or more non-connected sets of nodes and arcs), and a 
disconnected graph signifies that the program may have more than one distinct 
inheritance graph. 

C1 inherits directly from C2 if there is an arc from C1 to C2. This is denoted by C1∅C2 . The 
reflexive, transitive closure of the inherits directly relation is denoted by ». 
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The full set of features for class C1 is denoted as features(C1) . 

  
features(C1) = locals(C2 )

C2 :C1»C2
U

 

7.4.1.3 Features 

Each feature has a type which is a class or a list of some type. The domain of a feature is 
the class in which it occurs. For simplicity, all feature names are assumed to be unique. 

A feature is a 2-tuple <name,type> where: 
• name is the feature name, 
• type is the feature type, which is a class or list of some type. 

Figure 7.2 shows an object-oriented program and a graphical representation of this 
program. The circles of the program graph are nodes with their class names contained 
within. The arc from C2 to C3 denotes C2 being generalised to C3. Class C1 has one 
feature, <F1,C2>. The graphical representation is an example of how the Prolog prototype 
would represent this program in a view. 

C1

C2
F1C2

C3 C3

Program Graphical

C1

{<F1,C2>}

 

Figure 7.2 An object-oriented program graph and its graphical representation. 

7.4.2 Underlying Representation 

The underlying representation for a program is comprised of two graphs: an inheritance 
graph and a feature graph. Both graphs share the same nodes, which represent classes. 
The underlying representation graph is denoted by underlying_graph. 

The inheritance graph is a directed graph in which the nodes represent classes and the arcs 
represent generalisation connections between classes. This graph is comprised of a set of 
nodes (classes) {C1,...,Cn} . It also has a set of arcs (generalisations) {C1∅C2,...} . This graph 
may be disconnected. Figure 7.3 shows an example of the inheritance graph, and a visual 
representation of this graph. 
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C1

C2 C3

C1

C2

C3

Inheritance Graphical  

Figure 7.3 An inheritance graph and a visual representation of this graph. 

The feature graph for the program is a disconnected, directed graph. Each graph is a 
collection of nodes (classes). The arcs in this graph are labelled and represent feature 
connections between classes. This graph shares the same set of nodes {C1,...Cn}  as the 
inheritance graph. It also has a set of arcs (features) {C1(F1)∅C2,...} . Figure 7.4 shows an 
example of a feature graph, and a visual representation of this graph. 

C1

C2
F1

C3
F2

F1 F2
C1

C2 C3

C3
F3

F3

Feature Graphical  

Figure 7.4 A feature graph and a visual representation of this graph. 

For every node in the feature graphs, the arc names from a node form a set. This means 
that a class does not have more than one feature of the same name. Recursive features 
can be represented with a node having a feature arc connected to itself. 

7.4.3 Visual Representation 

The visual representation of Ispel is comprised of a set of views {V1,...,Vn} . Each view is a 
disconnected, directed graph, which is comprised of nodes and arcs. The nodes and arcs 
have attributes which are part of the underlying representation graphs. Each view graph 
of the visual representation is denoted by view_graph(V), where V�{V1,...,Vn} . Nodes are 
denoted by Ni and arcs by Ai, and both nodes and arcs are unique within a view graph. 
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Nodes in a view are either class nodes or feature arcs in the underlying representation 
graphs. Arcs in a view are either feature arcs or generalisation arcs in the underlying 
representation graphs. Arcs can not be elements of a view graph unless both the nodes 
which the arc connects are elements of the view graph. The attributes of nodes for a view 
graph do not form a set, as more than one node for a class or feature can be in a graph. 
This allows recursive features to be represented. Figure 7.5 shows an example view graph 
and a visual representation of this graph. 

N1{C1}

C1 C3

C2
F1

N3{F1(C2)}

A1{C1(F1) →C2} A2{C2→C3}

Visual Graphical

N2{C3}

 

Figure 7.5 An example view graph and a visual representation of this graph. 

Ispel views can overlap and contain the same nodes or arcs from the underlying 
representation graphs. The union of all the nodes and arcs of all views produces a subset 
of the underlying representation graphs. The textual representation of a class is derived 
from the object-oriented program graph. However, this can be modelled as part of the 
visual representation, if updating via the textual representation is to be provided. 

7.5 Mappings 

There are two mappings from the visual and underlying representations: the visual 
representation to its screen representation, and the underlying representation to an 
object-oriented program. In addition, operations on the visual representation are 
transformed into operations on the underlying representation. 

7.5.1 Visual Representation to Screen Representation Mapping 

The graphical location and appearance of views, and the user interface of Ispel, are 
ignored in this formalism. These aspects of Ispel do not affect the basic foundations 
described here. However, the visual representation must always be able to be rendered in 
some way. 

The different nodes and arcs of a view graph can be mapped to a graphical 
representation. Figure 7.6 shows nodes and arcs of the view graph and their equivalent 
graphical representation. The actual shape and location of the view graph element’s 
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graphical representation is not important, although lines will connect the boxes together 
to form a graphical representation of a view graph. 

N1{C1}

N3{F1(C2)}

A2{C2→C3}

A1{C1(F1) →C2}

Visual Graphical

C1

C2
F1

 

Figure 7.6 Nodes and arcs of a view graph and their graphical representations. 

Views are always forests of finite, directed graphs. Their nodes and arcs can always be 
mapped to graphical representations of boxes and lines. These boxes and lines can be 
arranged in any format in a window. A line connects the boxes (nodes) which the arc 
represented by the line connects in a view graph. A graphical representation of a view 
graph can always be drawn, and the translation of the view graph to boxes and lines is 
straightforward. 

7.5.2 Visual Representation to Underlying Representation 

The visual representation graphs share the nodes and arcs of the underlying 
representation graphs. Nodes and arcs can be added or removed from view graphs 
subject to some constraints which are described in Section 7.7. If nodes and arcs are 
removed from the underlying representation graphs, the consistency of the underlying 
representation will not be affected. This is because both graphs can be forests of 
unconnected graphs. 

However, a problem arises when a feature line is removed from a visual representation 
graph. This feature connection removal can not be represented in the underlying 
representation graphs, as a disconnected feature arc would only be connected to one node 
in the graph. To enable this to be represented, some form of pseudo-class would need to 
be introduced. A feature arc in the underlying representation feature graph would be 
connected to this pseudo-class to represent a temporarily disconnected feature. Figure 7.7 
shows how a pseudo-class would be used to disconnect a feature line. 
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C1

C2
F1

Visual Underlying
(no pseudo-class)

Underlying
(pseudo-class)

C1

C2

Cnull

F1

C1

C2

F1

?

Deleted Line

 

Figure 7.7 Using a pseudo-class to disconnect a feature line. 

This formal definition of Ispel does not permit feature lines to be deleted, which avoids 
this problem. Being able to temporarily disconnect features is convenient but not 
necessary. The same result can be obtained by cutting the feature from a class and adding 
it to another class. 

7.5.3 Underlying Representation to Object-Oriented Program Mapping 

It is not always possible to generate an object-oriented program from the underlying 
representation. This is because Ispel allows invalid object-oriented programs to be 
constructed. This is necessary to allow a programmer to construct several views of a 
program concurrently. However, to generate a program and compile it, this mapping 
must be valid. 

A mapping from the underlying representation to an object-oriented program can not be 
made if there are any inheritance cycles, as a cycle will be created in the object-oriented 
program graph. This will result when a class derived from a node in the underlying 
representation graphs inherits from itself. For the underlying representation graph, the 
set inherits_from(C1)  for class C1 can be defined as the non-reflexive, transitive closure of 
C1∅C2 . If C1�inherits_from(C1) , then a cycle would be produced in the object-oriented 
program graph and so a mapping can not be made. 

The nodes (classes) for the object-oriented graph are derived from a mapping of the 
underlying representation graph nodes and the feature arcs. Each class is defined as a 
named set of features. This set is derived from the arcs of a node in the feature graphs.  

The mapping for classes is defined as: 



Chapter 7 A Formal Definition of Ispel Page 136 

classes = {C1,...,Cn} (from the underlying representation nodes)  

  

locals(Ci) = < F ,Cj >
F,Cj :Ci (F )→Cj∈underlying_graph

U , whereCi ∈classes,1 ≤ i ≤ n

 

(i.e the 2-tuple <F,Cj> is a feature of class Ci). 

The arcs (generalisations) for the object-oriented graph are derived from a mapping of 
the underlying representation generalisation arcs. The set of arcs for each node in the 
program graph is defined as: 

  
arcs(Ci ) = Ci → Cj

C j :Ci→Cj ∈underlying_graph
U , whereCi ,Cj ∈classes,1 ≤ i ≤ n

 

The full set of arcs for the object-oriented program is the union of all the arcs for each 
node: 

  
arcs= arcs(Ci )

Ci :Ci∈classes
U

 

If the underlying representation graphs are kept consistent, and no inheritance cycles exist 
in them, then these mappings to an object-oriented program graph can be made. 

7.6 Operations 

The list of operations given here is not exhaustive, and only covers operations that affect 
the visual and underlying representation graphs. Some operations that affect the screen 
display (for example, window operations and view navigation) are mentioned but are not 
formally defined. These operations do not affect the underlying or visual representation 
graphs, and so do not require a formal definition. The operations presented and described 
here are implemented in both the Prolog and Eiffel prototypes. Table 7.1 lists the visual 
and underlying operations that have a formal definition, as well as some additional 
operations which do not have a formal definition. Operations denoted by * are described 
informally in this section, and operations denoted by † do not have a formal definition. 
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Visual Operations Underlying Operations Additional Operations 

Add a class box* Add a class node* Select/De-select a box† 
Add a generalisation line* Add a generalisation arc* Display class text† 
Add a feature box* Add a feature arc* Change views† 
Add a feature line Rename a class node* Create a new view† 
Rename a class* 
Rename a feature 

Rename a feature node 
Re-select a class node 

Create a new window† 
Delete a view† 

Re-select a class Delete an arc Delete a window† 
Hide a box*  Select a new view† 
Cut a line  Select a new window† 
Cut a box*  Change feature attributes† 
Expand a box   

Table 7.1 The formally defined operations on Ispel graphs and some additional non-formally 
defined operations. 

This description of some representative visual and underlying operations is presented in 
an informal manner. The operations presented illustrate how the various graphs are 
changed when building a program using Ispel. The changes to the visual and underlying 
representation graphs are presented, along with changes to an example graphical 
representation of the graphs. The formal notation which describes these operations is 
presented in Appendix C. A list of formal definitions for all the visual and underlying 
operations in Table 1 is provided in Appendix D. 

7.6.1 Add a Class Box and Node 

The programmer adds a class box to a view, V, and provides a name for the class, C1. If a 
node for this class does not exist in the underlying representation graph, then one is 
created: 

underlying_graph♦underlying_graph≈{C1}  

The node for the class C1 is also added to the view graph for the current view, V: 

view_graph(V)♦view_graph(V)≈{N1{C1}}  

The resulting underlying, visual, and graphical representations are shown in Figure 7.8. 
The underlying representation inheritance and feature graphs are merged into one for 
simplicity. 
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C1

Underlying Visual Graphical

C1 N1{C1}

 

Figure 7.8 The underlying, visual, and graphical representations after creating a class box and 
node. 

An additional class, C2, is added. Now underlying_graph = {C1,C2} and view_graph(V) = 
{N1{C1},N2{C2}}. 

7.6.2 Add a Generalisation Line and Arc 

A generalisation line from C1 to C2 is added, i.e. C1 is generalised to C2. This is a valid 
operation, as the visual representation does not have this arc in its arc set. If this 
generalisation arc does not exist in the underlying representation graph, it is added: 

underlying_graph♦underlying_graph≈{C1∅C2}  

This arc {C1∅C2}  is added to the view graph, V: 

view_graph(V)♦view_graph(V)≈{A1{C1∅C2}}  

The resulting graphs and their representations are shown in Figure 7.9. 

C2

Underlying Visual Graphical

C1

C2

C1N1{C1}

N2{C2}

A1{C1→C2}

 

Figure 7.9 The underlying, visual, and graphical representations after adding a generalisation 
line and arc. 

7.6.3 Add a Feature Box and Arc 

A feature box with feature name F1 and feature type C3 is added to C1. If the class C3 
does not exist in the underlying representation graph, a node for it is added. If an arc 
between C1 and C3 does not exist in the feature graph, it is added: 

underlying_graph♦underlying_graph≈{C1(F1)∅C3}  
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A node and arc for the feature box is added to the view graph for V: 

view_graph(V)♦view_graph(V)≈{A2{C1(F1)∅C3}, N3{F1(C3)}}  

The changes to the graphs in Figure 7.9 are shown in Figure 7.10. 

Underlying Visual Graphical

C1

C2

A1{C1→C2}

A2{C1(F1) →C3}

C3

F1
C1

C2

C3
F1

N2{C2}

N1{C1}

N3{F1(C3)}

 

Figure 7.10 The graphs and representation after adding a feature node, line, and arc. 

7.6.4 Hide a Box 

The box which represents the feature F1 is hidden. This only affects the visual 
representation, which has the node and arc representing this box removed: 

view_graph(V)♦view_graph(V)−{A1{C1(F1)∅C3},N3{F1(C3)}}  

The resulting changes to the graphs in Figure 7.10 are shown in Figure 7.11. 

Underlying Visual Graphical

C1

C2

C3

F1
C1

C2
N2{C2}

N1{C1}
A1{C1→C2}

 

Figure 7.11 The graphs and representation after removing a feature node and arc. 
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7.6.5 Cut a Class Box 

The box N1(C1) is cut from the diagram in Figure 7.10. In the visual representation’s view 
graph, the node N1(C1) is removed, along with all of its dependent nodes and arcs. The 
dependent nodes and arcs for a node Ni in view V are defined as: 

  

dependents(V,Ni ) = arcs_to_box(V,Ni )∪ dependent_boxes(V,Ni )∪
dependents(V,dependent_boxes(V,Ni ))

arcs_to_box(V,Ni ) = Ai
Ai :Nj (Ai )→Ni∈view_graph(V)

U

dependent_boxes(V,Ni ) = Nj
Nj :Ni (Ai )→Nj∈view_graph(V)∧arcs_to_box(V,Nj )={Ai}

U
 

For the node N1(C1), this is the union of all the arcs of N1(C1), all the nodes which have 
only one connection to a parent node (N1(C1)), and their dependent nodes and arcs. The 
dependents of N1(C1) for the example shown in Figure 7.10 are 
dependents(V,N1(C1))={A1{C1∅C2}, A2{C1(F1)∅C3}, N3{F1(C3)}} . These are removed 
from the view graph for V, along with N1(C1): 

view_graph(V)♦view_graph(V)−{N1(C1)}-dependents(V,N1(C1))  

The resulting changes to the graphs in Figure 7.10 are shown in Figure 7.12. 

