

A Visual Programming
Environment for Object-

Oriented Languages

John Collis Grundy

A thesis submitted in fulfilment of the requirements for the degree of

Master of Science in Computer Science

 University of Auckland February 1991

 Page i

Abstract

Visual programming environments provide more integrated, high-level, user friendly
frameworks in which to construct and maintain software. Visual programming is
particularly appropriate to object-oriented languages, due to the inherently visual nature
of their structure.

The concepts of visual programming and current research in this area are summarised in
this thesis. Object-oriented concepts and development are discussed, along with some
representative object-oriented languages. Ispel, a visual programming environment for
object-oriented languages, is developed and described. Ispel allows programmers to
graphically represent and manipulate the high-level, object-oriented aspects of programs.

Two prototypes of Ispel have been implemented. The first was implemented in Prolog,
and was used to refine the user interface and visual programming facilities of the
environment. Evaluation and enhancement of this prototype has determined the value of
visual programming for object-oriented languages. The second prototype was
implemented in Eiffel, an object-oriented language, and assisted the development of an
object-oriented implementation model for Ispel. The second prototype also assisted the
development of a formal definition of Ispel. This is a concise, high-level notation for
describing the behaviour of Ispel, and provides a formal framework for integrating future
extensions.

Possible enhancements to Ispel are described which would improve the visual
programming environment it provides. The abstraction of aspects of Ispel to provide an
environment for other languages, and for use in other applications, is also discussed.

 Page ii

 Page iii

Contents

Abstract..i

Contents .. iii

Chapter 1 ..1

Introduction..1
1.1 Rationale for Research ...1

1.1.1 Using Visual Techniques in Computing ...1
1.1.2 Object-Oriented Languages...2
1.1.3 Improving Programming Environments..2

1.2 Outline of Thesis ...3

Chapter 2 ..5

Visual Programming Environments ..5
2.1 Programming Environments ...5
2.2 Visual Programming Environments ...7
2.3 Advantages of Visual Programming ...8

2.3.1 User Interface ..8
2.3.2 Visualisation of Programs ...8
2.3.3 Program Navigation ..9
2.3.4 Integration of Tools ...9

2.4 Taxonomy of Programming Environments..10
2.4.1 Conventional Environments ..10
2.4.2 Integrated Environments and Browsers...11
2.4.3 Visual Programming Environments ..15
2.4.4 Program Visualisation ...17
2.4.5 Example-Based Programming...19
2.4.6 Computer-Aided Software Engineering ..20
2.4.7 Other Visual Modelling Systems ..23

2.5 Summary..23

Chapter 3 ..25

Visual Programming for Object-Oriented Languages...25
3.1 Object-Oriented Programming Concepts ..25

Contents Page iv

3.1.1 Object-Oriented Design...25
3.1.2 Objects and Classes ...26
3.1.3 Type Aggregation..26
3.1.4 Genericity ..27
3.1.5 Generalisation..27
3.1.6 Classification ...28

3.2 Object-Oriented Development...28
3.2.1 Software Development Life-cycle...29
3.2.2 Identifying Objects and Classes ..29
3.2.3 Class Interface Design...30
3.2.4 Inheritance Hierarchies..30
3.2.5 Implementing Classes..31

3.3 Class Language and Eiffel..31
3.3.1 Class Language..31
3.3.2 Eiffel ..32
3.3.3 Development Environments ..32

3.4 Other Object-Oriented Languages..34
3.5 Class Structure Diagrams ..35
3.6 The Ispel Visual Programming Environment ..37

3.6.1 Current Use of Class Structure Diagrams ...37
3.6.2 Construction of Class Structure Diagrams ..37
3.6.3 Visual Programming Using Class Structure Diagrams38
3.6.4 Ispel ...38

3.7 The Basic Concepts of Ispel ...38
3.7.1 Overview of Ispel ..38
3.7.2 Programs as an Underlying Representation ..39
3.7.3 Multiple Views of the Underlying Representation..40
3.7.4 Elements of Views...42
3.7.5 User Interface ..43
3.7.6 Well Integrated Tools ..44

3.8 Summary..45

Chapter 4 ..47

The Prolog Prototype...47
4.1 A Prolog Prototype for User Interface Aspects..47
4.2 The Development Process ..47

4.2.1 Specification and Design...48
4.2.2 Rapid Prototyping..48
4.2.3 The Implementation Language..49

Contents Page v

4.3 User Interface..50
4.3.1 Visual Representation of a Program..50
4.3.2 User Input and Output ...52
4.3.3 Applications, Views, and Windows ..54
4.3.4 Textual Views of Classes ..59
4.3.5 Visual Manipulation Using Tools ...60
4.3.6 Class and Feature Names ..64
4.3.7 Saving and Restoring Applications ...64

4.4 Implementation ...65
4.4.1 Structure of the Prolog Prototype ..65
4.4.2 Relational Model ...66

4.5 Summary..69

Chapter 5 ..71

Evaluation and Enhancement of the Prolog Prototype ..71
5.1 Evaluation..71

5.1.1 Some Applications for the Prolog Prototype...71
5.1.2 Program Efficiency..72
5.1.3 Performance as a Visual Programming Environment ...72

5.2 Some User Interface Deficiencies ..73
5.2.1 Visual Manipulation ..74
5.2.2 Constraint of Class Language Program Construction ...74
5.2.3 Visual Representation..75
5.2.4 Navigation ...76
5.2.5 Renaming Classes and Features ..76
5.2.6 Underlying Representation..76
5.2.7 Lack of a Parser and Run Time System ..77
5.2.8 Location and Documentation of Existing Classes...77

5.3 Evaluation of the Relational Model...78
5.3.1 Advantages of the Relational Model ...78
5.3.2 Deficiencies of the Relational Model ..78

5.4 Enhancements ...79
5.4.1 Line and Box Addition ..79
5.4.2 Cutting of Boxes and Lines ...80
5.4.3 Parameters, Procedures, and Functions ...80
5.4.4 Visual Layout ..83
5.4.5 Expansion of Class Features and Generalisations ...85
5.4.6 Views and Windows..87
5.4.7 Renaming and Re-selecting Classes and Features...87

Contents Page vi

5.4.8 Consistency with Underlying Representation ...88
5.4.9 Standard Classes..88

5.5 Some Visual Programming Techniques..88
5.5.1 Multiple Views of a Program ..88
5.5.2 Multiple Windows ...93
5.5.3 Graphical and Textual Representations...93

5.6 Summary..93

Chapter 6 ..97

The Eiffel Prototype...97
6.1 The Eiffel Prototype..97

6.1.1 Rationale for the Eiffel Prototype ...97
6.1.2 The Development Process ...98
6.1.3 The Object-Oriented Approach ...98

6.2 User Interface..100
6.2.1 Appearance ..100
6.2.2 Views...101
6.2.3 User Input and Output ...102
6.2.4 Different Facilities from the Prolog prototype ..102

6.3 Implementation ...103
6.3.1 Framework...103
6.3.2 Objects...106
6.3.3 Operations ...111
6.3.4 Relationships ...113

6.4 Evaluation..118
6.4.1 Performance as a Visual Programming Environment118
6.4.2 Implementation..118
6.4.3 Further Development of the Eiffel Prototype..120

6.5 Object-Oriented Development...120
6.5.1 Suitability of an Object-Oriented Language to Implement Ispel121
6.5.2 Eiffel and its Environment ..121
6.5.3 Some Facilities for a Visual Programming Environment122
6.5.4 Some Techniques Developed During Implementation......................................122

6.6 Summary..124

Chapter 7 ..127

A Formal Definition of Ispel ...127
7.1 The Need for a Formal Definition ...127
7.2 Predicate Calculus and Weakest Preconditions...128

Contents Page vii

7.3 Notation..128
7.4 Structure of the Formal Definition..129

7.4.1 Object-Oriented Program ..130
7.4.2 Underlying Representation..131
7.4.3 Visual Representation..132

7.5 Mappings ...133
7.5.1 Visual Representation to Screen Representation Mapping133
7.5.2 Visual Representation to Underlying Representation134
7.5.3 Underlying Representation to Object-Oriented Program Mapping...................135

7.6 Operations ...136
7.6.1 Add a Class Box and Node..137
7.6.2 Add a Generalisation Line and Arc ...138
7.6.3 Add a Feature Box and Arc ...138
7.6.4 Hide a Box...139
7.6.5 Cut a Class Box ...140
7.6.6 Rename a Class ...141
7.6.7 Produce an Object-Oriented Program Graph ..141

7.7 Extensions to the Formalism..142
7.8 Summary..143

Chapter 8 ..145

Conclusions...145
8.1 Research Contributions..145
8.2 Programming Environments ...146

8.2.1 Suitability of Programming Environments to Languages146
8.2.2 Integration and Appropriate Tools ..146
8.2.3 Performance...147

8.3 Visual Programming Environments ...147
8.4 The Ispel Visual Programming Environment ..148

8.4.1 The Prototypes of Ispel..148
8.4.2 User Interface Issues..148
8.4.3 Visual Programming Issues...149
8.4.4 Implementation Issues ...149
8.4.5 Formal Specification ...150
8.4.6 Defining Visual Aspects..150

8.5 Program Development..150
8.7 Prolog Programming ..153
8.8 Object-Oriented Programming ...153
8.9 Summary..154

Contents Page viii

Chapter 9 ..157

Future Research...157
9.1 Enhancement of Ispel Visual Programming ..157

9.1.1 Improvements to Existing Facilities..157
9.1.2 Increase Visual Programming Power ..161
9.1.3 Cut, Copy, Paste, and Undo ..163
9.1.4 Parser for Graphics ..163

9.2 Ispel Development Environment Tools...163
9.2.1 Compiler and Run-Time System...164
9.2.2 Class Library System...164
9.2.3 Class Abstracter and Documentation Tool..164
9.2.4 Class Location Facility ..165
9.2.5 Hierarchy Flattener..165
9.2.6 CASE Tools for Design, Analysis, and Documentation165
9.2.7 Formal Specification Tool...166
9.2.8 Structure-Oriented Editor ..166
9.2.9 User Interface Construction Tool ..167

9.3 Extension to a Multi-user Environment ...167
9.4 Enhancement of the Implementation Model ..167
9.5 Enhancement of the Formal Specification..168
9.6 Performance Analysis and Evaluation of Ispel ..169
9.7 Generalisation of Ispel to Other Languages...169
9.8 Abstraction of Ispel to Visual Modelling ..170

9.8.1 Entity-Relationship Modelling ..171
9.8.2 CASE Methodologies..171
9.8.3 Document Processing ..171
9.8.4 General Graph, List, and Tree Manipulation...171
9.8.5 Cataloguing ...171
9.8.6 Dynamic Object Modelling ...172

9.9 Describing Visual State Change ..172
9.10 A General Model and Modeller Generator ..173
9.11 Summary..174

Appendix A...177

Specification of the Prolog Prototype...177
A.1 Prolog Prototype Basic Characteristics ...177
A.2 Application Layout ..179
A.3 Multiple Views..180

Contents Page ix

A.4 Representation of Classes and Class Relationships ..182
A.5 Manipulating Class Diagrams ..183

A.5.1 Selecting Operations to Perform ..183
A.5.2 Adding Classes to the Current View ..184
A.5.3 Connecting Classes in the Current View..185
A.5.4 Manipulating Classes in the Current View...187
A.5.5 Display and Editing of Feature Names for Classes ..187
A.5.6 Selection Manipulation in the Current View and Between Views..................188
A.5.7 Expansion and Contraction of Views ...188
A.5.8 Other Class Relationships and Views...189

A.6 Editing Class Details as Text...189

Appendix B ...195

Prolog Prototype Implementation ..195
B.1 The Prototype Structure..195
B.2 The Relational Model...197
B.3 Database Access Predicates and Examples..199
B.4 Prototype Save Files ...202

Appendix C...205

Weakest Precondition Notation ..205
C.1 Weakest Precondition Notation ..205
C.2 Assignment..206
C.3 Conditional Statement ...206
C.4 Iteration ..206
C.5 Execute ..207
C.6 Operation Parameters ...208
C.7 Undo ..209
C.8 Complex Operations ..209

Appendix D...213

Ispel Formal Definition..213
D.1 Abbreviations ...213
D.2 Addition Operations ..214

D.2.1 Add a Class Box ...214
D.2.2 Add a Feature Box and Line...214
D.2.3 Add a Specialization Box and Line ..214

D.3 Removal Operations ..214
D.3.1 Cutting an Inheritance Line ..214

Contents Page x

D.3.2 Hiding a Class Box ...215
D.3.3 Hiding a Feature Box..215
D.3.4 Cutting a Class Box ..215
D.3.5 Cutting a Feature Box...215

D.4 Renaming Operations..215
D.4.1 Renaming a Class ...216
D.4.2 Renaming a Feature ..216

D.5 Other Operations ...216
D.5.1 Re-selecting a Class..216
D.5.2 Expanding a Class ..217

D.6 Future Extensions ..218

Chapter 1 Introduction Page 1

Chapter 1
Introduction

Object-oriented programming has gained popularity in computing (Booch, 85, Coad and
Yourdon, 91, and Meyer, 88). This research enhances object-oriented programming by
improving the development environments for object-oriented languages. This is achieved
by utilising visual programming techniques to represent and manipulate these programs.

This chapter discusses the rationale for this research. Visual programming, object-oriented
programming, and programming environments are introduced. The contributions of this
research are summarised, and an outline of the structure of this thesis is presented.

1.1 Rationale for Research

Programming computers is a complex task, which becomes more difficult as programs
and software systems get larger. To address this problem, new techniques to assist
software construction are being developed (Henderson and Notkin, 87). Two important
areas of research are programming languages and programming environments (Dart et al, 87).

Two current technologies which are gaining popularity are object-oriented programming and
visual programming. Most current object-oriented programming languages have poor
programming environments which do not assist software development. In this research,
object-oriented programming is assisted by using visual programming to provide an
improved environment for these languages.

1.1.1 Using Visual Techniques in Computing

Human-computer interaction is very important (Fischer, 87). Instructing computers can
be achieved in many ways. As technology advances, new methods of communication are
being developed which enhance the human-computer interaction process. Interactive
graphical user interfaces have become available with the widespread use of personal
workstations (Ambler and Burnett, 89, Raeder, 85, and Wasserman and Pircher, 87). These
provide a multidimensional visual interface between a human and computer software.

Graphical interfaces allow users to interact with computers in a more natural and
meaningful way. Direct manipulation interfaces, which provide a mouse device for pointing
at objects and manipulating them, also help to make computers easier to use (Myers, 90).
Graphical interfaces have the advantage that they can represent information and allow

Chapter 1 Introduction Page 2

information to be manipulated at higher levels of abstraction. This results in a more
powerful interface for specifying commands and obtaining information than is provided
by purely textual interfaces.

1.1.2 Object-Oriented Languages

Computers can be instructed using a large variety of programming languages. As
programs grow larger, they become more difficult to construct, understand, and
maintain. Conventional programming languages, such as Pascal or C, are structured around
procedural and functional components of software systems. These are the aspects of
software that are most prone to change (Meyer, 88), and often the most difficult to
conceptualise.

Object-oriented programming allows programmers to structure programs around data.
Data, and the operations that operate on data, are encapsulated together. Real world and
abstract objects are modelled in this way, and classes of these objects can be defined. A
variety of inter-class relationships are present which assist in structuring programs,
reusing information, and categorising objects. Object-oriented techniques and languages
assist the design, construction, and maintenance of large software systems (Booch, 87,
Coad and Yourdon, 91, and Meyer, 88).

The two representative object-oriented languages used in this thesis are Class Language
and Eiffel. Class Language was developed at the University of Auckland (Hamer, 90), and
Eiffel was developed at Interactive Software Engineering (Meyer, 88). These languages
and their environments are described in more detail in Section 3.3.

1.1.3 Improving Programming Environments

Most of the existing programming environments for object-oriented languages only give
limited assistance to programming in this paradigm. To exploit its advantages,
programmers require good environments and tools to assist them. The programming
environments for object-oriented languages are enhanced in this research by using visual
techniques.

The current environments for both Class Language and Eiffel are deficient in many ways.
This research designs and prototypes Ispel, a visual programming environment for these
languages. The high-level aspects of object-oriented languages can be represented well
using graphical techniques (Wasserman et al, 90, and Wilson, 90). By constructing these
aspects in a visual programming environment, the design and implementation processes
can be enhanced. Other programming environments, such as those for conventional
languages, can also be enhanced using visual programming.

Chapter 1 Introduction Page 3

There is a growing interest in research in this area. Many visual programming systems
have been developed which exploit similar ideas to those presented in this thesis. These
include PECAN (Reiss, 85), Graspin (Mannucci et al, 89), TANGO (Stasko, 89), and others
(Ambler and Burnett, 89, Myers, 90, and Raeder, 85).

1.2 Outline of Thesis

The following chapters are organised thus:
• Chapter 2 defines visual programming and programming environments. A

taxonomy of programming environments is presented which forms a survey of
research in this area.

• Chapter 3 introduces object-oriented language concepts and object-oriented
development techniques. Class Language and Eiffel are described. The concepts
of the Ispel visual programming environment are presented.

• Chapter 4 describes a Prolog prototype of Ispel. This provides a visual
programming environment for Class Language. The user interface, visual
programming facilities, and implementation of this prototype are discussed.

• Chapter 5 evaluates this Prolog prototype, describes its advantages and
deficiencies, and presents some enhancements to it. Some visual programming
techniques developed using Ispel are also discussed.

• Chapter 6 describes an Eiffel prototype of Ispel, which was used to refine an
implementation model. Object-oriented development of this prototype, using
Eiffel, is discussed.

• Chapter 7 presents a formal definition of Ispel.
• Chapter 8 draws conclusions from this research.
• Chapter 9 discusses some future extensions of Ispel. It also presents some

future directions for research.

Chapter 1 Introduction Page 4

Chapter 2 Visual Programming Environments Page 5

Chapter 2
Visual Programming Environments

The concepts of programming environments and visual programming environments are
introduced in this chapter. The advantages of visual programming techniques over
conventional, textual ones are discussed. A taxonomy of visual programming
environments is presented, which is illustrated with examples of representative languages
and systems. This taxonomy forms a survey of the current research on visual
programming and visual programming environments.

2.1 Programming Environments

“Computer scientists have created numerous development tools for other
disciplines, such as computer-aided design and computer-aided manufacturing.
Only relatively recently, however, has the need for computer scientists to aid
themselves been recognised.”

(Henderson and Notkin, 87)

Programming environments are software and hardware tools which a system developer
uses to build software systems (Dart et al, 87). When developing programs, a
programmer works within an environment which facilitates the programming task.
Programming environments provide tools which allow a programmer to edit, compile,
and execute programs. They also provide additional facilities to assist this development
process.

Dart et al (87) make a distinction between programming environments and software
development environments.

• Programming environments support only the coding phase of the software
development cycle. For example, programming in the small1 tasks such as editing
and compiling.

1“Programming in the small” refers to single programmer tasks accomplished on one
machine. For example, editing and compiling a program are single programmer tasks,
but there may be several programmers working on the same software system.

Chapter 2 Visual Programming Environments Page 6

• Software development environments augment or automate all the activities
comprising the software development cycle. This includes programming in the
large2 tasks such as project and team management, and long term maintenance
of software.

The focus of this thesis are programming environment issues. However, some software
development environment aspects are discussed.

Dart et al (87) and Henderson and Notkin (87) give a taxonomy of programming
environments. This can be used to classify programming environments and to
understand the technological trends that have produced existing environments (Dart et al,
87):

• Language-centred environments. These are built around one language and provide
a programming tool suitable for that language. These environments are highly
interactive and focus on a narrow set of software development activities.
Examples include InterLISP, Smalltalk, and Cedar (Dart et al, 87), Trellis/Owl
(O’Brien et al, 87), THINK Pascal (Symantec, 89), and LPA MacProlog (LPA,
89a).

• Structure-oriented environments. These environments focus on the manipulation
of structures rather than programs. The notion of structure editing produced
structure-oriented editors and the notion of environment generators. Examples
include the Cornell Program Synthesizer (Reps and Teitelbaum, 87), and the
PECAN system (Reiss, 85).

• Toolkit environments. These are loosely interrelated collections of tools for
“programming in the large” tasks. The environment does not constrain the use
of these tools in any way. For example, Arcadia (Dart et al, 87), and Gandalf
(Henderson and Notkin, 87), are generators for toolkit environments.

• Method-based environments. These environments provide tools for a broad range
of software development activities. They also include tools for particular
specification and design methods. Examples include Software through Pictures
(Wasserman and Pircher, 87), Graspin (Mannucci et al, 89), and a variety of
CASE tools (Dart et al, 87).

The majority of the programming environments discussed in this chapter are language-
centred environments. The Ispel visual programming environment presented in Section

2“Programming in the large” refers to multiple programmer tasks accomplished over
several networked or distributed machines. For example, the management and co-
ordination of many programmers working on different aspects of a single system.

Chapter 2 Visual Programming Environments Page 7

3.5 is a language-centred environment with some structure-oriented and method-based
design aspects.

2.2 Visual Programming Environments

“With the availability of graphic workstations has come the increasing influence of
visual technology on language environments.”

(Ambler and Burnett, 89)

New graphics workstations and their wide availability means powerful graphics facilities
are now available to programmers (Ambler and Burnett, 90, Myers, 90, and Raeder, 85).
The graphical facilities provided by these workstations can be utilised to assist the
software development process. The use of graphics to construct or view programs is
called visual programming. Environments that utilise an aspect or aspects of visual
programming are called visual programming environments.

Visual programming environments use graphical techniques for all, or part, of program
construction and visualisation. They allow a programmer to specify a program in a two
(or more) dimensional fashion, whereas conventional textual languages are only one
dimensional (Myers, 90). Some two-dimensional visual aspects are utilised for textual
programming, such as indentation. However, textual programming usually lacks the
high-level abstraction that visual programming can provide. Programs such as MacDraw
are not visual programming environments as they do not create programs (Myers, 90).

Ideas related to visual programming include program visualisation and example-based
programming. In program visualisation, a program is specified in a conventional, textual
manner. Graphics are used to illustrate aspects of the program or its run time execution.
Myers (90) makes a clear distinction between visual programming systems and program
visualisation systems. Program visualisation systems can be classified into data
visualisation and code visualisation systems, depending on the aspect of a program they
model. Data visualisation can also be classified into static and dynamic modelling systems.
Static program visualisation can only take snapshots of a running program, but dynamic
systems can model changing program data. Abstract visualisation, or algorithm
animation, models an algorithm as it is executed, instead of, or in addition to, its code and
data.

Example-based programming allows a programmer to specify examples of input and
output during the programming process. There are two types of example-based
programming systems, called programming by example and programming with example.
Programming by example uses examples to try and infer a program which can construct
them. Programming with example requires the programmer to specify everything about
a program, and nothing is inferred. Test data and results are given to example-based

Chapter 2 Visual Programming Environments Page 8

programming systems before execution, rather than comparing output with expected
values, as with conventional programming.

A visual programming environment can be defined as utilising some form of visual
programming. In addition, this visual construction of programs can be augmented with a
program visualisation or example-based programming component.

2.3 Advantages of Visual Programming

It is desirable for programming environments to provide several facilities to assist a
programmer during program development. These include: a good user interface, a clear
representation of programs, versatile program navigation, and a variety of integrated
tools. Visual programming environments can assist in providing these facilities in a better
form than conventional environments (Raeder, 85).

2.3.1 User Interface

The user interface presented to programmers is improved by using visual techniques.
Conventional interfaces are difficult to learn and use (Myers, 90, and Raeder, 85). They
often do not provide a clean and concise method of specifying actions and obtaining
information. Visual interfaces provide an interface which is more natural, more flexible,
and easier to use, as they utilise both graphics and text. This allows for a more expressive
description of commands, and a more powerful and user-friendly method for presenting
and manipulating information (Myers, 90, and Raeder, 85).

The direct manipulation interface has become popular and visual programming helps to
utilise this technology to its fullest (Myers, 90). Elements of visual programs can be
pointed to and operated on. This gives the programmer the impression that they are
directly constructing a program. They are no longer abstractly designing a program, but
constructing it from visual base elements.

The provision of a consistent user interface with the same behaviour in different aspects
of program development, contributes to the seamless integration of an environment. A
visual interface is easier to keep uniform than a textual one. Different parts of a software
development environment can utilise a similar interface with the same look and feel
aspects. This assists the software development process (Raeder, 85, and Wasserman and
Pircher, 87).

2.3.2 Visualisation of Programs

A graphical user interface shows more of a computer’s internal state, and is a more
expressive medium of communication (Raeder, 85). The transfer rate of information is
improved by using graphics where it is more natural to describe something visually than

Chapter 2 Visual Programming Environments Page 9

with text. The human visual system is designed to process multidimensional data.
However, conventional languages and programming environments only provide a single
dimensional textual form.

Two-dimensional pictorial displays for data structures are very helpful, although little
research has been done on programming using a visual representation of data structures
(Myers, 90, and Raeder, 85). Visual programming allows the structure of programs, the
flow of information, and the data structures that comprise the program, to be modelled.
An environment utilising graphical program representations allows a programmer to
process data in a format closer to the way objects are manipulated in the real world
(Myers, 90).

Graphics often provide a higher level description of information, and provide a higher
level of abstraction (Myers, 90, and Raeder, 85). Issues such as syntax, or some semantic
constraints, can be factored out of the programming process. This can result in improved
productivity in program development. Often, graphical representation is a more
appropriate and meaningful way of presenting information. For example, data is
described and manipulated well using visual techniques.

2.3.3 Program Navigation

Navigation throughout a program during its development is based around the structure of
the program (Fischer, 87, and O’Brien, 87). Many conventional programming
environments provide little or no assistance to the programmer in moving between
different parts of a program. Often, programmers want to focus on one aspect of a
program during development, then move to a more or less abstract context, or a related
context. Visual programming can utilise the visual representation of a program to provide
a meaningful and flexible method of moving between different contexts (Ambler and
Burnett, 90).

2.3.4 Integration of Tools

A program development environment consists of a variety of tools which are utilised
during program construction and refinement. Examples include an editor, compiler, run-
time system, project database, cross referencer, and documentation facility. These tools
must be integrated in both their look and feel aspects (user interface), and their
communication and data storage (underlying representations).

Many conventional environments consist of quite distinct tools with very few common
user interfaces and representational formats. Often, some tools are completely distinct
from the rest of the environment, and the information provided by them is utilised only
as the programmer sees fit. Examples are the increasingly popular CASE tools, which are

Chapter 2 Visual Programming Environments Page 10

usually visual tools used for the design and analysis processes. However, information
from them is stored in a format that can not be utilised by other tools in the environment,
such as the editor and compiler.

Visual programming environments have a common user interface between the different
aspects of the environment, and the tools are often tightly integrated. For example, the
Trellis/Owl environment provides a standard interface between tools for both user
interaction and tool communication (O’Brien et al, 87). Most visual programming
environments provide a good framework for integrating the user interfaces of tools.
However, many existing environments require improved tool communication and data
integration (Myers, 90).

2.4 Taxonomy of Programming Environments

This section presents a taxonomy of programming environments ranging from
conventional text-based environments to integrated visual programming environments.
Examples of representative environments and languages are given for each category.

Several survey papers are available which provide definitions of visual programming and
describe various systems. Some also compare and contrast different environments and
evaluate their relative merits and deficiencies. Myers (90) and Raeder (85) provide a
comprehensive survey of visual programming systems and describe visual programming
and its advantages. Ambler and Burnett (90) and Dart et al (87) describe some
representative visual programming environments and programming environments
respectively. Other surveys are available in Ambler et al (88), Chang (87), and Henderson
and Notkin (87).

2.4.1 Conventional Environments

Conventional programming environments utilise a textual representation for programs. Many
are not well integrated and can be difficult to use (Myers, 90). The editor, compiler, and
run-time system are usually quite distinct and have different user interfaces and data
storage mechanisms. These environments do not provide many tools to assist program
development.

2.4.1.1 Class Language and Eiffel

The environments for Class Language and Eiffel are both conventional in nature. Class
Language programs are constructed and compiled as text, and then a run-time system is
invoked to execute a program. Eiffel programs are also constructed in text and compiled.
The compiled program can then be executed. The Eiffel environment provides a limited
range of development tools and a program browser, although this is not particularly

Chapter 2 Visual Programming Environments Page 11

useful. Neither environment is tailored to the particular needs of the languages being
used.

Both environments store programs as text files which can be accessed and modified by
other utilities. However, this does not constitute integration, as there is no format to the
text and the programs can be modified in an unconstrained way. The user interfaces of
the editor and operating system are quite distinct. A programmer using the environment
must move between different tools with different user interfaces and behaviour.

Section 3.3 describes the environments for Class Language and Eiffel in detail.

2.4.1.2 Unix C and C++

The standard environments for C and C++ on Unix (Winblad et al, 90) are similar to those
of Class Language and Eiffel. They are not integrated, are fully textual, and provide few
tools to assist program development. Debugging tools are provided, but the range of
program aspects they can describe is limited. No universal tools for structuring or
visualising code at higher levels of abstraction exist. No navigation facilities based on
program structure are available.

2.4.1.3 Other Conventional Environments

Other examples of languages with conventional environments include older versions of
BASIC, Fortran, LISP, Pascal, and Prolog (Myers, 90). Many of these languages now have
more integrated environments, which provide improved facilities for program
development.

2.4.2 Integrated Environments and Browsers

Integrated environments that do not utilise visual programming techniques are the most
common development environments (Myers, 90, and Winblad et al, 90). Some of these
environments provide browsers which allow a programmer to view and navigate through
programs. These browsers may show a visual representation of a program, but the
diagrams can not be modified. Programs can not be constructed using visual
programming techniques with these systems.

Many of these environments are language-centred and tightly integrated. Most focus on
programming in the small tasks, which are all completed within one application
framework. The environment provided has a consistent user interface throughout, and
many use a Macintosh-like desktop interface.

Some environments are less tightly coupled, and have a tool approach. The environment
is described as a set of integrated tools which have the same user interface and common

Chapter 2 Visual Programming Environments Page 12

underlying representation. Extensibility is important in these environments. New tools
can be added which can communicate and interface with existing tools in a consistent
manner. Some environments allow existing tools to be tailored to the user by providing
“preferences”, or a method of specifying operations to perform and how these operations
are selected.

2.4.2.1 THINK Pascal

THINK Pascal on the Macintosh is a good example of a tightly-integrated, non-extensible,
language-centred programming environment (Symantec, 89, and Winblad et al, 90). The
environment supports programming in Object Pascal, and is a single Macintosh
application. Editing, compiling, and executing programs take place within a single
environment. All aspects of the environment use the Macintosh desktop metaphor, and
thus have a consistent user interface. Programs can be debugged interactively, with the
source code used for displaying the program statements being executed. Figure 2.1 shows
an example screen dump from an application programmed in THINK Pascal.

THINK Pascal also provides a browser for viewing object hierarchies. This allows for a
limited form of program visualisation and navigation. Unfortunately, there are no
facilities provided for visual programming, nor for viewing standard Pascal code visually.
THINK Pascal can neither be interfaced to, nor included within, another environment
framework. CASE tools used with THINK Pascal cannot use the programs stored by the
THINK Pascal environment.

Chapter 2 Visual Programming Environments Page 13

Figure 2.1 An example screen dump from THINK Pascal.

2.4.2.2 LPA MacProlog

LPA MacProlog (LPA, 89a) is a version of Prolog for the Macintosh. The development
environment for LPA MacProlog (LPA) is a tightly-integrated, extensible, language-
centred environment. Prolog programming is done within the one application, and all
aspects of the environment have a consistent user interface. As with THINK Pascal, the
desktop metaphor of the Macintosh is used. The LPA environment is extensible, as aspects
of the environment can be changed. For example, a new menu option can be added to
find and display Prolog predicates in a window, and the code to perform this new
operation is written in Prolog. A graphical browser, which shows the Prolog call graph, is
provided. Figure 2.2 shows an example screen dump from LPA.

Development in the LPA environment is assisted by the incremental compilation of LPA.
Prolog programs can be modified, and the changed parts re-compiled, while programs
are running and being debugged. This greatly reduces the turn-around time between
editing, compiling, and executing programs. The gap between these processes is reduced
and almost merged within the LPA environment. Tools such as the window editor and
the graphics libraries can be used in other Prolog applications. Like THINK Pascal, the

Chapter 2 Visual Programming Environments Page 14

LPA environment can not be used for programming other languages, nor can it be
interfaced to other tools outside the environment.

Figure 2.2 An example screen dump from LPA MacProlog.

2.4.2.3 Smalltalk-80

Smalltalk (Goldberg, 84, and Goldberg and Robson, 84) not only helped to popularise
object-oriented programming, but also helped to introduce the desktop metaphor for
user interfaces (Ambler and Burnett, 90). Smalltalk has a graphical user interface that has
menus and windows for input and output with the programmer. In addition, the concept
of program browsers is used. This allows a programmer to view selected portions of a
program while the program is under construction, and during the maintenance of a
program. However, graphics are not used to display elements of programs, and Smalltalk
programs are displayed and manipulated in text.

The Smalltalk environment is written in Smalltalk itself, and many aspects of the
environment can be changed. This means that the Smalltalk environment is very
extensible. The environment is not as tightly integrated as the LPA and THINK Pascal
environments. Many aspects of the environment are programmed in Smalltalk and

Chapter 2 Visual Programming Environments Page 15

communicate via Smalltalk objects. These can be modified, and new tools and facilities can
be added.

2.4.2.4 Trellis/Owl

The Trellis/Owl programming environment for the Trellis language (O’Brien, 87) is
composed of several programming tools. These tools share a common form of user
interface, and are not tightly coupled. These tools are integrated into an environment
which is designed specifically for object-oriented programming in Trellis. New tools can
be added to the environment, or existing tools modified, so long as they conform to both
the user interface and the communication standards of the environment.

Trellis provides a variety of tools such as an editor, compiler, debugger, cross referencer,
and class library catalogue (O’Brien, 87). The browser provided uses only text to display
class names, and does not use a visual representation. Programs can only be constructed
and viewed in text.

2.4.2.5 Other Integrated Environments

Ambler et al (88) describe several programming environments ranging from integrated
environments to visual programming systems. Other examples of integrated
environments are:

• ObjTalk (Fischer, 87) which provides an integrated environment and graphical
program browser for an object-oriented language.

• Cedar (Ambler and Burnett, 90, Ambler et al, 88, and Myers, 90) which is a
complete programming system based around graphical representations.

• Aloe (Ambler and Burnett, 90, and Ambler et al, 88) is a structure-oriented editor
generator used in the Gandalf project. It can be integrated with external
packages to form a programming environment.

• InterLISP (Ambler et al, 88, and Winblad et al, 90) is a programming
environment for a dialect of LISP which is tightly integrated and extensible.

• Cornell Program Synthesizer (Ambler et al, 88, and Reps and Teitelbaum, 87) is a
structure-oriented editor generator which can be used to generate
environments.

• Other Pascal and C systems, such as Objective-C (Winblad et al, 90), also have
environments similar to the THINK Pascal environment.

2.4.3 Visual Programming Environments

Visual programming systems provide a method for constructing and viewing programs
using graphical techniques. The environment provided is usually tightly-integrated and
language-centred. By manipulating a visual representation of a program, the

Chapter 2 Visual Programming Environments Page 16

programmer constructs the program using graphics rather than text. The graphical
representation can also provide a basis for navigation throughout a program.

Most visual programming systems are code or structure-oriented (Myers, 90, and Raeder,
85). Few systems use data-oriented program display, although Raeder (85) and Myers (90)
point out that data structures often provide the most interesting forms to display
graphically. In addition, data structures provide a good means of abstraction and
structuring within a program (Myers, 90). As object-oriented programs are based on data
structures, visual representation is suitable for them (see Section 3.6).

Examples of visual programming systems are described in Ambler and Burnett (90),
Ambler et al (88), Myers (90), and Raeder (85).

2.4.3.1 PECAN

The PECAN environment (Reiss, 85) provides a development environment for Pascal. The
environment is tightly-integrated and language-centred, and has a common user interface
throughout. The major contribution of PECAN was the notion of multiple views of
program structures. A program can be viewed in PECAN in a variety of ways, and the
program structure, semantics, and its execution, are displayed.