Underlying Visual Graphical

C1

C2

C3

F1

C2
N2{C2}

 

Figure 7.12 The graphs and representation after cutting a class. 
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The change to the underlying representation is propagated to all view graphs. Any view 
Vi showing an arc Ai{C1∅C2}  will have this arc, a node Nj(C1) (where Ni(Ai)∅Nj) , and 
its dependents deleted: 

  

∀Vi:Ai{C1→ C2}∈view_graph(Vi ),
view_graph(Vi )← view_graph(Vi ) −{Nj (C1)}− dependents(Vi ,Nj (C1))  

7.6.6 Rename a Class 

Taking the example shown in Figure 7.10, the class C1 is renamed to be C4. This is a valid 
operation as long as there is not an existing node called C4 in the underlying 
representation graphs. Renaming of the arcs to and from C1 is also done: 

  R = underlying_graph,R← RC4
C1

 

As the visual representation view graphs use the underlying representation nodes for 
attributes, this change will be propagated to the affected views. The resulting changes to 
Figure 7.10 are shown in Figure 7.13. 

Underlying Visual Graphical

C4

C2

A1{C4→C2}

A2{C4(F1) →C3}

C3

F1
C4

C2

C3
F1

N2{C2}

N1{C1}

N3{F1(C3)}

 

Figure 7.13 The graphs and representation after renaming a class. 

7.6.7 Produce an Object-Oriented Program Graph 

An object-oriented program can be produced from the underlying representation graph 
shown in Figure 7.10, as there are no inheritance cycles in the graph. 

First, the classes are created from the nodes and feature graph. The set of classes 
generated is {C1,C2,C3} . C1 is a 1-tuple of feature <F1,C3>. 

Second, the inheritance arcs are derived from the arcs in the inheritance graph of the 
underlying representation. One arc, C1∅C2 , is produced. The object-oriented program 
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produced is a graph with the nodes {C1,C2,C3},  and an arc {C1∅C2} . Figure 7.14a shows 
this object-oriented program graph. Figure 7.14b shows the Eiffel program that 
represents this object-oriented program. 

 

C1

{<F1,C3>}

C2

{}

{}

C3

 

Figure 7.14a An object-oriented program derived from the underlying representation graphs. 

 
class C2 
 
end -- class C2 
 
class C1 
 inherit 
  C2 
 feature 
  F1 : C3; 
end -- class C1 
 
class C3 
 
end -- class C3 

Figure 7.14b An Eiffel program derived from the object-oriented program graph. 

Appendix D contains a formal definition of the operations described in this section 
together with the other visual and underlying operations shown in Table 7.1. 

7.7 Extensions to the Formalism 

This formal definition of Ispel can be extended as more visual programming and 
representational power is added to Ispel. For example, list and public features, and class 
parameters could be formally defined. It can also be used to describe the textual elements 
of classes with the visual components and how these interact. 

The notation used to describe the operations in Appendix D is not very easy to 
understand or to work with. A more visual notation that shows how the graphs are 
manipulated using diagrammatic and textual techniques may be an improvement. This is 
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because it would describe the changes to the Ispel graphs in a visual manner which is easy 
to understand. 

Defining other aspects of Ispel formally should be attempted in future. For example, 
additional tools for the Ispel environment will need to interact with these visual 
programming concepts in some way. Although the integration of tools, both their user 
interfaces and communication, is more an implementation issue than a formal one, a 
model of how tools interact with the visual programming components of Ispel is 
important. 

Implementation models for the visual programming, user interface, tool construction, and 
tool integration aspects of Ispel could be developed (see Chapter 9). A formal model 
would provide a guide-line as to how other aspects must interact with the visual and 
underlying representations that define Ispel, and the operations that act on them. 

7.8 Summary 

The need for a formal definition of Ispel was recognised during the development of the 
two prototype environments. The visual and underlying representations of Ispel have 
been defined using graphs. Both a graphical representation and an object-oriented 
program can be derived from these graphs. A graphical representation of views that 
comprise the visual representation can always be made. An object-oriented program can 
be derived from the underlying representation when there are no inheritance cycles in the 
underlying representation graphs. 

Manipulations on the visual representation can be transformed into manipulations on the 
underlying representation. These manipulations, called operations, allow a program to be 
constructed graphically. An informal description of a subset of these operations has been 
presented in this chapter. These operations maintain the consistency of the visual and 
underlying representations. Hence, a graphical representation and object-oriented 
program can be produced from them. Their effects on the visual and underlying 
representations are formally defined in a weakest precondition notation in Appendix D.
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Chapter 8 
Conclusions 

 
This chapter summarises the research work in this thesis, and presents the contributions 
and conclusions of this research. Visual programming techniques help to provide 
improved programming environments for object-oriented languages. The two 
prototypes of Ispel provide visual programming environments for Class Language and 
Eiffel. These allow programs to be constructed and viewed more easily than the current 
environments for these languages do. Development of these prototypes showed that 
specification, design, and prototyping are important in the production of interactive 
software. The formal and implementation models for Ispel show that it has well defined 
concepts, and can be expressed in an object-oriented manner for implementation. 

8.1 Research Contributions 

This research has contributed the following to the areas of programming environments, 
visual programming, and object-oriented development: 

• The Ispel visual programming environment has been designed, and two 
prototype environments have been implemented. Ispel allows both Class 
Language and Eiffel programs to be constructed visually within a consistent, 
easy-to-use programming environment. 

• The two prototype environments of Ispel have helped to refine the user 
interface and implementation aspects of Ispel. They also show that a visual 
programming environment for object-oriented languages is feasible, and is an 
improvement over current environments. 

• An object-oriented implementation model for Ispel has been developed. This 
shows that Ispel can be represented in an object-oriented manner and that this 
representation is appropriate. This model can be used as the basis for an 
implementation of Ispel or other visual programming environments that share 
similar concepts. 

• A formal description of Ispel has been defined. This describes the behaviour of 
Ispel in a concise and abstract manner. It also proves that the environment 
concepts are not ad-hoc, but fit together and interact in a mathematically correct 
way. 

• Some visual programming and object-oriented development techniques have 
been developed during this research. These are useful for further object-
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oriented development of Ispel and other applications. They also assist 
development when using the Ispel visual programming environment. 

8.2 Programming Environments 

Several important aspects of programming environments have been determined during 
this research. Use of the LPA, Eiffel, Prograph, Class Language, and other environments 
has clarified these issues. 

8.2.1 Suitability of Programming Environments to Languages 

Programming environments should be well suited to the language and programming 
paradigm being used. For example, the LPA environment is designed specifically for 
Prolog programming, and assists this task well. However, the Eiffel environment is more 
general and could be used for programming in several different languages (for example, 
Unix C and C++). There are few specific facilities to aid object-oriented programming and 
the environment is not well integrated. This makes it difficult to use and it does not assist 
program development as well as an environment should. An environment which is 
designed for the language and paradigm it is used for assists program development. 

8.2.2 Integration and Appropriate Tools 

Environments which are well integrated and provide appropriate tools for development 
enhance software production. THINK Pascal, Prolog, and Prograph are examples of such 
environments. Developing programs in these environments is enhanced by having all the 
required facilities integrated into one environment. These have user interfaces and data 
storage mechanisms which are well integrated. They also provide useful tools like 
debuggers, editors, and libraries. 

Conversely, the current Eiffel, Class Language, and Unix C environments are not well 
integrated, nor do they provide many tools to assist development. For example, the Eiffel 
environment consists of a collection of loosely integrated tools which have different user 
interface behaviours. Few facilities for object-oriented programming, such as structure 
visualisation, class library searching, program structuring, and navigation, are provided. 
Thus this environment does not provide much assistance when developing Eiffel 
programs. 

Good quality design and maintenance facilities are also important and these should be 
integrated into a single environment. None of the currently available environments 
provide a complete integration of design, analysis, implementation, and maintenance. 
Ispel assists program development by providing a consistent user interface and tools 
which are cleanly integrated into the environment. Ispel can be used to design, 
implement, and maintain object-oriented programs. These facilities are part of one tightly 
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integrated, language-centred environment designed specifically for object-oriented 
programming. As a consequence, the prototypes of Ispel provide better environments 
than the existing Class Language and Eiffel environments. 

8.2.3 Performance 

Performance is important to provide adequate turn around time during program 
development. Prolog, Prograph, and THINK Pascal provide fast compilers and 
sophisticated debugging facilities which enhance programming. However, the Eiffel 
compiler is slow and the debugging facilities are not as useful. 

8.3 Visual Programming Environments 

Visual programming environments provide significant advantages over conventional 
environments (Ambler and Burnett, 89, and Myers, 90). Visual programming 
environments require a consistent user interface throughout to be effective. This is 
because different behaviours in different parts of an environment hinder development. 
Ispel provides a consistent user interface which is a big improvement on the existing Eiffel 
and Class Language environments (see Section 5.1). Visual programming can provide a 
framework for closer environment integration and tool communication. The underlying 
representation used in Ispel, and its implementation model, provide a basis for this. 

Visual programming allows programs to be constructed and viewed in a more natural 
and expressive way than textual programming (see Sections 2.3, 5.1, and 5.5). Ispel allows 
object-oriented programs to be constructed and visualised using a graphical 
representation of their structure. Ispel also integrates the design and analysis phases of 
object-oriented programming with program construction and maintenance. This merges 
the boundaries between these phases of development which increases productivity. 
Visual manipulation and display are often more abstract than textual programming, and 
thus provide a more powerful programming technique. 

Visual programming provides a context in which to view elements of programs, and the 
visual representation of a program can be used for navigation throughout a program (see 
Section 3.5). Textual programming does not provide such a high-level visualisation and 
cannot provide as versatile navigation facilities or context representation. Ispel provides 
both a context for programming (views) and navigation facilities between these contexts 
(see Sections 3.6 and 5.5). It allows a programmer to specify these contexts based on the 
object-oriented structure of a program. This enhances the flexibility and productivity of 
the environment. 
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8.4 The Ispel Visual Programming Environment 

Ispel provides a better programming environment than the current Class Language or 
Eiffel environments. It provides an improved environment from the programmer’s 
perspective, and has well defined formal and implementation aspects. 

8.4.1 The Prototypes of Ispel 

Both prototypes of Ispel served their purpose for aiding the refinement of Ispel. The 
Prolog prototype is extremely useful for constructing and browsing object-oriented 
programs. It was also useful for other tasks, such as the construction of many of the 
diagrams in this thesis. The Prolog prototype has a good user interface, adequate 
performance, and provides some flexible visual programming facilities (see Chapters 4 
and 5).  

The Eiffel prototype does not provide the same functionality of the Prolog prototype, as it 
does not have multiple views, windows, or applications. However, its visual 
programming facilities are similar, and its implementation model is superior (see Section 
6.4). Neither prototype can be used to develop Class Language and Eiffel programs, as 
they require integration with a parser, compiler, and run-time system for each language. 

8.4.2 User Interface Issues 

The Prolog prototype of Ispel uses the Macintosh desktop metaphor. This graphical, direct 
manipulation interface is easy to use, flexible, and powerful. This interface provides a 
standardised framework which can be used to integrate other tools into the environment. 
The user interface of the Eiffel prototype is not as aesthetically pleasing as the Prolog 
prototype’s, but is functionally equivalent (see Section 6.2). 

The implementation model developed using the Eiffel prototype describes the structure of 
Ispel, and can be used as the basis for an implementation of the environment. Similarly, 
the formal definition for Ispel provides a very high-level description of the behaviour of 
the environment. This is important for ensuring future extensions to it are well defined 
and consistent. 

However, the most important aspect of a programming environment is its user interface 
and the facilities it provides to aid programming. If the implementation and formal 
description of an environment are excellent, but the environment provided does not 
perform well, a programmer will not be satisfied. An environment that performs well and 
assists programming, but is hand-coded and not extensible, will be preferred to one that 
has a “better” implementation and definition. The performance of an environment must 
be remembered when constructing implementation and formal models. The way an 
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environment assists program development is the most important aspect from the 
programmer’s point of view, not how it is implemented or its formal basis. 

8.4.3 Visual Programming Issues 

Some key concepts of Ispel include: 
• Multiple views of a program. Both graphical and textual views are provided, and 

these can share information. The ability to move between different views 
allows programmers to view their program at differing levels of abstraction. 
This enhances productivity and assists programmers in understanding their 
programs better. 

• Integration of graphics and text. Programmers can move between textual and 
graphical representations of programs, and use the most appropriate method 
of representation. The graphical representation of object-oriented programs in 
Ispel is more flexible, abstract, and descriptive than an equivalent textual 
representation. 

• Maintenance of consistency between graphics and text. The graphical and textual 
representations always represent the same information, and changes to one 
representation affect the other. Few existing systems achieve this level of 
integration. 

• Visual programming by manipulation of diagrams. Visual programming is achieved 
by programmers manipulating diagrams, which results in the high-level, object-
oriented aspects of programs being constructed. Manipulation of this graphical 
representation gives object-oriented programming a more interactive feel 

• Program visualisation and browsing. This is provided by multiple views and 
navigation facilities between these views. 

• Environment integration. A consistent user interface is provided, and the 
provision for shared data storage and an extensible environment. 

Some useful visual programming techniques have been developed by using the Prolog 
prototype of Ispel (see Section 5.5). These include structuring views around different 
information and using views to provide contexts for programming 

8.4.4 Implementation Issues 

The Eiffel prototype of Ispel refined the notion of an environment framework, program 
objects, operations, and relationships. The concepts of object dependency and visual 
representations for language objects were developed. Constraint of visual program 
manipulation can be achieved using relationship objects, which can also be used to 
propagate change. The framework for Ispel was structured around user interface classes 
in the Eiffel prototype. Although these ideas and the structure of the Eiffel prototype 
require further refinement, this provides an implementation basis for Ispel.  



Chapter 8 Conclusions Page 150 

This object-oriented implementation model captures the key aspects of visual 
programming and their interactions. The Prolog prototype uses a simplistic method of 
storing data and lacks good design. Implementation of the Eiffel prototype resulted in a 
more structured prototype for Ispel than the Prolog prototype. This prototype could be 
extended more easily and further than the Prolog prototype because of its improved 
implementation model (see Section 6.4). 

It is important to allow for environment extensibility, integration with other tools, correct 
functionality, and ease of maintenance when implementing environments. A generalised 
implementation model also assists in the construction of other visual programming 
environments. Both prototypes had to be constructed from scratch, as a general 
implementation model for visual programming environments does not exist. In addition, 
components that could be reused to assist environment construction were not available 
for the prototypes. A general implementation model and collection of reusable 
environment components would assist the development of new visual programming 
environments. 

8.4.5 Formal Specification 

Formalism is important in visual programming environments as it allows the 
environment to be described. It provides a fundamental basis for the implementation of 
the environment, and for the operations that can be performed. Formal definition of Ispel 
provides a concise and complete specification of the environment and its behaviour. This 
means the environment is well defined and does not rely on ad-hoc implementation 
aspects to function. Ispel can be extended by adding new objects, operations, and tools. 
These can be specified in a formal manner and integrated into the existing formal 
definition. The formalism of Ispel ensures that when these new features are implemented, 
they interact with the existing environment correctly (see Section 7.1). 

8.4.6 Defining Visual Aspects 

Specifying and designing Ispel was difficult due to a lack of adequate descriptive 
techniques for user interfaces. The writing of a report on the Prolog prototype, the object 
model for the Eiffel prototype, and this thesis highlighted the difficulties in describing 
visual aspects using text. Diagrams are very useful, but they do not describe changes to 
objects well. An alternative approach to specifying and describing user interfaces and 
other visual, interactive systems is required. 

8.5 Program Development 

Development of the Prolog and Eiffel prototypes demonstrated the value of good 
software engineering techniques. The Prolog prototype was specified, and a Prolog 
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implementation designed, before implementation was begun. Many ideas were 
developed during these phases which were used in the Prolog prototype. Comparisons to 
other systems were made and many problems and alternate approaches worked out on 
paper. The rapid development of the Prolog prototype showed good specification and 
design of software enhances programming. 

The design of the Eiffel prototype was not sufficient to enable a good implementation to 
be based on it. This was because the object-oriented design of Ispel was refined during 
development of the Eiffel prototype, which resulted in many changes to the original 
design. The lack of a clear initial design for this prototype hindered its development. 
However, without some initial design, construction of the Eiffel prototype would have 
been even more difficult. 

An important aspect of the development of the Ispel prototypes was the refinement 
approach employed. Design, implementation, and maintenance are iterative processes, 
and feedback between these phases of development is important (Coad and Yourdon, 91, 
and Chikofsky and Rubenstein, 88). However, development of Ispel demonstrated that 
specification and requirements analysis needed to be refined during development as well. 
This was because the requirements of Ispel were not fully understood at the outset of the 
project. The lack of descriptive techniques for visual manipulation systems also 
contributed to a changing specification during development. How to achieve many visual 
programming techniques was determined by testing different designs and approaches 
using prototypes (see Sections 4.3 and 6.3).  

A refinement approach to development is particularly appropriate for interactive 
software that utilises direct manipulation interfaces and graphical representations. 
Development of Ispel showed that the exact requirements, specification, and desired 
behaviour of these systems is often not known in advance. Prototypes were required to 
refine these concepts and to determine the implementation issues. Figure 8.1 shows the 
development phases for software development and interactive software development 
which were identified during this research. 
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Figure 8.1 Phases of development for software systems. 

A rapid prototyping approach was employed for the development of Ispel. As aspects of 
visual programming environments were not fully understood at the start of Ispel 
development, these were refined by the use of prototypes. Rapid prototyping is especially 
important for user interface system development. This is due to the interactive nature of 
the systems, which is difficult to specify using conventional textual and diagramming 
methods. Rapid prototyping of Ispel determined suitable approaches to providing 
facilities. It also revealed that what looked good on paper didn't always work in practice. 
Rapid prototyping also provided the necessary feedback to other phases of development. 
For interactive software, rapid prototyping is very useful for testing and refining ideas, 
and understanding how a final product will look and behave. 

To assist rapid prototype development, a suitable prototyping language should be 
chosen. LPA Prolog was suitable due to its good environment, high-level graphics and 
user interface facilities, and fast development time of programs. Eiffel was not suitable as 
a rapid prototyping language. It does not have an integrated, easy to use programming 
environment, the language and libraries do not provide adequate graphical facilities, and 
the compiler is too slow. This means ideas cannot be programmed and tested rapidly nor 
effectively in Eiffel. 
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8.7 Prolog Programming 

The ease of implementation of the Prolog prototype in LPA proved how an integrated, 
well-designed environment can assist programming. However, the lack of structuring in 
Prolog, both for data structures and predicates, made implementing some aspects of Ispel 
difficult. For example, a relational database system had to be constructed to store 
information on Ispel applications. The lack of typing and compile-time checking of 
predicate parameters allowed many errors to occur which were difficult to locate. This is 
difficult to change due to the nature of the Prolog language. The debugging tools 
provided with LPA are good, but could be improved by providing better methods for 
stepping through programs and identifying errors. 

8.8 Object-Oriented Programming 

Object-oriented programming is a promising paradigm. The focus on structuring systems 
around data structures assists the design, implementation, and maintenance processes. 
The Eiffel prototype showed that object-oriented programs often have a cleaner structure 
and are easier to understand and modify than procedural programs. Development of the 
Eiffel prototype demonstrated the value of encapsulated data and routines for program 
modularity and for helping to eliminate programming errors. Generalisation is useful for 
both code-sharing, categorisation, and polymorphism of objects. These techniques are 
utilised in the Ispel implementation model. The emphasis on class reuse and class 
abstraction in object-oriented programming enhances programming productivity. Many 
of the library classes provided by Eiffel were reused, and some of the classes in the Eiffel 
prototype were abstracted for reuse. 

Implementation of the Eiffel prototype demonstrated many of the important advantages 
of object-oriented programming (see Section 6.4). However, it also showed that a good 
programming environment is necessary to make effective use of the benefits of object-
oriented ideas. The lack of a suitable class library tool made class reuse difficult in Eiffel. A 
visual programming environment would assist design, implementation, and maintenance 
of object-oriented programs. This is achieved through the improved visualisation of 
programs and greater abstraction of the programming process. Ispel provides such an 
environment. Use of Ispel to construct some Class Language programs and model the 
Eiffel prototype demonstrated the effectiveness of visual programming for object-
oriented languages (see Sections 5.1 and 5.5). 

To fully utilise the benefits of object-oriented programming, good object-oriented design, 
analysis, and programming techniques must be employed. Some of these programming 
techniques have been described in Section 3.2. Some additional techniques have been 
developed during implementation of the Eiffel prototype (see Section 6.5). Use of the 
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Prolog prototype of Ispel has developed some visual programming techniques which 
assist object-oriented programming (see Section 5.5). 

8.9 Summary 

Good programming environments assist the development of software, and visual 
programming techniques are useful for creating improved programming environments. 
These visual programming environments are particularly suitable for object-oriented 
languages. This thesis has developed Ispel, a visual programming environment suitable 
for Class Language and Eiffel. Two prototypes of this environment have been 
implemented. The Prolog prototype refined the user interface and visual programming 
aspects of Ispel, and the Eiffel prototype developed an implementation model for it. A 
formal specification of Ispel has been defined which allows it to be expressed in a concise, 
high-level manner. It shows Ispel to be well defined and consistent, and provides a basis 
for further enhancement of the environment.  

The development of new methods to assist environment specification and construction is 
important. However, from the programmer’s point of view, the most important aspects 
of visual programming environments are the user interface and the performance of the 
environment. An environment is judged on whether or not it assists program 
development, and to what degree. 

Some visual programming and object-oriented programming techniques have been 
developed during this research. The environments for LPA and Eiffel have been 
evaluated, and some important qualities for programming environments identified. The 
implementation of the two prototypes of Ispel has affirmed the importance of good 
software engineering techniques during development.
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Chapter 9 
Future Research 

 
Ispel, a visual programming environment for object-oriented languages, has been 
developed, but requires further refinement and abstraction. Two prototypes of Ispel have 
been implemented during this research. Both Ispel and its prototypes can be extended to 
provide more visual programming facilities. In addition, the Ispel environment requires 
more tools to facilitate object-oriented development. The implementation model 
developed by the Eiffel prototype requires more refinement and abstraction. The formal 
specification of Ispel needs to encompass further aspects of the environment, and be 
generalised. An in-depth performance analysis of an Ispel prototype is required to verify 
that it enhances the programming process. 

The Ispel environment shares many common aspects with other visual modelling 
systems. A method of factoring out these commonalities, or expressing them at a higher 
level of abstraction, is required. This would make their specification and implementation 
simpler and more accurate. It may be possible to produce a generator or collection of 
components for the construction of visual programming environments and other visual 
modelling systems. 

9.1 Enhancement of Ispel Visual Programming 

During development and enhancement of the Prolog and Eiffel prototypes of Ispel, many 
additional facilities for the environment were identified. Some of these may not be 
particularly useful, while others are essential for a usable visual programming 
environment. These proposed extensions to Ispel are briefly discussed in the following 
sections and examples presented where appropriate. 

The enhancements discussed here use the Prolog prototype as an implementation of Ispel. 
As the Eiffel prototype has the same functionality as the Prolog prototype, enhancements 
to its user interface are not discussed. 

9.1.1 Improvements to Existing Facilities 

Some of the existing facilities provided by Ispel are not adequate and can be improved. 
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9.1.1.1 Expand 

The expand facility described in Section 5.4.5 is very useful, but requires enhancement. The 
expand facility should be made recursive so multiple levels of class details can be 
expanded. Expand should take account of the positions of expanded details in other views 
and use these when adding new elements to a view. A class to be expanded should 
indicate whether it has details which can be expanded. This could be done either with 
additional icons on class and feature boxes, or in the expand window itself. Figure 9.1 
shows an improved expand facility dialogue box. Figure 9.2 shows an example of a new 
feature box which is expanded with the options shown in Figure 9.1. 

 

Figure 9.1 An improved expand dialogue box. 
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Expand

 

Figure 9.2 An example of a feature box being expanded. 

9.1.1.2 Interface Changes 

During development of the Eiffel prototype, and modelling the Eiffel prototype in Ispel, a 
problem with changes to class interfaces was discovered. Neither the existing Eiffel 
environment nor Ispel assists in the propagation of interface changes to classes which use 
the interface of a modified class. For example, the Roof class has a feature called area with 
type integer. If this feature is modified so it takes two arguments and is of type float, all 
classes which use this feature of Roof must be located and modified. Ispel should assist the 
programmer by locating the classes that use the modified interface. It could store them in 
a list to enable the programmer to conveniently move through and update the affected 
classes, or semi-automate this process. 

9.1.1.3 Navigation 

The navigation facilities of Ispel could be enhanced by providing more flexible, powerful, 
and faster selection options for views. This could be achieved by providing pop-up menus 
on class and feature boxes. These would allow the programmer to select any view a class 
is used in, not just its primary or secondary views. For example, when Roof is used in a 
view as a feature type. It is often useful to be able to move to this view when changing 
the interface to Roof. The Hypertext idea of buttons may be a flexible way to connect 
views. A button could be added to a view which, when clicked on, displays another, 
related view. This button idea could provide other facilities as well. For example, 
providing documentation for a view. Figure 9.3 shows an example window which has 
pop-up menus and buttons. 
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Figure 9.3 An example window which has pop-up menus and buttons. 

9.1.1.4 Automatic Layout 

Ispel allows diagrams to be laid out however the programmer wishes. This is the most 
flexible approach to the layout of diagrams, which is not provided in many other systems 
(Mannucci et al, 89, Myers, 90, and Reiss, 85). Although there are advantages to allowing 
programmers to lay out diagrams how they wish, this can be a time-consuming process 
(Mannucci et al, 89). An alternative approach to increase productivity and standardise 
layouts is a semi-automatic layout system. These could behave like style sheets in 
Microsoft Word, and be a template which prescribes a standard format for class structure 
diagrams. However, like style sheets, diagram templates would not constrain the 
programmer to using only one layout. Instead, programmers could rearrange diagrams 
to a format they prefer. 

All existing programs for Class Language and Eiffel have been constructed without the 
use of Ispel. It would be necessary to generate some automatic layout for these system so 
they can be maintained using Ispel. This is a difficult task, as important classes, which 
should be primary classes for views, are difficult to identify. Also, the distribution of 
features and generalisations across views is very difficult to achieve correctly 
automatically, and is often dependant on an individual programmer’s preferences. 
However, some heuristics for automatic layout could be developed to assist this process. 

9.1.1.5 Preferences 

The preferences option could be extended to allow more preferences to be set. For 
example: 

• To provide different diagram formats or layouts. 
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• To alter menu or palette options in order to tailor the environment to a 
particular user or project.  

• To display different information in different views or windows. For example, a 
programmer may want to hide all feature names and implementation details in 
views while designing a system, and then add the names later (Coad and 
Yourdon, 91). 

9.1.1.6 Primary Classes 

The Ispel primary class concept needs to be defined more rigidly. The visual 
representation of primary classes should not be deleted from views. It may be useful to 
allow more than one primary class for a view. For example, a multiple inheritance 
hierarchy may have two parent classes as the primary classes for the view. 

9.1.1.7 Hiding Boxes 

The notion of hiding boxes from views may be useful. Boxes could be given a priority 
rating which determines whether they are shown in a view at a certain time or not. For 
example, unimportant features of classes could be hidden in a view most of the time. A 
menu option could be provided to show the hidden boxes in a view. Multiple views can 
provide this at present. However, allowing boxes to be hidden (for example, all features 
of simple class types are always hidden by default), may enhance program development. 
This is because it provides more flexibility to programmers to view programs as they 
wish, and selectively change their view of a program. 

9.1.2 Increase Visual Programming Power 

The current prototypes of Ispel allow only a limited range of Class Language and Eiffel 
programs to be constructed and viewed graphically. To increase the visual programming 
capabilities of the environment, more aspects need to be programmed graphically. 

9.1.2.1 Classification for Class Language 

The classification feature of Class Language can be programmed graphically. It is a 
structural component of Class Language and has a visual representation (Hamer, 90, and 
Mugridge, 90). An example of a classification feature is shown in Figure 9.4. The Roof 
class has a classification feature called RoofKind. This classifies Roof into FlatRoof, 
StarRoof, RidgedRoof or OtherRoof dynamically at run-time. Note that classification 
and inheritance lines can be merged and represented in the same diagram (Hamer, 90, 
and Mugridge, 90). 
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Figure 9.4 An example of a classification feature represented graphically. 

9.1.2.2 Generic and External Classes 

Ispel does not allow the representation or manipulation of parameterised (generic) 
classes, or Class Language external classes. A visual representation for these kinds of 
classes can be developed and they can be programmed and represented visually. Figure 
9.5 shows some proposed representations for generic and external classes. The first two 
representations show a linked list feature of Roof. The third shows a feature of Roof 
whose type is an external class. 

Roof

LinkedList

RoofBracing

Bracing

Roof

LinkedList

RoofBracing
Bracing

Roof

ExtGetType
GetType

 

Figure 9.5 Proposed representations for generic and external classes. 

In addition, different iconic representations for library classes (for example, shading for 
aggregate classes like list and array) and application-specific classes could be provided. 
This would enhance the visual representation of programs. 

9.1.2.3 Procedural and Functional Aspects 

The procedural and functional aspects of Class Language and Eiffel are currently 
programmed as text. The Class Language main program and initial instances do not 
currently have a visual or textual representation in Ispel. Systems like Prograph 
(Gunakara, 89) allow the procedural and functional aspects of the language to be 
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programmed visually. However, the Prograph dataflow representation is not easy to use, 
and is inappropriate for many applications. Further research to replace some or all of the 
remaining textual aspects of Eiffel and Class Language in Ispel may be worthwhile. 

9.1.3 Cut, Copy, Paste, and Undo 

A facility that is useful in the Eiffel prototype is the Undo operation. This should be 
provided in all interactive software, as errors are easy to make but often difficult to 
reverse. The PECAN environment provides a history list which can be manipulated by 
the programmer to re-execute operations or revert to an earlier state (Reiss, 85). A similar 
facility in Ispel would be valuable. This could be extended to provide a macro facility for 
the addition of common diagram components or operations. 