The multiple views idea has been utilised by many systems (Ambler and Burnett, 90).
Programs are represented as abstract syntax trees, and textual views are linked to this
structure. When part of this structure is modified, all affected views are updated to reflect
the change. Some graphical representations of programs are proposed which will allow
the program dataflow and data structures to be displayed. In addition, views which can
show the program execution, symbol table, and types, are proposed.

The PECAN environment stores operations which are performed, and provides an undo
facility to reverse operations. A list of operations is provided which can be edited and
operations re-executed by the programmer.

2.4.3.2 Prograph

The Prograph system (Gunakara, 89) integrates object-oriented concepts with a dataflow
language and an application builder. Prograph is visually programmed by constructing
classes and methods. Methods are implemented using a dataflow language. The
environment provided for Prograph is similar to the THINK Pascal environment in that it
uses the Macintosh desktop metaphor. It is tightly-integrated and not extensible, although
the method and class libraries provided can be extended by adding new methods and
classes. Prograph has a consistent user interface and provides a range of facilities for
building new user interfaces, including a sophisticated application builder. The object-
oriented aspects of Prograph are not well developed, and the dataflow and object-

Chapter 2 Visual Programming Environments Page 17

oriented aspects do not have a seamless integration. Figure 2.3 shows an example screen
dump from the Prograph environment.

Figure 2.3 An example screen dump from Prograph.

2.4.3.3 Garden

Garden (Reiss, 87) is an automated design system used for prototyping new textual or
visual languages and their environments. It is an abstraction of the ideas of PECAN (Reiss,
85) and is intended to be a general purpose environment generator for a variety of
languages. Garden also supports multiple views, and allows a language to be defined and
executed using a variety of views and construction techniques.

2.4.4 Program Visualisation

Program visualisation systems use graphics to represent some aspect of an executing
program. Program visualisation may be combined with visual programming. There are
three categories of program visualisation: code visualisation, data visualisation and
abstract (or algorithm) visualisation. In addition, data visualisation may be static or
dynamic.

Chapter 2 Visual Programming Environments Page 18

Program visualisation systems are described in Ambler et al (88), and Myers (90).

2.4.4.1 GraphTrace

GraphTrace (Kleyn and Gingrich, 88) allows object-oriented programs to be debugged
using a visual representation of the run-time objects. These objects are viewed in a visual
hierarchy, which can be traversed by the programmer. Programs are constructed using
InterLISP in text. When running, they can be debugged using the GraphTrace object
monitor. The programming environment used is the InterLISP environment, which is for
programming using a dialect of LISP. The GraphTrace views are static visualisations, and
are displayed when the user requests them.

2.4.4.2 PV

PV (Program Visualisation) is both a visual programming and program visualisation
system (Myers, 90). Its intention is to assist programmers in forming a clear and correct
image of a program’s structure and function (Brown et al, 85). PV allows a programmer
to construct a program visualisation which can be viewed when the program is executed.
Both static and dynamic diagrams are supported, and both textual and graphical diagrams
are utilised. PV uses a form of multiple views and allows a programmer to move from
one view to another during program execution.

The PV environment is a collection of loosely coupled tools which are built around a
project library where information is stored. These tools do not share a common user
interface and the system is menu driven from one of its components. Further tools can be
integrated into the environment, although this requires modification of the PV system
(Brown et al, 85).

2.4.4.3 BALSA

BALSA (Myers, 90) is an algorithm animation system. It runs on a Macintosh and provides
a tightly-integrated, language-specific environment. BALSA provides sophisticated views
of programs during execution, and provides dynamic animation facilities. BALSA
provides a library of existing views which can be utilised by a programmer to animate
programs. However, if a new view is required, this must be constructed by programming
using the Macintosh toolbox routines (Stasko, 89). BALSA can only be used to animate
programs written in the BALSA programming language.

2.4.4.4 TANGO

TANGO (Stasko, 89) is an algorithm animation system. TANGO supports two-
dimensional animations on a graphics workstation. Programmers can produce real-time
views of their programs using an algorithm animation design language or a direct

Chapter 2 Visual Programming Environments Page 19

manipulation animation design tool. TANGO animates a program during execution using
a graphical representation of the algorithms of the program.

TANGO is used to augment existing environments as a system for animating programs.
TANGO can be integrated into other programming environments and is driven by a
message-passing system. This loose system integration allows any program to be
animated by generating events which drive the animation.

2.4.4.5 The Object-Oriented Diagramming System

The Object-Oriented Diagramming System (Myers, 90) allows a programmer to view
objects at run-time and observe message-passing between objects. Objects are displayed
as boxes, and arrows are drawn between boxes and elements of boxes. These show
whether a method was handled by the object or a super-class of the object.

2.4.5 Example-Based Programming

Example-based programming uses examples of input and output to derive or specify
programs. Examples are often provided using a graphical user interface, and programs
constructed using graphical techniques. The environments provided by these systems are
usually language-specific and tightly-integrated.

Some example-based programming systems are described in Ambler et al (88), and Myers
(90).

2.4.5.1 Rehearsal World Theatre

Rehearsal World Theatre (Ambler et al, 88) is a visual programming environment for
non-programmers. The basic components of the environment are performers which
interact with each other on a stage. The screen is a stage upon which performers (objects)
perform actions they have been taught for a production (program). All the interactions
with Rehearsal World Theatre are visual in nature. They consist of selecting a performer
or sending a cue to a performer. Programming is undertaken by auditioning different
performers by sending them cues and seeing how they respond. The cues and creation of
performers are the examples the system receives and infers a program from.

2.4.5.2 Fabrik

Fabrik (Ingalls et al, 88) is a visual programming environment based on the dataflow
programming paradigm. Fabrik programs are constructed by connecting low-level
primitives together with wires, and thus building higher level program constructs. This is
analogous to the Prograph dataflow component (Gunakara, 89). Fabrik allows the
programmer to build user interface components, which are displayed on the screen and

Chapter 2 Visual Programming Environments Page 20

manipulated by a user of a Fabrik program. The system allows a user to input sample
data and continually adjust the output based on the input so far. All boxes, or low-level
components, are active while a program is being constructed. They produce output using
data from their input pins continually. The output data can be displayed to the
programmer, and programs can be adjusted interactively if the desired output is not
obtained.

2.4.5.3 THINKPAD

THINKPAD (Ambler et al, 88, and Myers, 90) is an example-based programming system
which generates Prolog code to model graphical manipulations performed by the
programmer. A diagrammatic representation of a data structure is manipulated, and this
is used to demonstrate operations on the data. Data structures are represented by their
graphical properties. Operations on data structures are specified by graphical examples of
the data structure in use. The visual aspects of THINKPAD do not extend to program
execution. While there is a mapping from the visual elements to a Prolog program, there
is not one from the program to its visual representation.

2.4.6 Computer-Aided Software Engineering

Computer-Aided Software Engineering (CASE) technologies have become important for
assisting the analysis and design of programming systems (Coad and Yourdon, 91). These
systems assist programmers and analysts to design software using formal methodologies.
The use of formal specification, design, and analysis techniques enhances the program
development and maintenance processes (Chikofsky and Rubenstein, 88, and Coad and
Yourdon, 91).

CASE tools primarily cater for the design and analysis of programs, but do not usually
cater for program construction. Some systems allow program templates to be generated
from a design, but don’t allow subsequent changes to the design or program to be
integrated. Thus diagrams for the design of programs can become out of date with the
code. CASE systems have well-developed graphical user interfaces and provide
sophisticated diagramming techniques. Their graphical representation and manipulation
facilities are more advanced than most visual programming systems.

Examples of CASE tools and environments are discussed in (Chikofsky and Rubenstein,
88, Dart et al, 87, and Henderson and Notkin, 87).

2.4.6.1 Software through Pictures

Software through Pictures (Wasserman and Pircher, 87) is a design and analysis tool for
program development. Software systems are designed in Software through Pictures and
then implemented in an appropriate language. Software through Pictures does not

Chapter 2 Visual Programming Environments Page 21

directly support program implementation. However, it does provide an environment
framework in which editors and compilers can be integrated. The environment is
comprised of several independent tools which share a common database repository for
project information.

The diagramming tools provided by Software through Pictures include a structured
analysis tool, an entity-relationship modeller, a dataflow diagram, and a structure chart
editor. All of these tools share a common user interface and a common project database.
A user interface prototyping system is provided, and output from the diagramming tools
can be obtained in a variety of forms.

The Software through Pictures environment has limited extensibility and can be
customised to suit the needs of particular users. A tool information file is provided which
can be updated. This allows other tools (like compilers and editors) to be used, and
existing tools’ behaviour to be modified in a constrained way.

2.4.6.2 Graspin

Graspin (Mannucci et al, 89) is similar to Software through Pictures. It is a development
environment generator for analysis and design. Graspin provides several tools, which are
integrated into a single environment. Graspin is based on a kernel machine, which
provides facilities for general purpose diagramming and data representation. There are
several tools which are generic and general purpose in nature, and can be configured for
different tasks. These can be modified to suit different applications. There are some
language-specific tools which are programmed using the kernel facilities of Graspin. These
can only be used for a specific language or application.

The tools provided by Graspin are similar to those provided by Software through
Pictures, but they are implemented differently. The main part of Graspin is a structure-
oriented editor, which can be tailored to different tasks. Graspin supports both textual and
graphical languages, which are defined in an abstract syntax language.

The diagrams produced in Graspin and Software through Pictures are automatically laid
out for the programmer. Although Mannucci et al (89) claim this is an advantage,
Wasserman and Pircher (87) note that it leads to inflexibility in the environment produced.
Reiss (87) and Myers (90) also claim that an environment should allow a programmer to
lay out programs as they desire.

2.4.6.3 OOATool

OOATool™ (Object-Oriented Analysis Tool) is a class structure editor with facilities to
produce documentation for programs (Coad and Yourdon, 91). Object-oriented programs
are designed by defining classes and their inter-relationships. The features of classes are

Chapter 2 Visual Programming Environments Page 22

divided into methods and attributes, and these can be added to class representations. The
OOATool™ provides options to display different aspects of a program. It has a similar
notion to PECAN views (Reiss, 85), called subjects. Figure 2.4 shows an example diagram
from the OOATool™.

Programs cannot be constructed using the OOATool™. The tool is only for analysis and
design, and then a program based on this design can be implemented using a suitable
object-oriented programming language. The tool cannot be integrated with existing tools,
as it has its own internal data storage mechanism. The environment provided is similar to
the Prograph environment (Gunakara, 89), and it also runs on the Macintosh.

The class structures produced by the OOATool™ differ from those used in other research
in this area (Mugridge, 88, Wasserman et al, 90, and Wilson, 90). However, all of these
diagramming techniques can be used to represent the same object-oriented program,
although in different formats.

Sensor

Model
InitSequence
Conversion
Interval
Address
Threshold
State
Value

Initialize
Monitor

Critical Sensor

Tolerance

Monitor

Standard Sensor

Figure 2.4 An example diagram from the OOATool™.

Chapter 2 Visual Programming Environments Page 23

2.4.7 Other Visual Modelling Systems

There are a large range of diagramming systems and visual modelling systems available.
Although these are not visual programming environments, they share some common
aspects. Examples include the user interfaces they provide and the diagram construction
techniques they employ.

Some examples of these include:
• Entity-relationship modellers which are used to graphically model a relational

database model (Czejdo et al, 90).
• Drawing packages which allow users to construct complex diagrams on

computers. Examples include MacDraw (Claris, 89) and MacPaint.
• Computer-Aided Design (CAD) systems allow users to construct technical

drawings with a range of environment facilities and tools to assist the drawing
process.

• Other systems like Hypercard and EDGE (Newbery, 88), a generic graph
editing package, have aspects which could be utilised for visual programming
environments.

2.5 Summary

This chapter defined the concepts of a programming environment and visual
programming environments. Visual programming has several advantages over
conventional programming. These include better program visualisation and navigation,
improved user interfaces, and improved environment integration. A taxonomy of
programming environments was given and illustrated, with a discussion of example
languages and environments. The environments included in the taxonomy include
conventional textual environments, to integrated environments with graphical browsers,
to visual programming systems. Visual programming, program visualisation, and
example-based programming systems are current areas of research. Related areas include
interactive CASE tools, diagramming packages, and other visual modelling systems.

Chapter 2 Visual Programming Environments Page 24

Chapter 3 Visual Programming for Object-Oriented Languages Page 25

Chapter 3
Visual Programming for Object-Oriented

Languages

The basic concepts of object-oriented programming and object-oriented program
development are described in this chapter. Class Language and Eiffel are introduced as
the two representative object-oriented languages used in this research. The environments
for these languages are deficient, and can be improved by using visual programming
techniques. The concepts of Ispel, a visual programming environment designed for Class
Language, are described. This description forms the basis of the specification for two
prototype environments of Ispel, presented in Chapters 4 and 6.

3.1 Object-Oriented Programming Concepts

“‘Object-oriented’ is the latest in term, complementing or perhaps even replacing
‘structured’ as the high-tech version of ‘good’. As is inevitable in such a case, the
term is used by different people with different meanings.”

(Meyer, 88)

The concepts of object-oriented programming are briefly described in this section, and the
terminology used in this thesis is introduced. The object-oriented programming paradigm
is still evolving, particularly design methodologies and program development (Booch, 86,
and Wasserman et al, 90). This description of object-oriented programming follows the
definitions used for Eiffel and Class Language (Mugridge, 90). For a comprehensive
definition of object-oriented programming and object-oriented languages, refer to Booch
(86), Meyer (88), and Winblad et al (90).

3.1.1 Object-Oriented Design

Object-oriented design is a methodology which results in software systems being based on
the objects they manipulate, rather than the functionality of how those manipulations are
performed. Object-oriented systems are based around the data structures that comprise a
system. This contrasts with conventional programming languages and design techniques,
which are structured around procedures and functions which manipulate data.

Chapter 3 Visual Programming for Object-Oriented Languages Page 26

3.1.2 Objects and Classes

The central concept of object-oriented programming is the object. Objects are collections of
data elements of software systems. For example, the roof of a building may be
represented as an object, which has attributes such as its length and height.

Classes describe sets of objects which share common attributes. When organising systems
around data structures, the items of interest are classes of data structures rather than
individual objects. For example, the class of all roofs describes the common properties of
all roofs of buildings. This is opposed to the roof of an individual building, which is an
object.

The distinction between objects and classes is important. Classes are a static concept,
which are part of an object-oriented program. Objects are a dynamic concept, not part of
a program, but part of the memory of a computer executing the program. They are
created during the execution of a program.

Smalltalk and other object-oriented languages have a concept of meta-classes. Classes in
Smalltalk are objects, as Smalltalk is an interpreted language. This concept is defined in
Goldberg and Robson (84), but is not applicable to either Class Language or Eiffel.

3.1.3 Type Aggregation

Classes encapsulate data structures and services on these data structures, called features. A
feature of a class is a named, typed attribute of the class. The name of a feature identifies
the particular service on a data structure that the feature provides. The type of a feature is
an abstract data type.

An abstract data type describes a class as a set of features, and the formal properties of
those features. Every class represents a particular abstract data type implementation, or a
collection of implementations. Abstract data types are used to describe classes as they are
implementation independent. A class is viewed as a set of features which operate on data
structures, rather than how these features are implemented. For example, a roof class has
features which determine the length and area of a roof object. How these features are
implemented is independent from the services they provide.

Chapter 3 Visual Programming for Object-Oriented Languages Page 27

Object-oriented design can be described as:

“...the construction of software systems as structured collections of abstract data
type implementations.”

(Meyer, 88)

Different kinds of feature implementations are possible. For example, the length feature
of a roof class could be the value of the length attribute of a roof object. The area feature
of a roof class could be the value of a function which calculates the area of a roof object
from its length and width feature values.

Features can be hidden from other classes in a system. The set of features which are
visible to other classes is the interface of a class. Classes using this interface are unaware of
the implementation of features, only the services they provide. Classes that have features
of other class types are called client classes, and the other classes that provide these types
are called supplier classes.

Smalltalk and other object-oriented languages view classes as collections of methods and
data elements. Messages are passed between classes to invoke methods which provide
services on data. Message-passing and methods are described in more detail in Goldberg
and Robson (84). The method/message terminology is not used in this thesis.

Eiffel and Class Language are both statically typed object-oriented languages. Un-typed
languages such as Smalltalk and Trellis provide slots for data values of any type. Type
checking in these languages is performed at run-time rather than compile-time (Goldberg
and Robson, 84, and Winblad et al, 90).

3.1.4 Genericity

Genericity describes the technique of parameterising classes using arbitrary types. This is
useful for classes which represent general data structures. For example, a list class
represents lists of objects of some type. A list class parameterised by the type roof
classifies objects which are lists of roof objects.

3.1.5 Generalisation

Classes can inherit information from other classes via the generalisation mechanism. This
mechanism classifies related classes which inherit information in a hierarchical manner.
This enhances re-usability of classes and allows them to inherit features, and thus
eliminate common code between related classes (Meyer, 88).

A class which inherits information from another class is called a specialisation of the second
class. An inheriting class is designated the sub-class or child class. Any class it inherits from,

Chapter 3 Visual Programming for Object-Oriented Languages Page 28

whether directly or indirectly through another class, is designated a generalisation class,
super-class, or parent class. For example, the roof class can be specialised into the classes of
flat roofs and non-flat roofs. All roofs have the features of the roof class. However, these
specialisation classes can re-define these features or provide new ones specific to them.

Polymorphism is the ability of a feature to refer to different types of objects at run-time.
This is constrained by inheritance. A feature which is a specialisation class can behave as
one of its generalisation classes, but a more general class can not behave as a more
specialised class. For example, a flat roof is always a roof and can be used as a roof, but a
roof can not be used as a flat roof.

Dynamic binding refers to the rule which determines the version of a feature used for an
object service at run-time. For example, the feature of an object with type roof could have
a dynamic type of roof , flat roof, or non-flat roof at run-time. If both the roof and flat
roof classes define an implementation for the area feature, the implementation used for
area will be determined by the dynamic type of a roof feature at run-time.

3.1.6 Classification

Dynamic classification is a type classification mechanism particular to Class Language
(Hamer, 90). This allows objects to classify themselves to classes via classification features.
For example, the roof class could be dynamically classified into either the flat roof or non-
flat roof classes at run-time, depending on the type of roof under consideration. Only
classes that have a type (inheritance) relationship can be related using classification.
However, classification is not the inverse of inheritance (Hamer, 90).

3.2 Object-Oriented Development

“Object-oriented development is a partial life-cycle software development method
in which the decomposition of a system is based on the concept of an object.”

(Booch, 86)

This section outlines some of the common techniques used when designing and
implementing object-oriented programs. Some techniques used during this research are
described in Section 6.5. Further discussion of object-oriented design can be found in
Booch (86) and Meyer (88). An alternative approach to abstract data type object-oriented
design is discussed in Wirfs-Brock and Wilkerson (89). Further design methods and
techniques are presented in Mugridge and Hosking (88), and Winblad et al (90).

Some examples of design methodologies include the HOOD (Hierarchical Object-Oriented
Design) approach (Booch, 86), and the OOSD (Object-Oriented Structured Design)
notation (Wasserman et al, 90). An alternative approach for design are CRC (Class,
Responsibility, and Collaboration) cards (Beck and Cunningham, 89).

Chapter 3 Visual Programming for Object-Oriented Languages Page 29

3.2.1 Software Development Life-cycle

Software progresses through several phases during development. These include
specification, requirements analysis, design, implementation, verification, and
maintenance (Chikofsky and Rubenstein, 88, Luqi, 89, and Wasserman and Pircher, 87).
Object-oriented programming applies to the design, implementation, and maintenance
phases of software development. Once a specification for a program has been produced,
an object-oriented design and implementation can be developed for this. Like most
software development, this process has feedback between the different phases.

3.2.2 Identifying Objects and Classes

The objects and classes that comprise an object-oriented system can be determined in
many ways. Some of these include:

• Deriving objects from real-world objects. Classes of these objects can be used to
classify objects with common properties. Meaningful external objects describe
concrete or abstract objects being modelled (Booch, 86, and Meyer, 88). For
example, the roofs of various buildings are concrete external objects. The roof
class describes the set of all roof objects.

• Classes can be adapted from existing classes by using inheritance. If a more
specialised form of an existing class is to be used, then a new class can be
defined which can be generalised to the existing class. For example, the flat roof
class is a specialisation of the roof class.

• New classes should be created when existing classes become large, its
behaviour becomes complex, or a subset of its services are likely to be used by
other classes.

• Existing classes should be used when they describe the objects that are to be
modelled. Reuse of existing classes is an important aspect of object-oriented
programming, which requires a comprehensive class library facility. For
example, the list class is a generic class which defines lists of objects, and can be
reused for all list features.

Classes correspond to meaningful data abstractions (Meyer, 88). Thus care should be
taken when designing classes that neither excessive nor deficient numbers of classes are
created. Object-oriented design is often an incremental process, where an existing design
is analyzed and improved during development. Classes should be designed not only for
the current program being constructed, but, if possible, for reuse by other applications
(Meyer, 88, and Winblad et al, 90).

Booch (86) describes a simplistic grammatical technique for isolating classes. Wasserman
et al (90) describe several approaches that utilise a diagrammatic technique to assist

Chapter 3 Visual Programming for Object-Oriented Languages Page 30

design. Coad and Yourdon (91) discuss more abstract analysis techniques for object-
oriented programs.

3.2.3 Class Interface Design

When the classes have been identified, the features of a class that are both visible to other
classes and private to the class itself are selected. Some guide-lines for interface design
should be followed:

• Identify the services of a class that are required by other classes. This
determines the interface the class must have.

• Identify the services a class requires from other classes. This helps to determine
the interfaces of the other classes.

• Keep a class interface implementation independent.
• Features should be designed with a single purpose.
• If a feature implementation becomes large, the feature should be divided into

several features, or the class abstracted in some way.
• If a feature requires extending, a new feature can often be provided for the new

operation.
• Classes should be designed for reuse where possible. The class interface should

be made general enough for other applications, and not just the current context
it is required for.

A common error is to design classes which should be implemented as features. A class
with only one feature or service should be a feature of another class (Meyer, 88).

3.2.4 Inheritance Hierarchies

Generalisation is used to organise classes into inheritance hierarchies where common
features are shared. Generalisation reduces code duplication and allows categories of
classes and class interfaces to be defined. A class which requires features of another class
can obtain those features via inheritance, or contain a feature of the other class type. The
following rules can be used to determine the approach to use:

• Inheritance means a class is some specialised form of the other class. A feature
means that the class has an element of the other class.

• Inheritance allows features from a parent to be reused and their
implementations re-defined, if necessary. It provides a more flexible approach
to the reuse of features.

• Inheriting information from a class is more committing than using the class as a
feature. The interface, implementation, and private features are inherited. Only
the interface is used for a feature, and a change to the implementation does not
affect a client class.

Chapter 3 Visual Programming for Object-Oriented Languages Page 31

Meyer (88) and Winblad et al (90) discuss further techniques for utilising inheritance.

3.2.5 Implementing Classes

Once the classes and features of classes are defined, the implementation of class features
can be carried out. The implementation of a feature is not visible to external classes.
Design of an object-oriented system should ensure this principal is maintained, and each
class is responsible for the implementation of its services. As redesign may be required
during implementation, feedback to the design process is required.

3.3 Class Language and Eiffel

The two representative object-oriented languages used in this thesis are Class Language
and Eiffel. These languages were chosen as implementations of these languages were
available, and they both conform to the definition of object-oriented programming in
Section 3.1. In addition, there are several significant differences between the languages.
This allowed a contrast of language design philosophies to be investigated, and the
subsequent effects of this on elements of this research to be determined.

3.3.1 Class Language

Class Language was developed at the University of Auckland and is designed to support
code of practice conformance checking (Hamer, 90, and Mugridge, 90). The language was
developed by John Hamer (Hamer, 90), and extensions to the language, in particular the
functional and user interface aspects, are proposed in Mugridge (90). It is a typed, object-
oriented programming language with some procedural and functional aspects. The
language was originally intended for constructing expert systems, with an object-oriented
representation of the components of a system.

Class Language is a single assignment language. It models a consistent state of a system,
which occurs in programs that check for conformance to codes of practice. Lazy evaluation
is used to give values to features of objects during program execution. Objects are created
when values for their features are required by other objects. Rules and expressions within
the class of the object are used to evaluate the value for its features.

The object-oriented aspects of Class Language are the most well developed. Class
Language supports information-hiding, abstract data types, and multiple inheritance.
Class Language also provides object parameters and a multiple, dynamic classification
mechanism. Class Language does not allow state changes like most object-oriented
languages, because it is a single assignment language.

The procedural aspects of Class Language are limited, and are used for directing the flow
of control. Procedures to produce output are provided, and constructs for conditional and

Chapter 3 Visual Programming for Object-Oriented Languages Page 32

iterative execution. The functional aspects of Class Language are simplistic, with functional
evaluation of expressions for feature values. Mugridge (90) proposes some extensions for
the language to increase its functional power.

3.3.2 Eiffel

Eiffel was developed at Interactive Software Engineering, and is designed as a general
purpose, object-oriented programming language (Meyer, 88). Eiffel is imperative rather
than single assignment, and has better developed procedural aspects than Class
Language. Eiffel is well defined, and the object-oriented and procedural aspects are well
integrated.

Like Class Language, Eiffel provides class encapsulation of features, selective information
hiding, abstract data types, multiple inheritance, genericity, and polymorphism. Eiffel
does not have the concepts of classification nor object parameters. Eiffel provides a pre-
defined set of features for all classes, and some basic class types.

Eiffel has the notions of assertions and class invariants for further specification and
constraint of features. It also provides exceptions for handling error cases. The Eiffel
environment provides a comprehensive set of class libraries, which permits class re-
usability.

3.3.3 Development Environments

One of the main reasons for developing a visual programming environment for Class
Language and Eiffel is because their existing environments are deficient (Clausen, 89, and
Plumpton, 91). Neither environment is well designed for object-oriented programming.
Nor do they give adequate assistance during the program development process.

3.3.3.1 Class Language

The Class Language programming environment is very limited. Class Language runs
under the Unix and VMS operating systems. A standard text editor supplied with the
operating system is used to edit Class Language programs, and these programs are
stored as text files on disk. The compiler takes these text files and generates virtual
machine code, which can then be interpreted by the Class Language run time system to
execute the program. This process of constructing programs means that the edit-compile-
run cycle of program development is not integrated. The programmer must enter and
leave programs with substantially different user interfaces for each phase of the cycle.

The user interface provided by Class Language is simplistic, and input and output is
purely textual. This user interface is mirrored in the Class Language development
environment, where only textual dialogue between the programmer and system occurs.

Chapter 3 Visual Programming for Object-Oriented Languages Page 33

There are no tools provided by the environment to assist the programmer, except the
general purpose facilities provided by the operating system and the editor being used.

3.3.3.2 Eiffel

The Eiffel environment is very similar to the Class Language environment in that it is
textually oriented and lacks integration. Eiffel is implemented in C and runs under Unix. It
uses the standard Unix command line interface for user input and output (Interactive,
89c). Editing is performed using an editor supplied with the operating system, and
compilation is invoked via the command line interface. An Eiffel program is compiled to a
standard Unix executable file. This can be invoked in the same way as other Unix
commands.

The user interface provided by Eiffel is also textually oriented, but an interface to the X
windows system is provided. Eiffel provides a collection of libraries that supply a range of
classes to perform operations such as list handling, input and output and numerical
computation (Interactive, 89b, and Meyer, 88).

Some tools are provided by the environment to assist the programmer. These include a
class abstracter and hierarchy flattener. These allow the programmer to view the
complete set of features for a class, and assist in the documentation of classes. A
compilation manager is provided. This determines what classes have been changed since
the last compilation, and what classes are affected by these changes, and thus need to be
re-compiled.

Two browsing tools are provided, although both are of poor quality. One, called eb, is a
simplistic textual browser which allows the programmer to move through the class
aggregation and inheritance structures. The other, called good, is a graphical browser
which displays these structures visually and allows the programmer to move about the
structures by manipulating the display (Interactive, 89c). Unfortunately, this tool has a
poor user interface which is cumbersome to use. Figure 3.1 shows an example of the good
browser being used to display an Eiffel program.

Chapter 3 Visual Programming for Object-Oriented Languages Page 34

Figure 3.1 An example of the good browser being used to display an Eiffel program.

An additional problem with Eiffel is that the compiler is extremely slow. This means there
is a significant delay between the compile and execute phases of the program
development cycle. This delay can be very frustrating for a programmer, and hinders the
development of programs (Raeder, 85).

3.4 Other Object-Oriented Languages

Many other object-oriented languages have been developed which utilise some or all the
concepts of object-oriented programming described in Section 3.1. In addition, some
languages have other concepts particular to themselves, or other classes of object-
oriented languages. A brief overview of some other object-oriented languages is given
here. More complete surveys can be found in Meyer (88), and Winblad et al (90).

Smalltalk was developed at Xerox PARC and was the first popular object-oriented
language (Goldberg and Robson, 84). Smalltalk introduced many object-oriented concepts
and also introduced a user interface idea which utilised multiple windows. Only single
inheritance is supported by the language, and every data element is viewed as an object,
including classes.

Chapter 3 Visual Programming for Object-Oriented Languages Page 35

Prograph (Gunakara, 89) has both object-oriented and dataflow aspects, which are
integrated within a visual programming environment. The object-oriented aspects of
Prograph are not as well developed as those of Eiffel and Class Language, and the
language only supports single inheritance.

Object C and Object Pascal provide simple object-oriented extensions to the C and Pascal
programming languages (Winblad et al, 90). Only single inheritance is provided, and the
concept of information hiding is not supported. They do not provide dynamic memory
management for objects. These are examples of hybrid object-oriented languages, which
provide both procedural and object-oriented aspects, loosely integrated within one
language.

Other examples of object-oriented languages include C++ (Winblad et al, 90), Trellis/Owl
(O’Brien et al, 87), and CLOS (Winblad et al, 90) for Common LISP.

3.5 Class Structure Diagrams

“Class diagrams are useful tools for program design, documentation, and analysis
of existing programs. They are relatively language-independent, and provide a
very high-level descriptive technique for describing how an object-oriented
application is structured.”

(Wilson, 90)

The structure of object-oriented programs has an inherently visual nature. The classes,
features, and relationships that comprise a program can be naturally and clearly
expressed by using diagrammatic techniques. Class structure diagrams are a convenient
method for representing the various relationships between classes.

Class structure diagrams are comprised of boxes and lines. These are laid out and
connected to present a meaningful representation of part of a Class Language program
for a programmer. Figure 3.2 shows a class structure diagram from the Wallbrace system
showing some of the major classes of Wallbrace. Wallbrace is an expert system written in
Class Language. It assists a building designer or building inspector to check conformance
of a building with the wall bracing requirements of a code of practice for timber frame
houses. Examples from Wallbrace are used throughout this thesis to illustrate aspects of
object-oriented programs. Wallbrace is described in Mugridge (90) and Expert Systems
and Codes of Practice are described in Hamer (90).

Chapter 3 Visual Programming for Object-Oriented Languages Page 36

Building

Wing
Wings

Section
Sections

Roof Storey
Storeys

Class
Class Name

Feature

Feature
Connection

Single
Feature

Feature Name

Feature Type

List Feature

Roof

Figure 3.2 A class structure diagram from the Wallbrace system.

The Building class is represented by a box with a name inside it. The Wings feature of
Building is represented by a box with the feature name and type (Wing) inside it. The
shading behind the Wings, Sections, and Storeys boxes indicates list features, i.e. the
feature is a list of objects of the feature type. Figure 3.3 shows the Roof inheritance
hierarchy from Wallbrace. This diagram represents generalisation from the different types
of roof classes to the Roof class. The arrows on the end of the lines represent a class being
generalised to another class.

Roof

FlatRoof

NonFlatRoof

StarRoof RidgedRoof LeanTo OtherRoof

Figure 3.3 A class structure diagram for generalisation.

Class structure diagrams are useful for four main areas (Wilson, 90):
• Design. Class structure diagrams provide a good software engineering tool for

object-oriented languages (Wasserman et al, 90). They can be used to assist in

Chapter 3 Visual Programming for Object-Oriented Languages Page 37

choosing classes, features, and generalisations, and aid program structuring.
When designing and implementing an object-oriented program, class structure
diagrams are drawn by programmers to enable them to visualise a program’s
structure.

• Documentation. Diagrams are useful in presenting a finished design to others to
help them understand or maintain programs.

• Analysis. Diagrams present the structure of a program for programmers to
understand (Coad and Yourdon, 91). They are also used during the
maintenance and modification of an object-oriented program.

• Teaching. A description of the overall structure of an application makes
understanding easier.

3.6 The Ispel Visual Programming Environment

The development environment of Class Language is deficient to the point that it makes
programming difficult (Clausen, 89, and Mugridge, 90). These deficiencies can be rectified
by using visual programming techniques.

3.6.1 Current Use of Class Structure Diagrams

The class structure diagram concept provides the basis for a visual programming tool for
Class Language and other object-oriented languages. At present, when Class Language
programs are developed, the main type aggregation and inheritance relationships are
sketched on paper using class structure diagrams. When coding of the program begins,
these diagrams provide a framework for the programmer’s initial class construction. They
also provide a diagrammatic visualisation of the program structure. When this program
structure is modified during the development process, any changes affecting the class
structure diagrams need to be reflected back to the diagrams on paper. This is an ad-hoc
process that may be delayed or omitted by the programmer for various reasons. This can
result in difficulties in interpreting old diagrams in the context of new code, or create an
incomplete collection of structure diagrams for programs.

3.6.2 Construction of Class Structure Diagrams

Class structure diagrams also make a good documentation tool for object-oriented
programs, and can be constructed using drawing packages. The high-level, structural
aspects of object-oriented programs are inherently visual, and visualisation of programs,
via class structure diagrams, is an important design technique. This raises the possibility of
transferring class structure diagrams to computer as part of a design tool. Such a tool
allows the programmer to construct and modify diagrams on computer rather than on
paper (Coad and Yourdon, 91, Wilson, 90, and Wasserman et al, 90).

Chapter 3 Visual Programming for Object-Oriented Languages Page 38

3.6.3 Visual Programming Using Class Structure Diagrams

The construction of class structure diagrams on computer can take place during the
development of programs. Diagrams could be used simply for documentation and
browsing (Fischer, 87), but this can be extended to direct assistance of the development of
programs. As class structure diagrams reflect the object-oriented structure of a program,
the construction and modification of these diagrams can be used to construct and modify
an object-oriented program. From this a visual modelling tool can be derived, which
allows the programmer to construct the high-level aspects of programs. This uses visual
programming techniques by manipulating class structure diagrams on a computer. These
diagrams also provide a visualisation of the object-oriented program, which is always
consistent with the actual structure of the program.

This concept of a visual modelling tool can be extended to provide a visual programming
environment for Class Language. The current environment for Class Language can be
replaced with an environment based around a visual programming tool, provided by a
class structure diagram modeller.

3.6.4 Ispel

The remainder of this chapter describes a visual programming environment called Ispel3.
This is based around a multiple class structure diagram modeller, and is designed for
object-oriented programming in Class Language.

3.7 The Basic Concepts of Ispel

The Ispel visual programming environment was designed as a replacement for the
existing Class Language development environment. The concepts presented in this
section have been developed by refinement of the original specification of Ispel using two
prototypes. Visual programming environments provide many advantages over
conventional textual programming, which have been utilised in Ispel.

3.7.1 Overview of Ispel

This section outlines the basic features of Ispel.

3Ispel is used as a concise name to refer to the concepts of the visual programming
environment described in this chapter. The name is not an acronym.

Chapter 3 Visual Programming for Object-Oriented Languages Page 39

3.7.1.1 Visual Programming with Classes

Ispel allows the high-level, object-oriented aspects of Class Language programs to be
represented and manipulated through a graphical user interface. Classes, and the inter-
class relationships of type aggregation and generalisation, have visual representations,
and these representations can be viewed and manipulated by the programmer.
Modification of these visual representations results in a change to the Class Language
program under construction. Thus the object-oriented aspects of Class Language are
programmed visually rather than textually.

3.7.1.2 Selective Views of Programs

In addition, Ispel provides a mechanism, called multiple views, for the programmer to
view selected parts of the Class Language program under construction. The programmer
is also able to move between different parts of the program as required, using these
views. The object-oriented aspects of the program are represented as class structure
diagrams, which provide a meaningful and natural way of viewing the program
(Mugridge, 90). The programmer can view and modify several diagrams at a time, as well
as being able to change focus and view different diagrams.