Most direct manipulation systems provide a facility to cut, copy, and paste information, 
either graphically or in text. A similar facility in Ispel would assist the construction of 
programs. It would allow common aspects from different (or the same) views to be 
copied or cut, and pasted elsewhere. This would increase programmer productivity. 

A problem with the cut, copy, and paste notion is their semantic meaning. The 
programmer may want to cut both the visual and underlying representations, or only 
one of them. Implementation issues must also be dealt with when providing this facility. 
For example, a programmer may cut the visual part of a view, and then delete its 
underlying representation part in another view. The effect of pasting the cut visual 
representation is either undefined, or requires a modification of the underlying 
representation. A constrained or modified form of cut, copy, and paste would be useful. 
However, a formal specification of these operations is required to ensure they behave in a 
sensible, defined manner. 

9.1.4 Parser for Graphics 

Ispel requires a parser so changes to the textual representation of a class can update the 
underlying representation. Parsing a textual representation is fairly straightforward, as is 
locating changes to the underlying representation. However, the affect on the visual 
representations of the class is not well understood. For example, when a new feature is 
added to a class textual representation. The programmer may, or may not, want this 
change reflected in one or more of the visual representations of the class. A semi-
automatic way of determining whether a new feature should be added to a view may be 
useful. Automatic layout of these new features would be necessary. 

9.2 Ispel Development Environment Tools 

In addition to further enhancements to the visual programming component of Ispel, the 
environment requires more tools to enhance object-oriented programming. Some 
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additional tools are discussed in the following sections. Any additional tools will need to 
be integrated into Ispel so they preserve the consistent user interface and data storage 
mechanisms. The Prolog prototype can be enhanced by the addition of these tools. 
However, a different implementation may be required to gain the full benefit from them, 
due to the deficiencies of the Prolog prototype implementation. 

9.2.1 Compiler and Run-Time System 

Ispel needs to include a compiler and run-time system for the language it provides a 
development environment for. These must be integrated into the environment and use 
an interchange data format recognised by Ispel. For example, existing textual compilers 
could be used by having Ispel generate the text for a system. The compiler could then be 
invoked with this text as input. The error reporting and debugger for a language must be 
integrated with the Ispel user interface and other environment tools. For example, errors 
in classes could be recorded. Then Ispel could provide a facility to move to erroneous 
classes and correct them. Trellis/Owl provides a “grass catcher” tool which does this 
(O’Brien et al, 87). 

9.2.2 Class Library System 

To facilitate class reuse, a library of general purpose classes and application specific classes 
must be provided. Suitable tools to search and modify this library (see Sections 9.2.3 and 
9.2.4) must also be provided within the programming environment (Fisher, 87, Meyer, 88, 
and O’Brien et al, 87). This is particularly important for object-oriented programming, 
which emphasises reuse of existing classes as features or generalisations for new classes. 

A class library must store the visual and textual representation of classes as an Ispel 
application. It must also allow the classes and class interfaces to be read by other Ispel 
applications, but the classes cannot be updated by these applications. Specialisation of 
library classes must be permitted. For programming in the large, where more than one 
person is using the class library simultaneously, issues of version control and propagation 
of change must be addressed. When constructing large applications in Ispel, similar issues 
must be addressed. A project database or library, which controls access and updates, may 
be a solution (Burton et al, 87, Fischer, 87, Wasserman and Pircher, 87, and Wasserman et 
al, 90). 

9.2.3 Class Abstracter and Documentation Tool 

To search a class library for suitable classes, a method of abstracting and documenting 
classes is required. This facility can also provide system documentation for an object-
oriented program (Coad and Yourdon, 91, and Meyer, 88). Class interfaces and 
inheritance hierarchies need to be stored for searching and browsing by a programmer. 
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This allows a programmer to select desired features from a class, and thus reuse the class. 
In addition, classes and their features need to be documented in a standardised manner. 
This allows keyword searches for elements of the library. The documentation can be 
uplifted and included in system documentation or stored for use by other programmers. 
Documentation in current environments is often either not catered for, inconsistent, or is 
not enforced. This often hinders software development and maintenance as adequate 
documentation is essential for describing a software system (Coad and Yourdon, 91, Dart 
et al, 87, Meyer, 88, and Wasserman et al, 90). 

9.2.4 Class Location Facility 

A class location tool for searching the class library, utilising the class abstracter and 
documentation tool, is necessary for Ispel. Currently, Ispel does not allow existing classes 
to be even listed, let alone documented or their interfaces stored for perusal by the 
programmer. A class location facility could be similar to those provided by Trellis/Owl 
(O’Brien et al, 87), ObjTalk (Fischer, 87), and OOATool™ (Coad and Yourdon, 91). A 
similar class librarian for Smalltalk is described in Price and Girardi (90). Prograph 
(Gunakara, 89) and LPA MacProlog (LPA, 89a) also have facilities to find methods and 
predicates respectively. The Ispel visual programming system could be used for browsing 
class hierarchies in a library. It could also be used as a framework for a class librarian tool. 
The class name dialogue (see Section 4.3.6) needs to be modified to provide access to a 
class librarian or cataloguing tool. 

9.2.5 Hierarchy Flattener 

The current Eiffel environment provides a hierarchy flattening tool called flat. This gives a 
class listing which includes all the inherited features of a class. Such a facility allows a 
programmer to determine where features are defined, where they are re-defined or 
renamed, and which features are deferred (Meyer, 88). It also provides a documentation 
facility. The Ispel visual representation could provide a similar facility, but use a graphical 
representation in addition to a textual one. The Trellis/Owl (O’Brien et al, 87) and ObjTalk 
(Fischer, 87) environments also provide similar tools. 

9.2.6 CASE Tools for Design, Analysis, and Documentation 

Ispel provides a good framework for object-oriented design and analysis. It is similar to 
the OOATool™ (Coad and Yourdon, 91) and to some aspects of the Graspin (Mannucci et 
al, 89) and Software through Pictures (Wasserman and Pircher, 87) CASE environments. 
Allowing a more abstract level of visual program construction would assist the design and 
analysis processes (Coad and Yourdon, 91). Ispel also provides a concrete link between 
design and implementation, as the same environment and diagrammatic representations 
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are used. Ispel provides the basis for a more integrated approach to all phases of the 
development of software. 

Documentation of software systems assists programmers and users alike (Coad and 
Yourdon, 91, and Meyer, 88). A problem with existing systems is that they do not 
integrate documentation and programming. Tools like OOATool™ and the Eiffel 
documentation generators create documentation from program designs and code. 
However, they ignore the incremental development of software. Documentation 
produced by these tools, once modified, cannot be updated by changes to the designs or 
programs. The documentation must be regenerated and then touched up by hand.  

A better approach is to integrate the generation of documentation and programming. 
Ispel provides a basis for this, although it is a difficult process. Word processor documents 
must be able to be linked to the underlying representation of programs and designs, and 
updated accordingly. Similar issues occur when trying to keep the visual and textual 
aspects of an Ispel program consistent. 

9.2.7 Formal Specification Tool 

Formal methods for specifying software are beginning to be used to assist program 
development (Carrington et al, 90). As well as providing a framework for design and 
analysis tools, Ispel could also provide a framework for formal software specification. The 
biggest disadvantage with formal specification is the lack of environment assistance, 
which makes these methods impractical (Carrington et al, 90). Integration of formal 
specification with visual design, analysis, and implementation may be a fruitful research 
area. 

9.2.8 Structure-Oriented Editor 

Structure-oriented editors assist program development and can be made generic (Ambler 
and Burnett, 89, Dart et al, 87, and Reps and Teitelbaum, 87). A structure-oriented editor 
for Ispel could be used to integrate textual and graphical program development. As the 
textual form of a program is stored as an abstract syntax tree, graphical and textual 
representations of the same underlying representation can be easily identified. The 
graphical representation of a program could be updated as text is edited, rather than 
being parsed after text editing. 

One issue is whether textual and graphical views could be updated concurrently. If a 
structure-oriented editor is used, this might be possible. It would not be possible if a 
textual representation had to be parsed after editing to update the graphical 
representations. This is because inconsistencies between the two representations could not 
be resolved. Concurrent modification of different representations is not provided in 
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existing systems (Myers, 90, and Reiss, 85 and 87), due to the difficulties of keeping the 
representations consistent. However, it does have advantages, as it further blurs the 
distinction between high-level structure programming and low-level implementation. 
This gives programmers as much control over the program development process as they 
require, which enhances productivity (Myers, 90, and Raeder, 85). 

9.2.9 User Interface Construction Tool 

Ispel could be integrated with several external interface construction tools for Class 
Language and Eiffel. For example, a user interface construction tool which allows a 
programmer to build user interfaces at a high level of abstraction. An example is the DICE 
tool (Pree, 90), which allows a programmer to paint a user interface form or window, and 
to prototype the interface. The Forms VBT system also allows a user interface to be 
constructed visually (Avrahami et al, 89). This has the advantage of eliminating the low-
level detail of visual interfaces while increasing productivity and correctness. Ispel should 
take advantage of these for both providing facilities for programmers and the 
implementation of Ispel itself. 

9.3 Extension to a Multi-user Environment 

Ispel, as described in this thesis, is a single-user environment. It is designed for 
programming in the small tasks of software design, implementation, and maintenance 
that are carried out by one programmer. However, Ispel would be useful as a 
development environment for larger systems which require several programmers. In 
order to provide such an environment, some difficult issues concerning multi-user access 
to and update of information would need to be solved. Some of the problems resulting 
from a multi-user environment for Ispel include: 

• Maintaining consistency between shared views. If views are used by more than 
one programmer, update of these views needs to be co-ordinated. 

• Version control and shared libraries. Different versions of classes and parts of a 
system may be required. Also, libraries of classes will be shared between 
programmers, so library updates will need to be co-ordinated. 

• Co-ordination of changes. The environment will need to ensure one 
programmer only is updating classes, and changes to class relationships are 
made by only one programmer. Notification of changes will be important. 

9.4 Enhancement of the Implementation Model 

The Eiffel prototype helped to develop an object-oriented implementation model for 
Ispel. However, this model requires further refinement. Some of the key concepts 
developed by this prototype such as the framework, object, operation, and relationship 
classes need improvement. Also, concepts such as dependency, visual representation, and 
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user interface classes, require restructuring. An improved object model for Ispel should 
allow for more extensibility and solve the problem of integrating new environment tools. 

To refine the object model further, a fully-fledged development environment should be 
produced. The prototypes developed to refine Ispel are not sufficient to provide a visual 
programming environment for software development. The object model developed for 
the Eiffel prototype should be used as a basis for a full version of Ispel. The user interface 
developed by the Prolog prototype should be used for the full version, in addition to 
some of the enhancements described in this chapter. 

This structure could be abstracted and applied to other visual programming 
environments. A set of generalised classes for constructing visual programming 
environments could be provided. This would simplify the process of constructing new 
environments. A major problem with most interactive, graphical software, particularly 
visual programming systems, is that they are currently produced from scratch (Myers, 
90). Few tools exist which factor out some of the common elements of these systems and 
can be tailored to a new task. Graspin (Mannucci et al, 89) provides a generator for CASE 
tools, although this is still under development. Garden (Reiss, 87) provides an 
environment generator for language prototyping and conceptual programming. 

The concepts of the Ispel object-oriented implementation model may provide a high-level 
descriptive language or environment generator tool. The Arcadia project (Rosenblatt et al, 
89) has a type model for its implementation similar to the one used for Ispel. This is used 
as a generalised way of expressing environment components which can be used as the 
basis for an environment generator. The Ispel visual programming aspects could be 
generalised to a generic graph editor with constraints from the object-oriented 
programming language being used. 

9.5 Enhancement of the Formal Specification 

In addition to the implementation of Ispel, the formal model for the environment also 
requires enhancement. It could encompass further aspects of Ispel and specify these 
formally. At present, the graphical format of Ispel diagrams, and the generation of events 
by the user, are not formally specified. The syntax of the specification could be improved 
to make it clearer and more simplified. There may be some additional abstractions or 
approaches to defining Ispel that would improve its formal specification. For example, 
making use of more complex mathematical set and graph theories could assist this 
process. 

The specification given in Chapter 7 could be re-specified using the Z or Object-Z 
notations, or another standard specification language. As tools are being developed to 
enable programmers to construct these formalisms (Carrington et al, 90), these tools 
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should be used where appropriate. This will result in an improved and standardised 
formal definition for Ispel. A definition constructed using these tools could be modified 
and its correctness verified more easily. A suitable implementation structure may be able 
to be generated by such a tool. 

The formal definition of Ispel could be tied in more closely with the implementation of 
Ispel. Object-Z can provide a mechanism to do this due to its object-oriented structuring 
methodologies. A different approach to specification that utilises graphical and 
mathematical definitions would be valuable. This would be more expressive and easier to 
comprehend than an implementation model or ad-hoc implementation. A visual 
representation of some of the formalism of Ispel may assist interpretation of it (for 
example, the graphs and changes to the graphs can be expressed well graphically). 
However, a visual specification requires a sound formal basis. 

9.6 Performance Analysis and Evaluation of Ispel 

An omission of this research is a comprehensive performance analysis of Ispel. This 
includes comparing the use of the Ispel environment to construct programs with the 
current Eiffel and Class Language environments. A comparison between these 
approaches is necessary to determine which performs better. Experiments would need to 
be conducted with control groups and programmers using each environment. Feedback 
from programmers would provide valuable ideas for enhancing the user interface and 
performance of Ispel. 

However, this type of performance analysis is very difficult. The programming 
environment field lacks both formal specification and performance analysis techniques 
(Dart et al, 87, and Henderson and Notkin, 87). Many existing programming 
environments and visual programming systems lack concrete data which proves they are 
well defined and do indeed improve programmer productivity. Both informal and 
statistical analysis would be useful for determining the strengths and weaknesses of Ispel. 

9.7 Generalisation of Ispel to Other Languages 

A problem in the field of programming environments is the lack of generic system 
components and environment generators. The rest of this chapter addresses this problem 
and suggests how abstraction of the concepts of Ispel may be useful in helping to solve it. 

This thesis has concentrated on the application of Ispel to constructing and viewing Class 
Language and Eiffel programs. Ispel could be used to construct other object-oriented 
languages such as Object-Pascal and C++. The high-level structuring of these languages is 
similar to that of Eiffel and Class Language due to their object-oriented nature. However, 
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all have different syntaxes, and some are hybrid languages which incorporate procedural 
and functional components. 

It may be possible to use a variant of Ispel as a programming environment for 
conventional languages such as C and Pascal. These languages have a high-level structure 
based around procedural decomposition, rather than data abstraction. Ispel could also be 
used to represent complex data structures in these languages. Ispel may provide a basis 
either for a structured analysis or a dataflow modelling tool for conventional languages. 
Figure 9.6 shows an example of a C program represented in Ispel. 

main

init fsize

fprintfdirectory stat

read
open close

 

Figure 9.6 A simple C program represented in Ispel. 

9.8 Abstraction of Ispel to Visual Modelling 

There are many common features between visual programming environments and other 
forms of visual modelling (Myers, 90, and Raeder, 85). Most visual modelling systems 
share common aspects and techniques, such as a direct manipulation interface, and 
diagram construction and manipulation. Ispel was initially designed specifically as a visual 
programming environment for Class Language to run on a Macintosh. Development of 
the Eiffel prototype has shown that the concepts of Ispel are equally valid for constructing 
Eiffel programs under X windows. 

There are many other visual modelling tools where the concepts of Ispel are used or could 
be applicable. Abstraction of Ispel to some of these application areas would help to further 
generalise the Ispel implementation and formal models. It would also help to isolate 
similarities and differences between various visual modelling systems. 
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9.8.1 Entity-Relationship Modelling 

Relational database entities can be modelled graphically in a similar manner to Ispel 
object-oriented programs. The Ispel concepts of multiple views and an environment 
integration framework could usefully be applied to entity-relationship modelling. Entity-
relationship models have similar graphical properties to class structure diagrams (Czejdo 
et al, 90). 

9.8.2 CASE Methodologies 

CASE systems provide diagramming and documentation facilities for the design and 
analysis of software. Many of these systems have similar graphical representations to 
Ispel class structure diagrams. Some typical analysis techniques that utilise diagrammatic 
representations include: 

• Dataflow analysis. Where the dataflow throughout a program is modelled 
graphically. This is similar to the Prograph implementation language 
(Gunakara, 89). 

• Structured analysis. The structure of a program is modelled graphically and is 
hierarchically built. For example, refer to Figure 9.6. 

• Object-oriented analysis. Simple extensions to Ispel could allow it to perform as 
an analysis tool analogous to the OOATool™ (Coad and Yourdon, 91). 

9.8.3 Document Processing 

The structure of documents can be modelled graphically. Ispel was useful for organising a 
report on the Prolog prototype and development of an object-oriented implementation 
model for the Eiffel prototype. The structure of documents has a hierarchical nature which 
can be modelled graphically. A graphical representation of structure is more abstract and 
easier to manipulate than a textual one (Myers, 90). 

9.8.4 General Graph, List, and Tree Manipulation 

The EDGE generic graph construction package (Newbury, 88) allows general graph 
editing packages to be built. Graphical representation and manipulation are natural ways 
to express the form of many kinds of data structures (Myers, 90, and Raeder, 85). Ispel 
also provides an underlying representation underneath the visual representation of a 
graph which can be manipulated. 

9.8.5 Cataloguing 

Ispel could provide a hierarchy browser for a library or cataloguing system. A class 
library for Ispel could utilise its graphical representation and navigation facilities to 
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provide a graphical library for programmers. Ispel is well suited to graphically modelling 
relationships, especially hierarchical ones, between objects. 

9.8.6 Dynamic Object Modelling 

At present, Ispel models static information, i.e. the classes and their relationships that 
comprise an object-oriented program. Ispel could be used to model dynamic information. 
Examples include: 

• A Debugger. Object-oriented programs could be debugged visually. Ispel could 
be used to model dynamic objects, utilising the views constructed to represent a 
program. Additional views could be constructed specifically for run-time 
viewing of the objects of a program. The GraphTrace package (Kleyn and 
Gingrich, 88) models executing object-oriented programs in this manner. 

• Database query languages. Entity-relationship modelling could be extended to 
providing graphical database query languages. Queries could be constructed 
graphically, using a similar format to database schema specification. It may also 
be possible to display information visually (Czejdo et al, 90). 

• Algorithm animation. Program visualisation has many similarities to visual 
programming (Myers, 90). In addition to a visual modeller which could display 
executing code (a debugger), algorithms could be specified in a similar way and 
animated at run-time. The TANGO (Stasko, 89) system allows a user to specify 
and view an executing program in this manner.  

9.9 Describing Visual State Change 

The specification of Ispel identified the lack of adequate visual specification formats. In 
addition, development of a formalism for Ispel identified the lack of a high-level, 
expressive method for specifying visual state change. Dataflow systems attempt to model 
a low-level of visual state change, but this does not capture the actual change in a visual 
object. For example, when a box is dragged from one location to another, or has a 
graphical element of the box deleted. Expressing these state changes visually is difficult 
using current representational techniques. 

The need for a clear, concise method of specifying visual state change is twofold. First, to 
specify the actions of a programming environment, some way of describing both visual 
and formal state change is necessary. Second, if such a method of expressing these state 
changes were developed, it may be possible to use this as a way of specifying 
environments. This specification could be used to generate environments or other visual 
modelling tools. It would also be a valuable documentation tool for software systems. 
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9.10 A General Model and Modeller Generator 

Due to the commonalties between Ispel and other visual modelling systems, it may be 
possible to create a generic visual modelling tool. It should also be possible to create a 
generic, object-oriented programming environment. The fundamental structures and 
visual representations are similar between object-oriented languages. The Ispel 
environment for Class Language and Eiffel could be implemented so it could be tailored 
for either language. It could also be used for a variety of other languages, like Object 
Pascal and C++.  

The major difficulties in creating such an environment include how to integrate existing 
tools such as compilers, run-time systems, debuggers, and CASE tools. Some existing 
tools could be integrated into a visual programming environment. However, many, like 
the THINK Pascal system, would have to be rewritten to allow them to be included in 
environments other than the one they were designed for. This means that a protocol for 
tool communication and integration needs to be developed. Such a system would ensure 
that the user interfaces, data storage, and communication aspects of tools, could be 
integrated into one environment. 

There are some structure-oriented editor generators and environment generators which 
have been reasonably successful. These include the Cornell Program Synthesizer (Reps 
and Teitelbaum, 87), PECAN (Reiss, 85), and EDGE (Newbery, 88). Some environment 
generators exist that provide various visual programming facilities. These include Garden 
(Reiss, 87), Graspin (Mannucci et al, 89), Arcadia (Henderson and Notkin, 87), and Gandalf 
(Dart et al, 87, and Rosenblatt et al, 89). These systems have several disadvantages. They 
are quite inflexible in terms of the environments and editors they produce, and force 
programmers to do tasks in certain ways (Ambler et al, 88, and Myers, 90). They also 
produce environments which are only partially extensible, and their extensibility is 
confined to ideas which the original system designers took into account. The performance 
of these environments and editors is often not very satisfactory (Myers, 90). This is due to 
the generalised nature of their implementations. Many components of the system need to 
be generalised so they can be used in other applications. This results in inefficiencies, and 
so a trade-off between performance and general application of the system is made. 

It may be possible to create a visual modeller generator that can be used to construct 
visual programming environments. An alternative approach may be to utilise common 
techniques for the specification of these environments, rather than actually generating 
working environments. This specification could then be used as the basis for an 
implementation. Object-oriented techniques that utilise reuse of existing facilities, and 
allow these facilities to be further specialised, could be useful.  
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Such an environment generator or specification system could be programmed using itself. 
The system itself could be the environment whose appearance and behaviour is changed 
by a programmer. This would make the environment fully extensible, and allow 
programmers to tailor it to their own requirements. A visual specification system would 
be useful, but it would need to be able to specify visual state changes. A composite 
graphical and textual specification system, similar to the graphical and textual 
representations of Ispel, would probably be appropriate. 

An environment generator would have to provide facilities to: 
• Specify and construct a set of graphical diagramming tools. 
• Specify an underlying representation for the diagramming tools. 
• Specify and construct user interfaces for the various tools that comprise a 

system. A user interface construction and prototyping tool would be useful. 
• Provide data storage facilities which are common to all tools in the 

environment. 
• Specify and implement interfaces between tools in the environment. 
• Allow tools from other environments and systems to be integrated into the 

environment. This integration is a difficult task. 

To produce such a system, the implementation and formal aspects of Ispel and similar 
systems need to be well understood and be made extensible. Abstraction of Ispel to other 
application areas would provide an opportunity to further analyse these requirements. 

9.11 Summary 

The research presented in this thesis is very open-ended, with several future research 
topics being developed. Some future additions to the Ispel prototypes have been 
presented which will enhance their visual programming and programming environment 
capacities. Additional tools for the environment are proposed to assist a programmer in 
utilising its benefits. The implementation and formal aspects of Ispel require further 
enhancement to improve the environment’s performance and make it easier to specify 
and implement. An in-depth performance analysis of a fully-fledged Ispel environment is 
necessary to prove the benefits of visual programming with Ispel. It would also provide 
valuable feedback for further environment enhancement. 

Ispel could be abstracted to provide a programming environment for other object-
oriented and conventional languages. It could be used as a framework for improved 
CASE tools for formal specification, design, analysis, and documentation. The concepts of 
Ispel apply to a wide range of other visual modelling applications. A method for 
specifying visual state changes would be useful for the specification of Ispel and for use in 
a visual programming environment, or visual modelling tool generator. Many of the 
commonalties of user interface construction could be expressed in a more high-level, 
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abstract form. This would simplify the construction of visual programming environments, 
and other visual modelling, direct manipulation, and interactive systems.
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Appendix A 
Specification of the Prolog Prototype 

 
This is the initial specification of the Prolog prototype of Ispel. The design of the Prolog 
prototype was derived from this initial specification. Implementation of the prototype 
resulted in a substantial refinement of this specification. 

This specification details the overall characteristics of the initial prototype, the basic issues 
it will deal with, and some approaches that need to be discussed and evaluated before the 
first prototype is implemented. The various issues and problems, methods of how to go 
about solving them, and providing the required facilities, are detailed here. The actual 
specification to be implemented in the first prototype is also detailed, but is subject to 
change due to discussion, further research, or if a "better" solution is found. 

A.1 Prolog Prototype Basic Characteristics 

• Representation of classes. 
• Manipulation of representation (boxes, lines, views). 
• Limited navigation capabilities. 
• No "Find"/"Search" facilities, no library. 
• No collapse/expand views, limited manipulations of views/representation. 
• Simple class representations: 

• only class icons are "simple class" (box), "collection class" (shaded box). 
• feature and inheritance are the only relationships modelled. 

• Editing facilities for class textual details are limited: 
• textual details inferred from the graphical representation is static i.e. it 

can only be altered using the graphical class representation. 
• text for the rest of the class details is dynamic and can be altered in the 

editor. 
• the editor is full-screen, but with limited facilities. 

• Prototype name (for easier reference purposes): Ispel. 
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Aim:  
• To determine the feasibility of a graphical class structure tool. 
• To determine the good and bad aspects of the first prototype system and 

explore ways to improve the tool. 

Method: 
• Specify features of initial prototype (referred to as "Ispel #1"). 
• Discuss initial specifications with supervisors. 
• Modify specifications as necessary if: 

• deficiencies found. 
• other work indicates a better method or if flaws are identified in an 

existing method. 
• Evaluate initial prototype by implementing and testing. 
• Determine : 

• Good and bad aspects. 
• "Look and feel" issues - what's nice, what's "usable". 
• What extensions and/or modifications are necessary to improve the 

usability of Ispel #1. 
• What features can be abstracted out and applied to Eiffel as well as Class 

Language. 
• Determine useful approaches to take and justifications for making these 

decisions. 
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A.2 Application Layout 

 

Figure A.1 An example screen for Ispel #1. 

The initial prototype will be laid out in a format that will be used by all subsequent 
prototypes, and the final development tool, unless features are found not to be useful, or 
improved features are discovered during the course of development and assessment of 
the prototypes. 

The initial prototype's application will have the following basic features: 
• use Macintosh-standard user-interface (i.e. windows, menus, controls, icons). 
• have a menu containing the available commands. 
• have a side-palette of "drawing modes" for ease-of-use. 
• utilize windows to provide various views and contexts. 

The Ispel application is activated in the normal Macintosh way. Class structure files can be 
saved from within the Ispel application, and this file provides a "database" of information 
for the given Class Language application. For example, we may have a "Wallbrace" file 
which contains the data Ispel needs to draw the Class structure diagrams, and access the 
text associated with each class. Additional information is also stored in this file, as 
documented in the specifications (see later). The Ispel application can be invoked by 
double-clicking on the icon associated with one of its saved class structure files, and in this 
case the class structure file (referred to from here as "Ispel application file") is opened and 
is the "current application" within Ispel. 
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There is a concept of multiple applications. Ispel provides the facility to edit and modify 
several Class Language applications at once, and to copy classes between these 
applications. For each application there is a concept of multiple views for the application. 
This facility allows the programmer to view class structure diagrams in a variety of forms. 

A.3 Multiple Views 

The Ispel system has the concept of multiple views which provides various views of an 
application's classes. The views available in the first prototype are: 

• features 
• inheritance 

Other types of views and facilities for having them displayed will be provided in future 
prototypes where necessary. 

Views may occupy the same window per application, one window for all or each view 
may have its own window. 

Aim: 
• To determine if Ispel needs multiple windows for views. 
• If multiple windows are provided, what facilities are necessary to move 

between these windows i.e. how do we change context. 

Method: 
• Implement various approaches and test using multiple applications and multiple 

views. 
• The approaches are: 

1. A window for every view: 
• need "windows" or "views" menu to change to a different view. 
• probably need window hiding facility as the number of windows 

will become quite large. 
2. One window per application. 
3. One "view" window for all applications: 

• like option 2, this could prove quite restrictive. 
• need a comprehensive menu to access applications and views 

within each application. 
4. A composite approach: 

• initially one window per application. 
• views are displayed in the same window unless programmer asks 

for another window to be created (menu option?). 
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Views will need to be stored in the application file for each program. When a view is 
altered (i.e. programmer moves or changes class representation the view displays), the 
changes need to be saved to the application file. 

Views will be associated with a class. The class is called the "primary class" for the view. 
For each class, the class may have a number of views. There will be one view designated 
the "primary view" for the class. This view is displayed when the programmer requests 
the view for the class to be displayed (see later). 

The Ispel system must provide an easy-to-use facility to move between different views 
and to create, delete or modify views (expand/contract classes, or display a different view 
for a class). 

An option to display the feature names for features in a view will be provided, and the 
feature names can be added and updated. An example view is shown in Figure A.2. 

Close View Primary Class Name
Change view icons

Window re-sizing  

Figure A.2 An example view window. 

Aim: 
• To determine an effective method for moving between multiple views i.e. 

"change of context". 
• To determine an effective method of manipulating views: creation of new 

views, contraction/expansion of views, options for changing views. 
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Method: 
• Discuss various approaches and determine which appear the most useful. 
• Implement and test approaches : 

 1. Menu to select various views. 
 2. Command key on menu. 
 3. Double-click on a Class to get its primary view. 
 4. Move between windows : 

• menu. 
• click on piece of window. 

 5. Icons on window bar to move to different views. 
 6. Composite approach using some or all of the above. 

A.4 Representation of Classes and Class Relationships 

Classes and their relationships are represented as in Figure A.3. 