3.7.1.3 Graphics and Textual Consistency

Ispel allows the object-oriented aspects of Class Language to be programmed visually.
The remainder of the language is programmed in text, although the visual representation
of a program still has a textual equivalent. Elements of the language, such as expressions
and procedural and functional aspects, are programmed in text. The object-oriented
aspects of Class Language are the most natural to represent and manipulate visually, and
it is acceptable to view and manipulate the functional and procedural aspects as text. This
is because these are less abstract, implementation aspects and are more low-level (Myers,
90). Ispel is different from most other diagramming systems in that it ensures the
graphical and textual representations are always consistent. It also allows changes to a
program to be made in both graphics and text.

3.7.2 Programs as an Underlying Representation

There are two major elements of Ispel: the visual representation of a Class Language
program, and the Class Language program itself. Ispel models an object-based system
composed of objects (classes and features of classes) and relationships between objects
(feature and generalisation). The programmer sees representations of this underlying
Class Language program in the form of class structure diagrams. These are the visual
representation of the program, and a textual representation of classes is available.
Manipulation of the visual or textual representations changes the underlying

Chapter 3 Visual Programming for Object-Oriented Languages Page 40

representation, which allows the programmer to construct a Class Language program.
These textual and graphical representations are kept consistent via the underlying
representation (Class Language program).

3.7.3 Multiple Views of the Underlying Representation

Ispel introduces the concept of having multiple class structure diagrams for a Class
Language program. These diagrams can be viewed and moved between by the
programmer as they are developing a program.

3.7.3.1 Views

Ispel refers to class structure diagrams as views, and Ispel allows for multiple views of a
Class Language program. A view is a particular focus on part of a Class Language
program and provides a visual representation of the program. Views can overlap and one
view may contain the same classes and features as another view. The union of all the
views is a subset of the Class Language program which is being represented.

Each view has a class as the focal point of the view. The class which is the main focus of a
view is called the primary class of the view. For example, Figure 3.4 shows the main classes
of the Wallbrace system, with the Building class as the main focus, or primary class, of
this view.

Building

Wing
Wings

Section
Sections

Roof
Roof Storey

Storeys

Figure 3.4 The main classes of Wallbrace, with Building as the primary class.

Classes can also be the focal point of more than one view. If this is the case, classes have
one view, which is the primary view for the class, and other views called secondary views.
Information is shared between views, and so classes can appear in more than one view.

Chapter 3 Visual Programming for Object-Oriented Languages Page 41

For example, Figure 3.5 shows the Roof class in a different view with the features of
Roof.

Roof

RoofDirection
across

RoofDirection
along

WindLoadTables
WindLoadTables

Figure 3.5 A view of the Roof class and its features.

The concept of multiple views of an underlying representation was developed from the
desire to provide multiple class structure diagrams for visualisation and manipulation on
computer. Other researchers have also found the multiple views concept useful for visual
programming. The concept is used in the PECAN system (Reiss, 85) and in Software
through Pictures (Wasserman and Pircher, 87). Multiple views are particularly useful for
viewing an underlying representation of a program structure at different levels of
abstraction (Dart et al, 87).

3.7.3.2 Appropriate Representation

Ispel provides both graphical and textual views of Class Language programs. Graphical
views show several classes, and the interrelationships between the classes, while textual
views show the text for a single class. Graphical views give a high-level view of the
program structure, while textual views focus on one class and its features and
generalisations. Ispel allows the programmer to decide which representation is most
appropriate for the implementation of programs. This approach of providing both
graphical and textual views of a program has been useful in the Forms VBT system
(Avrahami et al, 89), and the Garden system (Reiss, 87).

3.7.3.3 View Consistency Always Maintained

A key feature of views is that textual and graphical views are both linked to the
underlying representation, and changes to this representation are reflected in both views.
When the underlying representation is changed by manipulating a view, these changes
are immediately propagated to other affected views. Thus views are always an accurate
visual representation of the Class Language program, and consistency is maintained.

Some visual programming systems parse the graphical representation of a program,
rather than build an underlying representation interactively (Avrahami, 89, and Reiss, 85).

Chapter 3 Visual Programming for Object-Oriented Languages Page 42

However, most recent visual programming environments use an incremental program
construction technique similar to the one used in Ispel (Ambler and Burnett, 90). This
approach is more interactive and more appropriate for the visual construction of
programs (Myers, 90). Using this approach in Ispel ensures views are always up to date,
and gives a more integrated and interactive feel to development. This compares with
many current CASE systems, which allow program templates to be generated from
diagrams. However, subsequent changes to diagrams or code is not kept consistent.

3.7.3.4 Views for Browsing

Views give the programmer a context to work in, and a class and the relationships to this
class to focus on. Since there are multiple views of the program for the programmer to
work with, a mechanism for moving between these views must be provided. This allows
the programmer to navigate through a Class Language program. The navigation facilities
provided must make context-switching to another view easy and meaningful to the
programmer, and allow them to browse the program as they require. Ispel provides
facilities for the programmer to create and modify views of the program, and facilities to
move between these views in a meaningful way.

3.7.3.5 Windows

Windows are used to display views in, and provide an encapsulation mechanism for the
visual representations of a program. Windows allow multiple views to be displayed at
one time on the screen and be viewed and manipulated by the programmer. Navigation
between different windows is a simple task, and different views can be displayed in a
window. The use of windows is common to all visual programming environments
(Ambler and Burnett, 89).

3.7.3.6 Applications

A Class Language program in Ispel is comprised of the program itself (the underlying
representation), and views and windows (the visual representation). An Ispel Class
Language program is called an application. Applications can be stored on disk and saved
and reloaded from the Ispel environment.

3.7.4 Elements of Views

Views in Ispel are comprised of boxes and lines. These are graphical representations of
classes, features, and relationships between them. These graphical figures are displayed in
windows and can be viewed and manipulated by the programmer in order to build a
program. Views are not automatically laid out in Ispel. Automatic layout constrains a
programmer to fixed formats, and the Ispel approach allows programmers to lay out
their diagrams in a manner they choose. This improves the flexibility of the environment.

Chapter 3 Visual Programming for Object-Oriented Languages Page 43

There are several different formats for class structure diagrams, as described in Section
3.5. It is essential that Ispel displays views of a program, and allow views to be updated in
a meaningful way for programmers. It is also desirable to allow programmers to be able
to tailor the representation to their individual needs (Mannucci et al, 89, Reiss, 87, and
Wilson, 90). The boxes and lines used in Ispel are based on the conventions described in
Mugridge (88 and 90).

3.7.5 User Interface

A visual programming environment is an interactive piece of software, and dialogue with
the programmer is important. The user interface of Ispel refers to the “look and feel”
aspects of the environment: how programs are presented; how operations are selected;
and how the system behaves.

Discussions of further desirable features of visual programming environments and
programming environments in general can be found in Ambler and Burnett (89), Myers
(90), Raeder (85), and Wasserman and Pircher (87).

3.7.5.1 The Desktop Metaphor

A consistent user interface throughout an environment is highly desirable (Myers, 90). It
reduces the amount of information a prospective programmer needs to learn, and
simplifies and standardises the user interface. A consistent user interface reduces the
number of user interaction errors, and leads to a seamless user interface integration
between different tools (O’Brien et al, 87 and Reiss, 87).

Ispel uses the desktop metaphor introduced by the Smalltalk environment (Goldberg, 84)
and popularised by the Macintosh desktop interface. This user interface was chosen as it
provides a productive and consistent interface for a programmer. It makes a
programming environment easy and effective to use (Ambler and Burnett, 89). This user
interface provides a range of facilities including bit-mapped graphics, windows, menus,
dialogues, icons, gadgets, and buttons. Ispel uses windows and graphics to display
representations of Class Language programs. Menus, dialogues, and icon buttons are
used for accepting the programmer’s commands, and dialogues are used to present
information and report errors to the programmer.

3.7.5.2 Ambiguities and Flexibility

In visual programming, there are many ambiguities. The programmer may request the
environment to perform some action, but the environment lacks sufficient information to
carry out the task precisely. Alternatively, the computer’s interpretation of what is
required may differ from the user’s. For example, a programmer requests that the name
of a class be changed. The programmer may in fact be requesting the environment to use

Chapter 3 Visual Programming for Object-Oriented Languages Page 44

a different class instead of the existing one, rather than actually renaming the class itself.
Steps must be taken to ensure that ambiguous interaction is identified and extra
information obtained to correct it (Fischer, 89).

An environment should attempt to do something sensible with all user commands
(O’Brien et al, 87), or ensure the programmer is informed of problems in a clear and
concise fashion. Where possible, an environment should anticipate the type of commands
a programmer will use. This reduces the amount of information that needs to be supplied.
For example, default settings for attributes should be able to be set by the programmer,
and a sensible arrangement of diagrams automated where possible (Mannucci et al, 89).

Flexibility is a key element in a visual programming environment (Reiss, 87). To constrain
the programmer to one, unchangeable method for viewing or manipulating their
programs can make an environment difficult to use and hinder program development.
Ispel is designed to be flexible enough to enable programmers to lay out and view their
programs in the manner they wish.

3.7.5.3 Environment Performance

A major deficiency of many existing environments is their poor performance, in terms of
speed of execution and response time to programmer requests. One of the most
frustrating aspects of programming is the slow turn around time between program edits,
compilation, and execution. In addition, the slow feedback of errors at the compilation or
execution phase makes error correction difficult. This gives a non-interactive feel to the
programming environment, which reduces programmer productivity.

3.7.5.4 Visual Manipulation Constraint

Invalid Class Language programs should be identified and errors reported to the
programmer by Ispel as soon as possible. This is an important aspect of the PECAN
system (Reiss, 85). In addition, the underlying representation constrains the visual
manipulation of a program so that, where possible, invalid programs are not constructed.
This provides the programmer with immediate feedback from program construction, and
identifies the exact context and nature of errors.

3.7.6 Well Integrated Tools

Many environments do not provide good integration between the tools that comprise the
environment. This means the programmer must move between parts of a programming
environment that have a distinctly different feel about them and that behave in different
ways. Different behaviours between aspects of an environment hinders software
development (O’Brien et al, 87).

Chapter 3 Visual Programming for Object-Oriented Languages Page 45

Many environments suffer from a lack of support for various parts of the software
development life cycle, and a lack of adequate programming tools. This makes them
difficult to use, or inadequate for the programming task. The more of the programming
load borne by the environment being used, the easier and more accurately software can
be developed. Ispel integrates the visual programming, text editing, compilation, and
execution of Class Language programs into one environment. The Ispel environment
provides a framework for integrating other tools to assist the programmer. However, the
tools must conform to the conventions used by Ispel to provide a consistent user
interface.

3.8 Summary

This chapter has described the concepts of object-oriented languages and object-oriented
program development. Eiffel and Class Language were introduced as representative
object-oriented languages. These are used throughout this thesis to illustrate examples of
object-oriented programming. Their environments are deficient and can be enhanced by
utilising visual programming techniques. Class structure diagrams are a valuable design
and documentation tool for object-oriented languages. They also provide a basis for Ispel,
a visual programming environment for Class Language. The basic concepts of the Ispel
programming environment have been described. Ispel provides multiple views of Class
Language programs, and an integrated, consistent user interface. Important issues such as
program navigation, environment performance, and environment integration, have been
discussed in the context of Ispel.

Chapter 3 Visual Programming for Object-Oriented Languages Page 46

Chapter 4 The Prolog Prototype Page 47

Chapter 4
The Prolog Prototype

This chapter describes a Prolog prototype of Ispel. Chapter 5 evaluates its performance
and deficiencies, and discusses some enhancements. The development process, a
description of the user interface aspects, and the implementation details of this prototype
are given here.

4.1 A Prolog Prototype for User Interface Aspects

Once the main concepts of Ispel described in Chapter 3 were formulated, a prototype
visual programming environment was designed and implemented. This initial prototype
of Ispel was specified with several key aims:

• To determine if a visual programming environment is appropriate for object-
oriented languages, and for Class Language in particular.

• To identify the major implementation aspects of Ispel.
• To determine and refine the user interface aspects of a visual programming

environment.
• To verify that the major concepts of Ispel are valid, or re-define these concepts

if they are not.
• To determine future directions for research by evaluating the prototype’s

performance.

The first prototype was implemented in Prolog, and is a development environment for
Class Language. This prototype is a cut down version of a real development
environment. Programs can be built graphically and viewed graphically or as text.
However, programs cannot be built using text, nor can they be compiled and run.

4.2 The Development Process

The Prolog prototype for Ispel was initially specified, a design for this specification
produced, and the prototype was implemented based on this design. At this stage, many
of the basic concepts for Ispel described in Section 3.7 were developed. On completion of
the implementation, the prototype was evaluated, and while it performed well, many
deficiencies were discovered. Enhancements were made to this initial prototype to
overcome some of the deficiencies, and these are described in Section 5.4.

Chapter 4 The Prolog Prototype Page 48

4.2.1 Specification and Design

Use of good software engineering techniques significantly enhances the quality and
development process of software (Chikofsky and Rubenstein, 88). Thus it was important
to prepare a good specification for Ispel, and to design the first prototype from this
specification. The specification of the Prolog prototype was not rigourous, due to the
experimental nature of this research. Many aspects of Ispel could not be determined
without a working prototype to test them. A variety of approaches to providing facilities
were considered during development. The specification consists of a description of the
user interface aspects of Ispel, and a collection of different approaches that could be taken
to provide various facilities. This initial specification of the prototype is provided in
Appendix A. Both the design and specification were modified considerably during
development of the prototype. This specification was also used as the basis for a second
prototype of Ispel (see Section 6.1).

When implementation of the prototype began, the specification for various features were
found lacking in many respects. This is not a criticism of the initial specification, rather it
demonstrates that the process of specifying and then implementing a prototype visual
programming environment is not straightforward. Many user interface issues cannot be
properly determined without a working prototype to test them. For example, the
connection of boxes with lines, and how navigation between different views is provided
can be implemented in several ways.

In addition, the inherently visual nature of Ispel meant that the textual specification lacked
sufficient descriptive power. The Lean Cuisine notation (Apperley and Spence, 88) was
used to design some of the user interface, but most of Ispel lacked a concise, graphical
description. Implementation of the prototype resulted in a large range of issues becoming
apparent that were thought to be insignificant when initially specifying the prototype.

4.2.2 Rapid Prototyping

Rapid prototyping was employed in the development of the Prolog prototype. To rapid
prototype, a cycle of specification, design, prototyping, evaluation, and refinement is
employed. When the specification and design are suitably detailed and precise, a
production system can be implemented (Kreutzer, 90, and Luqi, 89). This technique is
used to improve the definition of a problem, and thus enhance the specification and
design of a program.

Chapter 4 The Prolog Prototype Page 49

4.2.3 The Implementation Language

The first prototype was implemented in LPA MacProlog (LPA, 89a) on a Macintosh IIx
computer. This section explains the choice of LPA MacProlog (LPA) as the implementation
language.

4.2.3.1 LPA

LPA on the Macintosh was chosen as the implementation language for the first prototype
of Ispel for a variety of reasons:

• LPA has a good development environment which facilitates quick construction,
debugging, and maintenance of programs. Thus LPA is suitable for rapid
prototyping.

• LPA provides direct access to the Macintosh desktop interface which would
allow many of the features of Ispel to be easily implemented.

• LPA provides sophisticated, yet easy to use, graphics facilities for drawing
pictures in windows.

Both C and Pascal were considered as possible implementation languages. However, they
do not provide access to the Macintosh desktop interface as simply as LPA. The ease of
program construction and debugging in LPA is superior to these languages. Thus LPA
was adjudged to be the most appropriate tool available to implement Ispel. The decision
to use LPA affected the way some of the features of Ispel described in its specification
were provided. The effect of LPA on these features is explained in Section 4.3 under the
various feature descriptions.

The only major disadvantage of Prolog is the lack of data structures, program structuring,
and scoping. The LPA environment partially addresses code structuring by providing
program windows. These allow sections of a Prolog program to be bundled together and
compiled separately from the rest of the program. However, there are no data structures
provided except lists and Prolog predicates. There is no restriction of access to any
predicate from other parts of a program.

4.2.3.2 The Graphics Facilities of LPA

LPA provides a rich variety of graphical functions to open graphics windows, add, update,
and remove pictures from windows, and process mouse operations (LPA, 89b). An
important feature of the LPA graphics system is the notion of graphics windows and the
various operations that can be performed on pictures in these windows. Each window has
a set of tool icons, which are similar to the tool palette provided by MacDraw (Claris, 89),
and a set of named pictures.

Chapter 4 The Prolog Prototype Page 50

LPA uses a Graphics Description Language (GDL) to build a description of pictures for
display in graphics windows (LPA, 89b). GDL is quite expressive and much of its power is
derived from the programmer’s ability to define and manipulate picture descriptions with
ease. These descriptions of pictures are built up in predicates and are then displayed using
LPA routines.

4.3 User Interface

This section provides a description of the user interface aspects of the Prolog prototype.
Examples from the Wallbrace system (Mugridge and Hosking, 89) are used to illustrate
how Class Language programs are represented and constructed using the Prolog
prototype. Figure 4.1 shows a screen dump from the Prolog prototype of Ispel, with the
major aspects of the prototype labelled.

Menus

Tools

Box
View

Window

Line

Figure 4.1 Screen dump from the Prolog prototype of Ispel.

4.3.1 Visual Representation of a Program

In the Prolog prototype, views are comprised of boxes and lines, which are a visual
representation of part of a Class Language program. These boxes and lines are laid out in
a window to describe a program using a similar format to the class structure diagrams
described in Section 3.5. This format was modified where required to assist representation
and manipulation of the diagrams on computer. The Class Language diagram format was
retained because of its conciseness and clarity, and its ease of implementation.

Chapter 4 The Prolog Prototype Page 51

4.3.1.1 Boxes

Figure 4.2 shows the three types of boxes used in the Prolog prototype.

Roof Roof
theRoof

Roof
theRoofs

Class Box Feature Box List Feature Box

Figure 4.2 The three types of box in the Prolog prototype.

Class boxes represent classes, and contain the name of a class. Feature boxes represent a
feature of a class, and contain the name of a feature and its type. List feature boxes
represent list features which are lists of objects, and contain the name of the feature and
type of the list objects.

Boxes are constructed as a GDL picture, made up of a rectangle, and one or two text
strings. In addition, features have a line between the text strings. List features have a
shaded rectangle behind the rectangle of the box, to illustrate multiple objects.

4.3.1.2 Lines

Figure 4.3 shows the two types of lines in the Prolog prototype.

Roof

FlatRoof

Wing

Roof
theRoof

Generalization Feature

Figure 4.3 The two types of line in the Prolog prototype.

Generalisation lines represent one class being generalised to another class. Feature lines
represent the connection between a class and its feature. Lines are drawn from the
bottom centre of the first box to the top centre of the second box. Generalisation lines are
drawn in a bigger pen size to distinguish them from feature lines4.

4 The current class structure diagrams, as described in (Mugridge, 90), have an arrow on
the end of generalization lines pointing to the parent class, to represent a child class
inheriting from a parent. The Prolog prototype can draw arrows on the end of lines, but

Chapter 4 The Prolog Prototype Page 52

Originally, a feature name was to be displayed next to the line connecting a class to its
feature. Currently, feature names are contained in the feature box and are displayed
above the feature type. This improves the clarity of diagrams and is consistent with how
class names are displayed.

4.3.1.3 Connection and Format of Boxes and Lines

Boxes and lines are connected together to form a class structure diagram which is drawn
from the top of the screen to the bottom. Diagrams are laid out in this manner for
consistency with class structure diagrams currently in use. In addition, this layout of an
object-oriented hierarchy is natural for a programmer to work with (Wilson, 90). An
object-oriented system is inherently hierarchical, and this structure is captured by a
representation similar to the one used in the Prolog prototype. Alternative layouts for
diagrams are proposed in Wasserman et al (90) and used in the GraphTrace system
(Kleyn and Gingrich, 88), and EDGE graph editor (Newbury, 88). These include laying out
diagrams from left to right, or from the bottom of the screen to the top.

4.3.2 User Input and Output

The Prolog prototype uses predicates provided by LPA to access the Macintosh graphical
interface. Thus it behaves like a normal Macintosh application, and uses the mouse,
menus, and dialogs for user input, and dialogs for output. This is important, as the user
interface of Ispel should behave like other Macintosh programs. This assists integration
with other Macintosh software, and provides new users of Ispel with a standard interface.

The mouse is used to manipulate pictures in views, in addition to selecting menus and
dialogue buttons. LPA provides facilities to determine when the mouse button has been
clicked, and to allow GDL pictures to be moved around in graphics windows.

Menus are used to select various operations. There are five menus in the menu bar of the
Prolog prototype: File, Edit, Compile, Views, and Windows. Edit and Compile have no
options, but were provided for future extensions to the prototype. Figures 4.4 to 4.6 show
the appearance of the File, Views, and Windows menus in the Prolog prototype.

these get quite cluttered if there are several classes being generalized to one class in the
same view. The arrows have been removed to enhance the readability of the diagrams.

Chapter 4 The Prolog Prototype Page 53

Figure 4.4 The File menu of the Prolog prototype.

The File menu has six options: New creates a new Ispel application, Open allows the
programmer to choose an application from disk, and Close closes the current application.
Save saves the current application to disk, and Save As allows the programmer to rename
the current application and save it to disk. Quit allows the programmer to exit from Ispel.

Figure 4.5 The Views menu of the Prolog prototype.

The Views menu has five options: Create creates a new view, and Kill deletes the current
view. Containing displays the previous current view, Next moves to the next view of the
primary class (for the current view), and Previous moves to the previous view of the
primary class.

Figure 4.6 The Windows menu of the Prolog prototype.

Chapter 4 The Prolog Prototype Page 54

The Windows menu has three options: Create creates a new window with a default size and
tools, Kill deletes the current window, and Redraw redraws the GDL pictures in the
window.

Dialogues are used to obtain user input (for example, the name of a class), and to display
messages to the programmer. Dialogs provided by LPA are the simplest method of
obtaining input from the programmer and presenting output to them. They also give a
consistent Macintosh-like interface to the Prolog prototype.

4.3.3 Applications, Views, and Windows

Boxes and lines are attributes of views, and views are displayed in windows. The Prolog
prototype supports multiple views, windows, and applications.

4.3.3.1 Applications

The Prolog prototype allows multiple Class Language programs (applications) to be
constructed and viewed simultaneously. Each application has its own set of classes,
features, windows, views, boxes, and lines. An application has a distinct name, and also
has a file on disk to which the application can be saved to and loaded from. When an
application is saved to, or loaded from, disk, the name of the disk file to use is requested
using the standard Macintosh file dialogue. When an application is created, Ispel requests
the name of the application and an initial class for the application from the programmer.
A default window and a view are created to contain the initial class.

4.3.3.2 Views and Windows

Each application is made up of a collection of views of the Class Language program.
Figure 4.7 shows three overlapping views from the Wallbrace system in their windows.
The front one is the Building view, the second is the Roof inheritance hierarchy view,
and the third the LeanTo view.

Chapter 4 The Prolog Prototype Page 55

Figure 4.7 The Building, Roof, and LeanTo views from Wallbrace.

Each view has a primary class which is the main focus of the view. Views for the same
primary class are numbered consecutively. The first view is the primary view for the class,
and the remaining views are secondary views. The Building view in Figure 4.7 is the
primary view for class Building, hence it is called Building/1. Secondary views for
Building are called Building/2, Building/3, and so on. Classes that are not primary classes
of any view have the view they were created in as their primary view. Wing and Section
in Figure 4.7 have the view Building/1 as their primary view. The view in the front
window of Ispel is called the current view, and any operations selected act upon this view.

Each application has a collection of windows which contain the views that make up a Class
Language program. Each view is assigned to a window, and when this view becomes the
current view, it is displayed in its window, which becomes the front window. There is a
one-to-many relationship between windows and views, and each window has one current
view.

During development, several variations on this window and view system were
implemented. Initially, there was only one window per application. However, this was
found to be too restrictive, and navigation between views was difficult. In addition, it was
not possible to have two views in two windows side by side, which was found to be
useful when developing programs, and has been useful in other research (Ambler and
Burnett, 89, and Raeder, 85). Another method of having one window for every view was
also implemented, but this resulted in too many windows being used and the screen

Chapter 4 The Prolog Prototype Page 56

became quite cluttered. The current method provides the programmer with more
flexibility, creating windows and views as necessary. In addition, the other two methods
can still be used within the framework of the current method, if desired. This use of
windows for multiple views is analogous to the approach used in Graspin (Mannucci et al,
89), PECAN (Reiss, 85), and Software through Pictures (Wasserman and Pircher, 87).

Windows were implemented as LPA graphics windows. This resulted in some
modifications to the original specification of Ispel. LPA graphics windows have a built in
set of features which were utilised to provide the facilities Ispel required. Figure 4.8 shows
an example window, with various parts of the window labelled. This window contains the
Roof inheritance hierarchy view of Figure 4.7 from Wallbrace.

Close Box Drag Bar Title Zoom Box

Resize BoxScroll BarTools

View

Figure 4.8 A window from the Prolog prototype.

A feature of LPA windows that was used was the tool concept. Tools are icons that are
displayed on the side of a graphics window, and can be selected by clicking on them with
the mouse. Then, when the mouse is clicked in the tool window itself, a Prolog predicate,
corresponding to the selected tool, is called with information about the location of the
mouse click. This provided a very convenient way of allowing the programmer to select
operations on views, and the original specification was modified to incorporate this
method of selecting operations.

Chapter 4 The Prolog Prototype Page 57

Some of the additional features provided by LPA include a window close box. When
clicked, the window is removed from the screen. The window directly below it becomes
the current window, and its view becomes the current view. Windows can be re-sized,
zoomed to the full screen size, and scrolled horizontally and vertically to display other
parts of a view. The name of a window is specified by the programmer when the window
is created. Window names must be unique within each application. The application name
is appended to the front of this name so all windows in Ispel have unique names, and the
application a window belongs to can be easily identified.

The original specification intended that there would be one palette for all windows in
Ispel, but LPA provides a tool palette for every graphics window. This proved to be
convenient, as the different palette settings in each view mean the programmer doesn’t
have to change the currently selected tool to perform different operations in different
views.

Every LPA graphics window has a list of GDL pictures associated with it, and these
pictures are the boxes and lines of Ispel which comprise a view. In addition, the windows
have a list of pictures which are selected. Selected pictures are highlighted by four boxes at
their corners. By clicking on a picture using the mouse, the picture becomes selected.
Some operations, such as dragging a box from one location to another, refer only to the
currently selected boxes and lines within a view.

4.3.3.3 Navigation

The Prolog prototype has a limited range of navigation methods between windows and
views. This is an area of the original specification that was not well thought out, being one
of the hardest to design without a working prototype to test ideas with.

A variety of navigation methods were proposed, and two of the simplest were
implemented. Some possible methods of moving between views are:

• Using menus to select named views.
• Double-clicking on a box to get the primary view for the class that the box

represents.
• Iconic buttons in the window to select or move between different views.
• Menu dialogs to list views by name and allow the programmer to choose one.
• Pop-up menus on the boxes to select named views.

The first method implemented was to allow primary views for classes to be selected by
double-clicking in a specific area of a class or feature box. Class and feature boxes have
“click areas”, which, when double-clicked, result in different operations being performed,
depending on the click area. This is analogous to the Prograph (Gunakara, 89) click areas
idea. This method of selecting views was chosen as it is very quick to use, and view

Chapter 4 The Prolog Prototype Page 58

switching is a commonly performed operation when a program is being constructed or
browsed. Figure 4.9 shows the click areas on a class box.

Roof
Select
Primary
View

Change Class Name

Edit Class Text

Figure 4.9 Click areas on a class box.

In addition, if a class is the primary class of more than one view, these can be moved
between by selecting the Next and Previous menu options under the Views menu. If the
programmer wants to move back to the view that the current view was selected from,
the Containing menu option is selected.

Windows can be moved between by clicking on a visible part of a window. The window is
then moved to the front of the Macintosh windows, and it becomes the current window
and its view the current view. In addition, if a primary view for a class is selected by
double-clicking on a box, then the window for the view is brought to the front and the
view displayed. If the window is already at the front, then its current view is changed to
the selected view.

4.3.3.4 Creation and Deletion

Views are created by selecting a box and then selecting the Create option in the Views
menu. A new view is created for the class that the box represents. If the class already has a
primary view, the new view is given a sequence number one more than the last view for
that class. The newly created view becomes the current view for the current window.
Views are deleted by selecting the Kill option in the Views menu. All the lines and boxes
for the view are discarded, along with the view itself. If the window for the view has no
other views, then it is also discarded.

Windows are created by selecting the Create option in the Windows menu. If there is only
one view for the current window, then an error is reported, as it is not valid to create two
windows for one view. If there is more than one view for the window, the current view is
displayed in the new window, and one of the other views displayed in the current
window. The newly created window becomes the current window, and the current view
remains the same. Windows are deleted by selecting Kill in the Windows menu. All the
views of the deleted window are assigned to another window, and the current window is
deleted. The window to which the views of this deleted window were assigned becomes
the current window, and the current view remains the same.

Chapter 4 The Prolog Prototype Page 59

4.3.4 Textual Views of Classes

The Prolog prototype has both a visual and textual representation of Class Language
programs. The textual form of a Class Language program is derived from the underlying
representation, and is displayed in an LPA text window. This view of the program can be
edited using the text editor built into LPA. However, changes to the text are ignored, as
the prototype does not include a Class Language parser. The textual view of a class is
displayed when the right hand side of a class or feature box is double-clicked. Figure 4.10
shows both the visual and textual views of the class Roof.

Figure 4.10 Visual and textual views of the Roof class in Wallbrace.

There are several alternative approaches for selecting the textual view of a program.
These include:

• Double-clicking on a class to get its primary view and then double-clicking on it
again to get its textual view.

• Using the Prograph (Gunakara, 89) idea of a left and right side of a box to select
different views.

• Using the Prograph icons on icons concept, where a box would have an edit text
icon, which, when clicked, would select the textual view for the class the box
represents.

• Using a menu option to select the textual view for the currently selected box.

The click areas idea was used, as selecting the class text for editing and viewing is quite a
common operation, so selecting this operation must be easily achieved. In addition, this is
consistent with the method of moving between different graphical views of a program.
Icons on the boxes would be functionally equivalent and as easy to use. However, they
would add more complexity to the implementation.

Chapter 4 The Prolog Prototype Page 60

4.3.5 Visual Manipulation Using Tools

The methods used to select operations to perform in the Prolog prototype are menus and
LPA graphics window tools. Menus are used to select operations to perform on
applications, views, and windows. Tools are used to select operations to perform on boxes
and lines in the current view. Figure 4.11 shows the tools used in the Prolog prototype.

Selection Tool

Add List Feature Box

Add Generalization Line

Delete Line

Add Class Box

Add Feature Line

Add Feature Box & Line

Delete Box

Figure 4.11 Tools used in the Prolog prototype.

4.3.5.1 Selection Tool

The selection tool allows pictures (boxes and lines) in the current window to be selected,
dragged, and double-clicked. It is also used when boxes are double-clicked to either select
their primary view, change their class or feature name, or to edit their class text. The
selection and drag operations have been implemented following the general Macintosh
style of selecting and dragging icons. When a box is selected, it is highlighted, and the box
can be dragged to a new location. The lines connecting the box to other boxes are
automatically redrawn. A group of boxes can be selected and dragged to a new location.
This is achieved by holding the shift key, selecting several boxes, and then dragging one
of the selected boxes to a new location. Figure 4.12 shows the result of re-positioning the
class Roof in its view. The lines to the other boxes from Roof need to be redrawn once
Roof has been re-positioned.

Chapter 4 The Prolog Prototype Page 61

Drag Sections

Figure 4.12 Example of a box being dragged to a new location.

Another method of selecting boxes, using the selection tool, is the marqui. The
programmer can click on a point in the graphics window and enclose one or more boxes
with a dashed rectangle, called a marqui. When the programmer releases the mouse
button, all pictures inside this rectangle are highlighted. Few other visual programming
systems allow the programmer to layout a visual representation of their program in as
flexible a manner as Ispel.

4.3.5.2 Addition Tools

The Prolog prototype provides tools for the addition of class boxes and list feature boxes,
connecting boxes with feature and generalisation lines, and adding a feature box and line
to an existing box.

Boxes are added by selecting the class box tool or list feature box tool. When the mouse is
clicked in the graphics window, a new box is created at this position. When a box is added,
the class name must be provided (by entering the name in a dialogue box). If the box is a
feature, the name for this feature must be supplied as well.

When a new class box or new list feature box is added, the Class Language program
(underlying representation) may be updated. If the new class box has the name of a class
that doesn’t exist in the Class Language program, then this class is created. Similarly, if a
list feature box is added, a new feature may be added to the Class Language program.

Lines are added by selecting the generalisation line tool or feature line tool, then selecting
the first class and “rubber-banding” a line to the second class. Figure 4.13 shows two class
boxes being connected by a generalisation line. The generalisation line tool is selected, then
the Roof box is clicked. While the mouse button is held down, the mouse is dragged on
top of the FlatRoof box, with a dotted line (rubber-band) following the mouse. When the

Chapter 4 The Prolog Prototype Page 62

mouse button is released, the new connection between the boxes is established (if it is
valid).

Roof

FlatRoof

Figure 4.13 Example of connecting two boxes with a generalisation line.

Other possible approaches to connecting boxes include:
• Using the Prograph (Gunakara, 89) and Grafix (Benson, 90) pins concept.

Connections are made by clicking on pins attached to boxes, and then a line
dragged from a pin on one box to a pin on another.

• Using the pin idea, but the pins are invisible.
• Default connection points that can be changed by using pins.
• Connecting lines to one point on a box.

The method used in the Prolog prototype was the only method implemented, and was
chosen for simplicity. However, this method of connecting boxes proved to be flexible
enough for the applications implemented using the Prolog prototype.

If the programmer adds a feature connection between two boxes, then the second box
must be a class box or list feature box. If it is a class box, then the programmer is
prompted for the new feature name by a dialogue box. The class box is then changed to a
feature box, with both feature and class names displayed.

There is a limited form of constraint of the visual manipulation in the Prolog prototype.
For example, if two boxes already have a generalisation connection between them,
another generalisation connection is invalid. Similarly, if a feature box already has a
feature line connecting it to the class it is a feature of, then trying to add a feature line
connection to another class is invalid.

One common operation is adding a new feature box to an existing class. The add feature
and line tool allows the programmer to select an existing class, and add a new feature box
and line. The programmer selects the tool, clicks on the existing class, and drags the
mouse to the position for the new feature box. When the mouse button is released, the
programmer is asked for the feature name and class name for the new feature, and the
feature box is displayed. This process is simpler than adding a new class, connecting the

Chapter 4 The Prolog Prototype Page 63

two classes and supplying a feature name. As it is a common operation, this tool is useful
for speeding up program construction.

4.3.5.3 Deletion Tools

The deletion tools provided by the Prolog prototype are line removal and box removal.
These allow the programmer to remove boxes and lines from the graphical
representation of the Class Language program. If a box is clicked while the delete box tool
is selected, the box is removed from the view. Similarly, when a line is clicked while the
delete line tool is selected, the line is removed. The deletion of boxes and lines does not
affect the underlying Class Language program in the Prolog prototype.

When a box is removed from a view, all the boxes and lines that depend on this box being
displayed are also removed. Thus any boxes that represent features or sub-classes of the
removed box must be removed, along with any lines connected to them. This is a
recursive process, where boxes dependent on these removed boxes are also removed.
When a line is removed from a view, only that line needs to be removed. Figure 4.14
shows a view and the resulting view once the Sections feature has been deleted.

Delete Sections

Figure 4.14 The deletion of a box in a view.

A box is dependent on another box if it represents a feature or specialisation of the other
box. If a box is dependent on more than other box in a view, then it is not removed unless
all the boxes it depends on are removed from the view.

4.3.5.4 Conversion Operations

If a feature box is highlighted, and the list feature tool selected, then the feature is
converted into a list feature. Similarly, if a list feature box is highlighted, and the class box
tool selected, then the list feature is converted into a feature. These conversion operations
allow the programmer to change the kind of a feature without having to delete the
feature from a class and then add it again using a different tool.

Chapter 4 The Prolog Prototype Page 64

4.3.6 Class and Feature Names

When a new box is added to a view, a name for the class the box represents must be
supplied by the programmer. When a feature is added, the feature name and type must
be provided.

4.3.6.1 Naming Classes and Features

The original specification intended class and feature names to be typed in within their
boxes in the graphics window. This process would be similar to naming a file in the
Macintosh desktop interface. However, LPA does not provide sufficient facilities to enable
implementation of this naming process. Instead, the Prolog prototype uses dialogue
boxes to obtain the names for features and classes. This solution turned out to be most
satisfactory to use. It is also more general and allows for easier future extensions to the
prototype. Figure 4.15 shows the Class Name and Feature Name dialogs for the Prolog
prototype.

Figure 4.15 The Class Name and Feature Name dialogs.

4.3.6.2 Renaming Classes and Features

If a feature or class name is double-clicked, then the name can be changed. However, this
operation is ambiguous. The programmer could be renaming a class, or could be selecting
another class to take its place. The Prolog prototype simply renames the class, but this
issue is properly addressed in Section 5.4. When a feature is renamed, the name of the
feature is changed. The box representing this feature is redrawn in its view to reflect this
name change.

4.3.7 Saving and Restoring Applications

Ispel application programs are stored in files so they can be used again. Each application
has a file which contains the information that together comprises a Class Language
program and a graphical representation of this program.

Chapter 4 The Prolog Prototype Page 65

4.3.7.1 Saving Application Files

An application is saved to disk by selecting the Save or Save As option in the File menu. If
the application has been created but never saved before, then a name for the disk file is
requested. If the programmer selected Save As, a new name for the application is
requested, and then a name for the disk file.

The Save file format used by the Prolog prototype is simple, and is described with some
examples in Appendix B.

4.3.7.2 Re-loading Application Files

Applications are re-loaded into Ispel by selecting the Open option in the File menu. Two
applications with the same name can not be open simultaneously. When an application is
re-loaded, the old Class Language program is read from the disk file along with its
graphical representation. The windows are re-opened and re-displayed, and their current
views are redrawn in them. On a re-load of an application, Ispel is restored to the same
state it was in when the application was saved to disk.

4.4 Implementation

This section describes the implementation aspects of the Prolog prototype. The main
components of the prototype are presented and their interactions described. The
relational database approach used to store data is discussed and a relational model for the
Prolog prototype is given.

4.4.1 Structure of the Prolog Prototype

The prototype is structured by isolating various parts of the implementation into LPA
code windows. These are similar to graphics windows except they contain Prolog code
rather than tools and pictures. Due to the rapid prototyping approach employed in the
development of the prototype, and lack of an initial, well defined design, its structure is
somewhat ad-hoc in places. One of the reasons for implementing the prototype was to
determine the major elements of an implementation of Ispel, and how these should fit
together.

The Prolog prototype has five major components:
• A database repository where information about data elements of Ispel are stored.

This includes the data needed to represent applications, classes, features, views,
windows, boxes and lines. It also includes information about how to construct
box and line pictures, menus, tool icons, dialogs, and default settings.

• A views component for manipulating the visual representation of a Class
Language program. This includes facilities to add, move and delete boxes, the

Chapter 4 The Prolog Prototype Page 66

ability to connect boxes with lines, and facilities to provide multiple views of a
program.

• The representation of the Class Language program, which the visual and textual
representations map onto. This underlying representation is altered by the
programmer manipulating the visual representation.

• An LPA specific component which handles mouse, menu, and dialogue input,
and provides an interface to the graphics windows and pictures within these
windows.

• A textual component for displaying the textual representation of a class and
allowing editing of it.

Figure 4.16 shows these five components of the Prolog prototype. The lines connecting
the various components represent the transfer of information between these elements of
the Ispel system. An arrow entering a component means that it receives information from
the other component. The textual representation of a program does not pass information
back to the Class Language representation of the program, as there is no parser in the
Prolog prototype.

Relational
Database

LPA
Specific
routines

Views
Representation

and Manipulation

Class Language
Representation

and Modification

Textual
Representation

Figure 4.16 Major components of the Prolog prototype.

4.4.2 Relational Model

The database used to store the data Ispel requires is a relational database implemented on
top of the LPA Prolog database. This database stores two types of information: the
elements of the views component, and the Class Language program being modelled. A
set of general access routines is provided so elements can be added to, deleted from, and
updated in this database. These Prolog predicates are written so the internal
representation of the database is hidden, and the database can be modified and extended
without Prolog code outside the database requiring modification.

Chapter 4 The Prolog Prototype Page 67

The original reason for choosing a relational model was the generality it offers for storage
of information (Nijssen and Halpin, 89). Other representations were considered, such as
storing boxes and lines hierarchically as part of a view predicate in Prolog. However, the
relational approach was chosen as it is a simple, unstructured mechanism to implement,
store, and retrieve data. This model was the most appropriate for the kind of data being
stored, and to provide access to this data.

Figure 4.17 is an entity-relationship diagram for the relational database which shows the
data entities for Ispel and their named relationships. The entity attributes are described in
the following sections. Appendix B describes the structure of the Prolog prototype in
more detail.

application

window

view box

class

feature

line

current
view window type

name

feature

class

startbox, endboxview

view

Figure 4.17 An entity-relationship diagram for the relational database of the Prolog prototype.

4.4.2.1 Storage of Visual Information

For a view, the following information is required: a list of boxes and lines contained in the
view, its primary class, its sequence number for that class, and its displaying window. A
box requires: which view contains it, its X and Y co-ordinates within that view’s window,
and what class or feature it represents (i.e. a link to the underlying representation). A line
requires: the two boxes it connects, and the type of connection it represents
(generalisation or feature).

In addition, the prototype also stores data for applications and windows. Applications
require: the application name, the file name the application is stored in, and a path to the

Chapter 4 The Prolog Prototype Page 68

file name. Windows require: the name of the window, the name of the corresponding
LPA graphics window, and the view being displayed in the window.

4.4.2.2 Storage of the Class Language Program

Class Language programs are also stored in the relational database, although this data is
conceptually quite distinct from the visual information. The visual information represents
a Class Language program stored in the database, and there are links between both types
of data. Class Language programs are stored as classes and features of classes. For classes,
the class name, the primary view for the class, and lists of the features and generalisations
for the class, are stored. For features, the feature name, the feature type, and attributes
for the feature (for example, list, public, or private features), are stored. This method of
storage models the type aggregation and generalisation relationships between classes in a
Class Language program.

Appendix B contains a description of the Prolog data structures used to implement the
relational database.

4.4.2.3 Access Predicates to the Database

The storage of, and access to, data follow the standard naming terminology for relational
database querying (Nijssen and Halpin, 89). The access routines to the data fall into four
categories:

• Insertion. An element is inserted into the database.
• Selection. Elements are selected from the database, and the requested attribute

values are provided.
• Update. An element in the database is updated with new values for its attributes.
• Deletion. An element in the database is deleted.

Each Ispel database entity has its own set of predicates to provide these access functions.
This interface to the database was consistent and was not affected by changes to database
entities, nor to the implementation of the database itself. The stability of these access
predicates was an important contribution to the ease with which the database, and Prolog
code to implement Ispel, could be modified independently. This approach to isolating the
structure and implementation of a Prolog program, and providing well defined access to
data storage predicates, enhances program construction and modification.

Appendix B contains a more detailed description of the database access predicates of the
Prolog prototype, and examples of their use in the Prolog code which implements various
facilities of Ispel.

Chapter 4 The Prolog Prototype Page 69

4.4.2.4 Saving and Loading Ispel Applications

One consequence of the relational model is that it affects the way Ispel applications are
saved to, and loaded from, files. The entities that comprise the database have unique
identification numbers, so individual elements can be retrieved. When an application is
saved to a file, these identification numbers for the entities are saved as they are, along
with the other attributes of each entity. However, when reloading an application from a
file, these identification numbers are no longer valid. An application already in memory
may have been assigned some or all identification numbers of the application in the file.
Thus the identification numbers for entities must be re-allocated when an application is
loaded from a file.

4.5 Summary

A Prolog prototype for Ispel was developed, which produced an environment for Class
Language. This was used to determine if visual programming is appropriate for object-
oriented languages, and to test many initial ideas about visual programming
environments. This prototype was primarily used to determine the user interface aspects
for a visual programming environment. The development process of this prototype
refined much of the original specification for Ispel, and identified some important issues.
These included the importance of rapid prototyping, and the difficulties involved in
accurately specifying a very visual and interactive piece of software. The Prolog prototype
provides a graphical user interface, multiple views of programs, and the ability to
navigate between these views. Programs are constructed graphically, and viewed using
graphics and text. Implementation and use of this prototype clarified many visual
programming issues.

Chapter 4 The Prolog Prototype Page 70

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 71

Chapter 5
Evaluation and Enhancement of the Prolog

Prototype

Chapter 4 described a Prolog prototype for Ispel, and this chapter evaluates the
performance of that prototype as a visual programming environment. The Prolog
prototype has some deficiencies, which are identified and described in this chapter. Some
enhancements made to this prototype are also presented. In addition, some visual
programming techniques developed while using this prototype are discussed.

5.1 Evaluation

Implementing the Prolog prototype, and refining its specification, was only part of the
development process. Once a working prototype was developed, it was evaluated by
using it to construct several Class Language programs. As this first version of Ispel has no
compiler, nor any run time system to execute Class Language programs, the programs
could not be run. Rather, the construction of these programs, using the environment
provided by the Prolog prototype, enabled this prototype’s performance to be analyzed.

Analyzing the performance of a piece of software can be done in several ways
(Henderson and Notkin, 87). For a development environment, the ease of use of the
software and the capacity to construct and view programs is of primary importance (see
Section 2.3). The environment must aid the programmer and provide a range of helpful
services to facilitate the software development process. As the nature of the environment
is interactive and visual, it must allow a programmer to select operations easily and
represent information in a clear, concise, and meaningful way (Raeder, 85, and
Wasserman and Pircher, 87).

5.1.1 Some Applications for the Prolog Prototype

Several Class Language programs were constructed using Ispel. The Wallbrace system
(Hamer, 90, Mugridge, 90, and Mugridge and Hosking, 88) was the major Class Language
program constructed, and it is the application used in this thesis to present examples of
the use of Ispel. Several different versions of Wallbrace were constructed during
implementation and evaluation of the Prolog prototype, and during the enhancement of
this prototype as described in Section 5.4. Wallbrace is a large Class Language program,

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 72

and has a wide variety of classes, inheritance hierarchies, and classification structures. This
makes it ideal to construct and view visually.

The concepts of Ispel were also found to be appropriate for other applications. The Prolog
prototype and the enhanced version of this prototype were both used in the design
process of the Eiffel prototype described in Chapter 6. Eiffel and Class Language are both
object-oriented languages, and their type aggregation and generalisation structures are
the same. Thus the Class Language prototype could be used to construct Eiffel classes and
relationships, in a similar manner to the Eiffel convention (Meyer, 87 and 88).

An object-oriented implementation model for Ispel was developed during the
implementation of the Eiffel prototype (see Section 6.4). As this object-oriented model is
object-based, the enhanced prototype was used during its construction and refinement.

The Prolog prototype was also useful for constructing class structure diagrams for a
report on the prototype and for many of the diagrams in this thesis. In addition, an
outline of the report was initially constructed using Ispel, as it provides a flexible method
of laying out document sections, and then browsing and manipulating them.

5.1.2 Program Efficiency

Efficiency issues were not a major concern when developing the Prolog prototype. The
main reason for its development was to produce a prototype development environment
to test the basic concepts. However, had the prototype been very slow and cumbersome
to use, it would have impaired the evaluation process and further enhancement, so a
usable performance was necessary.

A visual programming environment must be able to provide adequate performance so as
not to hinder program construction (Dart et al, 87, and Raeder, 85). The Prolog prototype
performed well in terms of speed and the response time to requests was more than
adequate. Hence it provided a usable environment.

The prototype was not very efficient in memory usage, and large applications like
Wallbrace required significant amounts of memory. This is due to the way data is stored
in the Prolog database, and also due to some inefficiency in the garbage collector built into
LPA.

5.1.3 Performance as a Visual Programming Environment

For visual construction of a Class Language program, the Prolog prototype performed
well. Even with the limited facilities provided, the main object-oriented aspects of a Class
Language program can be built and represented with ease.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 73

A visual representation of Class Language programs on computer proved to be a
significant enhancement to the development process of programs. The ability to construct
a class structure diagram on-line, and have the major classes and relationships built
simultaneously, aids the programmer’s understanding of a program and improves the
development process. Construction of parts of Wallbrace indicated that developing the
major classes of a Class Language program in a visual, interactive way on a computer is
superior to the current method of drawing classes and then implementing them using
text. The usefulness of a diagramming tool for class design has been found in other
research (Coad and Yourdon, 91, and Wilson, 90).

Having multiple class structure diagrams available makes context switching to another
focus of attention more straightforward. In addition, being able to manipulate these
diagrams easily, and construct new views and windows as necessary during
development, simplifies the task of navigation through a large program.

The more complex the application, the more applicable visual program construction and
browsing techniques are. The flexibility of a large range of views of a program, and the
natural method of viewing and manipulating the program visually, become even more
useful when there are many classes and relationships. These results have been confirmed
by other researchers in this field (Mannucci et al, 89, Myers, 90, Reiss, 85, and Wasserman
and Pircher, 87).

A consequence of the development of programs visually with Ispel is that much of the
program error checking is performed as the program is built. Some potential errors have
been eliminated by the provision of a visual programming environment. Compilation of
classes can be done after a class has been modified, and classes affected by the change can
also be re-compiled. This gives the programmer an improved turn-around time between
program construction and compilation, compared with the present Class Language
environment.

5.2 Some User Interface Deficiencies

The deficiencies of the Prolog prototype are due to its development process, the lack of a
full specification, and the nature of interactive programming environments. These
deficiencies are described below along with examples where appropriate. Section 5.4
describes some enhancements made to the Prolog prototype to eliminate many of these
deficiencies, and Section 9.1 proposes some future extensions to the enhanced prototype
to remove the others.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 74

5.2.1 Visual Manipulation

A problem with part of the visual manipulation of Class Language programs is that the
deletion tools are ambiguous. For example, if a box is to be removed from a view, the
programmer may be requesting that the box be hidden (i.e. change its visual
representation). Alternatively, they may require the feature or class that the box
represents be cut from a class or an inheritance hierarchy (i.e. change its underlying
representation). This means there must be an unambiguous method for the programmer
to specify whether they want the box deleted from a view or cut from the program. The
Prolog prototype simply changes the view when a box or line is deleted.

The process of constructing diagrams with the Prolog prototype is inefficient in some
aspects. For example, when building a diagram, a class box is added first, then another
class box, and then a generalisation line connected between the two boxes. This method of
diagram construction is tedious, and as it is a very common operation, it should be
simplified (O’Brien et al, 87).

There is no facility for having diagrams automatically laid out by Ispel. While allowing the
programmer to layout diagrams in a format they wish proved extremely flexible, in some
situations the layout of diagrams follows a standard pattern. In others, the programmer
may want Ispel to format the diagram in some pre-defined or default manner, for
example when loading old textual Class Language programs into Ispel. This means the
programmer does not have to format the diagrams and can concentrate on the
construction of programs (Mannucci et al, 89).

When a visual representation is modified by the programmer, there is no facility to
reverse the modification. This means that if the programmer makes a mistake, they must
correct the mistake manually rather than have Ispel reverse the changes made. An Undo
facility to allow a user to undo the previous operation is provided in many interactive
pieces of software (Benson, 90, and Reiss, 85). Use of the prototype showed that this
facility is almost essential in a visual programming environment. It is very easy to make
errors, which can not be reversed by Ispel, and the provision of an Undo facility would
enhance programmer productivity.

5.2.2 Constraint of Class Language Program Construction

The Prolog prototype uses the syntax and semantics of Class Language to constrain the
visual manipulation of views. The relational model stores the Class Language program
being constructed, so as changes to a view are made, they can be verified against the
program. This process is carried out by using the database and checking the operations
being performed, not as part of updating the database or the operations themselves. Thus
this process is ad-hoc, and the checks on the visual manipulations being performed are

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 75

actually coded in Prolog in the first prototype. The code to do the checking is invoked in
the middle of the predicates that perform the visual manipulations and database updating.
This is unsatisfactory, as it is difficult to change both the operation code and constraint
code independently. This caused considerable problems when modifying many of the
operations during prototype enhancement.

An additional problem is the incorrect timing of some checks and error reporting. For
example, if an attempt is made to add a feature which exists in a class, the new feature
name and type are requested. An error is not reported until after the type of the feature is
supplied. It is possible to add code to check for this situation, and to report an error
immediately after the feature name is entered. However, if other special cases are
introduced or removed from the prototype, the code will become complex and unwieldy.
Thus another approach to constraining visual manipulation and reporting errors is
required.

5.2.3 Visual Representation

When a box has many connections to other boxes in a view, the resulting diagram can
become cluttered. The layout of diagrams in the Prolog prototype is somewhat restricted,
as boxes positioned beside other boxes are still connected from the bottom of one box to
the top of the other. Figure 5.1 shows an example of poor visual layout resulting from this
restriction. The problem of laying out program structures in a clear and concise fashion is
discussed in Kleyn and Gingrich (88).

Roof RoofDirection
across

RoofDirection
along

Figure 5.1 An example of poor visual layout of diagrams in the Prolog prototype.

The Prolog prototype has a limited range of Class Language features that can be
represented, as only public features and generalisations can be programmed visually.
Class Language has object-oriented aspects such as class parameters and procedural and
functional features, which can only be represented in text using the Prolog prototype.
Also, the unique Class Language feature of classification cannot be represented visually in
the prototype, although it is suitable for visual representation and manipulation. Other
features of Class Language, such as the proposed generic class extensions (Mugridge, 90),
do not have a visual representation. This restricts the proportion of programming that
can be done visually, forcing the programmer to revert to textual programming. It also
restricts the amount of a program that can be represented visually.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 76

5.2.4 Navigation

The navigation facilities provided by the Prolog prototype to move between views and
windows are poor. Double-clicking on a box to select its primary view is a good method
of moving to other views, but it is too inflexible. Using menus to move between views for
the same class has the disadvantage that it uses a different form of user input than the
other methods to select graphical and textual views. This gives an inconsistent appearance
to view navigation, which is an undesirable characteristic in an interactive piece of
software (Raeder, 85).

There is no facility to select a view or window by name, or to select a view that the
primary class of the current view is contained in. A class may appear in several views, and
thus its primary view can be selected from any of these views. However, the Prolog
prototype does not allow the programmer to return to any of these views, only the
immediate prior one that the current view was selected from within. This is restrictive
when constructing a program, as it is often useful to be able to view a class in different
contexts while constructing or viewing the class itself (see Section 5.5).

5.2.5 Renaming Classes and Features

In the Prolog prototype, classes cannot be renamed or re-selected due to the ambiguous
nature of this process. Features can be renamed, but only the box in the current view that
represents the feature is re-drawn. Classes need to be able to be globally renamed, and
another class must be able to replace an existing class.

5.2.6 Underlying Representation

When boxes and lines are removed from a view, and changes to the Class Language
program are made, all views that are affected by the changes must be updated. For
example, a feature box is removed from a view, and the programmer wants the feature
to be deleted from its class. The Class Language program must be changed so the class no
longer has a feature of this name. In addition, all boxes that represent this feature in any
other views must be deleted. All other boxes and lines in these views that are dependent
on the deleted feature box must also be deleted. When a class or feature is renamed or re-
selected, the Class Language program must be changed and these changes propagated to
the appropriate views (see Section 3.7).

The Prolog prototype allows invalid Class Language programs to be built, as the visual
manipulation operations are not fully constrained. Figure 5.2 shows an example of an
invalid Class Language program which the Prolog prototype allows to be constructed.
There is no check made to see that when a generalisation is created, the child class is not
inheriting information from itself or a descendant of itself. A visual programming

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 77

environment should detect errors and invalid program constructs as soon as possible to
assist program development (Myers, 90).

Roof

FlatRoof

Roof

Figure 5.2 An example of an invalid Class Language program.

The standard classes built into Class Language are integer, float, boolean, and text
(Hamer, 90, and Hosking et al, 88). In the Prolog prototype, when the programmer uses
any of these classes, they are defined and treated like all other classes. This means the
programmer can mistakenly add features to these classes, or make them specialisations of
other classes. These standard classes should be treated as special cases, or as library
classes, and the programmer should not be able to alter them.

The primary class concept is not well defined in the Prolog prototype. Primary classes are
the focus of a view, but the box representing the primary class can be deleted from the
view, which can be confusing for the programmer. The view still has the deleted class as
its primary class, but this class no longer has a box representing it in the view.

5.2.7 Lack of a Parser and Run Time System

The Prolog prototype has no parser to process changes to the textual representation of a
class, nor does it store the text for a program. A parser is required so changes to the text
can be deciphered and be propagated to the visual representation. In addition, any
changes to the visual representation must be reflected in the text. The lack of a parser
means that the Prolog prototype is only useful for constructing the visual, high-level
aspects of Class Language programs.

As there is no compiler nor run time system in the Prolog prototype, the environment is
not complete, and programs cannot be run. A compiler and run time system should be
integrated with the rest of the Ispel environment.

5.2.8 Location and Documentation of Existing Classes

When constructing object-oriented programs, it is necessary to be able to view the
existing classes and features of these classes. Documentation about the facilities provided
by the classes should be available (Coad and Yourdon, 91, and Meyer, 88). The Prolog

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 78

prototype does not provide any method of locating existing classes, nor does it allow the
programmer to document the classes and view this documentation.

Most programming environments provide libraries of useful functions, program
fragments, or classes that can be reused by the programmer (O’Brien et al, 87). Reuse of
existing classes is especially important in object-oriented programming (Fischer, 87, and
Meyer, 87 and 88). Ispel currently has no notion of class libraries, and classes cannot be
documented, abstracted, or stored in a library for future perusal, retrieval, and reuse.

5.3 Evaluation of the Relational Model

There are some deficiencies with the relational model used for the Prolog Prototype, and
with the relational model concept itself. Some enhancements were made to the model to
improve the prototype performance and allow some enhancements discussed in Section
5.4 to be made.

5.3.1 Advantages of the Relational Model

The relational model performed well in many situations, and implementation of the
prototype proved it to be a flexible method of storing data. During the early stages of
development, the model could be substantially modified with no significant effect on the
remaining Prolog code. This was due to the generality of the model and standardised
access routines to the database. The predicates to use the database were well designed,
and the relational model was a natural way to conceptualise the data that made up the
Ispel environment. This simplified the construction of code that required database access.

5.3.2 Deficiencies of the Relational Model

During development of the prototype, the relational model had to be modified, due to the
lack of design of the model. One consequence of this lack of design was that during
development and enhancement of the prototype, some entities were found to lack
important information. Attributes such as the distinction between class and feature boxes,
and a list of boxes and lines contained in a view, needed to be added to the relational
model. An effect of adding these attributes to the database during development was that
applications saved in files using the old database model could not be re-loaded using the
new model, due to the differing attributes. This proved to be a most inconvenient side
effect, as testing of the prototype during its development and enhancement required
some substantial applications, which had to be reconstructed several times.

Enhancement of the prototype identified a major problem with the relational model used.
This was the lack of links between some entities. For example, there is no link between
classes and all the views a class is contained in. There are also no links from a class to its

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 79

specialisation classes, but only to its generalisations. These links allow some operations,
such as an Expand operation, to be implemented more efficiently.

Most entities used a uniquely generated identification number to identify individual
elements. However, the application and class entities used the application name and class
name respectively, which caused problems when a class or application was renamed. To
implement the class rename operation, the class names used in every other entity had to
be changed. Applications were provided with two names: their file name and the actual
application name. Neither of these approaches is satisfactory, as the renaming of class
names in entities is both time consuming and inefficient. Application names should be the
same as their file names, which is consistent with other Macintosh applications. A solution
would be to give class and application entities unique identification numbers that are
never seen by the programmer.

The major disadvantage of the relational approach to modelling Ispel data elements is that
this data is modelled as separate entities which are linked together, rather than as related
data objects. The relationships between the entities are purely abstract for the relational
database, and it is up to the programmer to make sense of them and use them correctly.
In addition, there are no consistency checks on the data, nor are there any checks to
ensure that the data is constructed and linked together in a valid way. This lack of
consistency checking, and the ability to construct and use the data incorrectly, contributed
to a large number of errors being made during development of Ispel. These errors were
neither detected nor disallowed by the relational database when data was added, updated,
or deleted.

5.4 Enhancements

Once the Prolog prototype had been implemented and evaluated, it was enhanced to
improve the programming environment it provides. In addition, some enhancements
were made to explore further areas of visual programming, and to examine more
implementation and user interface aspects of Ispel.

The following sections detail the enhancements made to the Prolog prototype, and give
examples of the improved performance when constructing and viewing Class Language
programs. Some enhancements required structural modification of the prototype
implementation and, in addition, some deficiencies of the implementation were identified.

5.4.1 Line and Box Addition

The process for adding lines and boxes was modified to generalise it and to simplify the
construction of programs. The specialisation line tool was modified to behave in the same
way as the add feature and line tool, which superseded the feature line tool. To add a

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 80

specialisation to an existing class, the specialisation line tool is selected and then an existing
box is clicked. A line from this box is then rubber-banded to either another existing box or
an empty location. If the mouse is on an existing box when the mouse button is released,
then a generalisation line between two existing boxes is created. If the mouse is on an
empty location, then a new class box is created at this location. A name for the class is
requested from the programmer and then a generalisation line between the existing box
and new box is created. This process is similar to the addition of features. Figure 5.3 shows
the new addition tools for the Prolog prototype.

Add Feature Box and Line Add Class Box and Line

Figure 5.3 The addition tools for the enhanced prototype.

5.4.2 Cutting of Boxes and Lines

A cut box tool and a cut line tool were added to the Prolog prototype, and the hide box tool
was retained. Thus the ambiguities between hiding a box from a view and cutting a box
were removed, as the programmer can now select a distinct tool to perform each
operation. If any boxes are highlighted when the cut box tool is selected, then these boxes
are cut from the view. Figure 5.4 shows the removal tools for the Prolog prototype.

Cut Line Cut Box

Figure 5.4 The cut box tool and the cut line tool.

When a line or box is cut, the Class Language program is updated. Other views affected
by this change are also updated. For example, if a feature is cut from a class, then any
boxes in other views that represent this feature are deleted from their views.

5.4.3 Parameters, Procedures, and Functions

To increase the degree to which Class Language can be programmed visually, class
parameters, procedures, and functions were added to Ispel. Parameters and functions
have a name and a type, while procedures have a name and a void or procedure type. In
addition, visual representation and manipulation of information hiding was supplied, and
all features are either public or private to their class. Figure 5.5 shows how these new
visual programming features are represented in Ispel.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 81

BracingUnits
calculateLoad

displayRoof

RoofHeight
height

RoofDirection
along

RoofDirection
across

Public Feature

Private Feature

Class Parameter

Procedure

Function

Figure 5.5 Parameters, procedures, functions, and public and private features.

In addition to a visual representation, all of these have a textual representation. Figure 5.6
shows an example class with various features, and the text for this class.

Some of these extra visual programming facilities are implementation details of a Class
Language program, while others are design details. For example, the kind of a feature
(procedure or function) is an implementation detail, while the class interface (public or
private features) are design decisions (Coad and Yourdon, 91). Currently, Ispel does not
distinguish between this design and implementation information, although this would be
useful for program development (see Section 9.1).

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 82

Figure 5.6 The Roof class and its textual representation.

When adding features, the features can have other attributes in addition to a name and a
type. A method of specifying the attributes of a feature was required and the Feature
Name and Type dialogue was modified to provide this. When a feature is added, the
programmer specifies the attributes of the feature using this dialogue, which makes the
list feature tool redundant. Figure 5.7 shows the Feature Name and Type dialogue for the
enhanced Prolog prototype.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 83

Figure 5.7 The Feature Name and Type dialogue box.

5.4.4 Visual Layout

To assist program construction and layout, an automatic gridding system was added so
boxes could be lined up on an invisible grid. This makes laying out of boxes easier, and it
is analogous to the auto grid in MacDraw (Claris, 89). Automatic gridding can be switched
off by the programmer if it is not required.

A facility to enable lines to be attached to the side of a box was added to improve the
layout of diagrams. In addition to making the diagrams less cluttered, this provides a
more flexible way of constructing diagrams. Diagrams can be viewed from left to right
and from right to left, as well as from top to bottom.

Initially, the prototype was modified so if a line was connected from the bottom of one
box to the top of another, and the line overlapped one or both of the boxes, then the line
was redrawn to connect from the side of one box to the opposite side of the other box.
However, this had a draw back in that Ispel automatically decided which method of
display it would use, depending on the location of the boxes. This resulted in some lines
being connected to the top of boxes, and some being connected to the sides, which is not
usually the desired way of viewing a diagram. This was altered so the programmer
explicitly selects which way lines should be connected to boxes, via highlighting a line and
choosing a menu selection. Lines are connected side to side or top to bottom, depending
on the default connection setting. Figure 5.8 shows two different layouts of diagrams. This
is similar to the EDGE graph editor, which allows graphs to be laid out in any horizontal
or vertical direction in a window (Newbery, 88).

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 84

Roof RoofDirection
across

RoofDirection
along

Roof RoofDirection
across

RoofDirection
along

Figure 5.8 Lines connected from top to bottom and from side to side.

There are some parameters of Ispel that the programmer should be able to change. These
include the automatic gridding size, the default connection point on boxes, and the default
attributes of new features. A Preferences dialogue was added so the programmer can
change these settings. Figure 5.9 shows this Preferences dialogue. The Preferences facility
enhances productivity as the programmer does not have to re-specify attributes of
features, nor line connection points for individual features and lines.

Figure 5.9 The Preferences Dialogue.

A new menu was added to the prototype to enable the programmer to bring up the
Preferences dialogue, and also to change the connection points of lines and turn gridding
on and off. Figure 5.10 shows this Preferences menu. There are five options in the
Preferences menu: Settings brings up the Preferences dialogue so the programmer can
change the default settings, Bottom and Side specify the location on a box which the
highlighted lines will be connected to, Grid Off or Grid On toggle between having the auto
gridding on and off, and Grid Boxes relocates all of the selected boxes so that they are on
the grid.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 85

Figure 5.10 The Preferences Menu.

An omission from the Prolog prototype was a visual indicator on a class or feature box to
inform the programmer that a class has a view other than the one it is currently displayed
in. This is useful when navigating through a program to indicate which classes can be
displayed in different views. A view icon (a small, unfilled circle) was added to the class
and feature box pictures to indicate the presence of primary views associated with the
class. Figure 5.11 shows the Building view from Wallbrace. The view icons on the Roof
and Storey boxes indicate that Roof and Storey have other views that can be displayed.

Building

Wing
Wings

Section
Sections

Roof
Roof

Storey
Storeys

Figure 5.11 An example of boxes with view icons.

5.4.5 Expansion of Class Features and Generalisations

In the Prolog prototype, there is no facility to have the features and generalisation
relationships for a class expanded in a view. If a class has features or generalisations, it is
useful for the programmer to have all, or a selection of these, displayed when reusing the
class in another view. This saves the programmer from reconstructing the features by
hand. As it is a very common operation, a facility to enable the programmer to expand
classes was added to the Prolog prototype.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 86

The expand tool is a dialogue box which is shown in Figure 5.12. This consists of a set of
check boxes and radio buttons which allows the programmer to specify which features
and generalisations of a class are to be expanded. A class is first highlighted and then the
programmer chooses the details of the class to expand. Features and generalisations of
the selected class are found and the appropriate boxes and lines are created and displayed.
The expand operation checks to see if the details being expanded are already present in
the current view and, if so, then it does not expand them again.

Figure 5.12 The Expand dialogue box.

This expand operation has some flaws, mainly due to the complexity of the expansion
operation itself. The positions of the new boxes added to the view are computed by Ispel
and laid out accordingly. However, it does not consider that a class being expanded may
have other views which contain these class details. For example, Ispel always lays out
expanded boxes from top to bottom. However, in another view, the boxes may be
arranged from left to right, and this is probably what the programmer wants repeated in
the current view. The positions of the details of a class in other views are ignored, when
the programmer may want these details displayed in the same manner.

Use of this expand facility has shown that, while the provision of an expand operation is
almost essential, an improved method of specifying the options would be advantageous.
This is because the current dialogue for selecting the options is difficult and cumbersome
to use. The ability to expand more than one level of details for a class is required, as often
the programmer will want several levels of the type aggregation or inheritance
hierarchies expanded.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 87

5.4.6 Views and Windows

To enhance navigation between views and windows, view selection and window selection
menu options were added to the Prolog prototype. These allow the programmer to
choose from a list of all the views and windows in the system the view or window they
want displayed. The Prograph (Gunakara, 89) and Trellis/Owl (O’Brien et al, 87)
environments use a similar method for selecting classes to browse. Figure 5.13 shows a
view being selected using the View Selection dialogue. These are a useful enhancement to
navigation between views and windows, although the navigation methods provided by
the enhanced prototype are still not as flexible as they should be. Section 9.1 proposes
some further enhancements to the navigation facilities.

Figure 5.13 The View Selection dialogue.

A menu option to allow the programmer to change the primary view or default view of a
class was provided. This is required so the programmer can re-specify the primary view
for a class, by selecting a view with the view selection dialogue. The deletion of windows
was modified so when a window is deleted, the programmer is asked for a window to
which the views for the window being deleted should be allocated. A view can be
displayed in another window by the selection of a menu option.

5.4.7 Renaming and Re-selecting Classes and Features

Classes and features can be re-selected and renamed in the enhanced prototype. The
changes that occur to the Class Language program are propagated to other views that are
affected by the change. The distinction between renaming a class and selecting another
class in its place is drawn by asking the programmer to specify which operation to
perform. The Class Name dialogue was modified so the programmer has two buttons to
select. One renames the selected class, the other selects the given class in place of the
current one. When a new class is selected, the generalisations and features of the previous
class are removed from the view.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 88

5.4.8 Consistency with Underlying Representation

Some further constraints were added to the Prolog prototype to ensure that the
programs constructed are consistent and are valid Class Language programs. For
example, when a new feature is added, the name, type, and attributes of the feature are
checked against any features of the class with that name. If the types are not consistent,
then an error is generated, and if the attributes are different, the existing attributes for the
feature are retained.

5.4.9 Standard Classes

The standard classes integer, float, boolean, and text are defined by Ispel rather than the
programmer. Constraints were added so they can no longer be altered by accident. These
classes are treated as a special case, although they should be implemented as library
classes in future prototypes (see Section 9.2). Extra code was added to check that a class
being altered is not a standard class.

5.5 Some Visual Programming Techniques

A variety of visual programming techniques were formulated during development and
evaluation of the Prolog prototype. This section describes these techniques and their
applicability to the construction of Class Language programs using Ispel.

5.5.1 Multiple Views of a Program

Multiple views of a program proved to be the most important aspect of the Ispel
development environment. Being able to visualise a program, both graphically and
textually, work within specific contexts for classes, navigate easily between these contexts,
and create and modify these views, is a major advancement on the existing Class
Language environment. Good use of multiple views by a programmer is essential during
program development using Ispel and other visual programming systems (Ambler and
Burnett, 89, Dart et al, 87, and Reiss, 85 and 87).

5.5.1.1 Liberal Use of Views

The multiple views concept provided by Ispel allows a program to be viewed at different
levels of abstraction. Most classes which are composed of type aggregations require at
least one view for which they are the central focus (primary class). This allows both the
class, and its relationships to other classes, to be viewed within the context of the class
itself. A class can also be viewed in the context of other classes as a feature type,
generalisation, or specialisation.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 89

Constructing a large range of views allows a programmer to view elements of a program
from many different angles. Multiple views provide a flexible mechanism for diverse
program visualisation. They allow a programmer to view parts of a program in a context
which is useful for the programmer at specific stages of program construction and
browsing (Dart et al, 87). The liberal use of multiple views during program development
aids both the development and maintenance of the program (Reiss, 85). This was verified
by using Ispel to construct the Wallbrace example and an object-oriented implementation
model for Ispel (see Chapter 6).

A useful guide-line is to create views for a class when there is no longer room in the
window for the details of the class. If a diagram becomes cluttered, confusing, or no
longer aesthetically pleasing, then views focusing on a subset of the classes in the view
should be created and the view rearranged. During construction of a class or classes
relating to it, it is often useful to be able to have more than one view displayed on the
screen at one time. This provides contexts focusing on different classes and allows the
programmer to visualise the relationships in a clearer manner than a single view. For
example, viewing the Roof inheritance hierarchy in Figure 5.14 and each view for the
different specialisations of Roof simultaneously is useful.