  

Figure A.3 Examples of classes and their relationships. 

In the first prototype of Ispel, there are no external classes, no recursive classes (or rather 
no special representation for them), no classes-within-classes, and no generically-typed 
classes. Also, the icons for classes are of only two types, namely a simple class and a 
collection of a class. 

Each view will show a collection of classes. The classes don't have to be connected in any 
way, as the database will contain information describing views and where classes are 
positioned within a specific view. One class within the view "owns" each particular view. 
This is designated the primary class of the view. The first prototype will be implemented 
with future extensions in mind. For example, in future implementations, it may be useful 
to have different icons for classes rather than the two provided in the initial prototype. 
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If boxes or lines overlap in the view, the principle for display is that lines are drawn first 
and then boxes in order from the primary class of the view (i.e. primary class drawn, then 
its features or classes it is a feature of, etc.). 

A.5 Manipulating Class Diagrams 

A.5.1 Selecting Operations to Perform 

Aim: 
• To determine how to provide the programmer with facilities to select 

operations on the class structure diagram 
• Determine what sort of operations the programmer will require, which of these 

are "common" (i.e. will need to be selected easily), which need not be provided 
quickly, and if "composite" operations are required (and, if so, how to provide 
these). 

Method: 
• Discuss 
• Implement most promising approaches and evaluate 
• Augment with other approaches as necessary after testing 

1. Use a side-palette to allow for selection of common operations (like 
MacDraw II). For example : 

      

Selection (for selecting class, line,  name, etc.)

Add a new class to view

Add a new collection class to view

Add a feature connection to view

Add an inheritance connection to view
 

 Note that more operations will need to be provided for later versions of the 
prototype. 

 The problem with this approach is, not only will the number of 
operations become quite large (eventually), but composite operations 
need to be performed for ease-of-use e.g. add a new feature to an 
existing class in the view. Common operations need to go into the 
palette, and other operations need to be provided in some other way. 

2. Using the palette idea, composite operations can be selected by selecting 
more than one palette operation at once i.e. select one, use shift key to 
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select another, and then use composite operation. The problem here is 
that this is probably not all that easy to use (e.g. the "add new feature" 
operation above is common, so one palette selection for it is required). 
This approach can be modified so that the programmer can specify 
operations that appear here, and leave the rest to appear in a menu or 
whatever. Another problem is that composite operations may not be 
well-defined (e.g. an inheritance feature line?!) or the operation may not 
behave the way the programmer may want (e.g. the "new feature\ 
class". Does the programmer click on the existing class and then move 
the new class somewhere, or click on the position for the new class and 
then click on the existing class?). 

3. Menus to provide operation selection. This will allow all of the basic 
operations to be provided, but not composite operations. An approach 
using a combination of palette (for common operations) and menu (all 
operations) is probably best. Composite operations will probably not be 
provided, but some of the more common (i.e. useful) operations will be 
provided as single selections e.g. the "add new feature" and "add new 
specialization"-type operations. 

4. User-definable menus, palette and ability for user to define composite 
operations. This may well be required, and composite operations may 
need to be selected (if the number of operations gets large). This will be 
delayed until a simple form of menu/palette selection has been 
implemented and tested. Later versions and probably the fully-fledged 
development environment will require something of this nature. 

A.5.2 Adding Classes to the Current View 

To add a class to the diagram, the following steps are envisaged : 
1. Select "Add Class" operation from palette/menu. 
2. Click on new position for class. 
3. Supply new class name: 

• via keyboard for the first prototype. 
• later - need library/search options etc. 

To add (for example) a new feature to an existing class in the diagram, the following steps 
are envisaged: 

1. Select operation. How this will be done is still to be decided! 
2. Click on class to add to. 
3. Click in new position of class. 
4. Enter class name as above. 
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5. The feature name may need to be provided at this point as well. This may be 
delayed until the feature names are displayed by explicit request from the 
programmer. 

A variation on this is to select the class to add to first, and then select either the composite 
operation, or just the "Add Class" operation (the system must have a well-defined set of 
operations to perform when there are multiple selects and so on). 

A.5.3 Connecting Classes in the Current View 

Classes within a view need to be connected in some way to display the relationships 
between the classes. How the connections are established and the positioning of the 
classes and their relationships within a view, is a key aspect of the programming 
environment. There are several issues to consider here : 

• How to connect two existing classes within a view. 
• How to add a new class to a view and connect it to an existing class. 
• The positioning of the connections between classes. 
• Naming the connections in a view (for features). 

Aim: 
• To determine how to connect classes within a view (i.e. how to establish 

relationships between classes within a view). 

Method: 
• Discuss various approaches and evaluate. 
• Implement the most promising approach and test it. 

1. Use Prograph "pins" idea. Figure A.4 shows an example of two boxes connected 
with a line and using pins on the boxes. 

 

Figure A.4 An example of boxes connected using a line and pins. 
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 To connect two existing classes, click on the pin of one of the classes. Hold down 
the Option key and drag line to a pin on the other class. Release key/mouse 
button and the connection is established. 

 To connect an existing class to a new class, select appropriate operation, then 
select the existing class. A new class is added to the diagram, with its pin 
connected to a pin on the first class. The new class can then be dragged to an 
appropriate position. 

 Pins can be created and deleted on a class "box" in the same manner as 
Prograph uses i.e. the pin is selected and Command-D pressed to delete, the 
mouse is moved to a "click area" around the class box, and the mouse button 
pressed to create a new pin. The pins are moved by selecting them and 
dragging them to a new position (on the box edge, obviously!) 

 This approach has several draw-backs. The most important one being that the 
diagrams that result from this are not particularly consistent with conventional 
class structure diagrams. Also, for a different type of class structure diagram 
(e.g. the Eiffel version), this representation will look quite "unnatural". Also, 
many diagrams are clearer when the class connections issue from just one point 
on the class box. This could be resolved by allowing more than one connection 
from a class pin to other classes. 

2. Connections could be established in a similar manner to the above but all 
originate from one point on the class icon. This may prove to be an overly 
restrictive approach, and the resulting representation becomes unwieldy when 
manner class relationships are displayed. In this case, the connections would be 
made by simply selecting the class rather than a pin. 

3. The pin approach could be used, but with the pins not being displayed - i.e. 
there is a conceptual "click area" around classes that can be used to connect class 
relationships to. The relationship "lines" could be re-positioned on the class box 
edge by selecting the end of the line (if would have a click area too) and moving 
it along the edge. This would achieve the same result as for pins, but without 
the actual pin representation on the diagram. 

4. For the first prototype, a simple connection mechanism will probably suffice. 
However, for future prototypes, flexibility will probably be necessary as more 
complex class structure diagrams are modelled, and the simple class icons used 
in the first prototype, are replaced by more complex icons. A composite 
approach seems the most likely to be useful (as with previous design decisions). 
The concept of "pins" is retained, however the pins are not actually displayed, 
but have a conceptual "click area" which determines the location of a connection 



Appendix A Specification of the Prolog Prototype Page 187 

to a class. A default "pin area" is required where connections are made to a class, 
located in the centre of the class icon. Two of these default connection areas 
exist - one on top of the icon and the other on the bottom. Once connections 
have been established, the connections can be moved along the icon box by 
selecting the connection like and dragging it. 

5. In future versions of the prototype, more sophisticated connections are 
required for recursive classes and composite connections e.g. inheritance and 
classification displayed using the same connection lines. This is ignored in the 
design of the initial prototype, but will need to be considered in the future, at 
which time a better understanding of connection representation and 
manipulation will have been gained, via implementation and evaluation of the 
first prototype. 

The first prototype will use a default connection point at the centre of the top and bottom 
edges. All connections will be represented as originating from this point. This may prove 
restrictive and unclear (especially for inheritance connections which have arrows on one 
end of the line), and may need to be augmented by allowing connections to be dragged 
along the edge of the classes to which they are attached. 

A.5.4 Manipulating Classes in the Current View 

Classes are moved within the current view by clicking on the class and dragging it to the 
desired position (i.e. in the normal Macintosh way). This action will be displayed as per 
Prograph, where the class is "ghosted", and is moved about until the programmer releases 
the mouse button, whereupon the display is redrawn with the selected class in its new 
position. Overlapping is resolved by the connections being drawn first and then the 
classes. This may not be an entirely satisfactory approach, especially when the feature 
names are displayed beside the connections. This will be explored further during testing 
of the first prototype. 

A.5.5 Display and Editing of Feature Names for Classes 

When a connection is established for a feature relationship between classes, the feature 
name of the feature needs to be provided for the connection. This provides the name of 
the feature that the class containing the feature uses to access features of the feature i.e. it 
corresponds to the name "theRoof" of type "Roof" in Figure A.5. 
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 class Storey. 
  theRoof : Roof. 
  ... 
 end Storey. 

Figure A.5 An example of class text. 

The feature names may, or may not, be viewed on a class structure diagram. A menu 
option will be provided to view feature names or not. When a feature connection 
between classes is established, the programmer will need to supply a feature name for the 
connection. This can be typed as text next to the feature connection, where it will be 
displayed. It may be necessary to suppress the naming of features, which may be useful 
e.g. when first designing the overall class structure. A menu option can be provided for 
this, if necessary, and a further option to find and display all features without feature 
names. 

The first prototype will always display the class names unless this is found to be unhelpful 
in certain situations. When a connection between two classes is established, the feature 
name will be required to be entered when the connection is displayed (i.e. entry of the 
feature name is the final step in adding a connection). If a feature is added to an existing 
class within a view, then the feature name is supplied after the new feature type’s name. 

The initial prototype will also check to see that there isn't already a feature of the class 
using the same feature name (a simple but useful check!). 

A.5.6  Selection Manipulation in the Current View and Between Views 

Selecting an area from a view (i.e. positioning a box around a portion of the view in the 
normal Macintosh manner), and manipulating this selection, will be required at some 
stage. The selected area can be copied and then pasted into another view (possibly a view 
for another application), and also deleted from the current view. A new view could be 
created with the selection being the basis for the new view. The first prototype will have 
no selection operations, but evaluation of the prototype should suggest areas where this 
selection mechanism will be useful. 

A.5.7 Expansion and Contraction of Views 

The initial prototype will provide no facilities to expand and contract details shown within 
a view e.g. selecting a class in the view, and then selecting an option to display all of the 
features of the selected class. Evaluation of the first prototype should determine where 
operations such as these are useful. 
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A.5.8 Other Class Relationships and Views 

The initial prototype will only have the facilities for connections and views described 
above, or some variation on these. Class relationships such as classification, class 
parameters, function and procedure parameters, return types, class features (procedure 
and function names), display of public and private features (i.e. class interface), flattening 
of inheritance hierarchies (i.e. display of all inherited features and actual class features), 
and other facilities, will be examined and provided in future prototypes. 

The first prototype will be used to determine the feasibility of the basic ideas, and to get a 
feel for the issues involved. More sophisticated viewing operations and more portions of 
Class programs moved to graphical rather than textual representation and manipulation 
will be provided in future prototypes. Improved integration between the textual and 
graphical features of the Ispel system will also be developed in future prototypes, when 
the problems with the initial prototype have been evaluated via implementation and 
testing. 

A.6 Editing Class Details as Text 

One of the main problems with the proposed development environment centred on using 
graphical display and manipulation of high-level details is the cross-over point between 
graphical and textual programming. The class structuring, inheritance hierarchies and 
feature relationships are modelled graphically in the first prototype. In future prototypes, 
more of the high-level design aspects will be represented and manipulated graphically, 
but a large portion of the class details will still be represented and manipulated in text. 
This is true for Eiffel programs using this development environment as well as Class 
Language. In fact, most Eiffel details will have to be in text as we do not have access to the 
Eiffel compiler and run-time system source code. Part of the prototype evaluation will 
involve determining which aspects can be used graphically and which must remain as 
text. 

The cross-over occurs when the details of a class are to be modified. In the first prototype 
this will involve all manipulations apart from inheritance and feature specification. The 
text of the class will need to be edited using some type of full-screen text editor, and then 
the graphical representation re-displayed once the text of a class has been updated. 

The first prototype will use a simplistic solution to the problem. This "solution" will not be 
acceptable in a final development environment, but will suffice for initial testing purposes. 
When the text for a class is edited for the first time in Ispel #1, the class template 
corresponding to the graphical representation will be generated. For example, the 
diagram in Figure A.6a is shown as text in Figure A.6b. 
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Wing

Roof Storey

theRoof theStorey

 

Figure A.6a A class structure diagram. 

class Wing. 
 theRoof : Roof. 
 theStorey : set of Storey. 
end Wing. 
 
class Roof. 
end Roof. 
 
class Storey. 
end Storey. 

Figure A.6b The text for the classes in the diagram. 

Note that the theStorey feature of Wing is a set of Storey classes. There is a problem that 
it could have been a bag, or in future versions of Ispel, it may be some user-defined 
generic collection type such as a list, array, stack, or whatever. The first prototype ignores 
this representational problem (the graphics simply denote a feature collection of classes, 
while the actual collection mechanism is denoted by text). 

In the above example, the text generated by entering the editor is static and cannot be 
altered within the text editor. This solution is too simplistic as it means programmers must 
discipline themselves to update class features in the graphical editor, and other class 
details within the text editor. A much closer integration is desired for future prototypes, 
but this area requires more research. 

The first prototype will have a very restricted text editor, or possibly, will not have any 
text editing facilities at all (when class details are "edited", the textual representation is 
simply generated and displayed). All the textual elements derived from the graphical 
representation is static and cannot be edited as text. Any simple type features (e.g. 
something of the form roofArea : integer) and other class details like procedures, rules, 
when constructs and so on are edited as text. Any class type features added to the textual 
representation are not reflected back to the graphical representation in the first prototype. 
There are problems here such as if a new feature is added of some class type in the text 
editor, and then in the graphics editor, they must be reconciled. This will probably only be 
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solved by parsing the text to determine the class type features and storing extra 
information in the data base to link textual and graphical constructs. Such issues are 
ignored in the first prototype. 

Future prototypes will need facilities to separate out things like public and private 
properties (i.e. the class interface), class parameters for class creation, provide facilities to 
modify features, rules, whens, procedures and functions, and so on. These issues are 
ignored in the first prototype, although implementation design may need to take some 
sort of account of these issues to ensure modification of the first prototype is not too 
difficult. 

Entering the text editor for a class from the graphical representation needs to be simple 
and yet a well-defined process. With the concept of multiple views for the graphical 
representation of the classes, the textual view of a class can be thought of as another type 
of view, or some special type of operation on a class. 

Aim: 
• To determine a suitable method of moving between graphical views to the text 

editor. This ties in with manipulating views in general. 

Method: 
• Implement a solution or some composite solution from the various possible 

approaches. 

1. Double-click on a class to get its primary view, and then double-click on the 
class again. This will edit the class' textual details. 

2. Use Prograph idea of a "left and right hand side" of the class box icon. Double-
clicking on different sides of the icon gives different results e.g. the left hand 
side is the primary view for the class, and the right hand side is the class details. 
If the class has no primary view, then the details are edited immediately. This 
approach is more flexible and, once a programmer has got used to this facility, 
it may prove easier to use than the more cumbersome first approach. 