Roof

FlatRoof

NonFlatRoof

StarRoof RidgedRoof LeanTo OtherRoof

Figure 5.14 The Roof inheritance hierarchy.

When views become difficult to understand, information spread over two or more views
is clearer for the programmer to understand and utilise than if it is contained in a single
view. The generalisation and type aggregation hierarchies for Wallbrace and the Ispel
object model are clearest at a depth of two or three levels from the primary class,
depending on the number of expanded class details in the view at each level. Once views
grow beyond this depth, or if they have a large spread of classes from one level to
another, they become difficult to read and multiple views are required. For example, the
Roof view from Figure 5.14 becomes difficult to read if more than three levels are fully
expanded.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 90

With the emergence of new technology (for example, larger bit-mapped screens for
computers), new visual programming techniques for Ispel may be developed. On a large
screen, Ispel diagrams can be drawn and displayed which don’t become cluttered as
quickly as diagrams on smaller screens. In addition, the use of colour in diagrams to
distinguish different types of information could be utilised.

5.5.1.2 Navigation Using Views

It is important to structure the use of views so program navigation is as simple and
natural as program visualisation. The primary view for a class should be its view that is
most frequently used. Double-clicking on the class view icon should display the view most
likely to be required by the programmer. The ability to reassign the primary view of a
class is important during program construction, and should be used where appropriate.

For example, the view of Roof showing its major features is the most useful view when
using the Roof class as a feature of other classes. A programmer can change the primary
view for Roof to be this type aggregation diagram. The programmer can also change it to
the inheritance hierarchy view when specialisation classes of Roof are constructed.
Sometimes it is useful to make the primary view for a class a view where it is not the
primary class. For example, when it is used as a feature, generalisation, or specialisation of
another class. Section 9.1 discusses some proposed enhancements to view navigation that
could improve the flexibility of this process.

A useful technique for selecting related views, used for the object model for Ispel, is to
add an unconnected class box to a view and use it as a button for double-clicking on to
select the primary view for the class. This can be useful when constructing views for
specialisation classes, and wanting to access the inheritance hierarchy of the class.

5.5.1.3 Views for Different Information

Views can be used to distinguish between kinds of features for a class or between feature
and generalisation relationships for the class. It is often useful to have views which show
the generalisation hierarchy for a class and another view for the features of the class
without generalisation. For example, the Roof generalisation hierarchy is shown in Figure
5.14, and part of the Roof type aggregation hierarchy is shown in Figure 5.15.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 91

Roof

BracingUnits
calculateLoad

displayRoof

RoofHeight
height

RoofDirection
along

RoofDirection
across

Figure 5.15 Some features of the Roof class.

Views can also be used to distinguish between the important features of a class and simple
class features. When constructing views, it is important to utilise a good distribution of
information over multiple views for a class. This aids understanding of a program and
helps to modularise information. Important classes, or classes with a large number of
features and generalisations, require several views to divide information about the class
into distinct aspects. This ability to focus on different aspects of a class or classes should be
utilised when constructing programs as it significantly enhances the visual representation
of programs.

Some useful divisions of views of classes for Class Language programming include:
• A generalisation hierarchy view, for example, the Roof view of Figure 5.14.
• One or more views which show related features for a class in a specific context.

For example, there are three views for the Building class features in Wallbrace
which focus on different aspects of Wallbrace.

• One or more minor, or less important, feature views.
• A view containing the procedures of a class, i.e. feature implementation details.

Classes with many features can have shallow views which display only the class and its
features, and can also be cluttered. Multiple views improve program visualisation and the
amount of information presented by providing several views for a class with many
immediate features, generalisations, or specialisations. An alternative approach is to split
the class into several classes or increase the generalisation used. However, use of multiple
views allows the program to be viewed in a modular way despite many class
interrelationships.

Care must be taken when creating views so a balance is achieved and not too few or too
many views are used. Insufficient views are evident when views become complex and
difficult to follow, and programmers find they often cannot visualise a program in a
desired way. Too many views can occur when views are kept quite shallow and only the

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 92

features of the primary class are shown. This reduces the context and information about a
class provided by a view, and hinders navigation as many switches to other views are
required.

5.5.1.4 Flexibility Provided by Views and View Consistency

The flexibility of having partially constructed programs and the underlying program
structure built during programming is valuable. Only partially complete Class Language
programs can be constructed, and the programmer can move to another view, leaving a
previous view un-finished. This ability should be exploited during development as it
allows a programmer to build programs in a flexible, interactive manner. Program
development can follow the programmer’s thoughts and not be constrained by the
necessity to parse or compile views.

The maintenance of consistency between views is crucial to this facility, as the
programmer can change context when class implementation is incomplete. Any further
views containing the class and its details will be consistent with the incomplete view, and
changes to these views will still affect the first view. The programmer does not need to
parse views before moving to others, as in other systems, being confident in the continual
consistency of the visual and underlying representations. This provides an interactive
appearance to program construction which enhances the development process (Raeder,
85).

5.5.1.5 Free-Format Layout of Views

Ispel is unlike most other visual programming and diagramming systems in that it allows
programs to be laid out in a completely free format. While some argue that automatic
layout of diagrams is an advantage (Mannucci et al, 89), most researchers agree that some
form of flexible layout is useful (Ambler and Burnett, 89, Myers, 90, and Reiss, 85 and 87).

The ability of programmers to lay out diagrams how they require is an advantage in
many situations. A diagram may not be clear, meaningful, or asthetically pleasing in one
form of layout. In Ispel, the programmer can rearrange elements of it to improve its
appearance. A diagram that is clear and easy to understand is more useful than one that
conforms to a standard layout but is cluttered and unclear. However, it would be useful
for Ispel to layout diagrams automatically if a programmer requires this.

Ispel allows diagrams to be arranged hierarchically, from the top of a window to the
bottom, or from one side of a window to the other. These layouts can even be combined
within the same diagram. Care should be taken when positioning elements of views so
that the diagram does not become too complex or cluttered. Overlapping boxes and lines

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 93

are often confusing and should be avoided where possible. If views become difficult to
understand, new views should be created to solve the problem.

5.5.2 Multiple Windows

Multiple windows allow multiple views to be viewed simultaneously on the screen. They
also assist in view navigation as windows can be partially overlapped and moved in front
of and behind each other. If multiple views are to be displayed simultaneously, multiple
windows are created and the views placed in different windows. Different named
windows can be used for displaying certain types of views. For example, a window for
displaying inheritance hierarchies and one for views derived from each major class of a
program proved useful during the construction of Wallbrace and the Ispel object model.
Multiple windows are used in most visual programming systems, and the modularity
they provide for screen work areas is important (Ambler and Burnett, 89).

The scroll bars provided on LPA windows did not prove useful during program
development. When part of a view became obscured, the window size was increased, or
another view created to display the information. The window re-sizing and dragging
abilities are useful, and the layout of windows on the screen to show the desired amount
of information is important. It is useful to have windows arranged without overlap if
possible. However, if many windows are visible, keeping the window title bars and
primary classes for views visible aids window navigation. Windows which are not in use
for any significant amount of time should be closed to avoid clutter.

5.5.3 Graphical and Textual Representations

Utilising the graphical and textual views of a program where appropriate aids
development productivity. The graphical representation of a program is useful for
programming and viewing its structure and for navigating throughout a program,
whereas text is applicable for programming feature implementation details. The textual
representation can be used to construct a program (if a parser was included in the Prolog
prototype), but the graphical representation is far more suitable. Visual programming is a
more natural method of constructing the object-oriented aspects of Class Language and
should be used in preference to textual programming where appropriate. However, Ispel
does not force a programmer to use graphics if they prefer text.

5.6 Summary

Chapter 4 described the development of a Prolog prototype of Ispel. This prototype has
been evaluated in this chapter and its performance as a visual programming environment
found to be good. Constructing and viewing Class Language programs using the Prolog
prototype is a significant improvement on the current environment for Class Language.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 94

However, this prototype has a number of user interface, visual programming, and
implementation deficiencies, which have been identified and discussed.

Some enhancements were made to the prototype to improve its visual programming
performance. These included facilities to enhance program construction, full propagation
of change, including class and feature renaming, a preferences option, and an expand
facility. During implementation and evaluation of the prototype, some visual
programming techniques were developed. These were explained to illustrate the benefits
of using Ispel for constructing object-oriented programs.

Chapter 5 Evaluation and Enhancement of the Prolog Prototype Page 95

Chapter 6 The Eiffel Prototype Page 97

Chapter 6
The Eiffel Prototype

The Prolog prototype determined the need for a structured implementation model for
Ispel. An Eiffel prototype was developed to refine an object-oriented model for the
implementation of Ispel. It also provided an opportunity to explore the use of an object-
oriented programming language and its environment. In this chapter, the user interface
and implementation aspects of this prototype are described, and its performance
evaluated. The Eiffel language and programming environment are discussed, and the
appropriateness of an object-oriented solution to implementing Ispel is examined.

6.1 The Eiffel Prototype

A brief overview of the development process and concepts of the prototype are given,
and the reasons why an object-oriented approach was adopted are discussed are given in
this section.

6.1.1 Rationale for the Eiffel Prototype

The Prolog prototype was developed to refine the user interface aspects of Ispel.
However, implementation of this prototype indicated that a more structured model of
Ispel would assist construction and modification of the environment (see Section 5.3).
Thus the Eiffel prototype was implemented to develop and refine a structured model for
Ispel, and identify the elements of a formalism for Ispel (see Chapter 7). In addition, the
development of this prototype provided a large application to implement using an object-
oriented language. It also provided an opportunity to evaluate the programming
environment of Eiffel.

The Eiffel prototype was intended to have the same user interface as the Prolog
prototype, while providing a programming environment for Eiffel, instead of Class
Language. This was to determine whether the principles of Ispel could be applied to other
object-oriented languages in addition to Class Language. An additional aim was to
produce a replacement visual programming environment for Eiffel. The existing Eiffel
environment is deficient as it provides little specific support for object-oriented
development.

Chapter 6 The Eiffel Prototype Page 98

6.1.2 The Development Process

The Eiffel prototype’s specification was based on the specification used for the Prolog
prototype of Ispel. The only major modifications to this specification were to take account
of the different user interface provided by Eiffel. The differences between the syntax of
the object-oriented aspects of Class Language and Eiffel only affected the textual
representation of programs.

The Eiffel prototype was implemented on a DECstation 2100 running Unix and using the
X windows graphical user interface. This differs in some ways to the interface provided by
the Macintosh, and these differences were taken into account. This was a valuable
abstraction, as it allowed the principles of Ispel to be examined in not only a different
language environment, but also using a different user interface standard.

An initial object model for Ispel was produced which served as a design for the Eiffel
prototype. This was implemented as Eiffel classes, and the Eiffel prototype was developed
around this initial structure. The enhanced Prolog prototype proved valuable for assisting
the definition of the major classes of the Eiffel prototype, and for viewing and
manipulating these class structures during development.

6.1.3 The Object-Oriented Approach

An object-oriented approach was used in the formulation of the model as Ispel models an
object-based system. Hence it was a natural way of expressing the system being modelled
and the structure of Ispel. This approach has also been used successfully in the Arcadia
system (Rosenblatt et al, 89).

6.1.3.1 Alternative Approaches

An alternative approach would be to use abstract syntax trees and attribute grammars to
define the system. This has an advantage that aspects of language-based editors and
diagramming tools can be specified in grammars and then generated from these. The
Cornell Synthesizer Generator (Reps and Teitelbaum, 87) and Graspin (Mannucci et al, 89)
adopt variants on this approach.

However, the OROS (Object, Relationship, and Operation System) model for Arcadia is a
more general approach, and can be used for all aspects of an environment (Rosenblatt et
al, 89). Goguen and Mariconi (87) argue that the attribute grammar approach is useful for
language-based editors, but is not flexible enough for other aspects of programming
environments. For example, the user interface and operations of Ispel would have to be
represented in a different form. A unified approach to the structure of Ispel was desired in
order to be able to refine integrated implementation and formal models of the
environment. Parts of the environment specified as attribute grammars would need to be

Chapter 6 The Eiffel Prototype Page 99

integrated with another model for other aspects of the environment. In addition, no
generator for attribute-grammar based systems was available.

6.1.3.2 Objects to Model Ispel Elements

The Eiffel prototype is based on using classes to describe the object elements of Ispel, for
example, boxes, classes and views. Classes are also used to describe operations performed
on these objects and the framework of the Ispel system itself. The framework of Ispel
refers to aspects such as the decoding functions to interpret a programmer’s commands,
and the graphical user interface facilities. Ispel objects are divided into three groups:
objects (for example, classes and boxes), relationships (for example, class to box
dependency and generalisation), and operations (for example, create object, display view
object, and rename class). A similar classification of software development environment
components is used in the Arcadia system’s OROS type model (Rosenblatt et al, 89). The
division of Ispel into these fundamental categories was performed to classify the elements
of the system.

6.1.3.3 Underlying Representation as the Central Element

An important difference between the Eiffel prototype’s model and the Prolog relational
model is the view this model takes of an Eiffel program and its visual representations. The
link between the different data elements of Ispel was purely conceptual in the Prolog
prototype. The relational model did not imply that any data depended on other data or
was affected when other data was modified. The propagation of change throughout
views when a program was updated was encoded in Prolog, and bore little relationship to
the change in the data itself. The process of propagating change was entirely up to the
programmer of Ispel. There was no assistance given by the relational model to maintain
consistency between data.

The object-oriented model introduced a more structured view of the underlying
representation (an Eiffel program). The underlying representation is viewed as the central
data element of Ispel, and the visual representations of the program have concrete links
to this underlying representation. Elements of the visual representation depend on
elements of the underlying representation. Modification of this underlying representation
is always propagated to the appropriate visual representations. For example, a box
representing a feature is a visual representation of part of the underlying representation,
and is affected by changes to the feature it represents.

6.1.3.4 Encapsulation and Structuring

Using an object-oriented approach for the model means that the objects that comprise
Ispel encapsulate information specific to each object. This allows Ispel to be structured in a

Chapter 6 The Eiffel Prototype Page 100

more modular way than the Prolog prototype, and eliminates many errors that occurred
during the development of the Prolog prototype. For example, an object representing a
class has references to box objects which are the visual representation of this class. If the
class is changed in any way, for example deleted, the class encapsulates the code to notify
the boxes of the change.

6.1.3.5 Generalisation

A further reason for an object-oriented approach was the use of generalisation.
Generalisation is a useful relationship for describing categorisation of elements of Ispel.
Different categories of classes share different attributes, and this division of Ispel assists
understanding of different elements of the environment, and provides a structure to fit
new elements into. It also allows commonalties between classes of objects to be factored
out and shared at a higher level of abstraction.

6.2 User Interface

The user interface provided by the Eiffel prototype was intended to be similar to the one
provided by the Prolog prototype. However, Eiffel runs on Unix machines and uses the X
windows graphical interface, and hence the user interface needed to be redesigned to suit
this environment.

6.2.1 Appearance

The same concepts were used to provide an interface as for the Prolog prototype, with
the use of windows, menus, dialogues, mouse, and graphics, and the same operations
were provided. However, the appearance of the Eiffel prototype is substantially different
to the appearance of the Prolog prototype, and the method of selecting some operations
is quite different. Figure 6.1 shows a screen dump of the Eiffel prototype, which contains
the main classes of the Wallbrace system. The window used is provided by the Eiffel
libraries, and has a different appearance and functions to the LPA windows.

Chapter 6 The Eiffel Prototype Page 101

Tools

Pop-up menus

Class
Structure
Diagram

Figure 6.1 Screen dump of the Eiffel prototype showing the major features of Ispel.

The Eiffel prototype was not completed, as the model for Ispel was sufficiently refined
during the development of this prototype that further development of the Eiffel
prototype was not worthwhile. This prototype does not provide the facility to save and
load an application to and from files, and only allows one application to be constructed at
a time. There is only one window and one view that can be manipulated by the
programmer, and so there are no navigation facilities provided.

6.2.2 Views

Views and view elements are the same as for the Prolog prototype of Ispel. Class
structure diagrams for Eiffel programs are represented in exactly the same way as for
Class Language programs in the Prolog prototype. The standard appearance of Eiffel class
structure diagrams (Meyer, 88) is quite different to Class Language diagrams (Mugridge,
88), but Eiffel programs can be described using Class Language diagrams. Class Language
diagrams represent the object-oriented aspects of programs well (see Section 3.4). They
are also more similar to diagrams used by other researchers than Eiffel diagrams
(Wasserman et al, 90, and Wilson, 90), and so were retained as the visual format of Eiffel
programs.

Chapter 6 The Eiffel Prototype Page 102

The textual representation of a class is provided, but this is generated from the underlying
representation, as with the Prolog prototype. Text cannot be edited in this prototype and
a parser is not provided. The text for a class is displayed in the same window that the
prototype was invoked from, and Figure 6.2 shows the text for the Section class displayed
in Figure 6.1. As this prototype is a development environment for Eiffel and not Class
Language, the Eiffel syntax is used.

class Section

 feature
 Roof : Roof;
 Storeys : Storey;

end -- class Section

Figure 6.2 The text for a class from the Eiffel prototype.

6.2.3 User Input and Output

Pop-up menus are used instead of the pull-down menus used in the Prolog prototype, as
the Eiffel libraries do not provide any facilities to implement pull-down menus. In
addition, the palette concept of the Prolog prototype could not be implemented in Eiffel,
so a comparable approach using buttons attached to the window was provided. This
behaves the same as a palette, except text rather than an icon is used to describe the
button’s operation. In addition, the button area is not distinct from the graphical drawing
area of the window. Neither the use of pop-up menus nor buttons for a palette affects the
functionality of the Eiffel prototype. However, it does provide a different feel to the user
interface for Ispel.

Dialogue boxes are not provided in the Eiffel prototype. All user interaction, such as
obtaining the names for classes and features and reporting errors, is conducted using text.
This text is displayed within the text window which Ispel was invoked from. This is
because there are no Eiffel libraries provided to implement dialogue boxes using X
windows, and writing good dialogue box code in Eiffel using the graphics facilities
provided would have been difficult. Unfortunately, this lack of dialogs for user interaction
makes the Eiffel prototype difficult to use.

6.2.4 Different Facilities from the Prolog prototype

Marquis and rubber-banding could not be provided because the interface to X windows
provided by the Eiffel libraries does not allow individual lines and boxes to be drawn.
When a change is made within a window, the whole window must be redrawn. Boxes can
still be selected by enclosing them within a box, and boxes are connected with lines in the

Chapter 6 The Eiffel Prototype Page 103

same manner as for the Prolog prototype. However, a marqui box and a rubber-band
line are not drawn.

Additional facilities provided by the Eiffel prototype include the Undo operation and a log
file for the operations previously applied during the construction of a program. The Eiffel
prototype allows the programmer to reverse every operation back until the beginning of
the editing session for an Eiffel program. This is useful when errors are made, as it allows
the programmer to revert to a previous state of the program. Two types of Undo
operation are provided. Undo reverses the previous operation and records this reversal.
Hard Undo reverses the previous operation and deletes it from the operation list. This
allows a programmer to reverse a sequence of previous operations.

6.3 Implementation

Design and implementation of the Eiffel prototype identified some deficiencies in the
initial design of the prototype. Thus the structure of the prototype was substantially
refined and modified during development. The structure of the Eiffel prototype is
presented here along with the important classes. Some issues that arose during
development are discussed along with their implications on the design of the prototype.
The structure of the Eiffel prototype provides an object-oriented implementation model
for Ispel.

The following sections describe the four categories of Ispel classes used in the Eiffel
prototype: framework, object, operation, and relationship.

6.3.1 Framework

The Ispel system is divided into three sections:
 • A visual component, which includes the visual representation of a program and

the classes to process user input and output.
 • A textual component, which includes the textual representation of a program

and the editor and parser to process this.
• A language component, which is the underlying representation of an Eiffel

program.

Figure 6.3 shows the main classes that comprise the Ispel system. Note that all class names
are in upper case, which follows the Eiffel convention for naming classes and features
(Meyer, 88).

Chapter 6 The Eiffel Prototype Page 104

ISPEL

VISUAL
visual

TEXTUAL
textual

LANGUAGE
language

CLASS
classes

APPLICATION
application

CLASS_TEXT
class_texts

Figure 6.3 The main framework classes of the Eiffel prototype.

The visual component of Ispel is comprised of an application, a class which provides
dialogue with the user, and a history log. Each operation in the history log stores
information to reverse each of the operations previously performed in Ispel. The VISUAL
class also provides features to undo the previous operation and print a list of all the
previous operations (the history log list). Figure 6.4 shows the classes that comprise the
visual component of Ispel in the Eiffel prototype.

VISUAL

APPLICATION
application

DIALOGS
dialog

HISTORY_OPERATION
history_log

VIEW
views

VIEW_WINDOW
windows

CLASS
classes

BOX
boxes

LINE
lines

FEATURE
features

GENERALISATION
generalisations

Figure 6.4 The visual component of the Eiffel prototype.

The textual component of Ispel was not fully implemented in the Eiffel prototype. The
only feature it provides is the facility to generate and display the text for a class in the text
window Ispel was invoked from.

Chapter 6 The Eiffel Prototype Page 105

6.3.1.1 Windows

Interaction with the programmer is performed via windows using dialogs, menus,
buttons, and the mouse. In addition to buttons and pop-up menus, Eiffel graphics
windows can have a list of figures attached to them. These are graphical objects similar to
LPA GDL pictures. The window provided in the Eiffel prototype is an object of
ISPEL_WINDOW type, and any subsequent windows would be further objects of this
type.

User input events, such as mouse clicks and menu selections, are processed through the
window provided by the Eiffel graphics libraries (Interactive, 89b). Decoding these events
requires that the user input part of Ispel be structured around the graphics windows.
Code which processes the window events such as selecting a box, dragging boxes, and
connecting boxes with lines, is invoked from events in the graphics window. This code
uses features of the window to obtain and modify data, so the place for this code is in the
window class itself.

ISPEL_WINDOW

WINDOW_DECODE WINDOW_FIGURES

WINDOW_SELECTED

WORLD
world

WINDOW
window

VIEW_OBJECT
selected

DECODE
decode

Figure 6.5 The classes for Ispel windows in the Eiffel prototype.

Originally, windows were implemented as only one class, but a problem arose as the class
became very large. To solve this, the ISPEL_WINDOW class was abstracted into four
classes, as shown in Figure 6.5:

• WINDOW_SELECTED contains the selected boxes and lines, which are stored
as a list. Features are provided to highlight boxes and lines, un-highlight them,
and perform operations on all highlighted items.

• WINDOW_DECODE contains the features which implement the selection tool,
i.e. selecting boxes and lines, dragging boxes, marquiing, and rubber-banding.

Chapter 6 The Eiffel Prototype Page 106

The decode feature of this class implements the mouse, menu and button
operations.

• WINDOW_FIGURES contains features to add and remove figures from the
window, and to redraw the window. The window and world features of this
class are classes from the Eiffel graphics libraries which interface to the X
windows system.

• ISPEL_WINDOW inherits the features of WINDOW_SELECTED,
WINDOW_DECODE, and WINDOW_FIGURES.

6.3.1.2 Menus and Buttons

Menus and buttons are attached to graphics windows. When a button is clicked or a menu
selected, a command is executed to perform an operation. Menus have COMMAND
objects which have a standard set of features, and when a menu item is selected, the
command associated with it is executed. Buttons also have commands, which were
extended for Ispel to provide two commands. One is used when the button is clicked,
while the other is used when the button is the currently selected button and the mouse is
clicked in the window.

6.3.1.3 Dialogues

In the Eiffel prototype, dialogs are not implemented graphically, but use textual input and
output. This form of user interaction is very deficient and graphical dialogs should be
used. However, the Eiffel libraries do not provide sufficient facilities to implement these
properly. Dialogues should be provided which conform to the user interface standards of
Ispel, and must be integrated with the rest of the Eiffel prototype. At present, the
DIALOG class simply provides features to ask questions and obtain information.

6.3.1.4 File Storage and Navigation

The Eiffel prototype does not provide file storage facilities, nor does it provide navigation
facilities. These would need to be provided in a development environment, and both
could be implemented as additional features of the application, visual, and textual classes.

6.3.2 Objects

Ispel objects are part of a class hierarchy which describes the different categories of
objects, and assists in the isolation of common features. Figure 6.6 shows the object
hierarchy for the Eiffel prototype.

Chapter 6 The Eiffel Prototype Page 107

OBJECT

LANGUAGE_OBJECT VISUAL_OBJECT

CLASS

GENERALISATION

FEATURE VIEWVIEW_OBJECT

BOX_SHAPE LINE

Figure 6.6 The object hierarchy for the Eiffel prototype.

The classes OBJECT, LANGUAGE_OBJECT, VISUAL_OBJECT, and VIEW object
describe common features for the classes that are specialisations of them. For example, all
objects have create, delete, unlink, and relink features. Unlinking is similar to deleting an
object, but can be reversed by relink. Visual objects can be displayed and erased, and view
objects can be dragged, selected, de-selected, and double-clicked.

As well as these common features, the object classes are also generalised to other classes.
Some objects always have other objects which are linked to them and use information
from them. The linked objects are dependent upon changes to the information in the
objects they are linked to. For example, all language objects have a visual representation,
and the boxes and lines representing them are affected by changes to the language
objects. The concepts of objects which have dependents, and objects which are dependent
upon other objects, can be used to represent these relationships. These objects have links
to each other so changes to objects with dependents can be propagated to dependent
objects.

In addition to the concept of dependency between objects, some objects are visual
representations of other objects, with common features between them. For example,
boxes and lines are visual representations of language objects. When a language object,
such as a feature, is renamed, all boxes that represent this feature need to be redrawn in
their views.

Figure 6.7 shows the object hierarchy with multiple inheritance illustrating further
generalisations made to the object classes.

Chapter 6 The Eiffel Prototype Page 108

OBJECT

VISUAL_OBJECT LANGUAGE_OBJECT

VIEW_OBJECT

HAS_DEPENDENTS

DEPENDENT REPRESENTS

Figure 6.7 Additional generalisation classes of objects.

6.3.2.1 Classes, Features, and Generalisations

The CLASS, FEATURE, and GENERALISATION classes contain features for information
similar to their relational entities in the Prolog prototype. Figure 6.8 shows the major
features of these classes.

CLASS

STRING
class_name

FEATURE
features

GENERALISATION
generalisations

VIEW
primary_view

INTEGER
feature_kind

CLASS
feature_type

STRING
feature_name

CLASS
feature_class

CLASS
parent

CLASS
child

Figure 6.8 The major features for the CLASS, FEATURE, and GENERALISATION classes.

In addition, CLASS objects provide features to locate named features and generalisations
of the class, generate text for the class, and rename or re-select the class. Feature objects
provide features to implement renaming of a feature, cutting a feature from its class, and
changing the type of a feature.

Chapter 6 The Eiffel Prototype Page 109

6.3.2.2 Windows and Views

In the Eiffel prototype, a distinction is made between graphics windows, called Ispel
windows, and window objects, called view windows. View windows contain a feature
which is the Ispel window a view is displayed in. There are also features which provide
and change the current view for the window.

The major features of VIEW objects are shown in Figure 6.9. In addition, the VIEW class
provides features to add boxes and lines to their lists, remove boxes and lines, and select
and de-select objects in the view. It provides an interface to the Ispel window figure
display routines, and figures are only added, removed, or modified if the view is the
current view for its window.

VIEW

CLASS
primary_class

VIEW_WINDOW
window

BOX
boxes

LINE
lines

VIEW_OBJECT
selected

Figure 6.9 The major features of Ispel VIEW objects.

Many of the object classes in the Eiffel prototype use lists for storing references to other
objects. Some classes, such as the VIEW class, contain several lists and several access
routines to insert, delete, search for elements, and iterate over these lists. Many features
to access these lists have to be provided.

This approach lacks generality, and an attempt to generalise the list operations was made.
Only one set of access features to the lists was provided, and these determined the list to
use from the type of object passed as a parameter. This approach was also used in the
class, application, and language classes. The approach works well in that it significantly
reduces the number of features of a class with several lists, the number of distinct
operations for lists, and the amount of code duplication. However, the method used to
implement these generalised list routines is counter to the object-oriented philosophy.
This is because Eiffel does not provide discrimination functions to determine the types of
parameters (Mugridge, 90). These would allow the run-time types of objects to be
determined, and an appropriate function to be invoked for an object of a particular type.

Chapter 6 The Eiffel Prototype Page 110

6.3.2.3 Boxes

The BOX class, like the ISPEL_WINDOW class, became large during development and
required abstraction to several classes. Figure 6.10 shows the box classes from the Eiffel
prototype and the major features supplied by each class. The VIEW_OBJECT class
supplies features to all objects which can be displayed in views. The BOX_SHAPE class
contains the features for box that represent and construct a graphical representation of
the box. It also contains features which determine the action of double-clicking on
different parts of the box’s graphical representation. The BOX_LINES class contains lists
of the lines connecting the box to other boxes, and features for manipulating these lists.

BOX_LINES

BOX_SHAPE

VIEW_OBJECT

INTEGER
x

INTEGER
y

LINE
from_lines

LINE
to_lines

VIEW
view

COMPLEX_FIGURE
figure

BOX

HAS_DEPENDENTS

Figure 6.10 The box classes and their features.

The graphical representation of a box is constructed from simple graphical objects in a
similar manner to GDL picture descriptions in LPA.

6.3.2.4 Lines

The LINE class is specialised into FEATURE_LINE and GENERALISATION_LINE
classes, which contain features to build the graphical representation of a line. Figure 6.11
shows the line inheritance hierarchy and major features of line.

Chapter 6 The Eiffel Prototype Page 111

LINE

FEATURE_LINE GENERALISATION_LINE

VIEW_OBJECT
COMPLEX_FIGURE

figure

VIEW
view

BOX
start_box

BOX
end_box

Figure 6.11 The line inheritance hierarchy and major features.

6.3.3 Operations

Operations represent changes of state in Ispel objects or relationships, and are
implemented as Eiffel objects. This is a different approach from the Prolog prototype,
which viewed operations as Prolog predicates, and operations in this prototype were
implemented in an unstructured manner. Operations were described as objects for two
reasons:

• To determine a method of categorisation for operations.
• To enable an Undo facility to be implemented, which allows the programmer to

reverse operations.
• To allow partially complete sequences of operations to be reversed if some

error is detected.

Expressing the operations provided in a programming environment as objects has also
been used in the OROS type model (Rosenblatt et al, 89).

To provide an Undo operation, the modifications made by applying an operation need to
be recorded by Ispel so they can be reversed, and hence the operation undone. All
operations that change the state of Ispel must be objects which contain the object that was
modified, the information changed, and a method of reversing the change. Complex
operations are made up of a list of simpler operations, and each operation only stores the
information that it changed. Figure 6.12 shows the features common to all operations.

Chapter 6 The Eiffel Prototype Page 112

OPERATION

execute undo

hard_undocreate

Figure 6.12 Common features of Ispel operation objects.

Create is used to create a new object, and is given the object and its feature value changed
by the operation. Execute adds the operation to a list of performed operations, while
undo reverses the operation and hard_undo reverses the operation without storing
information to reverse this undo.

Operations do not encapsulate the code which implements a change. A class, which has a
feature which can be modified, provides another feature which implements the
modification. An operation is used to record the modification, and another feature is
provided to reverse the change. For example, the FEATURE class provides a routine
which changes the name of a feature. This same routine can be used to rename the feature
back to its old name.

The two basic types of operations in the Eiffel prototype are simple and history operations.
Simple operations represent one state change, while history operations are a sequence of
operations, and thus represent multiple state changes. A history operation is undone by
undoing its component operations in reverse.

History operations provide an undo feature, and construct a list of operations performed
when the programmer selects an operation. Every feature of object and relationship
classes that change the state of Ispel, and all operation features have at least two
parameters:

• history list. A history operation to add operation objects to.
• undo history list. A history operation for the reverse of the routine. For example,

if the reverse of the relink operation was just performed, i.e. unlinking a box,
then this list will contain the operations which can be undone to relink the box.

The undo history parameter was not originally used. During development of the
prototype, it was added to enable the reversal of previous operations, by just reversing
the previous operation’s history list. This eliminated the need for many complementary
routines in classes to implement the reverse of a routine. For example, relinking an object

Chapter 6 The Eiffel Prototype Page 113

can be achieved by calling the unlink feature of the object with the undo history parameter
set to the list of operations performed when the object was unlinked.

An added advantage of history operations is that they can be used when an operation
selected by the programmer has been only partially completed. If Ispel determines that
the operation cannot actually be performed (i.e. it is invalid), then the operations
performed up to this point can be reversed. This is achieved by undoing the history list
which has been used to record them. This was valuable when implementing relationships,
as the constraints for a relationship do not all have to be performed at the start of the
relationship establishment. This was a problem with the Prolog prototype, where
constraints are performed at the wrong time, or code had to be duplicated to make sure
an operation was valid before it was begun.

6.3.4 Relationships

During development of the Eiffel prototype, the relationship concept was introduced.
Originally, the Eiffel prototype constructed links between different objects, using
dependency lists and lists specific to each object class. The code to add object elements to
these lists and remove them was contained within the classes with the lists. The code to
check that creating these links was valid, and to remove all the links if an object was
deleted, was also encapsulated with the class.

As development of the Eiffel prototype proceeded, it became apparent that this method
of representing and implementing relationships between objects was not adequate. This
was for several reasons:

• As the number of different relationships an object could have to other objects
grew, more features and code were required in each object to implement a
relationship.

• As more constrained relationships were implemented (for example, the class
and feature relationship), code to implement the constraints had to be included,
which increased the class size.

• The more relationships between classes there were, the more operations that
were required, and code duplication occurred.

• When changes to objects with relationships occur, for example, unlinking an
object. These object changes need to be propagated to all the objects dependent
on the object, and to objects it depends on. This propagation was implemented
in the same way for each different object.

The concept of relationship objects was introduced, which represented these
interrelationships. Relationship objects encapsulate the code to perform the establishment
and disestablishment of a relationship. They also contain code to check that the
relationship is valid, which constrains the creation of relationships. This in turn acts as a

Chapter 6 The Eiffel Prototype Page 114

constraint on the visual manipulation of views. Figure 6.13 shows the features common to
relationship objects.

RELATIONSHIP

OBJECT
parent_object

OBJECT
child_object

establish

disestablish

BOOLEAN
valid

Figure 6.13 Features common to Ispel relationship objects.

Relationship objects are divided into three categories: language to language object, visual
to visual object, and language to visual object relationships. Figures 6.14a to 6.14c show
these relationship categories.

LANGUAGE_TO_LANGUAGE

RELATIONSHIP

TYPE_TO_FEATURE CLASS_TO_FEATURE

CLASS_TO_GENERALISATIONCLASS_TO_CLASS

Figure 6.14a The language object to language object relationships.

Chapter 6 The Eiffel Prototype Page 115

VISUAL_TO_VISUAL

RELATIONSHIP

ENDBOX_TO_LINE

STARTBOX_TO_LINE VIEW_TO_BOX

VIEW_TO_LINE

CREATE_GENERALISATIONCREATE_FEATURE

Figure 6.14b The visual object to visual object relationships.

LANGUAGE_TO_VISUAL

CLASS_TO_BOX

FEATURE_TO_LINE FEATURE_TO_BOX

GENERALISATION_TO_LINE

RELATIONSHIP

Figure 6.14c The language object to visual object relationships.

Most relationship objects are straightforward and represent one link between a parent
and child object, for example, class to feature, endbox to line, and class to box. However,
three types of relationship object are more complex, and create more than one
relationship between objects:

• Class to class generalisation creation. This relationship class is used to create a
generalisation relationship, by creating two class to generalisation relationship
objects and checking the validity of the generalisation.

• Generalisation creation. This relationship class is used to create a generalisation
between two boxes. It creates a new box (if necessary), a line, a new
generalisation object (if necessary), and all the relationships required.

Chapter 6 The Eiffel Prototype Page 116

• Feature creation. This relationship class is similar to the generalisation creation
class except it is for a new feature.

The dependency relationships between objects are implemented by the classes
DEPENDENT and HAS_DEPENDENTS. Figure 6.15 shows which objects are dependent
on other objects. For example, boxes are dependent on classes, features and views.
Conversely, classes have features, boxes, and generalisations dependent on them.

CLASS

FEATURE GENERALISATION

BOX

LINE

VIEW

Figure 6.15 A dependency lattice for Ispel objects.

Figures 6.16a and 6.16b show the inheritance hierarchies for dependent objects and
objects which have other objects dependent on them.

DEPENDENT

FEATURE

GENERALISATION

VIEW_OBJECT

BOX_SHAPE LINE

Figure 6.16a Objects which are dependent on other objects.

Chapter 6 The Eiffel Prototype Page 117

HAS_DEPENDENTS

VIEW BOX_SHAPE LANGUAGE_OBJECT

CLASS FEATUREGENERALISATION

Figure 6.16b The objects which have other objects dependent on them.

When a parent or dependent object is unlinked, all its relationships to other objects must
be disestablished. All its dependent objects must be unlinked as well. When relationship
objects were added to the Eiffel prototype, the dependency lists for classes were modified.
They no longer contain references to objects, but contain lists of relationships to other
objects, so when an object is unlinked, the relationships for the object can be
disestablished. Relationships are also used to propagate changes between objects. For
example, when a class is renamed, the boxes that represent it are redrawn. Figures 6.17a
and 6.17b show the features common to parents and dependents.

DEPENDENT

RELATIONSHIP
depends_on

add_parent remove_parent

dependent_unlinked

Figure 6.17a Features common to dependent Ispel objects.

HAS_DEPENDENTS

RELATIONSHIP
dependents

add_dependent remove_dependent

parent_unlinked

Figure 6.17b Features common to Ispel objects that have dependents.

Chapter 6 The Eiffel Prototype Page 118

The view objects of Ispel are a visual representation of language objects, and the visual
representation class contains features common to all view objects, which are shown in
Figure 6.18.

REPRESENTS

RELATIONSHIP
the_relationship

change_representation

CLASS
the_class

FEATURE
the_feature

GENERALISATION
the_generalisation

Figure 6.18 Features common to visual representation objects.

6.4 Evaluation

At present, the Eiffel prototype provides a less capable environment than the Prolog
prototype. However, the implementation of the Eiffel prototype is substantially more
general and extensible.

6.4.1 Performance as a Visual Programming Environment

The user interface aspects of the Eiffel prototype were not considered important during
development. The lack of dialogue boxes is a major deficiency, as communication with the
programmer is poor. The Prolog prototype provides a more user-friendly interface with
the use of an icon palette rather than a button one, and the provision of good dialogue
boxes and windows. However, the Undo operation provided by the Eiffel prototype is
very useful and is a significant improvement over the Prolog prototype.

The Eiffel prototype is somewhat slower than the Prolog prototype. This is due to the
high overhead of creating objects in Eiffel, and using operation objects for every change
to an object requires many objects to be created. The lack of an interface to the Eiffel
compiler means that the Eiffel prototype cannot be used to implement Eiffel programs in
place of the current Eiffel environment.

6.4.2 Implementation

The Eiffel prototype has a better defined structure than the Prolog prototype, while the
use of categorisation assists the reuse of common code and the addition of new facilities.
The Eiffel prototype’s implementation reflects an improved definition of the concepts of
Ispel, which simplifies the maintenance and enhancement of the prototype.

Chapter 6 The Eiffel Prototype Page 119

There are some deficiencies with the Eiffel prototype’s implementation which are briefly
outlined in the following sections.

6.4.2.1 Initial Design

The main deficiency of the initial object-oriented design was its simplistic object and
operation hierarchies. These did not describe the interrelationships between different
parts of the system in sufficient detail. These inheritance hierarchies were substantially
modified during development of the prototype. The lack of an adequate design for the
prototype means that its structure does suffer from some over complexity and
redundancy in places. The framework classes for the user interface, and operation objects
in particular, need some restructuring.

6.4.2.2 Restructuring and Abstraction

To reduce code duplication in the prototype, better use of generalisation could be
employed. The operation classes should be redesigned so they encapsulate the code for
actually performing the operation that changes features of object and relationship classes.
The Ispel window classes require redesign, especially the WINDOW_DECODE class
which is large. As more user interface options are provided, the WINDOW_DECODE
class should be further abstracted by generalising it to classes which implement each
operation (for example, marquiing and dragging boxes). The object and dependency
hierarchies require further refinement to isolate the common code into one class.

The HAS_DEPENDENTS and DEPENDENT classes should be inherited by all objects,
and objects of these types should not be used in relationship objects. This is because a
conflict with multiple inheritance occurred for renaming features and classes, and cutting
features from classes. Objects depending on CLASS and FEATURE needed to be
modified, and features to do these modifications had to be added to the dependent
classes. However, the OBJECT class had to be changed so these features were defined for
all objects. This is because relationships used DEPENDENT and HAS_DEPENDENTS
types, which should not have included these features. Redesign of the object and
relationship hierarchies is required to solve these and other problems.

6.4.2.3 Dragging Boxes

When boxes are dragged in a view, each element of the diagram which is affected by the
change is redrawn. This looks clumsy and is slow, and the re-display of view elements
should be optimised. A further problem is that the current line erase feature of the Eiffel
graphics library has an error. To solve this, lines have to be erased in such a way that a
window needs to be redrawn several times when several lines are re-displayed.

Chapter 6 The Eiffel Prototype Page 120

6.4.2.4 Redundant Features and Operations

Features such as relink are not necessary, as objects must always be unlinked first. Unlink
can implement a relink, by being called with the undo history parameter set to the list of
operations performed for the unlink. These can be reversed, and thus will achieve the
same result as the relink feature.

6.4.2.5 Further Use of Relationships

Relationships are used for some propagation of change, but not for renaming features
and classes and other modifications. This is due to structural deficiencies in the design of
the prototype. Relationship links should be used for all propagation of change to other
objects.

The concept of complex relationships (similar to the history operation concept), should be
introduced for feature and generalisation creation. Several different relationships are
created in a hierarchical manner by these relationship classes. Some code and operations
are duplicated between these classes, and this could be avoided.

6.4.2.6 Feedback from Operations

Some operations could fail due to constraints for a relationship being violated. For
example, deleting the primary class’s box from a view should be invalid. However, the
disestablishment of relationships does not provide a return value to indicate if the
operation succeeded or not.

6.4.3 Further Development of the Eiffel Prototype

The Eiffel prototype can be further enhanced. Its development has contributed to the
refinement of an object-oriented implementation model for Ispel. This model can be used
as the basis for further development of Ispel prototypes and environments. The structure
of this prototype needs modification which in some cases would require a large amount
of code to be rewritten. Some clarification of the effect of view navigation on the
operation and relationship objects could be examined by the implementation of multiple
views for the Eiffel prototype.

6.5 Object-Oriented Development

Development of the second prototype of Ispel in Eiffel was substantially different from
the development of the first prototype in Prolog. The development environments for the
two languages are very different, and the languages themselves are based on two
fundamentally different paradigms: logic programming and object-oriented
programming.

Chapter 6 The Eiffel Prototype Page 121

6.5.1 Suitability of an Object-Oriented Language to Implement Ispel

An object-oriented approach to describing Ispel proved to be suitable as the elements of
Ispel have an object-oriented structure. Encapsulation of code within a class with the data
it operates on was a more modular and natural method for most Ispel elements than the
Prolog prototype’s structure. A hierarchical structure for the objects, relationships, and
operations of Ispel proved more suitable than a relational approach.

Generalisation proved to be a powerful technique for expressing the categories of Ispel
elements and for factoring out common code. It also provided a structured framework in
which new objects could be added. For example, implementation of the facility to add
new features to a class was easier to implement in the Eiffel prototype than the Prolog
prototype. Modification of many aspects of the Eiffel prototype were more
straightforward than the corresponding aspects in the Prolog prototype.

6.5.2 Eiffel and its Environment

Due to the ease of representing most Ispel concepts in an object-oriented manner, Eiffel
proved to be a good language in which to implement Ispel. The language is well defined
and provides most object-oriented facilities in a consistent manner.

Unfortunately, the Eiffel development environment provided is poor (Plumpton, 91), and
greatly hindered the development of the prototype. Compared with the environment for
LPA, the Eiffel environment is extremely deficient and lacks many useful facilities. Some
of the deficiencies of the Eiffel environment include:

• Little environment integration. The programmer must move between tools with
different user interfaces which hinders development.

• A lack of tools to assist in the design and implementation of programs. A visual
programming environment would be helpful, and the Prolog prototype was
used to develop and modify the structure for the Eiffel prototype. The graphical
structuring tool good (Interactive, 89c) was essentially useless, as it does not
allow Eiffel classes to be modified while browsing, and has a poor user
interface.

• A slow compiler and linker. This increased the turn-around time between
program editing, compilation, and execution.

• No on-line tools to help search the Eiffel libraries. The Eiffel libraries are difficult to
use and a tool is required to help locate classes and features.

• Poor user interface classes. The lack of dialogue boxes was a major problem, and
the user interface classes supplied with Eiffel do not provide as many useful
facilities as the LPA graphics functions.

Chapter 6 The Eiffel Prototype Page 122

• Common operations not automated. Many common operations during object-
oriented development, such as the renaming of features and classes, are not
automated by the environment.

Development of the Eiffel prototype indicated that a visual programming environment,
such as the one provided by Ispel, would be a significant improvement on the existing
Eiffel environment.

6.5.3 Some Facilities for a Visual Programming Environment

Development of the Eiffel prototype determined several facilities an environment for
object-oriented programming should provide. These include:

• A class location facility. The Eiffel library is hard to search by hand or using hard-
copy documentation. An on-line class locater would improve the access to this
library.

• Auto-update of renamed of features, classes, and parameters. This was a tedious and
long task to perform when parts of the Eiffel prototype implementation were
renamed.

• Location of affected classes after a change. This is useful when the interface for a
class has been changed. All affected classes need to be located and possibly
updated.

• A class abstraction facility. If was often necessary to determine where a feature
had been defined, renamed, or re-defined. A facility to automate this is not
provided by the current Eiffel environment.

• Program navigation and visualisation facilities. This is a key advantage of a visual
programming environment over the current Eiffel environment.

6.5.4 Some Techniques Developed During Implementation

During the implementation of the Eiffel prototype, several techniques were developed for
object-oriented programming. These are of general applicability and are not confined to
the implementation of Ispel in Eiffel.

6.5.4.1 Selection of Classes

The selection of classes to use when implementing object-oriented programs can be a
difficult exercise (Meyer, 88). Some classes for Ispel were easily determined, especially the
concrete classes that represented real world objects, such as the object classes which
represent boxes, lines, classes, and features. These classes and their features are
determined by the requirement for real objects to be represented. Similarly, the division
of both operations and relationships into classes was straightforward, as there are several
categories for each, and every operation and relationship is distinct.

Chapter 6 The Eiffel Prototype Page 123

More abstract classes such as the framework and user interface classes are more difficult
to determine. For Ispel, the system was decomposed into logical sections at each step. For
example, Ispel was divided into language, visual and textual elements, and the visual
element into a decoder and visual representation. This modular decomposition can be
used in other object-oriented designs.

6.5.4.2 Class Abstraction

Good use of abstraction is important in reducing code duplication, reusing information,
and clear program structure (Booch, 85, and Meyer, 88). The inheritance hierarchies can be
determined by analyzing which categories of classes share common features. In Ispel, the
object, relationship, and operation classes could be further divided into subclasses with
common features.

Abstracting classes, such as the BOX class and ISPEL_WINDOW class, becomes necessary
when classes become large or have too many features. A large class can be broken into
separate classes with a division of responsibilities, and these can be linked using
inheritance. The division of a class into sub-classes should be done with meaningful data
abstractions (Meyer, 88). For example, the box class was split into aspects which
represented the shape of a box, the lines connected to a box, and the other attributes of a
box object. It is often necessary to use deferred features for some of these classes. Some
features are required in more than one class, which can cause problems when using
multiple inheritance.

6.5.4.3 Use of Generic Classes and Inheritance

Generic classes were used for some operations in Ispel, and for implementing lists. The
Eiffel libraries supply a range of classes for list processing, and also classes for graphical
input and output. Genericity can be used to good effect when objects with different
feature types are required. For example, lists of boxes and lines in a view, create and
unlink operations for objects, and feature to box and feature to line relationships.
Genericity and inheritance assist reuse, and well designed class interfaces and class
libraries assist the programmer in the application of re-usability (Burton et al, 87, and
Meyer, 88).

6.5.4.4 References to Other Objects

The object-oriented style of programming is very modular, and there is no concept of
global variables as in Pascal or C. In Ispel, there are some attributes which are useful for
most classes, for example, default settings and common routines. In addition, some
features of the main classes, such as the language and visual classes, were required in
many Ispel objects. To make these available, references to these common objects needed

Chapter 6 The Eiffel Prototype Page 124

to be passed when creating new objects. This was done by using a class for defaults and
common references, and passing a reference to this object to all other Ispel objects on
creation.

6.5.4.5 A Good Design is Important

Development of Ispel proved the value of an adequate design for object-oriented
programs. The initial object model for Ispel was useful for structuring the Eiffel prototype,
but was not complete enough. Many changes to the structure of the prototype were
required during development, and this hindered the development process considerably.
The initial object-oriented model should have been more detailed, and all the classes and
interfaces to the classes designed before implementation was begun. The development of
this prototype would have been easier and quicker if this had been done.

The most costly changes occurred when the interfaces to classes were not properly
designed, or found to be insufficient. When different features for classes needed to be
provided, or the number or type of parameters for features changed, a flow on effect to
other classes occurred. In addition, restructuring of inheritance hierarchies or the addition
of important concepts like history operations and relationship objects, can have major
effects on the structure of programs. However, as Meyer (88) notes, object-oriented
designs do change during development.

An adequate design for object-oriented programs helps to reduce these problems. For
example, the abstraction of the box and Ispel window classes had no effect on other
classes in Ispel, because the interfaces to these classes remained the same.

6.6 Summary

A further prototype for Ispel was developed using Eiffel. This Eiffel prototype provides a
visual programming environment for the Eiffel language. The prototype assisted in the
development and refinement of an object-oriented model for the implementation of Ispel.
The object-oriented model also provides a structured method for describing the main
concepts of Ispel. The user interface aspects of the Eiffel prototype are described in this
chapter. The environment it provides is not as good as the environment provided by the
Prolog prototype.

Ispel is divided into objects, operations, relationships, and framework classes, and these
aspects were further refined during development of the prototype. Concepts such as
visual representation, object dependency, history operations, and relationships were
developed. The implementation of the Eiffel prototype is an improvement on the Prolog
prototype, but still requires further refinement. Development of this prototype was
evaluated, and some techniques for object-oriented programming identified.

Chapter 6 The Eiffel Prototype Page 125

Prototype development using an object-oriented language was useful for evaluating the
current Eiffel environment. This was found to be deficient and not well designed for
object-oriented programming. A visual programming environment for Eiffel, such as the
one provided by Ispel, would be an improvement on the current environment for Eiffel.

Chapter 6 The Eiffel Prototype Page 126

Chapter 7 A Formal Definition of Ispel Page 127

Chapter 7
A Formal Definition of Ispel

The Prolog prototype refined the user interface aspects of Ispel. It also helped to
determine some of the facilities a visual programming environment for object-oriented
languages should provide. The Eiffel prototype developed and refined an object-oriented
implementation model for Ispel. However, neither of these prototypes addresses the
problem of specifying exactly what the Ispel environment should do. They do not provide
a method of describing how an object-oriented program is derived from an underlying
representation. Nor do they define how the underlying representation is changed by
operations applied to a visual representation of a program.

This chapter presents a method for describing an object-oriented program, an underlying
representation, and a visual representation in an abstract way. Mappings between these
notations are defined, and operations on the visual and underlying representations are
specified formally and described informally.

7.1 The Need for a Formal Definition

The design, implementation, and enhancement of the Prolog prototype indicated the need
for a formalism of the concepts of Ispel. The lack of a formal model during
implementation meant that many aspects of the environment were described in an ad-hoc
manner. This resulted in some conflicts and inconsistencies, and no clear specification of
what Ispel does. The relational model used in the first Prototype did not describe the
interrelationships between different elements of Ispel in a constrained and structured
manner. The data is more interdependent than a relational approach can model.

The Eiffel prototype was developed to determine the elements of a formalism of Ispel. It
was also used to assist the refinement of an implementation model for Ispel. The Eiffel
prototype implementation structure was a significant improvement over the Prolog
prototype, although this only describes the implementation aspects of Ispel. It is not
sufficiently abstract to define the behaviour of Ispel in a concise manner. Nor does it
provide a formal notation for this definition which can be shown to be complete and
correct.

It is difficult to describe informally how Ispel behaves. Chapters 4, 5, and 6 attempt to do
this in the context of the two prototypes. However, a much more abstract and expressive

Chapter 7 A Formal Definition of Ispel Page 128

notation for Ispel would be more appropriate. A formal definition of the Ispel
environment provides a concise specification which can be used to describe its appearance
and behaviour. In addition, this formal definition will allow modifications and
enhancements to the environment to be performed in a well defined and consistent
manner. In addition, to provide a standardised interface from Ispel to other tools, a
formal specification of the system is required. This will allow other tools to access and
modify aspects of Ispel in a well defined manner.

7.2 Predicate Calculus and Weakest Preconditions

Conceptually, the Ispel environment models graphs which are manipulated by
operations. The graphs that underlie Ispel can be abstracted out to model an object-
oriented program and a visual representation of this program. Operations on the visual
representation can be mapped to the program. This formal definition describes these
aspects of Ispel using a set notation. Semantic constraints are defined by the nature of the
graphs, or in the operations which act upon the graphs.

Operations on these graphs need to be modelled in some way and be expressed in a
formal manner so that they can then be proved to be correct. The weakest precondition
notation developed by Dijkstra (Gries, 81) can be used to formally prove the correctness
of programs (see Appendix C). Ispel operations are expressed in terms of operations on
graphs, and are formally defined using a form of the weakest precondition notation
developed specifically for this task. Another method that could be used to describe
operations is denotational semantics (Meyer, 90). This is a functional approach to the
specification of state change. However, it was not used as a weakest precondition notation
seemed a more appropriate method.

7.3 Notation

This formal definition of Ispel uses set notation and predicate calculus to describe the
elements and operations that comprise Ispel. A brief summary of the notation used is
given below.

Predicate Calculus:
• A∧B for the conjunction of A and B.
• A∨B for the disjunction of A and B.
• ¬A for the negation of A.
• (∀i:i�Si:Ei) for all values i in the range described by Si, the predicate Ei is true
• (∃i:i�Si:Ei) there exists a value i in the range described by Si such that Ei is true.
• The notation:

 Re
a

 indicates that a is replaced by e in predicate R.

Chapter 7 A Formal Definition of Ispel Page 129

• P1�P2 for predicate P1 true implies predicate P2 is true.

Set notation:
• S1≈S2 is the set union of S1 and S2.
• S1-S2 is the set difference of S1 and S2.
• E1�S1 denotes E1 is an element of S1.
• E1�S1 denotes E1 is not an element of S1.
• The notation:

q(a)

a:p(a)
U

 denotes the set formed from the union of q(a) for all a given by the predicate

p(a).

Additional notation:
• S1♦S2 denotes S1 becomes S2.
• x←y means that x is related to y in relation ℜ.
• ←(x) is the set { y | x←y } . If ℜ is a function, then this set will contain a single

member {y}.

A tuple notation is used. <t1,t2,...,tn> is an n-tuple: the underlining is used for the names
of the tuple items. t1(x) refers to the first item of a tuple, t2(x) the second, and tn(x) to the
nth item.

For further explanation of basic set theory and predicate calculus, see (Gries, 81).

7.4 Structure of the Formal Definition

Ispel is divided into four aspects. The core of Ispel is the underlying representation of
diagrams. A visual representation of this underlying structure is comprised of views.
These views are diagrams of part of the program which the underlying representation
models. The actual object-oriented program being constructed and viewed in Ispel can be
derived from the underlying representation. A graphical format of the visual
representation (and hence the program) can be derived from each view, and a textual
representation from the object-oriented program graph. These form a screen
representation, which is the appearance of a program to a user of Ispel. Figure 7.1 shows
how Ispel is divided into these four components.

Chapter 7 A Formal Definition of Ispel Page 130

Visual
Representation

(Views)

Object-Oriented
Program
(Classes)

Underlying
Representation

(Classes, Features,
Generalisations)

MappingTransformation

Mapping

Screen
Representation

(graphics and text)
Mapping

Figure 7.1 The composition of Ispel.

7.4.1 Object-Oriented Program

An object-oriented program is defined as a directed, acyclic graph. Each vertex of the
graph corresponds to a class, and each arc is a generalisation relationship between two
classes. This is analogous to the approach used by Hamer to describe Class Language
(Hamer, 90).

7.4.1.1 Classes

A class is a set of named expressions (features) f1,...,fn . The set of local features for class C
is denoted by locals(C) .

Object-oriented programs have some built-in classes, for example integer, boolean, and
text. These can not have user-defined features or generalisations.

7.4.1.2 Inheritance

The arcs of the graph represent inheritance relationships between classes. This graph may
be disconnected (i.e. consist of two or more non-connected sets of nodes and arcs), and a
disconnected graph signifies that the program may have more than one distinct
inheritance graph.

C1 inherits directly from C2 if there is an arc from C1 to C2. This is denoted by C1∅C2 . The
reflexive, transitive closure of the inherits directly relation is denoted by ».

Chapter 7 A Formal Definition of Ispel Page 131

The full set of features for class C1 is denoted as features(C1) .

features(C1) = locals(C2)

C2 :C1»C2
U

7.4.1.3 Features

Each feature has a type which is a class or a list of some type. The domain of a feature is
the class in which it occurs. For simplicity, all feature names are assumed to be unique.

A feature is a 2-tuple <name,type> where:
• name is the feature name,
• type is the feature type, which is a class or list of some type.

Figure 7.2 shows an object-oriented program and a graphical representation of this
program. The circles of the program graph are nodes with their class names contained
within. The arc from C2 to C3 denotes C2 being generalised to C3. Class C1 has one
feature, <F1,C2>. The graphical representation is an example of how the Prolog prototype
would represent this program in a view.

C1

C2
F1C2

C3 C3

Program Graphical

C1

{<F1,C2>}

Figure 7.2 An object-oriented program graph and its graphical representation.

7.4.2 Underlying Representation

The underlying representation for a program is comprised of two graphs: an inheritance
graph and a feature graph. Both graphs share the same nodes, which represent classes.
The underlying representation graph is denoted by underlying_graph.

The inheritance graph is a directed graph in which the nodes represent classes and the arcs
represent generalisation connections between classes. This graph is comprised of a set of
nodes (classes) {C1,...,Cn} . It also has a set of arcs (generalisations) {C1∅C2,...} . This graph
may be disconnected. Figure 7.3 shows an example of the inheritance graph, and a visual
representation of this graph.

Chapter 7 A Formal Definition of Ispel Page 132

C1

C2 C3

C1

C2

C3

Inheritance Graphical

Figure 7.3 An inheritance graph and a visual representation of this graph.

The feature graph for the program is a disconnected, directed graph. Each graph is a
collection of nodes (classes). The arcs in this graph are labelled and represent feature
connections between classes. This graph shares the same set of nodes {C1,...Cn} as the
inheritance graph. It also has a set of arcs (features) {C1(F1)∅C2,...} . Figure 7.4 shows an
example of a feature graph, and a visual representation of this graph.

C1

C2
F1

C3
F2

F1 F2
C1

C2 C3

C3
F3

F3

Feature Graphical

Figure 7.4 A feature graph and a visual representation of this graph.

For every node in the feature graphs, the arc names from a node form a set. This means
that a class does not have more than one feature of the same name. Recursive features
can be represented with a node having a feature arc connected to itself.

7.4.3 Visual Representation

The visual representation of Ispel is comprised of a set of views {V1,...,Vn} . Each view is a
disconnected, directed graph, which is comprised of nodes and arcs. The nodes and arcs
have attributes which are part of the underlying representation graphs. Each view graph
of the visual representation is denoted by view_graph(V), where V�{V1,...,Vn} . Nodes are
denoted by Ni and arcs by Ai, and both nodes and arcs are unique within a view graph.

Chapter 7 A Formal Definition of Ispel Page 133

Nodes in a view are either class nodes or feature arcs in the underlying representation
graphs. Arcs in a view are either feature arcs or generalisation arcs in the underlying
representation graphs. Arcs can not be elements of a view graph unless both the nodes
which the arc connects are elements of the view graph. The attributes of nodes for a view
graph do not form a set, as more than one node for a class or feature can be in a graph.
This allows recursive features to be represented. Figure 7.5 shows an example view graph
and a visual representation of this graph.

N1{C1}

C1 C3

C2
F1

N3{F1(C2)}

A1{C1(F1) →C2} A2{C2→C3}

Visual Graphical

N2{C3}

Figure 7.5 An example view graph and a visual representation of this graph.

Ispel views can overlap and contain the same nodes or arcs from the underlying
representation graphs. The union of all the nodes and arcs of all views produces a subset
of the underlying representation graphs. The textual representation of a class is derived
from the object-oriented program graph. However, this can be modelled as part of the
visual representation, if updating via the textual representation is to be provided.

7.5 Mappings

There are two mappings from the visual and underlying representations: the visual
representation to its screen representation, and the underlying representation to an
object-oriented program. In addition, operations on the visual representation are
transformed into operations on the underlying representation.

7.5.1 Visual Representation to Screen Representation Mapping

The graphical location and appearance of views, and the user interface of Ispel, are
ignored in this formalism. These aspects of Ispel do not affect the basic foundations
described here. However, the visual representation must always be able to be rendered in
some way.

The different nodes and arcs of a view graph can be mapped to a graphical
representation. Figure 7.6 shows nodes and arcs of the view graph and their equivalent
graphical representation. The actual shape and location of the view graph element’s

Chapter 7 A Formal Definition of Ispel Page 134

graphical representation is not important, although lines will connect the boxes together
to form a graphical representation of a view graph.

N1{C1}

N3{F1(C2)}

A2{C2→C3}

A1{C1(F1) →C2}

Visual Graphical

C1

C2
F1

Figure 7.6 Nodes and arcs of a view graph and their graphical representations.

Views are always forests of finite, directed graphs. Their nodes and arcs can always be
mapped to graphical representations of boxes and lines. These boxes and lines can be
arranged in any format in a window. A line connects the boxes (nodes) which the arc
represented by the line connects in a view graph. A graphical representation of a view
graph can always be drawn, and the translation of the view graph to boxes and lines is
straightforward.

7.5.2 Visual Representation to Underlying Representation

The visual representation graphs share the nodes and arcs of the underlying
representation graphs. Nodes and arcs can be added or removed from view graphs
subject to some constraints which are described in Section 7.7. If nodes and arcs are
removed from the underlying representation graphs, the consistency of the underlying
representation will not be affected. This is because both graphs can be forests of
unconnected graphs.

However, a problem arises when a feature line is removed from a visual representation
graph. This feature connection removal can not be represented in the underlying
representation graphs, as a disconnected feature arc would only be connected to one node
in the graph. To enable this to be represented, some form of pseudo-class would need to
be introduced. A feature arc in the underlying representation feature graph would be
connected to this pseudo-class to represent a temporarily disconnected feature. Figure 7.7
shows how a pseudo-class would be used to disconnect a feature line.

Chapter 7 A Formal Definition of Ispel Page 135

C1

C2
F1

Visual Underlying
(no pseudo-class)

Underlying
(pseudo-class)

C1

C2

Cnull

F1

C1

C2

F1

?

Deleted Line

Figure 7.7 Using a pseudo-class to disconnect a feature line.

This formal definition of Ispel does not permit feature lines to be deleted, which avoids
this problem. Being able to temporarily disconnect features is convenient but not
necessary. The same result can be obtained by cutting the feature from a class and adding
it to another class.

7.5.3 Underlying Representation to Object-Oriented Program Mapping

It is not always possible to generate an object-oriented program from the underlying
representation. This is because Ispel allows invalid object-oriented programs to be
constructed. This is necessary to allow a programmer to construct several views of a
program concurrently. However, to generate a program and compile it, this mapping
must be valid.

A mapping from the underlying representation to an object-oriented program can not be
made if there are any inheritance cycles, as a cycle will be created in the object-oriented
program graph. This will result when a class derived from a node in the underlying
representation graphs inherits from itself. For the underlying representation graph, the
set inherits_from(C1) for class C1 can be defined as the non-reflexive, transitive closure of
C1∅C2 . If C1�inherits_from(C1) , then a cycle would be produced in the object-oriented
program graph and so a mapping can not be made.

The nodes (classes) for the object-oriented graph are derived from a mapping of the
underlying representation graph nodes and the feature arcs. Each class is defined as a
named set of features. This set is derived from the arcs of a node in the feature graphs.

The mapping for classes is defined as:

Chapter 7 A Formal Definition of Ispel Page 136

classes = {C1,...,Cn} (from the underlying representation nodes)

locals(Ci) = < F ,Cj >
F,Cj :Ci (F)→Cj∈underlying_graph

U , whereCi ∈classes,1 ≤ i ≤ n

(i.e the 2-tuple <F,Cj> is a feature of class Ci).

The arcs (generalisations) for the object-oriented graph are derived from a mapping of
the underlying representation generalisation arcs. The set of arcs for each node in the
program graph is defined as:

arcs(Ci) = Ci → Cj

C j :Ci→Cj ∈underlying_graph
U , whereCi ,Cj ∈classes,1 ≤ i ≤ n

The full set of arcs for the object-oriented program is the union of all the arcs for each
node:

arcs= arcs(Ci)

Ci :Ci∈classes
U

If the underlying representation graphs are kept consistent, and no inheritance cycles exist
in them, then these mappings to an object-oriented program graph can be made.

7.6 Operations

The list of operations given here is not exhaustive, and only covers operations that affect
the visual and underlying representation graphs. Some operations that affect the screen
display (for example, window operations and view navigation) are mentioned but are not
formally defined. These operations do not affect the underlying or visual representation
graphs, and so do not require a formal definition. The operations presented and described
here are implemented in both the Prolog and Eiffel prototypes. Table 7.1 lists the visual
and underlying operations that have a formal definition, as well as some additional
operations which do not have a formal definition. Operations denoted by * are described
informally in this section, and operations denoted by † do not have a formal definition.

Chapter 7 A Formal Definition of Ispel Page 137

Visual Operations Underlying Operations Additional Operations

Add a class box* Add a class node* Select/De-select a box†
Add a generalisation line* Add a generalisation arc* Display class text†
Add a feature box* Add a feature arc* Change views†
Add a feature line Rename a class node* Create a new view†
Rename a class*
Rename a feature

Rename a feature node
Re-select a class node

Create a new window†
Delete a view†

Re-select a class Delete an arc Delete a window†
Hide a box* Select a new view†
Cut a line Select a new window†
Cut a box* Change feature attributes†
Expand a box

Table 7.1 The formally defined operations on Ispel graphs and some additional non-formally
defined operations.

This description of some representative visual and underlying operations is presented in
an informal manner. The operations presented illustrate how the various graphs are
changed when building a program using Ispel. The changes to the visual and underlying
representation graphs are presented, along with changes to an example graphical
representation of the graphs. The formal notation which describes these operations is
presented in Appendix C. A list of formal definitions for all the visual and underlying
operations in Table 1 is provided in Appendix D.

7.6.1 Add a Class Box and Node

The programmer adds a class box to a view, V, and provides a name for the class, C1. If a
node for this class does not exist in the underlying representation graph, then one is
created:

underlying_graph♦underlying_graph≈{C1}

The node for the class C1 is also added to the view graph for the current view, V:

view_graph(V)♦view_graph(V)≈{N1{C1}}

The resulting underlying, visual, and graphical representations are shown in Figure 7.8.
The underlying representation inheritance and feature graphs are merged into one for
simplicity.

Chapter 7 A Formal Definition of Ispel Page 138

C1

Underlying Visual Graphical

C1 N1{C1}

Figure 7.8 The underlying, visual, and graphical representations after creating a class box and
node.

An additional class, C2, is added. Now underlying_graph = {C1,C2} and view_graph(V) =
{N1{C1},N2{C2}}.

7.6.2 Add a Generalisation Line and Arc

A generalisation line from C1 to C2 is added, i.e. C1 is generalised to C2. This is a valid
operation, as the visual representation does not have this arc in its arc set. If this
generalisation arc does not exist in the underlying representation graph, it is added:

underlying_graph♦underlying_graph≈{C1∅C2}

This arc {C1∅C2} is added to the view graph, V:

view_graph(V)♦view_graph(V)≈{A1{C1∅C2}}

The resulting graphs and their representations are shown in Figure 7.9.

C2

Underlying Visual Graphical

C1

C2

C1N1{C1}

N2{C2}

A1{C1→C2}

Figure 7.9 The underlying, visual, and graphical representations after adding a generalisation
line and arc.

7.6.3 Add a Feature Box and Arc

A feature box with feature name F1 and feature type C3 is added to C1. If the class C3
does not exist in the underlying representation graph, a node for it is added. If an arc
between C1 and C3 does not exist in the feature graph, it is added:

underlying_graph♦underlying_graph≈{C1(F1)∅C3}

Chapter 7 A Formal Definition of Ispel Page 139

A node and arc for the feature box is added to the view graph for V:

view_graph(V)♦view_graph(V)≈{A2{C1(F1)∅C3}, N3{F1(C3)}}

The changes to the graphs in Figure 7.9 are shown in Figure 7.10.

Underlying Visual Graphical

C1

C2

A1{C1→C2}

A2{C1(F1) →C3}

C3

F1
C1

C2

C3
F1

N2{C2}

N1{C1}

N3{F1(C3)}

Figure 7.10 The graphs and representation after adding a feature node, line, and arc.

7.6.4 Hide a Box

The box which represents the feature F1 is hidden. This only affects the visual
representation, which has the node and arc representing this box removed:

view_graph(V)♦view_graph(V)−{A1{C1(F1)∅C3},N3{F1(C3)}}

The resulting changes to the graphs in Figure 7.10 are shown in Figure 7.11.

Underlying Visual Graphical

C1

C2

C3

F1
C1

C2
N2{C2}

N1{C1}
A1{C1→C2}

Figure 7.11 The graphs and representation after removing a feature node and arc.

Chapter 7 A Formal Definition of Ispel Page 140

7.6.5 Cut a Class Box

The box N1(C1) is cut from the diagram in Figure 7.10. In the visual representation’s view
graph, the node N1(C1) is removed, along with all of its dependent nodes and arcs. The
dependent nodes and arcs for a node Ni in view V are defined as:

dependents(V,Ni) = arcs_to_box(V,Ni)∪ dependent_boxes(V,Ni)∪
dependents(V,dependent_boxes(V,Ni))

arcs_to_box(V,Ni) = Ai
Ai :Nj (Ai)→Ni∈view_graph(V)

U

dependent_boxes(V,Ni) = Nj
Nj :Ni (Ai)→Nj∈view_graph(V)∧arcs_to_box(V,Nj)={Ai}

U

For the node N1(C1), this is the union of all the arcs of N1(C1), all the nodes which have
only one connection to a parent node (N1(C1)), and their dependent nodes and arcs. The
dependents of N1(C1) for the example shown in Figure 7.10 are
dependents(V,N1(C1))={A1{C1∅C2}, A2{C1(F1)∅C3}, N3{F1(C3)}} . These are removed
from the view graph for V, along with N1(C1):

view_graph(V)♦view_graph(V)−{N1(C1)}-dependents(V,N1(C1))

The resulting changes to the graphs in Figure 7.10 are shown in Figure 7.12.

Underlying Visual Graphical

C1

C2

C3

F1

C2
N2{C2}

Figure 7.12 The graphs and representation after cutting a class.

Chapter 7 A Formal Definition of Ispel Page 141

The change to the underlying representation is propagated to all view graphs. Any view
Vi showing an arc Ai{C1∅C2} will have this arc, a node Nj(C1) (where Ni(Ai)∅Nj) , and
its dependents deleted:

∀Vi:Ai{C1→ C2}∈view_graph(Vi),
view_graph(Vi)← view_graph(Vi) −{Nj (C1)}− dependents(Vi ,Nj (C1))

7.6.6 Rename a Class

Taking the example shown in Figure 7.10, the class C1 is renamed to be C4. This is a valid
operation as long as there is not an existing node called C4 in the underlying
representation graphs. Renaming of the arcs to and from C1 is also done:

 R = underlying_graph,R← RC4
C1

As the visual representation view graphs use the underlying representation nodes for
attributes, this change will be propagated to the affected views. The resulting changes to
Figure 7.10 are shown in Figure 7.13.