3. Use the Prograph "icons on icons" idea. Prograph has a class icon which is a 
hexagon with two smaller icons on each side of it. One is for the features of the 
class, and the other for the methods of the class (Prograph only represents class 
hierarchies in a graphical way, and there are only two views of the classes per 
application, i.e. of each of the "root" classes and one of the class hierarchies for 
one "root" class at a time. Features for each class are normally hidden and only 
the feature name and an icon is displayed - not the type). 

4. Menu option - select class to edit and use menu/command key. This will 
probably be provided in conjunction with the second solution, and be evaluated 
by testing. 
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This concludes the initial specification of the first prototype of the Ispel programming 
environment for Class Language. The next step is the discussion of this specification and 
improvement to a rigourous specification for the first prototype. Then a design of an 
implementation of Ispel will be required, with elements such as the database, the 
prototype structure, the main classes to be used, and the graphical tools to be used. The 
implementation will probably be in an object-oriented language using object-oriented 
design techniques, in order to keep the prototype as extensible as possible, and to 
evaluate the programming environment of an existing object-oriented language. 
Prograph is the favoured language at this point in time, but more experimentation needs 
to be conducted using the Prograph system before a final decision is made. Eiffel is ruled 
out due to the poor implementation we have at our disposal. 

During further specification and implementation of the prototype, the broader issues for 
future prototypes will be considered. Also, various aspects of the environment will be 
abstracted and examined to determine if they can be applied to other object-oriented 
languages (specifically Eiffel). Features of the graphical programming environment that 
require data from the compiler, or require the textual details of a class to be parsed will be 
identified. Possible methods to obtain information will be examined and the prototype 
will be written with not only extensibility in mind, but with an open-ended architecture to 
allow for flexible approaches to gathering information about class details.
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Appendix B 
Prolog Prototype Implementation 

 
This appendix contains extra information on the Prolog prototype implementation. The 
structure of the Prolog prototype is explained in more detail. The Prolog prototype’s 
relational model is described, and the relational database and access predicates to this 
database are discussed, along with some examples of their use. The save file format and 
GDL pictures for boxes and lines for the prototype are also presented. 

B.1 The Prototype Structure 

The Prolog prototype is divided into a number of separate modules. These are 
implemented as LPA code windows, and are used to assist maintenance and 
understanding of the Prolog code. In addition, the code in these windows is incrementally 
compiled by the LPA compiler. When a window is updated, all the code in the window is 
re-compiled. The structuring of the code is designed to minimize the number of windows 
that need re-compiling by keeping related code together in one window. 

Figure B.1 shows the structure of the Prolog prototype, and the different components it is 
divided into: 

• Database provides access predicates to the relational database and implements 
this database. 

• Classes and Features updates class and feature relationships in the database. 
• Class Text generates class text and allows the user to edit this text. 

Ispel

DatabaseUser Interface

Classes & Features

LPA Specific

Class Text

Visual
 

Figure B.1 The structure of the Prolog prototype. 
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The LPA specific, user interface, and visual aspects are further divided. Figure B.2 shows 
the LPA specific component: 

• Defined contains default settings for the prototype. 
• Files provides predicates to save and reload applications. 
• Graphics constructs and displays box and line pictures in windows. 
• Initialize sets up the prototype when it is invoked. 

LPA
Specific

Files Graphics

Defined Initialize

 

Figure B.2 LPA specific component of the Prolog prototype. 

Figure B.3 shows the user interface component: 
• Menus provides pull-down menus to select operations. 
• Tools provides palette tools to select operations. 
• Dialogs provides dialogs to present and obtain information. 

User Interface

Menus Tools Dialogs
 

Figure B.3 User interface component of the Prolog prototype. 

Figure B.4 shows the visual component: 
• Views provides predicates to manipulate and move between views. 
• Windows creates and deletes windows. 
• Boxes and Lines contains predicates to allow boxes and lines to be added, 

removed, and double-clicked on. 
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Visual

Views

Windows

Boxes and Lines

Rename Boxes
 

Figure B.4 Visual component of the Prolog prototype. 

B.2 The Relational Model 

Table B.1 describes the entities, relationships, and attributes that comprise the Prolog 
prototype’s relational database model. A diagram of the entities and their relationships is 
contained in Section 4.4. 



Appendix B Prolog Prototype Implementation Page 198 

 
Entity Attributes/ 

Relationships 
Type Values Description 

application name 
file_name 
path_name 

string 
string 
string 

key 
 
 

application name 
file name for application 
path name for application 

class class 
applic 
primary_view 
features 
parents 

string 
link 
link 
list 
list 

key 
application 
view 
feature 
class 

class name (also key) 
application of class 
primary view of class 
list of class features 
list of class generalizations 

feature feature_id 
applic 
name 
type 
kind 
visible 

unique 
link 
string 
link 
enum 
enum 

key 
application 
 
class 
S,L,P,F,PA 
yes,no 

feature primary key 
application of feature 
feature name 
feature type (a class) 
Simple,List,Procedure, 
    Function or PArameter 

window window_id 
applic 
name 
current_view 

unique 
link 
string 
link 

key 
application 
 
view 

window primary key 
application of window 
name of window 
current view in window 

view view_id 
applic 
primary_class 
sequence_no 
window 
pictures 

unique 
link 
link 
integer 
link 
list 

key 
application 
class 
1-9 
window 
box/line 

view primary key 
application of view 
primary class for view 
sequence number of class 
window view is displayed in 
list of boxes/lines for view 

box box_id 
view 
represents 
position 

unique 
link 
link 
(x,y) 

key 
view 
class/ 
   feature 

box primary key 
view box is in 
class or feature for box 
x and y coordinate of box 

line line_id 
view 
start_box 
end_box 
type 
attributes 

unique 
link 
link 
link 
enum 
enum 

key 
view 
box 
box 
F,G 
S,B 

box primary key 
view line is in 
start box for line 
end box for line 
Feature or Generalization 
Side of Bottom of boxes 

Table B.1 The entities, relationships, and attributes of the relational model. 
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B.3 Database Access Predicates and Examples 

The database routines for the Prolog prototype use basic SQL (Structured Query 
Language) names for access to the relational database. Each entity has its own set of 
access predicates. The box entity access predicates are shown in Figure B.5. 

insert_box(BoxId,View,Defaults) 
 % Insert a box into the database, with the box owned by 
 % the given View, and with its attributes initialised 
 % to the given Defaults. 
 
select_box(BoxId,Attributes) 
 % Select the requested attributes for the given Box. 
 % 
 % Attributes is of the form 
 %  [Attribute|Attributes] 
 % a list of attributes to select and return values for 
 %  view(View) 
 % to select the view this class is contained in 
 %  represents(class(ClassName)) 
 % the box represents a class ClassName 
 %  represents(feature(FeatureId)) 
 % the box represents a feature given by FeatureId 
 %  position(X,Y) 
 % to select the X and Y co-ordinates for a box. 
 
select_boxes(BoxId,Attributes) 
 % Select the requested attributes for one or more 
Boxes. 
 % Attributes is the same format as for select_box/2 
 
update_box(BoxId,Attributes) 
 % Update the attribute values for the given box. 
 % Attributes is the same form as for select_box/2 
 
delete_box(BoxId) 
 % Delete the given box from the database. 

Figure B.5 The database access predicates for the Prolog prototype. 

These access predicates are used in other parts of the Prolog prototype to add, update, 
retrieve, and delete information. The relational database is implemented as asserts and 
retracts of Prolog predicates into the Prolog database. These access predicates isolate the 
implementation of the database from the rest of the prototype code. This allows the 
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database to be implemented in a different way in future without having to change 
anything else in the program.  

Figure B.6 shows an example of the box database routines being used by another part of 
the Prolog prototype. This code adds a new class box to a view. 
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/* 
 * Add a class to the given window at position (X,Y). 
 * 
 */ 
 
add_class_to_window(Window,X,Y,NewBox) :- 
 select_window(Window,current_view(View)), 
 grid_box(X,Y,BX,BY), 
 add_box(NewBox,View,[represents(class(none)), 
  position(BX,BY)]), 
 draw_box(Window,NewBox), 
 % get the class name for the box 
 ( get_classbox_name('',ClassName) -> 
   update_box(NewBox, 
    represents(class(ClassName))), 
   draw_box(Window,NewBox), 
   make_selected(Window,[NewBox]), 
   current_applic(Applic), 
   % if the class doesn't exist, create it 
   ( select_class(ClassName,Applic,exists) -> true 
   ;  add_class(ClassName, 
             [primary_view(View), 
              features([]), 
              parents([])]) 
        ) 
 ; remove_box(NewBox) 
 ). 
 
/* 
 * Delete a box from the window & database. 
 * 
 */ 
 
remove_box(BoxId) :- 
 % remove from the window (if its currently displayed!) 
 select_box(BoxId,view(View)), 
 ( select_window(Window,current_view(View)) -> 
      undraw_box(Window,BoxId) 
 ;  true 
 ), 
 % remove from the database 
 delete_box(BoxId). 

Figure B.6 An example of box database access routines being used. 
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B.4 Prototype Save Files 

The save file format used in the Prolog prototype is very simple. Programs are saved as a 
text file, and entities from the Ispel relational database are saved as Prolog terms. These 
can be read back into Ispel and inserted back into the database to restore a program. The 
terms used to save entities are: 

• applic(Name,FileName,PathName). 

• feature(FeatureId,Name,Type,Attributes,Visible). 
• class(Class,PrimaryView,Features,Parents). 
• window(WindowId,CurrentView,Name,Data). 
• view(ViewId,PrimaryClass,Window,SequenceNo, 

  PreviousView,Pictures). 
• box(BoxId,View,Represents,X,Y). 
• line(LineId,View,StartBox,EndBox,Kind,Attributes). 

Figure B.7 shows an example program that was constructed using the Prolog prototype. 
Figure B.8 shows the save file for this program. 

 

Figure B.7 An example Ispel program. 
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applic('Test',test,'blah:Grad:John G:Prolog:Ispel'). 
feature(feature0,'Wings','Wing',list,no). 
feature(feature1,'Roof','Roof',simple,yes). 
feature(feature2,'Sections','Section',list,yes). 
class('Building',view0,[feature0],[]). 
class('Roof',view0,[],[]). 
class('Section',view0,[],[]). 
class('Wing',view0,[feature1, feature2],[]). 
window('Test-Test',view0,'Test', 
 data(40, 1, 220, 381, 64, 1, 300, 100, -100, -300)). 
box(cbox3,view0,feature(feature2),-70,65). 
box(cbox2,view0,feature(feature1),-235,65). 
box(cbox1,view0,feature(feature0),-155,-15). 
box(cbox0,view0,class('Building'),-155,-70). 
line(line0,view0,cbox0,cbox1,feature,bottom). 
line(line1,view0,cbox1,cbox2,feature,bottom). 
line(line2,view0,cbox1,cbox3,feature,bottom). 
view(view0,'Building','Test-Test',1,none, 
 [line2, cbox3, line1, cbox2, line0, cbox1, cbox0]). 
 

Figure B.8 The save file for a sample Ispel program. 

When programs are reloaded into the Prolog prototype, the unique keys for entities must 
be re-allocated. These may be in use by another application in Ispel and so must be 
reassigned when a program is reloaded.
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Appendix C 
Weakest Precondition Notation 

 
This appendix explains the weakest precondition notation used to formally describe Ispel 
operations in Appendix D. It also discuses the notation used to define operations, which is 
a variant on the weakest precondition notation. 

C.1 Weakest Precondition Notation 

Operations are defined using a weakest precondition notation often used for formal 
program correctness analysis. The notation used in this appendix is derived from (Gries, 
81), and a brief overview of the notation is given here. Gries (81) should be consulted for a 
full definition of states, predicates, and the weakest precondition notation. 

Definition 

A program can be defined as {Q} S {R}, where Q is the precondition state, R is the 
postcondition state, and S is a sequence of program statements. A program is correct if, 
when execution of S begins in any state satisfying Q, the program will end in a finite 
amount of time in a state satisfying R. 

The weakest precondition for a program S is denoted as wp(S,R), where R is the predicate 
to be satisfied. The value of wp(S,R) is a predicate describing the most general state that, 
when execution of S begins in this state, S will terminate in a state satisfying R. 

Definition 

The null statement, ⊥, is defined as: 

wp(⊥,R) = R 

This means that any state that execution of ⊥ begins in, the statement will terminate, still 
satisfying the initial state. 

Ispel operations are described in terms of the {Q} S {R} notation, where Q = wp(S,R). An 
operation is described as: 
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operation_name(parameters) ⇐ {Q} S {R} 

where parameters is an n-tuple <p1,p2,...,pn> of values used in S. 

Refer to Gries (81) for a complete proof that the weakest precondition holds for multiple 
statements and satisfies the laws of predicate calculus. 

C.2 Assignment 

Assignment is defined as a state change, where the value of a variable is exchanged for 
the value of an expression. 

Definition 

The weakest precondition for assignment is: 

  wp(a← e,R) = domain(e)∧ Re
a

 

This means that when e is evaluated in a valid domain, a is replaced by the expression e in 
predicate R. 

C.3 Conditional Statement 

The conditional statement is denoted as: 

if B1 → S1 
| B2 → S2 
... 
| Bn → Sn 
fi 

For abbreviation, the general command is referred to as IF, while BB denotes the 
disjunction B1∨B2∨...∨Bn. 

The weakest precondition for the conditional statement is: 

wp(IF,R) = domain(BB)∧BB∧(B1⇒wp(S1,R))∧...∧(Bn⇒wp(Sn,R)) 

or to simplify: 

wp(IF,R) = (∃i:1≤i≤n:Bi)∧(∀i:1≤i≤n:Bi⇒wp(Si,R)) 

C.4 Iteration 

Iteration is denoted as: 
do B1→S1 
| B2→S2 
|... 
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|Bn→Sn 
od 

The general command is referred to as DO, and H0(R) is defined as the set of states in 
which DO terminates in 0 iterations with R true: 

H0(R) = ¬BB∧R 

Hk is defined as the set of all states in which execution of DO terminates in k or fewer 
iterations: 

Hk(R) = H0(R)∨wp(IF,Hk-1(R)), for k>0 

Definition 

The weakest precondition of the iteration command is: 

wp(DO,R) = (∃k:0≤k:Hk(R)) 

C.5 Execute 

The execution of an Ispel operation results in a state change. This means that the 
statements, S, of the operation are executed and the postcondition, R, is satisfied. 
Execution of operations can only be performed when Ispel is in a state that satisfies the 
precondition, Q, of the operation. All operations record the state change made so that the 
operation can be reversed. 

Definition 

The execution of an operation is denoted by: 

Execute[operation(Poperation)] <=  
{Qoperation}  
Soperation 
{Roperation} 

where: 
• operation is the name that denotes state change(s) 
• Poperation is the parameters to the operation 
• Qoperation is the precondition for the operation 
• Soperation is a sequence of transformations (state changes) for the operation 
• Roperation is the postcondition for the operation 

This results in the statements which comprise the operation being performed, and the 
state change to the Ispel graphs defined by the operation is carried out. In order for 
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Execute to be valid, prior to execution domain(Poperation)∧Qoperation must be true, and 
after execution, Roperation must be true. 

Execute can be viewed as a function with side effects which returns true or false, 
depending on whether or not the operation can be performed. If the precondition is true, 
the operation can be performed. If the precondition is not true, then the operation cannot 
be performed. 

C.6 Operation Parameters 

Operations cause state changes of the Ispel graphs as they are applied. These state 
changes can be reversed, and they are recorded by storing them in lists. 

Definition 

Every operation has three parameters associated with the execution of the operation: 

Execute[operation(Poperation)]αβχ 

where: 
• α denotes the underlying representation graphs. 
• β denotes the visual representation graphs. 
• χ denotes the history operation list. This is a sequence of operations that has 

been applied to the given underlying representation and visual representation 
graphs. 

All state changes that the operation performs change the two graph states in some way. 
These changes are recorded in the third list. This allows the state changes to be reversed. 

For example, to add a feature box and line: 

Execute[add_feature(V,A{C(F)→T})]αβχ ⇐ 
{N{F(T)}∉β} 
α←α∪{C(F)→T} 
β(V)←β(V)∪{A{C(F)→T},N{F(T)}} 
{C(F)→T∈α∧N{F(T)}∈β(V)∧A{C(F)→T}∈β(V)} 

Execute[add_feature(V,A{C(F)→T})] will cause this operation to be performed, so long as 
the precondition is true. 

The parameters are changed by execution of the operation, and are passed to other 
operations within the operation (see Section C.8). Thus Execute is procedural in operation 
rather than functional.  
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C.7 Undo 

Operations can be reversed by executing the Undo of an operation. 

Definition 

The Undo of an operation is denoted by Undo[operation(Poperation)], and is defined as: 

Execute[operation(Poperation)] ⇐ 
{Roperation} 
¬Soperation 
{Qoperation} 

Where ¬Soperation is defined as the reverse of the state changes of Soperation. The effect of 
Undo[operation(Poperation)] is to reverse the state change(s) performed by 
Execute[operation(Poperation)]. 

Execute takes three parameters which are the states of the underlying and visual 
representations, and a list of operations performed on these graphs. Undo also takes 
these three parameters, and an additional parameter, δ, which is a list of operations to 
reverse. The effect of executing Undo is to reverse the state changes that were performed 
and record these in the history operation list. 

Undo[operation(Poperation)]αβχδ ⇐ 
{Roperation} 
do ε∈δ→ 
 Undo[ε(Pε)]αβχδε 
od 
{Qoperation} 

Note that for each state change being reversed, the parameters α, β, and χ from the 
operation being reversed are altered. 

C.8 Complex Operations 

Operations can be simple operations that perform one state change, or complex 
operations that perform multiple state changes. Complex operations are comprised of 
simple operations and other complex operations. 

Definition 

A complex operation is a list {o1,...,on} of operations. 

Execute for a complex operation is defined as: 

Execute[complex_op(Pcomplex_op)]αβχ ⇐  
{Qcomplex_op} 
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do oi∈complex_op→ 
 Execute[oi(Pi)]αβχ 
od 
{Rcomplex_op∧(∀i:1≤i≤n:oi(Pi)∈χ)} 

Undo for a complex operation is defined as: 

Undo[complex_op(Pcomplex_op)]αβχδ ⇐ 
{Rcomplex_op} 
do o∈δ→ 
 Undo[o(Po)]αβχδo 
od 
{Qcomplex_op} 

i.e. it is the same as Undo for simple operations. 

Note that the wp(S1 S2,R) = wp(S1,wp(S2,R)). This means for {Q} S1 S2 {R}, Q = 
wp(S1,wp(S2,R)) (Gries, 81). So, for a complex operation, Qcomplex_op = 
wp(o1,wp(o2,...wp(on,Rcomplex_op)...)). This implies that all preconditions for sub-
operations of a complex operation must be valid in the order the sub-operations are 
performed for the complex operation to be valid. 

The result of Execute is defined as either a state change in Ispel from Q to R, or no state 
change, depending on whether the operation was valid or not. For a complex operation, if 
one of the simple operations that comprise the complex operation is invalid (precondition 
violated), the state change cannot be performed. In this case, the precondition Qcomplex_op 
will be invalid. Alternatively, as the history list for a complex operation is built as each 
sub-operation is executed, if a sub-operation fails, the history list operations can be 
undone to reverse the effects of the operation.
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Appendix D 
Ispel Formal Definition 

 
This appendix presents a formal definition of the visual and underlying representation 
operations from Chapter 7. The operations in Table 7.1 are formally defined here as state 
changes on the graphs defined in Chapter 7. The operations are expressed in the weakest 
precondition notation described in Appendix C. 

This notation can be used to prove a program is correct. Normally, it is not used in 
programming, as it focuses on low-level detail and becomes cumbersome. However, due 
to the abstract level of description provided by the formal definition of Ispel as graphs, it 
is suitable for proving the operations on these graphs are correct. 

Operations are categorized into addition, removal, and renaming. A distinction between 
visual, underlying, and abstract operations is also made. Abstract operations are the 
operations requested by a programmer using Ispel. They include both visual and 
underlying representation operations. For example, adding a class box and inheritance 
line to an existing class results in a new class box, new line, and possibly a new 
generalization arc and class node. 

D.1 Abbreviations 

These are the abbreviations used in the following sections: 
• α are the underlying representation graphs passed as a parameter. 
• β are the visual representation graphs passed as a parameter. 
• χ are the history operations passed as a parameter. 
• V is a view. 
• C is a class. 
• F is a feature name. 
• T is a feature type (i.e. a class). 
• N is a node. 
• A is an arc. 

For every operation, the history operation list will be updated with all the state changes 
performed by the operation. These additions to the history list are omitted for clarity. 
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D.2 Addition Operations 

Class and feature boxes, and generalization and feature lines can be added to the visual 
representation. These can result in changes to the underlying representation graphs. 

D.2.1 Add a Class Box 

Execute[add_class(V,C)]αβχ ⇐ 
{} 
δ←∅∗ 
α←α∪{C} 
δ←δ∪{α←α∪{C}}* 
β(V)←β(V)∪{N{C}} 
δ←δ∪{β(V)←β(V)∪{N{C}}}* 
χ←χ∪{add_class(V,C)δ}* 
{N{C}∈β(V)∧C∈α∧{add_class(V,C)δ}∈χ∗} 

* These denote the history operations for the add_class operation. In the remainder of this 
formal definition the updating of the history operation list is omitted for clarity. 

D.2.2 Add a Feature Box and Line 

Execute[add_feature(V,A{C(F)→T})]αβχ ⇐ 
{N{F(T)}∉β} 
α←α∪{C(F)→T} 
β(V)←β(V)∪{A{C(F)→T},N{F(T)}} 
{C(F)→T∈α∧N{F(T)}∈β(V)∧A{C(F)→T}∈β(V)} 

D.2.3 Add a Specialization Box and Line 

Execute[add_specialization(V,N1{C1},N2{C2})]αβχ ⇐ 
{A{C1→C2}∉β∧Ν2{C2}∈β} 
α←α∪{C1} 
α←α∪{C1→C2} 
β(V)←β(V)∪{N1(C1)} 
β(V)←β(V)∪{A{C1→C2}} 
{C1→C2∈α∧C1∈α∧A{C1→C2}∈β(V)∧N1{C1}∈β(V)} 

D.3 Removal Operations 

Inheritance lines, class boxes, and feature boxes can be removed from the visual 
representation graphs. Boxes can be hidden (only the visual representation if affected) or 
cut (both the visual and underlying representations are affected). 

D.3.1 Cutting an Inheritance Line 

Execute[cut_line(V,A{C1→C2})]αβχ ⇐ 
{A{C1→C2}∈β(V)} 
α←α-{C1→C2} 
β(V)←β(V)-{A{C1→C2}} 
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{A{C1→C2}∉β(V)∧C1→C2∉α} 

D.3.2 Hiding a Class Box 

Execute[hide_class_box(V,N{C})]αβχ ⇐ 
{N{C}∈β(V)} 
β(V)←β(V)-{N{C}}-decendants(V,N{C}) 
{N{C}∉β(V)∧decendants(V,N{C})∉β(V)} 

D.3.3 Hiding a Feature Box 

Execute[hide_feature_box(V,N{F(C)})]αβχ ⇐ 
{N{F(C)}∈β(V)} 
β(V)←β(V)-{N{F(C)}}-decendants(V,N{F(C)}) 
{N{F(C)}∉β(V)∧decendants(V,N{F(C)})∉β(V)} 

D.3.4 Cutting a Class Box 

Execute[cut_class_box(V,N{C})]αβχ ⇐ 
{N{C}∈β(V)} 
do C→C1∈α→ 
 α←α-{C→C1} 
 do A{C→C1}∈β(V1)→ 
  Execute[hide_class_box(V1,N1{C})]αβχ 
 od 
od 
{N(C)∉β(V)∧¬(∃C1→C2:C1→C2∈α:C=C1)∧ 
 ¬(∃C1→C2:A{C1→C2}∈β:C=C1)} 

D.3.5 Cutting a Feature Box 

Execute[cut_class_box(V,N{F(C))}]αβχ ⇐ 
{N{F(C)}∈β(V)} 
do C→C1∈α→ 
 α←α-{C→C1} 
 do A{C→C1}∈β(V1)→ 
  Execute[hide_class_box(V1,N1{C})]αβχ 
 od 
od 
do C1(F)→C∈α→ 
 α←α-{C1(F)→C} 
 do N{F(C)}∈β(V1)→ 
  Execute[hide_feature_box(V1,N{F(C)}]αβχ 
 od 
od 
{N{F(C)}∉β(V)∧¬∃(C1→C2:C1→C2∈α:C=C1)∧ 
 ¬(∃C1→C2:A{C1→C2}∈β:C=C1)} 

D.4 Renaming Operations 

Classes and features can be renamed. Both the underlying and visual representation 
graphs are affected by these changes. 
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D.4.1 Renaming a Class 

Execute[rename_class(C1,C2)]αβχ ⇐ 
{C2∉α} 
α←α-{C1}∪{C2} 
do C1→C3∈α→ 
 α←α-{C1→C3}∪{C2→C3} 
od 
do C1(F)→C3∈α→ 
 α←α-{C1(F)→C3}∪{C2(F)→C3} 
od 
do C3(F)→C1∈α→ 
 α←α-{C3(F)→C1}∪{C3(F)→C2} 
od 
{C1∉α∧N{C1}∉β} 

D.4.2 Renaming a Feature 

Execute[rename_feature(C,N{F1(C1)},F2)]αβχ ⇐ 
{C(F2)→C1∉α} 
α←α-{C(F1)→C1}∪{C(F2)→C1} 
{C(F1)→C1∉α} 

D.5 Other Operations 

Two complex operations are re-selecting a class and expanding a class. Re-selecting a class 
affects both the underlying and visual representations, while expanding a class only 
affects the visual representation. 

D.5.1 Re-selecting a Class 

Re-selecting a class can be done on a feature or class box. 

D.5.1.1 Class Box 

Execute[reselect_class(V,N{C1},C2)]αβχ ⇐ 
{C1≠C2} 
/* add C2 if necessary */ 
α←α∪{C2} 
/* change the inheritance relationships in view */ 
do A{C3→C1}∈β(V)→ 
 α←α-{C3→C1}∪{C3→C2} 
od 
/* delete the decendants of C1 from view */ 
do D∈decendants(V,N{C1})→ 
 if D=N1{F(C)}→ 
  Execute[hide_feature_box(V,N{F(C)})]αβχ 
 | D=N2{C}→Execute[hide_class_box(V,N2{C})]αβχ 
 | D=A{C3→C4}∨D=A{C3(F)→C4}→⊥ 
od 
/* change C1 to C2 in view */ 
β(V)←β(V)-{N{C1}}∪{N{C2}} 
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{N{C1}∉β(V)∧N{C2}∈β(V)} 

D.5.1.2 Feature Box 

Execute[reselect_feature(V,C3(F)→C1,C2)]αβχ ⇐ 
{C1≠C2} 
/* add C2 if necessary */ 
α←α∪{C2} 
/* change the inheritance relationships in view */ 
do A{C4→C1}∈β(V)→ 
 α←α-{C4→C1}∪{C4→C2} 
od 
/* hide decendants of F(C1) in all views that use it */ 
do N{F(C1)}∈V1 
 do D∈decendants(V,N{F(C1)})→ 
  if D=N{F(C)}→ 
   Execute[hide_feature_box(V1, 
    N{F(C)})]αβχ 
  | D=N{C}→ 
   Execute[hide_class_box(V1,N{C})]αβχ 
  | D=A{C3→C4}∨D=A{C3(F)→C4}→⊥ 
  fi 
 od 
od 
/* change feature relationships */ 
α←α-{C3(F)→C1}∪{C3(F)→C2} 
{N{F(C1)}∉β(V)∧Ν{F(C2)}∈β(V)} 

D.5.2 Expanding a Class 

A class can have its parents, children, or features expanded in a view. P, C, and F indicate 
whether or not the parents, children, and features should be expanded: 

Execute[expand_class(V,N1{C1},P,C,F)]αβχ ⇐ 
{N1{C1}∈β(V)} 
if P→ 
 β(V)←β(V)∪parents(V,N1{C1}) 
|  ¬P→⊥ 
fi 
if C→ 
 β(V)←β(V)∪children(V,N1{C1}) 
|  ¬C→⊥ 
fi 
if F→ 
 β(V)←β(V)∪features(V,N1{C1}) 
|  ¬F→⊥ 
fi 
{(¬P∨parents(V,N1{C1})∈β(V))∧ 
 (¬C∨children(V,N1{C1})∈β(V))∧ 
 (¬F∨features(V,N1{C1})∈β(V))} 

where: 
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parents(V,N1{C1}) = {N2{C2},A{C2→ C1}}

{C2→C1|C2→C1∈α∧ A{C2→C1}∉β(V)}
U

 

  
children(V,N1{C1}) = {N2{C2},A{C1→ C2}}

{C1→C2|C1→C 2∈α∧A{C1→C2}∉β (V)}
U

 

  
features(V,N1{C1}) = {N{F (C2)},A{C1(F )→ C2}}

{C1( F)→C2|C1(F )→C2∈α∧A{C1( F)→C2}∉β (V)}
U

 

D.6 Future Extensions 

This formalism can be extended to define more visual programming facilities of Ispel. For 
example, sets which contain the public and parameter features for classes could be added 
to the underlying and visual representations. In addition, some of the additional 
operations described in Table 7.1 could be defined in a formal manner. Other object-
oriented features, like generic classes and classification in Class Language, should be 
described formally if Ispel is to support them. A formal definition how other environment 
tools interact with this formalism may be required to define this process.
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