Underlying Visual Graphical

C4

C2

A1{C4→C2}

A2{C4(F1) →C3}

C3

F1
C4

C2

C3
F1

N2{C2}

N1{C1}

N3{F1(C3)}

Figure 7.13 The graphs and representation after renaming a class.

7.6.7 Produce an Object-Oriented Program Graph

An object-oriented program can be produced from the underlying representation graph
shown in Figure 7.10, as there are no inheritance cycles in the graph.

First, the classes are created from the nodes and feature graph. The set of classes
generated is {C1,C2,C3} . C1 is a 1-tuple of feature <F1,C3>.

Second, the inheritance arcs are derived from the arcs in the inheritance graph of the
underlying representation. One arc, C1∅C2 , is produced. The object-oriented program

Chapter 7 A Formal Definition of Ispel Page 142

produced is a graph with the nodes {C1,C2,C3}, and an arc {C1∅C2} . Figure 7.14a shows
this object-oriented program graph. Figure 7.14b shows the Eiffel program that
represents this object-oriented program.

C1

{<F1,C3>}

C2

{}

{}

C3

Figure 7.14a An object-oriented program derived from the underlying representation graphs.

class C2

end -- class C2

class C1
 inherit
 C2
 feature
 F1 : C3;
end -- class C1

class C3

end -- class C3

Figure 7.14b An Eiffel program derived from the object-oriented program graph.

Appendix D contains a formal definition of the operations described in this section
together with the other visual and underlying operations shown in Table 7.1.

7.7 Extensions to the Formalism

This formal definition of Ispel can be extended as more visual programming and
representational power is added to Ispel. For example, list and public features, and class
parameters could be formally defined. It can also be used to describe the textual elements
of classes with the visual components and how these interact.

The notation used to describe the operations in Appendix D is not very easy to
understand or to work with. A more visual notation that shows how the graphs are
manipulated using diagrammatic and textual techniques may be an improvement. This is

Chapter 7 A Formal Definition of Ispel Page 143

because it would describe the changes to the Ispel graphs in a visual manner which is easy
to understand.

Defining other aspects of Ispel formally should be attempted in future. For example,
additional tools for the Ispel environment will need to interact with these visual
programming concepts in some way. Although the integration of tools, both their user
interfaces and communication, is more an implementation issue than a formal one, a
model of how tools interact with the visual programming components of Ispel is
important.

Implementation models for the visual programming, user interface, tool construction, and
tool integration aspects of Ispel could be developed (see Chapter 9). A formal model
would provide a guide-line as to how other aspects must interact with the visual and
underlying representations that define Ispel, and the operations that act on them.

7.8 Summary

The need for a formal definition of Ispel was recognised during the development of the
two prototype environments. The visual and underlying representations of Ispel have
been defined using graphs. Both a graphical representation and an object-oriented
program can be derived from these graphs. A graphical representation of views that
comprise the visual representation can always be made. An object-oriented program can
be derived from the underlying representation when there are no inheritance cycles in the
underlying representation graphs.

Manipulations on the visual representation can be transformed into manipulations on the
underlying representation. These manipulations, called operations, allow a program to be
constructed graphically. An informal description of a subset of these operations has been
presented in this chapter. These operations maintain the consistency of the visual and
underlying representations. Hence, a graphical representation and object-oriented
program can be produced from them. Their effects on the visual and underlying
representations are formally defined in a weakest precondition notation in Appendix D.

Chapter 7 A Formal Definition of Ispel Page 144

Chapter 8 Conclusions Page 145

Chapter 8
Conclusions

This chapter summarises the research work in this thesis, and presents the contributions
and conclusions of this research. Visual programming techniques help to provide
improved programming environments for object-oriented languages. The two
prototypes of Ispel provide visual programming environments for Class Language and
Eiffel. These allow programs to be constructed and viewed more easily than the current
environments for these languages do. Development of these prototypes showed that
specification, design, and prototyping are important in the production of interactive
software. The formal and implementation models for Ispel show that it has well defined
concepts, and can be expressed in an object-oriented manner for implementation.

8.1 Research Contributions

This research has contributed the following to the areas of programming environments,
visual programming, and object-oriented development:

• The Ispel visual programming environment has been designed, and two
prototype environments have been implemented. Ispel allows both Class
Language and Eiffel programs to be constructed visually within a consistent,
easy-to-use programming environment.

• The two prototype environments of Ispel have helped to refine the user
interface and implementation aspects of Ispel. They also show that a visual
programming environment for object-oriented languages is feasible, and is an
improvement over current environments.

• An object-oriented implementation model for Ispel has been developed. This
shows that Ispel can be represented in an object-oriented manner and that this
representation is appropriate. This model can be used as the basis for an
implementation of Ispel or other visual programming environments that share
similar concepts.

• A formal description of Ispel has been defined. This describes the behaviour of
Ispel in a concise and abstract manner. It also proves that the environment
concepts are not ad-hoc, but fit together and interact in a mathematically correct
way.

• Some visual programming and object-oriented development techniques have
been developed during this research. These are useful for further object-

Chapter 8 Conclusions Page 146

oriented development of Ispel and other applications. They also assist
development when using the Ispel visual programming environment.

8.2 Programming Environments

Several important aspects of programming environments have been determined during
this research. Use of the LPA, Eiffel, Prograph, Class Language, and other environments
has clarified these issues.

8.2.1 Suitability of Programming Environments to Languages

Programming environments should be well suited to the language and programming
paradigm being used. For example, the LPA environment is designed specifically for
Prolog programming, and assists this task well. However, the Eiffel environment is more
general and could be used for programming in several different languages (for example,
Unix C and C++). There are few specific facilities to aid object-oriented programming and
the environment is not well integrated. This makes it difficult to use and it does not assist
program development as well as an environment should. An environment which is
designed for the language and paradigm it is used for assists program development.

8.2.2 Integration and Appropriate Tools

Environments which are well integrated and provide appropriate tools for development
enhance software production. THINK Pascal, Prolog, and Prograph are examples of such
environments. Developing programs in these environments is enhanced by having all the
required facilities integrated into one environment. These have user interfaces and data
storage mechanisms which are well integrated. They also provide useful tools like
debuggers, editors, and libraries.

Conversely, the current Eiffel, Class Language, and Unix C environments are not well
integrated, nor do they provide many tools to assist development. For example, the Eiffel
environment consists of a collection of loosely integrated tools which have different user
interface behaviours. Few facilities for object-oriented programming, such as structure
visualisation, class library searching, program structuring, and navigation, are provided.
Thus this environment does not provide much assistance when developing Eiffel
programs.

Good quality design and maintenance facilities are also important and these should be
integrated into a single environment. None of the currently available environments
provide a complete integration of design, analysis, implementation, and maintenance.
Ispel assists program development by providing a consistent user interface and tools
which are cleanly integrated into the environment. Ispel can be used to design,
implement, and maintain object-oriented programs. These facilities are part of one tightly

Chapter 8 Conclusions Page 147

integrated, language-centred environment designed specifically for object-oriented
programming. As a consequence, the prototypes of Ispel provide better environments
than the existing Class Language and Eiffel environments.

8.2.3 Performance

Performance is important to provide adequate turn around time during program
development. Prolog, Prograph, and THINK Pascal provide fast compilers and
sophisticated debugging facilities which enhance programming. However, the Eiffel
compiler is slow and the debugging facilities are not as useful.

8.3 Visual Programming Environments

Visual programming environments provide significant advantages over conventional
environments (Ambler and Burnett, 89, and Myers, 90). Visual programming
environments require a consistent user interface throughout to be effective. This is
because different behaviours in different parts of an environment hinder development.
Ispel provides a consistent user interface which is a big improvement on the existing Eiffel
and Class Language environments (see Section 5.1). Visual programming can provide a
framework for closer environment integration and tool communication. The underlying
representation used in Ispel, and its implementation model, provide a basis for this.

Visual programming allows programs to be constructed and viewed in a more natural
and expressive way than textual programming (see Sections 2.3, 5.1, and 5.5). Ispel allows
object-oriented programs to be constructed and visualised using a graphical
representation of their structure. Ispel also integrates the design and analysis phases of
object-oriented programming with program construction and maintenance. This merges
the boundaries between these phases of development which increases productivity.
Visual manipulation and display are often more abstract than textual programming, and
thus provide a more powerful programming technique.

Visual programming provides a context in which to view elements of programs, and the
visual representation of a program can be used for navigation throughout a program (see
Section 3.5). Textual programming does not provide such a high-level visualisation and
cannot provide as versatile navigation facilities or context representation. Ispel provides
both a context for programming (views) and navigation facilities between these contexts
(see Sections 3.6 and 5.5). It allows a programmer to specify these contexts based on the
object-oriented structure of a program. This enhances the flexibility and productivity of
the environment.

Chapter 8 Conclusions Page 148

8.4 The Ispel Visual Programming Environment

Ispel provides a better programming environment than the current Class Language or
Eiffel environments. It provides an improved environment from the programmer’s
perspective, and has well defined formal and implementation aspects.

8.4.1 The Prototypes of Ispel

Both prototypes of Ispel served their purpose for aiding the refinement of Ispel. The
Prolog prototype is extremely useful for constructing and browsing object-oriented
programs. It was also useful for other tasks, such as the construction of many of the
diagrams in this thesis. The Prolog prototype has a good user interface, adequate
performance, and provides some flexible visual programming facilities (see Chapters 4
and 5).

The Eiffel prototype does not provide the same functionality of the Prolog prototype, as it
does not have multiple views, windows, or applications. However, its visual
programming facilities are similar, and its implementation model is superior (see Section
6.4). Neither prototype can be used to develop Class Language and Eiffel programs, as
they require integration with a parser, compiler, and run-time system for each language.

8.4.2 User Interface Issues

The Prolog prototype of Ispel uses the Macintosh desktop metaphor. This graphical, direct
manipulation interface is easy to use, flexible, and powerful. This interface provides a
standardised framework which can be used to integrate other tools into the environment.
The user interface of the Eiffel prototype is not as aesthetically pleasing as the Prolog
prototype’s, but is functionally equivalent (see Section 6.2).

The implementation model developed using the Eiffel prototype describes the structure of
Ispel, and can be used as the basis for an implementation of the environment. Similarly,
the formal definition for Ispel provides a very high-level description of the behaviour of
the environment. This is important for ensuring future extensions to it are well defined
and consistent.

However, the most important aspect of a programming environment is its user interface
and the facilities it provides to aid programming. If the implementation and formal
description of an environment are excellent, but the environment provided does not
perform well, a programmer will not be satisfied. An environment that performs well and
assists programming, but is hand-coded and not extensible, will be preferred to one that
has a “better” implementation and definition. The performance of an environment must
be remembered when constructing implementation and formal models. The way an

Chapter 8 Conclusions Page 149

environment assists program development is the most important aspect from the
programmer’s point of view, not how it is implemented or its formal basis.

8.4.3 Visual Programming Issues

Some key concepts of Ispel include:
• Multiple views of a program. Both graphical and textual views are provided, and

these can share information. The ability to move between different views
allows programmers to view their program at differing levels of abstraction.
This enhances productivity and assists programmers in understanding their
programs better.

• Integration of graphics and text. Programmers can move between textual and
graphical representations of programs, and use the most appropriate method
of representation. The graphical representation of object-oriented programs in
Ispel is more flexible, abstract, and descriptive than an equivalent textual
representation.

• Maintenance of consistency between graphics and text. The graphical and textual
representations always represent the same information, and changes to one
representation affect the other. Few existing systems achieve this level of
integration.

• Visual programming by manipulation of diagrams. Visual programming is achieved
by programmers manipulating diagrams, which results in the high-level, object-
oriented aspects of programs being constructed. Manipulation of this graphical
representation gives object-oriented programming a more interactive feel

• Program visualisation and browsing. This is provided by multiple views and
navigation facilities between these views.

• Environment integration. A consistent user interface is provided, and the
provision for shared data storage and an extensible environment.

Some useful visual programming techniques have been developed by using the Prolog
prototype of Ispel (see Section 5.5). These include structuring views around different
information and using views to provide contexts for programming

8.4.4 Implementation Issues

The Eiffel prototype of Ispel refined the notion of an environment framework, program
objects, operations, and relationships. The concepts of object dependency and visual
representations for language objects were developed. Constraint of visual program
manipulation can be achieved using relationship objects, which can also be used to
propagate change. The framework for Ispel was structured around user interface classes
in the Eiffel prototype. Although these ideas and the structure of the Eiffel prototype
require further refinement, this provides an implementation basis for Ispel.

Chapter 8 Conclusions Page 150

This object-oriented implementation model captures the key aspects of visual
programming and their interactions. The Prolog prototype uses a simplistic method of
storing data and lacks good design. Implementation of the Eiffel prototype resulted in a
more structured prototype for Ispel than the Prolog prototype. This prototype could be
extended more easily and further than the Prolog prototype because of its improved
implementation model (see Section 6.4).

It is important to allow for environment extensibility, integration with other tools, correct
functionality, and ease of maintenance when implementing environments. A generalised
implementation model also assists in the construction of other visual programming
environments. Both prototypes had to be constructed from scratch, as a general
implementation model for visual programming environments does not exist. In addition,
components that could be reused to assist environment construction were not available
for the prototypes. A general implementation model and collection of reusable
environment components would assist the development of new visual programming
environments.

8.4.5 Formal Specification

Formalism is important in visual programming environments as it allows the
environment to be described. It provides a fundamental basis for the implementation of
the environment, and for the operations that can be performed. Formal definition of Ispel
provides a concise and complete specification of the environment and its behaviour. This
means the environment is well defined and does not rely on ad-hoc implementation
aspects to function. Ispel can be extended by adding new objects, operations, and tools.
These can be specified in a formal manner and integrated into the existing formal
definition. The formalism of Ispel ensures that when these new features are implemented,
they interact with the existing environment correctly (see Section 7.1).

8.4.6 Defining Visual Aspects

Specifying and designing Ispel was difficult due to a lack of adequate descriptive
techniques for user interfaces. The writing of a report on the Prolog prototype, the object
model for the Eiffel prototype, and this thesis highlighted the difficulties in describing
visual aspects using text. Diagrams are very useful, but they do not describe changes to
objects well. An alternative approach to specifying and describing user interfaces and
other visual, interactive systems is required.

8.5 Program Development

Development of the Prolog and Eiffel prototypes demonstrated the value of good
software engineering techniques. The Prolog prototype was specified, and a Prolog

Chapter 8 Conclusions Page 151

implementation designed, before implementation was begun. Many ideas were
developed during these phases which were used in the Prolog prototype. Comparisons to
other systems were made and many problems and alternate approaches worked out on
paper. The rapid development of the Prolog prototype showed good specification and
design of software enhances programming.

The design of the Eiffel prototype was not sufficient to enable a good implementation to
be based on it. This was because the object-oriented design of Ispel was refined during
development of the Eiffel prototype, which resulted in many changes to the original
design. The lack of a clear initial design for this prototype hindered its development.
However, without some initial design, construction of the Eiffel prototype would have
been even more difficult.

An important aspect of the development of the Ispel prototypes was the refinement
approach employed. Design, implementation, and maintenance are iterative processes,
and feedback between these phases of development is important (Coad and Yourdon, 91,
and Chikofsky and Rubenstein, 88). However, development of Ispel demonstrated that
specification and requirements analysis needed to be refined during development as well.
This was because the requirements of Ispel were not fully understood at the outset of the
project. The lack of descriptive techniques for visual manipulation systems also
contributed to a changing specification during development. How to achieve many visual
programming techniques was determined by testing different designs and approaches
using prototypes (see Sections 4.3 and 6.3).

A refinement approach to development is particularly appropriate for interactive
software that utilises direct manipulation interfaces and graphical representations.
Development of Ispel showed that the exact requirements, specification, and desired
behaviour of these systems is often not known in advance. Prototypes were required to
refine these concepts and to determine the implementation issues. Figure 8.1 shows the
development phases for software development and interactive software development
which were identified during this research.

Chapter 8 Conclusions Page 152

Requirements
Analysis

Specification

Analysis &
Design

Prototype

Production
System

Program
Verification

Program Development
For Interactive

Software Systems

Program
Development

Phases for more
"conventional"

systems

Feedback
to

higher
levels

Figure 8.1 Phases of development for software systems.

A rapid prototyping approach was employed for the development of Ispel. As aspects of
visual programming environments were not fully understood at the start of Ispel
development, these were refined by the use of prototypes. Rapid prototyping is especially
important for user interface system development. This is due to the interactive nature of
the systems, which is difficult to specify using conventional textual and diagramming
methods. Rapid prototyping of Ispel determined suitable approaches to providing
facilities. It also revealed that what looked good on paper didn't always work in practice.
Rapid prototyping also provided the necessary feedback to other phases of development.
For interactive software, rapid prototyping is very useful for testing and refining ideas,
and understanding how a final product will look and behave.

To assist rapid prototype development, a suitable prototyping language should be
chosen. LPA Prolog was suitable due to its good environment, high-level graphics and
user interface facilities, and fast development time of programs. Eiffel was not suitable as
a rapid prototyping language. It does not have an integrated, easy to use programming
environment, the language and libraries do not provide adequate graphical facilities, and
the compiler is too slow. This means ideas cannot be programmed and tested rapidly nor
effectively in Eiffel.

Chapter 8 Conclusions Page 153

8.7 Prolog Programming

The ease of implementation of the Prolog prototype in LPA proved how an integrated,
well-designed environment can assist programming. However, the lack of structuring in
Prolog, both for data structures and predicates, made implementing some aspects of Ispel
difficult. For example, a relational database system had to be constructed to store
information on Ispel applications. The lack of typing and compile-time checking of
predicate parameters allowed many errors to occur which were difficult to locate. This is
difficult to change due to the nature of the Prolog language. The debugging tools
provided with LPA are good, but could be improved by providing better methods for
stepping through programs and identifying errors.

8.8 Object-Oriented Programming

Object-oriented programming is a promising paradigm. The focus on structuring systems
around data structures assists the design, implementation, and maintenance processes.
The Eiffel prototype showed that object-oriented programs often have a cleaner structure
and are easier to understand and modify than procedural programs. Development of the
Eiffel prototype demonstrated the value of encapsulated data and routines for program
modularity and for helping to eliminate programming errors. Generalisation is useful for
both code-sharing, categorisation, and polymorphism of objects. These techniques are
utilised in the Ispel implementation model. The emphasis on class reuse and class
abstraction in object-oriented programming enhances programming productivity. Many
of the library classes provided by Eiffel were reused, and some of the classes in the Eiffel
prototype were abstracted for reuse.

Implementation of the Eiffel prototype demonstrated many of the important advantages
of object-oriented programming (see Section 6.4). However, it also showed that a good
programming environment is necessary to make effective use of the benefits of object-
oriented ideas. The lack of a suitable class library tool made class reuse difficult in Eiffel. A
visual programming environment would assist design, implementation, and maintenance
of object-oriented programs. This is achieved through the improved visualisation of
programs and greater abstraction of the programming process. Ispel provides such an
environment. Use of Ispel to construct some Class Language programs and model the
Eiffel prototype demonstrated the effectiveness of visual programming for object-
oriented languages (see Sections 5.1 and 5.5).

To fully utilise the benefits of object-oriented programming, good object-oriented design,
analysis, and programming techniques must be employed. Some of these programming
techniques have been described in Section 3.2. Some additional techniques have been
developed during implementation of the Eiffel prototype (see Section 6.5). Use of the

Chapter 8 Conclusions Page 154

Prolog prototype of Ispel has developed some visual programming techniques which
assist object-oriented programming (see Section 5.5).

8.9 Summary

Good programming environments assist the development of software, and visual
programming techniques are useful for creating improved programming environments.
These visual programming environments are particularly suitable for object-oriented
languages. This thesis has developed Ispel, a visual programming environment suitable
for Class Language and Eiffel. Two prototypes of this environment have been
implemented. The Prolog prototype refined the user interface and visual programming
aspects of Ispel, and the Eiffel prototype developed an implementation model for it. A
formal specification of Ispel has been defined which allows it to be expressed in a concise,
high-level manner. It shows Ispel to be well defined and consistent, and provides a basis
for further enhancement of the environment.

The development of new methods to assist environment specification and construction is
important. However, from the programmer’s point of view, the most important aspects
of visual programming environments are the user interface and the performance of the
environment. An environment is judged on whether or not it assists program
development, and to what degree.

Some visual programming and object-oriented programming techniques have been
developed during this research. The environments for LPA and Eiffel have been
evaluated, and some important qualities for programming environments identified. The
implementation of the two prototypes of Ispel has affirmed the importance of good
software engineering techniques during development.

Chapter 8 Conclusions Page 155

Chapter 9 Future Research Page 157

Chapter 9
Future Research

Ispel, a visual programming environment for object-oriented languages, has been
developed, but requires further refinement and abstraction. Two prototypes of Ispel have
been implemented during this research. Both Ispel and its prototypes can be extended to
provide more visual programming facilities. In addition, the Ispel environment requires
more tools to facilitate object-oriented development. The implementation model
developed by the Eiffel prototype requires more refinement and abstraction. The formal
specification of Ispel needs to encompass further aspects of the environment, and be
generalised. An in-depth performance analysis of an Ispel prototype is required to verify
that it enhances the programming process.

The Ispel environment shares many common aspects with other visual modelling
systems. A method of factoring out these commonalities, or expressing them at a higher
level of abstraction, is required. This would make their specification and implementation
simpler and more accurate. It may be possible to produce a generator or collection of
components for the construction of visual programming environments and other visual
modelling systems.

9.1 Enhancement of Ispel Visual Programming

During development and enhancement of the Prolog and Eiffel prototypes of Ispel, many
additional facilities for the environment were identified. Some of these may not be
particularly useful, while others are essential for a usable visual programming
environment. These proposed extensions to Ispel are briefly discussed in the following
sections and examples presented where appropriate.

The enhancements discussed here use the Prolog prototype as an implementation of Ispel.
As the Eiffel prototype has the same functionality as the Prolog prototype, enhancements
to its user interface are not discussed.

9.1.1 Improvements to Existing Facilities

Some of the existing facilities provided by Ispel are not adequate and can be improved.

Chapter 9 Future Research Page 158

9.1.1.1 Expand

The expand facility described in Section 5.4.5 is very useful, but requires enhancement. The
expand facility should be made recursive so multiple levels of class details can be
expanded. Expand should take account of the positions of expanded details in other views
and use these when adding new elements to a view. A class to be expanded should
indicate whether it has details which can be expanded. This could be done either with
additional icons on class and feature boxes, or in the expand window itself. Figure 9.1
shows an improved expand facility dialogue box. Figure 9.2 shows an example of a new
feature box which is expanded with the options shown in Figure 9.1.

Figure 9.1 An improved expand dialogue box.

Chapter 9 Future Research Page 159

Expand

Figure 9.2 An example of a feature box being expanded.

9.1.1.2 Interface Changes

During development of the Eiffel prototype, and modelling the Eiffel prototype in Ispel, a
problem with changes to class interfaces was discovered. Neither the existing Eiffel
environment nor Ispel assists in the propagation of interface changes to classes which use
the interface of a modified class. For example, the Roof class has a feature called area with
type integer. If this feature is modified so it takes two arguments and is of type float, all
classes which use this feature of Roof must be located and modified. Ispel should assist the
programmer by locating the classes that use the modified interface. It could store them in
a list to enable the programmer to conveniently move through and update the affected
classes, or semi-automate this process.

9.1.1.3 Navigation

The navigation facilities of Ispel could be enhanced by providing more flexible, powerful,
and faster selection options for views. This could be achieved by providing pop-up menus
on class and feature boxes. These would allow the programmer to select any view a class
is used in, not just its primary or secondary views. For example, when Roof is used in a
view as a feature type. It is often useful to be able to move to this view when changing
the interface to Roof. The Hypertext idea of buttons may be a flexible way to connect
views. A button could be added to a view which, when clicked on, displays another,
related view. This button idea could provide other facilities as well. For example,
providing documentation for a view. Figure 9.3 shows an example window which has
pop-up menus and buttons.

Chapter 9 Future Research Page 160

Figure 9.3 An example window which has pop-up menus and buttons.

9.1.1.4 Automatic Layout

Ispel allows diagrams to be laid out however the programmer wishes. This is the most
flexible approach to the layout of diagrams, which is not provided in many other systems
(Mannucci et al, 89, Myers, 90, and Reiss, 85). Although there are advantages to allowing
programmers to lay out diagrams how they wish, this can be a time-consuming process
(Mannucci et al, 89). An alternative approach to increase productivity and standardise
layouts is a semi-automatic layout system. These could behave like style sheets in
Microsoft Word, and be a template which prescribes a standard format for class structure
diagrams. However, like style sheets, diagram templates would not constrain the
programmer to using only one layout. Instead, programmers could rearrange diagrams
to a format they prefer.

All existing programs for Class Language and Eiffel have been constructed without the
use of Ispel. It would be necessary to generate some automatic layout for these system so
they can be maintained using Ispel. This is a difficult task, as important classes, which
should be primary classes for views, are difficult to identify. Also, the distribution of
features and generalisations across views is very difficult to achieve correctly
automatically, and is often dependant on an individual programmer’s preferences.
However, some heuristics for automatic layout could be developed to assist this process.

9.1.1.5 Preferences

The preferences option could be extended to allow more preferences to be set. For
example:

• To provide different diagram formats or layouts.

Chapter 9 Future Research Page 161

• To alter menu or palette options in order to tailor the environment to a
particular user or project.

• To display different information in different views or windows. For example, a
programmer may want to hide all feature names and implementation details in
views while designing a system, and then add the names later (Coad and
Yourdon, 91).

9.1.1.6 Primary Classes

The Ispel primary class concept needs to be defined more rigidly. The visual
representation of primary classes should not be deleted from views. It may be useful to
allow more than one primary class for a view. For example, a multiple inheritance
hierarchy may have two parent classes as the primary classes for the view.

9.1.1.7 Hiding Boxes

The notion of hiding boxes from views may be useful. Boxes could be given a priority
rating which determines whether they are shown in a view at a certain time or not. For
example, unimportant features of classes could be hidden in a view most of the time. A
menu option could be provided to show the hidden boxes in a view. Multiple views can
provide this at present. However, allowing boxes to be hidden (for example, all features
of simple class types are always hidden by default), may enhance program development.
This is because it provides more flexibility to programmers to view programs as they
wish, and selectively change their view of a program.

9.1.2 Increase Visual Programming Power

The current prototypes of Ispel allow only a limited range of Class Language and Eiffel
programs to be constructed and viewed graphically. To increase the visual programming
capabilities of the environment, more aspects need to be programmed graphically.

9.1.2.1 Classification for Class Language

The classification feature of Class Language can be programmed graphically. It is a
structural component of Class Language and has a visual representation (Hamer, 90, and
Mugridge, 90). An example of a classification feature is shown in Figure 9.4. The Roof
class has a classification feature called RoofKind. This classifies Roof into FlatRoof,
StarRoof, RidgedRoof or OtherRoof dynamically at run-time. Note that classification
and inheritance lines can be merged and represented in the same diagram (Hamer, 90,
and Mugridge, 90).

Chapter 9 Future Research Page 162

Roof

FlatRoof StarRoof RidgedRoof OtherRoof

RoofKind

Figure 9.4 An example of a classification feature represented graphically.

9.1.2.2 Generic and External Classes

Ispel does not allow the representation or manipulation of parameterised (generic)
classes, or Class Language external classes. A visual representation for these kinds of
classes can be developed and they can be programmed and represented visually. Figure
9.5 shows some proposed representations for generic and external classes. The first two
representations show a linked list feature of Roof. The third shows a feature of Roof
whose type is an external class.

Roof

LinkedList

RoofBracing

Bracing

Roof

LinkedList

RoofBracing
Bracing

Roof

ExtGetType
GetType

Figure 9.5 Proposed representations for generic and external classes.

In addition, different iconic representations for library classes (for example, shading for
aggregate classes like list and array) and application-specific classes could be provided.
This would enhance the visual representation of programs.

9.1.2.3 Procedural and Functional Aspects

The procedural and functional aspects of Class Language and Eiffel are currently
programmed as text. The Class Language main program and initial instances do not
currently have a visual or textual representation in Ispel. Systems like Prograph
(Gunakara, 89) allow the procedural and functional aspects of the language to be

Chapter 9 Future Research Page 163

programmed visually. However, the Prograph dataflow representation is not easy to use,
and is inappropriate for many applications. Further research to replace some or all of the
remaining textual aspects of Eiffel and Class Language in Ispel may be worthwhile.

9.1.3 Cut, Copy, Paste, and Undo

A facility that is useful in the Eiffel prototype is the Undo operation. This should be
provided in all interactive software, as errors are easy to make but often difficult to
reverse. The PECAN environment provides a history list which can be manipulated by
the programmer to re-execute operations or revert to an earlier state (Reiss, 85). A similar
facility in Ispel would be valuable. This could be extended to provide a macro facility for
the addition of common diagram components or operations.

Most direct manipulation systems provide a facility to cut, copy, and paste information,
either graphically or in text. A similar facility in Ispel would assist the construction of
programs. It would allow common aspects from different (or the same) views to be
copied or cut, and pasted elsewhere. This would increase programmer productivity.

A problem with the cut, copy, and paste notion is their semantic meaning. The
programmer may want to cut both the visual and underlying representations, or only
one of them. Implementation issues must also be dealt with when providing this facility.
For example, a programmer may cut the visual part of a view, and then delete its
underlying representation part in another view. The effect of pasting the cut visual
representation is either undefined, or requires a modification of the underlying
representation. A constrained or modified form of cut, copy, and paste would be useful.
However, a formal specification of these operations is required to ensure they behave in a
sensible, defined manner.

9.1.4 Parser for Graphics

Ispel requires a parser so changes to the textual representation of a class can update the
underlying representation. Parsing a textual representation is fairly straightforward, as is
locating changes to the underlying representation. However, the affect on the visual
representations of the class is not well understood. For example, when a new feature is
added to a class textual representation. The programmer may, or may not, want this
change reflected in one or more of the visual representations of the class. A semi-
automatic way of determining whether a new feature should be added to a view may be
useful. Automatic layout of these new features would be necessary.

9.2 Ispel Development Environment Tools

In addition to further enhancements to the visual programming component of Ispel, the
environment requires more tools to enhance object-oriented programming. Some

Chapter 9 Future Research Page 164

additional tools are discussed in the following sections. Any additional tools will need to
be integrated into Ispel so they preserve the consistent user interface and data storage
mechanisms. The Prolog prototype can be enhanced by the addition of these tools.
However, a different implementation may be required to gain the full benefit from them,
due to the deficiencies of the Prolog prototype implementation.

9.2.1 Compiler and Run-Time System

Ispel needs to include a compiler and run-time system for the language it provides a
development environment for. These must be integrated into the environment and use
an interchange data format recognised by Ispel. For example, existing textual compilers
could be used by having Ispel generate the text for a system. The compiler could then be
invoked with this text as input. The error reporting and debugger for a language must be
integrated with the Ispel user interface and other environment tools. For example, errors
in classes could be recorded. Then Ispel could provide a facility to move to erroneous
classes and correct them. Trellis/Owl provides a “grass catcher” tool which does this
(O’Brien et al, 87).

9.2.2 Class Library System

To facilitate class reuse, a library of general purpose classes and application specific classes
must be provided. Suitable tools to search and modify this library (see Sections 9.2.3 and
9.2.4) must also be provided within the programming environment (Fisher, 87, Meyer, 88,
and O’Brien et al, 87). This is particularly important for object-oriented programming,
which emphasises reuse of existing classes as features or generalisations for new classes.

A class library must store the visual and textual representation of classes as an Ispel
application. It must also allow the classes and class interfaces to be read by other Ispel
applications, but the classes cannot be updated by these applications. Specialisation of
library classes must be permitted. For programming in the large, where more than one
person is using the class library simultaneously, issues of version control and propagation
of change must be addressed. When constructing large applications in Ispel, similar issues
must be addressed. A project database or library, which controls access and updates, may
be a solution (Burton et al, 87, Fischer, 87, Wasserman and Pircher, 87, and Wasserman et
al, 90).

9.2.3 Class Abstracter and Documentation Tool

To search a class library for suitable classes, a method of abstracting and documenting
classes is required. This facility can also provide system documentation for an object-
oriented program (Coad and Yourdon, 91, and Meyer, 88). Class interfaces and
inheritance hierarchies need to be stored for searching and browsing by a programmer.

Chapter 9 Future Research Page 165

This allows a programmer to select desired features from a class, and thus reuse the class.
In addition, classes and their features need to be documented in a standardised manner.
This allows keyword searches for elements of the library. The documentation can be
uplifted and included in system documentation or stored for use by other programmers.
Documentation in current environments is often either not catered for, inconsistent, or is
not enforced. This often hinders software development and maintenance as adequate
documentation is essential for describing a software system (Coad and Yourdon, 91, Dart
et al, 87, Meyer, 88, and Wasserman et al, 90).

9.2.4 Class Location Facility

A class location tool for searching the class library, utilising the class abstracter and
documentation tool, is necessary for Ispel. Currently, Ispel does not allow existing classes
to be even listed, let alone documented or their interfaces stored for perusal by the
programmer. A class location facility could be similar to those provided by Trellis/Owl
(O’Brien et al, 87), ObjTalk (Fischer, 87), and OOATool™ (Coad and Yourdon, 91). A
similar class librarian for Smalltalk is described in Price and Girardi (90). Prograph
(Gunakara, 89) and LPA MacProlog (LPA, 89a) also have facilities to find methods and
predicates respectively. The Ispel visual programming system could be used for browsing
class hierarchies in a library. It could also be used as a framework for a class librarian tool.
The class name dialogue (see Section 4.3.6) needs to be modified to provide access to a
class librarian or cataloguing tool.

9.2.5 Hierarchy Flattener

The current Eiffel environment provides a hierarchy flattening tool called flat. This gives a
class listing which includes all the inherited features of a class. Such a facility allows a
programmer to determine where features are defined, where they are re-defined or
renamed, and which features are deferred (Meyer, 88). It also provides a documentation
facility. The Ispel visual representation could provide a similar facility, but use a graphical
representation in addition to a textual one. The Trellis/Owl (O’Brien et al, 87) and ObjTalk
(Fischer, 87) environments also provide similar tools.

9.2.6 CASE Tools for Design, Analysis, and Documentation

Ispel provides a good framework for object-oriented design and analysis. It is similar to
the OOATool™ (Coad and Yourdon, 91) and to some aspects of the Graspin (Mannucci et
al, 89) and Software through Pictures (Wasserman and Pircher, 87) CASE environments.
Allowing a more abstract level of visual program construction would assist the design and
analysis processes (Coad and Yourdon, 91). Ispel also provides a concrete link between
design and implementation, as the same environment and diagrammatic representations

Chapter 9 Future Research Page 166

are used. Ispel provides the basis for a more integrated approach to all phases of the
development of software.

Documentation of software systems assists programmers and users alike (Coad and
Yourdon, 91, and Meyer, 88). A problem with existing systems is that they do not
integrate documentation and programming. Tools like OOATool™ and the Eiffel
documentation generators create documentation from program designs and code.
However, they ignore the incremental development of software. Documentation
produced by these tools, once modified, cannot be updated by changes to the designs or
programs. The documentation must be regenerated and then touched up by hand.

A better approach is to integrate the generation of documentation and programming.
Ispel provides a basis for this, although it is a difficult process. Word processor documents
must be able to be linked to the underlying representation of programs and designs, and
updated accordingly. Similar issues occur when trying to keep the visual and textual
aspects of an Ispel program consistent.

9.2.7 Formal Specification Tool

Formal methods for specifying software are beginning to be used to assist program
development (Carrington et al, 90). As well as providing a framework for design and
analysis tools, Ispel could also provide a framework for formal software specification. The
biggest disadvantage with formal specification is the lack of environment assistance,
which makes these methods impractical (Carrington et al, 90). Integration of formal
specification with visual design, analysis, and implementation may be a fruitful research
area.

9.2.8 Structure-Oriented Editor

Structure-oriented editors assist program development and can be made generic (Ambler
and Burnett, 89, Dart et al, 87, and Reps and Teitelbaum, 87). A structure-oriented editor
for Ispel could be used to integrate textual and graphical program development. As the
textual form of a program is stored as an abstract syntax tree, graphical and textual
representations of the same underlying representation can be easily identified. The
graphical representation of a program could be updated as text is edited, rather than
being parsed after text editing.

One issue is whether textual and graphical views could be updated concurrently. If a
structure-oriented editor is used, this might be possible. It would not be possible if a
textual representation had to be parsed after editing to update the graphical
representations. This is because inconsistencies between the two representations could not
be resolved. Concurrent modification of different representations is not provided in

Chapter 9 Future Research Page 167

existing systems (Myers, 90, and Reiss, 85 and 87), due to the difficulties of keeping the
representations consistent. However, it does have advantages, as it further blurs the
distinction between high-level structure programming and low-level implementation.
This gives programmers as much control over the program development process as they
require, which enhances productivity (Myers, 90, and Raeder, 85).

9.2.9 User Interface Construction Tool

Ispel could be integrated with several external interface construction tools for Class
Language and Eiffel. For example, a user interface construction tool which allows a
programmer to build user interfaces at a high level of abstraction. An example is the DICE
tool (Pree, 90), which allows a programmer to paint a user interface form or window, and
to prototype the interface. The Forms VBT system also allows a user interface to be
constructed visually (Avrahami et al, 89). This has the advantage of eliminating the low-
level detail of visual interfaces while increasing productivity and correctness. Ispel should
take advantage of these for both providing facilities for programmers and the
implementation of Ispel itself.

9.3 Extension to a Multi-user Environment

Ispel, as described in this thesis, is a single-user environment. It is designed for
programming in the small tasks of software design, implementation, and maintenance
that are carried out by one programmer. However, Ispel would be useful as a
development environment for larger systems which require several programmers. In
order to provide such an environment, some difficult issues concerning multi-user access
to and update of information would need to be solved. Some of the problems resulting
from a multi-user environment for Ispel include:

• Maintaining consistency between shared views. If views are used by more than
one programmer, update of these views needs to be co-ordinated.

• Version control and shared libraries. Different versions of classes and parts of a
system may be required. Also, libraries of classes will be shared between
programmers, so library updates will need to be co-ordinated.

• Co-ordination of changes. The environment will need to ensure one
programmer only is updating classes, and changes to class relationships are
made by only one programmer. Notification of changes will be important.

9.4 Enhancement of the Implementation Model

The Eiffel prototype helped to develop an object-oriented implementation model for
Ispel. However, this model requires further refinement. Some of the key concepts
developed by this prototype such as the framework, object, operation, and relationship
classes need improvement. Also, concepts such as dependency, visual representation, and

Chapter 9 Future Research Page 168

user interface classes, require restructuring. An improved object model for Ispel should
allow for more extensibility and solve the problem of integrating new environment tools.

To refine the object model further, a fully-fledged development environment should be
produced. The prototypes developed to refine Ispel are not sufficient to provide a visual
programming environment for software development. The object model developed for
the Eiffel prototype should be used as a basis for a full version of Ispel. The user interface
developed by the Prolog prototype should be used for the full version, in addition to
some of the enhancements described in this chapter.

This structure could be abstracted and applied to other visual programming
environments. A set of generalised classes for constructing visual programming
environments could be provided. This would simplify the process of constructing new
environments. A major problem with most interactive, graphical software, particularly
visual programming systems, is that they are currently produced from scratch (Myers,
90). Few tools exist which factor out some of the common elements of these systems and
can be tailored to a new task. Graspin (Mannucci et al, 89) provides a generator for CASE
tools, although this is still under development. Garden (Reiss, 87) provides an
environment generator for language prototyping and conceptual programming.

The concepts of the Ispel object-oriented implementation model may provide a high-level
descriptive language or environment generator tool. The Arcadia project (Rosenblatt et al,
89) has a type model for its implementation similar to the one used for Ispel. This is used
as a generalised way of expressing environment components which can be used as the
basis for an environment generator. The Ispel visual programming aspects could be
generalised to a generic graph editor with constraints from the object-oriented
programming language being used.

9.5 Enhancement of the Formal Specification

In addition to the implementation of Ispel, the formal model for the environment also
requires enhancement. It could encompass further aspects of Ispel and specify these
formally. At present, the graphical format of Ispel diagrams, and the generation of events
by the user, are not formally specified. The syntax of the specification could be improved
to make it clearer and more simplified. There may be some additional abstractions or
approaches to defining Ispel that would improve its formal specification. For example,
making use of more complex mathematical set and graph theories could assist this
process.

The specification given in Chapter 7 could be re-specified using the Z or Object-Z
notations, or another standard specification language. As tools are being developed to
enable programmers to construct these formalisms (Carrington et al, 90), these tools

Chapter 9 Future Research Page 169

should be used where appropriate. This will result in an improved and standardised
formal definition for Ispel. A definition constructed using these tools could be modified
and its correctness verified more easily. A suitable implementation structure may be able
to be generated by such a tool.

The formal definition of Ispel could be tied in more closely with the implementation of
Ispel. Object-Z can provide a mechanism to do this due to its object-oriented structuring
methodologies. A different approach to specification that utilises graphical and
mathematical definitions would be valuable. This would be more expressive and easier to
comprehend than an implementation model or ad-hoc implementation. A visual
representation of some of the formalism of Ispel may assist interpretation of it (for
example, the graphs and changes to the graphs can be expressed well graphically).
However, a visual specification requires a sound formal basis.

9.6 Performance Analysis and Evaluation of Ispel

An omission of this research is a comprehensive performance analysis of Ispel. This
includes comparing the use of the Ispel environment to construct programs with the
current Eiffel and Class Language environments. A comparison between these
approaches is necessary to determine which performs better. Experiments would need to
be conducted with control groups and programmers using each environment. Feedback
from programmers would provide valuable ideas for enhancing the user interface and
performance of Ispel.

However, this type of performance analysis is very difficult. The programming
environment field lacks both formal specification and performance analysis techniques
(Dart et al, 87, and Henderson and Notkin, 87). Many existing programming
environments and visual programming systems lack concrete data which proves they are
well defined and do indeed improve programmer productivity. Both informal and
statistical analysis would be useful for determining the strengths and weaknesses of Ispel.

9.7 Generalisation of Ispel to Other Languages

A problem in the field of programming environments is the lack of generic system
components and environment generators. The rest of this chapter addresses this problem
and suggests how abstraction of the concepts of Ispel may be useful in helping to solve it.

This thesis has concentrated on the application of Ispel to constructing and viewing Class
Language and Eiffel programs. Ispel could be used to construct other object-oriented
languages such as Object-Pascal and C++. The high-level structuring of these languages is
similar to that of Eiffel and Class Language due to their object-oriented nature. However,

Chapter 9 Future Research Page 170

all have different syntaxes, and some are hybrid languages which incorporate procedural
and functional components.

It may be possible to use a variant of Ispel as a programming environment for
conventional languages such as C and Pascal. These languages have a high-level structure
based around procedural decomposition, rather than data abstraction. Ispel could also be
used to represent complex data structures in these languages. Ispel may provide a basis
either for a structured analysis or a dataflow modelling tool for conventional languages.
Figure 9.6 shows an example of a C program represented in Ispel.

main

init fsize

fprintfdirectory stat

read
open close

Figure 9.6 A simple C program represented in Ispel.

9.8 Abstraction of Ispel to Visual Modelling

There are many common features between visual programming environments and other
forms of visual modelling (Myers, 90, and Raeder, 85). Most visual modelling systems
share common aspects and techniques, such as a direct manipulation interface, and
diagram construction and manipulation. Ispel was initially designed specifically as a visual
programming environment for Class Language to run on a Macintosh. Development of
the Eiffel prototype has shown that the concepts of Ispel are equally valid for constructing
Eiffel programs under X windows.

There are many other visual modelling tools where the concepts of Ispel are used or could
be applicable. Abstraction of Ispel to some of these application areas would help to further
generalise the Ispel implementation and formal models. It would also help to isolate
similarities and differences between various visual modelling systems.

Chapter 9 Future Research Page 171

9.8.1 Entity-Relationship Modelling

Relational database entities can be modelled graphically in a similar manner to Ispel
object-oriented programs. The Ispel concepts of multiple views and an environment
integration framework could usefully be applied to entity-relationship modelling. Entity-
relationship models have similar graphical properties to class structure diagrams (Czejdo
et al, 90).

9.8.2 CASE Methodologies

CASE systems provide diagramming and documentation facilities for the design and
analysis of software. Many of these systems have similar graphical representations to
Ispel class structure diagrams. Some typical analysis techniques that utilise diagrammatic
representations include:

• Dataflow analysis. Where the dataflow throughout a program is modelled
graphically. This is similar to the Prograph implementation language
(Gunakara, 89).

• Structured analysis. The structure of a program is modelled graphically and is
hierarchically built. For example, refer to Figure 9.6.

• Object-oriented analysis. Simple extensions to Ispel could allow it to perform as
an analysis tool analogous to the OOATool™ (Coad and Yourdon, 91).

9.8.3 Document Processing

The structure of documents can be modelled graphically. Ispel was useful for organising a
report on the Prolog prototype and development of an object-oriented implementation
model for the Eiffel prototype. The structure of documents has a hierarchical nature which
can be modelled graphically. A graphical representation of structure is more abstract and
easier to manipulate than a textual one (Myers, 90).

9.8.4 General Graph, List, and Tree Manipulation

The EDGE generic graph construction package (Newbury, 88) allows general graph
editing packages to be built. Graphical representation and manipulation are natural ways
to express the form of many kinds of data structures (Myers, 90, and Raeder, 85). Ispel
also provides an underlying representation underneath the visual representation of a
graph which can be manipulated.

9.8.5 Cataloguing

Ispel could provide a hierarchy browser for a library or cataloguing system. A class
library for Ispel could utilise its graphical representation and navigation facilities to

Chapter 9 Future Research Page 172

provide a graphical library for programmers. Ispel is well suited to graphically modelling
relationships, especially hierarchical ones, between objects.

9.8.6 Dynamic Object Modelling

At present, Ispel models static information, i.e. the classes and their relationships that
comprise an object-oriented program. Ispel could be used to model dynamic information.
Examples include:

• A Debugger. Object-oriented programs could be debugged visually. Ispel could
be used to model dynamic objects, utilising the views constructed to represent a
program. Additional views could be constructed specifically for run-time
viewing of the objects of a program. The GraphTrace package (Kleyn and
Gingrich, 88) models executing object-oriented programs in this manner.

• Database query languages. Entity-relationship modelling could be extended to
providing graphical database query languages. Queries could be constructed
graphically, using a similar format to database schema specification. It may also
be possible to display information visually (Czejdo et al, 90).

• Algorithm animation. Program visualisation has many similarities to visual
programming (Myers, 90). In addition to a visual modeller which could display
executing code (a debugger), algorithms could be specified in a similar way and
animated at run-time. The TANGO (Stasko, 89) system allows a user to specify
and view an executing program in this manner.

9.9 Describing Visual State Change

The specification of Ispel identified the lack of adequate visual specification formats. In
addition, development of a formalism for Ispel identified the lack of a high-level,
expressive method for specifying visual state change. Dataflow systems attempt to model
a low-level of visual state change, but this does not capture the actual change in a visual
object. For example, when a box is dragged from one location to another, or has a
graphical element of the box deleted. Expressing these state changes visually is difficult
using current representational techniques.

The need for a clear, concise method of specifying visual state change is twofold. First, to
specify the actions of a programming environment, some way of describing both visual
and formal state change is necessary. Second, if such a method of expressing these state
changes were developed, it may be possible to use this as a way of specifying
environments. This specification could be used to generate environments or other visual
modelling tools. It would also be a valuable documentation tool for software systems.

Chapter 9 Future Research Page 173

9.10 A General Model and Modeller Generator

Due to the commonalties between Ispel and other visual modelling systems, it may be
possible to create a generic visual modelling tool. It should also be possible to create a
generic, object-oriented programming environment. The fundamental structures and
visual representations are similar between object-oriented languages. The Ispel
environment for Class Language and Eiffel could be implemented so it could be tailored
for either language. It could also be used for a variety of other languages, like Object
Pascal and C++.

The major difficulties in creating such an environment include how to integrate existing
tools such as compilers, run-time systems, debuggers, and CASE tools. Some existing
tools could be integrated into a visual programming environment. However, many, like
the THINK Pascal system, would have to be rewritten to allow them to be included in
environments other than the one they were designed for. This means that a protocol for
tool communication and integration needs to be developed. Such a system would ensure
that the user interfaces, data storage, and communication aspects of tools, could be
integrated into one environment.

There are some structure-oriented editor generators and environment generators which
have been reasonably successful. These include the Cornell Program Synthesizer (Reps
and Teitelbaum, 87), PECAN (Reiss, 85), and EDGE (Newbery, 88). Some environment
generators exist that provide various visual programming facilities. These include Garden
(Reiss, 87), Graspin (Mannucci et al, 89), Arcadia (Henderson and Notkin, 87), and Gandalf
(Dart et al, 87, and Rosenblatt et al, 89). These systems have several disadvantages. They
are quite inflexible in terms of the environments and editors they produce, and force
programmers to do tasks in certain ways (Ambler et al, 88, and Myers, 90). They also
produce environments which are only partially extensible, and their extensibility is
confined to ideas which the original system designers took into account. The performance
of these environments and editors is often not very satisfactory (Myers, 90). This is due to
the generalised nature of their implementations. Many components of the system need to
be generalised so they can be used in other applications. This results in inefficiencies, and
so a trade-off between performance and general application of the system is made.

It may be possible to create a visual modeller generator that can be used to construct
visual programming environments. An alternative approach may be to utilise common
techniques for the specification of these environments, rather than actually generating
working environments. This specification could then be used as the basis for an
implementation. Object-oriented techniques that utilise reuse of existing facilities, and
allow these facilities to be further specialised, could be useful.

Chapter 9 Future Research Page 174

Such an environment generator or specification system could be programmed using itself.
The system itself could be the environment whose appearance and behaviour is changed
by a programmer. This would make the environment fully extensible, and allow
programmers to tailor it to their own requirements. A visual specification system would
be useful, but it would need to be able to specify visual state changes. A composite
graphical and textual specification system, similar to the graphical and textual
representations of Ispel, would probably be appropriate.

An environment generator would have to provide facilities to:
• Specify and construct a set of graphical diagramming tools.
• Specify an underlying representation for the diagramming tools.
• Specify and construct user interfaces for the various tools that comprise a

system. A user interface construction and prototyping tool would be useful.
• Provide data storage facilities which are common to all tools in the

environment.
• Specify and implement interfaces between tools in the environment.
• Allow tools from other environments and systems to be integrated into the

environment. This integration is a difficult task.

To produce such a system, the implementation and formal aspects of Ispel and similar
systems need to be well understood and be made extensible. Abstraction of Ispel to other
application areas would provide an opportunity to further analyse these requirements.

9.11 Summary

The research presented in this thesis is very open-ended, with several future research
topics being developed. Some future additions to the Ispel prototypes have been
presented which will enhance their visual programming and programming environment
capacities. Additional tools for the environment are proposed to assist a programmer in
utilising its benefits. The implementation and formal aspects of Ispel require further
enhancement to improve the environment’s performance and make it easier to specify
and implement. An in-depth performance analysis of a fully-fledged Ispel environment is
necessary to prove the benefits of visual programming with Ispel. It would also provide
valuable feedback for further environment enhancement.

Ispel could be abstracted to provide a programming environment for other object-
oriented and conventional languages. It could be used as a framework for improved
CASE tools for formal specification, design, analysis, and documentation. The concepts of
Ispel apply to a wide range of other visual modelling applications. A method for
specifying visual state changes would be useful for the specification of Ispel and for use in
a visual programming environment, or visual modelling tool generator. Many of the
commonalties of user interface construction could be expressed in a more high-level,

Chapter 9 Future Research Page 175

abstract form. This would simplify the construction of visual programming environments,
and other visual modelling, direct manipulation, and interactive systems.

Chapter 9 Future Research Page 176

Appendix A Specification of the Prolog Prototype Page 177

Appendix A
Specification of the Prolog Prototype

This is the initial specification of the Prolog prototype of Ispel. The design of the Prolog
prototype was derived from this initial specification. Implementation of the prototype
resulted in a substantial refinement of this specification.

This specification details the overall characteristics of the initial prototype, the basic issues
it will deal with, and some approaches that need to be discussed and evaluated before the
first prototype is implemented. The various issues and problems, methods of how to go
about solving them, and providing the required facilities, are detailed here. The actual
specification to be implemented in the first prototype is also detailed, but is subject to
change due to discussion, further research, or if a "better" solution is found.

A.1 Prolog Prototype Basic Characteristics

• Representation of classes.
• Manipulation of representation (boxes, lines, views).
• Limited navigation capabilities.
• No "Find"/"Search" facilities, no library.
• No collapse/expand views, limited manipulations of views/representation.
• Simple class representations:

• only class icons are "simple class" (box), "collection class" (shaded box).
• feature and inheritance are the only relationships modelled.

• Editing facilities for class textual details are limited:
• textual details inferred from the graphical representation is static i.e. it

can only be altered using the graphical class representation.
• text for the rest of the class details is dynamic and can be altered in the

editor.
• the editor is full-screen, but with limited facilities.

• Prototype name (for easier reference purposes): Ispel.

Appendix A Specification of the Prolog Prototype Page 178

Aim:
• To determine the feasibility of a graphical class structure tool.
• To determine the good and bad aspects of the first prototype system and

explore ways to improve the tool.

Method:
• Specify features of initial prototype (referred to as "Ispel #1").
• Discuss initial specifications with supervisors.
• Modify specifications as necessary if:

• deficiencies found.
• other work indicates a better method or if flaws are identified in an

existing method.
• Evaluate initial prototype by implementing and testing.
• Determine :

• Good and bad aspects.
• "Look and feel" issues - what's nice, what's "usable".
• What extensions and/or modifications are necessary to improve the

usability of Ispel #1.
• What features can be abstracted out and applied to Eiffel as well as Class

Language.
• Determine useful approaches to take and justifications for making these

decisions.

Appendix A Specification of the Prolog Prototype Page 179

A.2 Application Layout

Figure A.1 An example screen for Ispel #1.

The initial prototype will be laid out in a format that will be used by all subsequent
prototypes, and the final development tool, unless features are found not to be useful, or
improved features are discovered during the course of development and assessment of
the prototypes.

The initial prototype's application will have the following basic features:
• use Macintosh-standard user-interface (i.e. windows, menus, controls, icons).
• have a menu containing the available commands.
• have a side-palette of "drawing modes" for ease-of-use.
• utilize windows to provide various views and contexts.

The Ispel application is activated in the normal Macintosh way. Class structure files can be
saved from within the Ispel application, and this file provides a "database" of information
for the given Class Language application. For example, we may have a "Wallbrace" file
which contains the data Ispel needs to draw the Class structure diagrams, and access the
text associated with each class. Additional information is also stored in this file, as
documented in the specifications (see later). The Ispel application can be invoked by
double-clicking on the icon associated with one of its saved class structure files, and in this
case the class structure file (referred to from here as "Ispel application file") is opened and
is the "current application" within Ispel.

Appendix A Specification of the Prolog Prototype Page 180

There is a concept of multiple applications. Ispel provides the facility to edit and modify
several Class Language applications at once, and to copy classes between these
applications. For each application there is a concept of multiple views for the application.
This facility allows the programmer to view class structure diagrams in a variety of forms.

A.3 Multiple Views

The Ispel system has the concept of multiple views which provides various views of an
application's classes. The views available in the first prototype are:

• features
• inheritance

Other types of views and facilities for having them displayed will be provided in future
prototypes where necessary.

Views may occupy the same window per application, one window for all or each view
may have its own window.

Aim:
• To determine if Ispel needs multiple windows for views.
• If multiple windows are provided, what facilities are necessary to move

between these windows i.e. how do we change context.

Method:
• Implement various approaches and test using multiple applications and multiple

views.
• The approaches are:

1. A window for every view:
• need "windows" or "views" menu to change to a different view.
• probably need window hiding facility as the number of windows

will become quite large.
2. One window per application.
3. One "view" window for all applications:

• like option 2, this could prove quite restrictive.
• need a comprehensive menu to access applications and views

within each application.
4. A composite approach:

• initially one window per application.
• views are displayed in the same window unless programmer asks

for another window to be created (menu option?).

Appendix A Specification of the Prolog Prototype Page 181

Views will need to be stored in the application file for each program. When a view is
altered (i.e. programmer moves or changes class representation the view displays), the
changes need to be saved to the application file.

Views will be associated with a class. The class is called the "primary class" for the view.
For each class, the class may have a number of views. There will be one view designated
the "primary view" for the class. This view is displayed when the programmer requests
the view for the class to be displayed (see later).

The Ispel system must provide an easy-to-use facility to move between different views
and to create, delete or modify views (expand/contract classes, or display a different view
for a class).

An option to display the feature names for features in a view will be provided, and the
feature names can be added and updated. An example view is shown in Figure A.2.

Close View Primary Class Name
Change view icons

Window re-sizing

Figure A.2 An example view window.

Aim:
• To determine an effective method for moving between multiple views i.e.

"change of context".
• To determine an effective method of manipulating views: creation of new

views, contraction/expansion of views, options for changing views.

Appendix A Specification of the Prolog Prototype Page 182

Method:
• Discuss various approaches and determine which appear the most useful.
• Implement and test approaches :

 1. Menu to select various views.
 2. Command key on menu.
 3. Double-click on a Class to get its primary view.
 4. Move between windows :

• menu.
• click on piece of window.

 5. Icons on window bar to move to different views.
 6. Composite approach using some or all of the above.

A.4 Representation of Classes and Class Relationships

Classes and their relationships are represented as in Figure A.3.

Figure A.3 Examples of classes and their relationships.

In the first prototype of Ispel, there are no external classes, no recursive classes (or rather
no special representation for them), no classes-within-classes, and no generically-typed
classes. Also, the icons for classes are of only two types, namely a simple class and a
collection of a class.

Each view will show a collection of classes. The classes don't have to be connected in any
way, as the database will contain information describing views and where classes are
positioned within a specific view. One class within the view "owns" each particular view.
This is designated the primary class of the view. The first prototype will be implemented
with future extensions in mind. For example, in future implementations, it may be useful
to have different icons for classes rather than the two provided in the initial prototype.

Appendix A Specification of the Prolog Prototype Page 183

If boxes or lines overlap in the view, the principle for display is that lines are drawn first
and then boxes in order from the primary class of the view (i.e. primary class drawn, then
its features or classes it is a feature of, etc.).

A.5 Manipulating Class Diagrams

A.5.1 Selecting Operations to Perform

Aim:
• To determine how to provide the programmer with facilities to select

operations on the class structure diagram
• Determine what sort of operations the programmer will require, which of these

are "common" (i.e. will need to be selected easily), which need not be provided
quickly, and if "composite" operations are required (and, if so, how to provide
these).

Method:
• Discuss
• Implement most promising approaches and evaluate
• Augment with other approaches as necessary after testing

1. Use a side-palette to allow for selection of common operations (like
MacDraw II). For example :

Selection (for selecting class, line, name, etc.)

Add a new class to view

Add a new collection class to view

Add a feature connection to view

Add an inheritance connection to view

 Note that more operations will need to be provided for later versions of the
prototype.

 The problem with this approach is, not only will the number of
operations become quite large (eventually), but composite operations
need to be performed for ease-of-use e.g. add a new feature to an
existing class in the view. Common operations need to go into the
palette, and other operations need to be provided in some other way.

2. Using the palette idea, composite operations can be selected by selecting
more than one palette operation at once i.e. select one, use shift key to

Appendix A Specification of the Prolog Prototype Page 184

select another, and then use composite operation. The problem here is
that this is probably not all that easy to use (e.g. the "add new feature"
operation above is common, so one palette selection for it is required).
This approach can be modified so that the programmer can specify
operations that appear here, and leave the rest to appear in a menu or
whatever. Another problem is that composite operations may not be
well-defined (e.g. an inheritance feature line?!) or the operation may not
behave the way the programmer may want (e.g. the "new feature\
class". Does the programmer click on the existing class and then move
the new class somewhere, or click on the position for the new class and
then click on the existing class?).

3. Menus to provide operation selection. This will allow all of the basic
operations to be provided, but not composite operations. An approach
using a combination of palette (for common operations) and menu (all
operations) is probably best. Composite operations will probably not be
provided, but some of the more common (i.e. useful) operations will be
provided as single selections e.g. the "add new feature" and "add new
specialization"-type operations.

4. User-definable menus, palette and ability for user to define composite
operations. This may well be required, and composite operations may
need to be selected (if the number of operations gets large). This will be
delayed until a simple form of menu/palette selection has been
implemented and tested. Later versions and probably the fully-fledged
development environment will require something of this nature.

A.5.2 Adding Classes to the Current View

To add a class to the diagram, the following steps are envisaged :
1. Select "Add Class" operation from palette/menu.
2. Click on new position for class.
3. Supply new class name:

• via keyboard for the first prototype.
• later - need library/search options etc.

To add (for example) a new feature to an existing class in the diagram, the following steps
are envisaged:

1. Select operation. How this will be done is still to be decided!
2. Click on class to add to.
3. Click in new position of class.
4. Enter class name as above.

Appendix A Specification of the Prolog Prototype Page 185

5. The feature name may need to be provided at this point as well. This may be
delayed until the feature names are displayed by explicit request from the
programmer.

A variation on this is to select the class to add to first, and then select either the composite
operation, or just the "Add Class" operation (the system must have a well-defined set of
operations to perform when there are multiple selects and so on).

A.5.3 Connecting Classes in the Current View

Classes within a view need to be connected in some way to display the relationships
between the classes. How the connections are established and the positioning of the
classes and their relationships within a view, is a key aspect of the programming
environment. There are several issues to consider here :

• How to connect two existing classes within a view.
• How to add a new class to a view and connect it to an existing class.
• The positioning of the connections between classes.
• Naming the connections in a view (for features).

Aim:
• To determine how to connect classes within a view (i.e. how to establish

relationships between classes within a view).

Method:
• Discuss various approaches and evaluate.
• Implement the most promising approach and test it.

1. Use Prograph "pins" idea. Figure A.4 shows an example of two boxes connected
with a line and using pins on the boxes.

Figure A.4 An example of boxes connected using a line and pins.

Appendix A Specification of the Prolog Prototype Page 186

 To connect two existing classes, click on the pin of one of the classes. Hold down
the Option key and drag line to a pin on the other class. Release key/mouse
button and the connection is established.

 To connect an existing class to a new class, select appropriate operation, then
select the existing class. A new class is added to the diagram, with its pin
connected to a pin on the first class. The new class can then be dragged to an
appropriate position.

 Pins can be created and deleted on a class "box" in the same manner as
Prograph uses i.e. the pin is selected and Command-D pressed to delete, the
mouse is moved to a "click area" around the class box, and the mouse button
pressed to create a new pin. The pins are moved by selecting them and
dragging them to a new position (on the box edge, obviously!)

 This approach has several draw-backs. The most important one being that the
diagrams that result from this are not particularly consistent with conventional
class structure diagrams. Also, for a different type of class structure diagram
(e.g. the Eiffel version), this representation will look quite "unnatural". Also,
many diagrams are clearer when the class connections issue from just one point
on the class box. This could be resolved by allowing more than one connection
from a class pin to other classes.

2. Connections could be established in a similar manner to the above but all
originate from one point on the class icon. This may prove to be an overly
restrictive approach, and the resulting representation becomes unwieldy when
manner class relationships are displayed. In this case, the connections would be
made by simply selecting the class rather than a pin.

3. The pin approach could be used, but with the pins not being displayed - i.e.
there is a conceptual "click area" around classes that can be used to connect class
relationships to. The relationship "lines" could be re-positioned on the class box
edge by selecting the end of the line (if would have a click area too) and moving
it along the edge. This would achieve the same result as for pins, but without
the actual pin representation on the diagram.

4. For the first prototype, a simple connection mechanism will probably suffice.
However, for future prototypes, flexibility will probably be necessary as more
complex class structure diagrams are modelled, and the simple class icons used
in the first prototype, are replaced by more complex icons. A composite
approach seems the most likely to be useful (as with previous design decisions).
The concept of "pins" is retained, however the pins are not actually displayed,
but have a conceptual "click area" which determines the location of a connection

Appendix A Specification of the Prolog Prototype Page 187

to a class. A default "pin area" is required where connections are made to a class,
located in the centre of the class icon. Two of these default connection areas
exist - one on top of the icon and the other on the bottom. Once connections
have been established, the connections can be moved along the icon box by
selecting the connection like and dragging it.

5. In future versions of the prototype, more sophisticated connections are
required for recursive classes and composite connections e.g. inheritance and
classification displayed using the same connection lines. This is ignored in the
design of the initial prototype, but will need to be considered in the future, at
which time a better understanding of connection representation and
manipulation will have been gained, via implementation and evaluation of the
first prototype.

The first prototype will use a default connection point at the centre of the top and bottom
edges. All connections will be represented as originating from this point. This may prove
restrictive and unclear (especially for inheritance connections which have arrows on one
end of the line), and may need to be augmented by allowing connections to be dragged
along the edge of the classes to which they are attached.

A.5.4 Manipulating Classes in the Current View

Classes are moved within the current view by clicking on the class and dragging it to the
desired position (i.e. in the normal Macintosh way). This action will be displayed as per
Prograph, where the class is "ghosted", and is moved about until the programmer releases
the mouse button, whereupon the display is redrawn with the selected class in its new
position. Overlapping is resolved by the connections being drawn first and then the
classes. This may not be an entirely satisfactory approach, especially when the feature
names are displayed beside the connections. This will be explored further during testing
of the first prototype.

A.5.5 Display and Editing of Feature Names for Classes

When a connection is established for a feature relationship between classes, the feature
name of the feature needs to be provided for the connection. This provides the name of
the feature that the class containing the feature uses to access features of the feature i.e. it
corresponds to the name "theRoof" of type "Roof" in Figure A.5.

Appendix A Specification of the Prolog Prototype Page 188

 class Storey.
 theRoof : Roof.
 ...
 end Storey.

Figure A.5 An example of class text.

The feature names may, or may not, be viewed on a class structure diagram. A menu
option will be provided to view feature names or not. When a feature connection
between classes is established, the programmer will need to supply a feature name for the
connection. This can be typed as text next to the feature connection, where it will be
displayed. It may be necessary to suppress the naming of features, which may be useful
e.g. when first designing the overall class structure. A menu option can be provided for
this, if necessary, and a further option to find and display all features without feature
names.

The first prototype will always display the class names unless this is found to be unhelpful
in certain situations. When a connection between two classes is established, the feature
name will be required to be entered when the connection is displayed (i.e. entry of the
feature name is the final step in adding a connection). If a feature is added to an existing
class within a view, then the feature name is supplied after the new feature type’s name.

The initial prototype will also check to see that there isn't already a feature of the class
using the same feature name (a simple but useful check!).

A.5.6 Selection Manipulation in the Current View and Between Views

Selecting an area from a view (i.e. positioning a box around a portion of the view in the
normal Macintosh manner), and manipulating this selection, will be required at some
stage. The selected area can be copied and then pasted into another view (possibly a view
for another application), and also deleted from the current view. A new view could be
created with the selection being the basis for the new view. The first prototype will have
no selection operations, but evaluation of the prototype should suggest areas where this
selection mechanism will be useful.

A.5.7 Expansion and Contraction of Views

The initial prototype will provide no facilities to expand and contract details shown within
a view e.g. selecting a class in the view, and then selecting an option to display all of the
features of the selected class. Evaluation of the first prototype should determine where
operations such as these are useful.

Appendix A Specification of the Prolog Prototype Page 189

A.5.8 Other Class Relationships and Views

The initial prototype will only have the facilities for connections and views described
above, or some variation on these. Class relationships such as classification, class
parameters, function and procedure parameters, return types, class features (procedure
and function names), display of public and private features (i.e. class interface), flattening
of inheritance hierarchies (i.e. display of all inherited features and actual class features),
and other facilities, will be examined and provided in future prototypes.

The first prototype will be used to determine the feasibility of the basic ideas, and to get a
feel for the issues involved. More sophisticated viewing operations and more portions of
Class programs moved to graphical rather than textual representation and manipulation
will be provided in future prototypes. Improved integration between the textual and
graphical features of the Ispel system will also be developed in future prototypes, when
the problems with the initial prototype have been evaluated via implementation and
testing.

A.6 Editing Class Details as Text

One of the main problems with the proposed development environment centred on using
graphical display and manipulation of high-level details is the cross-over point between
graphical and textual programming. The class structuring, inheritance hierarchies and
feature relationships are modelled graphically in the first prototype. In future prototypes,
more of the high-level design aspects will be represented and manipulated graphically,
but a large portion of the class details will still be represented and manipulated in text.
This is true for Eiffel programs using this development environment as well as Class
Language. In fact, most Eiffel details will have to be in text as we do not have access to the
Eiffel compiler and run-time system source code. Part of the prototype evaluation will
involve determining which aspects can be used graphically and which must remain as
text.

The cross-over occurs when the details of a class are to be modified. In the first prototype
this will involve all manipulations apart from inheritance and feature specification. The
text of the class will need to be edited using some type of full-screen text editor, and then
the graphical representation re-displayed once the text of a class has been updated.

The first prototype will use a simplistic solution to the problem. This "solution" will not be
acceptable in a final development environment, but will suffice for initial testing purposes.
When the text for a class is edited for the first time in Ispel #1, the class template
corresponding to the graphical representation will be generated. For example, the
diagram in Figure A.6a is shown as text in Figure A.6b.

Appendix A Specification of the Prolog Prototype Page 190

Wing

Roof Storey

theRoof theStorey

Figure A.6a A class structure diagram.

class Wing.
 theRoof : Roof.
 theStorey : set of Storey.
end Wing.

class Roof.
end Roof.

class Storey.
end Storey.

Figure A.6b The text for the classes in the diagram.

Note that the theStorey feature of Wing is a set of Storey classes. There is a problem that
it could have been a bag, or in future versions of Ispel, it may be some user-defined
generic collection type such as a list, array, stack, or whatever. The first prototype ignores
this representational problem (the graphics simply denote a feature collection of classes,
while the actual collection mechanism is denoted by text).

In the above example, the text generated by entering the editor is static and cannot be
altered within the text editor. This solution is too simplistic as it means programmers must
discipline themselves to update class features in the graphical editor, and other class
details within the text editor. A much closer integration is desired for future prototypes,
but this area requires more research.

The first prototype will have a very restricted text editor, or possibly, will not have any
text editing facilities at all (when class details are "edited", the textual representation is
simply generated and displayed). All the textual elements derived from the graphical
representation is static and cannot be edited as text. Any simple type features (e.g.
something of the form roofArea : integer) and other class details like procedures, rules,
when constructs and so on are edited as text. Any class type features added to the textual
representation are not reflected back to the graphical representation in the first prototype.
There are problems here such as if a new feature is added of some class type in the text
editor, and then in the graphics editor, they must be reconciled. This will probably only be

Appendix A Specification of the Prolog Prototype Page 191

solved by parsing the text to determine the class type features and storing extra
information in the data base to link textual and graphical constructs. Such issues are
ignored in the first prototype.

Future prototypes will need facilities to separate out things like public and private
properties (i.e. the class interface), class parameters for class creation, provide facilities to
modify features, rules, whens, procedures and functions, and so on. These issues are
ignored in the first prototype, although implementation design may need to take some
sort of account of these issues to ensure modification of the first prototype is not too
difficult.

Entering the text editor for a class from the graphical representation needs to be simple
and yet a well-defined process. With the concept of multiple views for the graphical
representation of the classes, the textual view of a class can be thought of as another type
of view, or some special type of operation on a class.

Aim:
• To determine a suitable method of moving between graphical views to the text

editor. This ties in with manipulating views in general.

Method:
• Implement a solution or some composite solution from the various possible

approaches.

1. Double-click on a class to get its primary view, and then double-click on the
class again. This will edit the class' textual details.

2. Use Prograph idea of a "left and right hand side" of the class box icon. Double-
clicking on different sides of the icon gives different results e.g. the left hand
side is the primary view for the class, and the right hand side is the class details.
If the class has no primary view, then the details are edited immediately. This
approach is more flexible and, once a programmer has got used to this facility,
it may prove easier to use than the more cumbersome first approach.

3. Use the Prograph "icons on icons" idea. Prograph has a class icon which is a
hexagon with two smaller icons on each side of it. One is for the features of the
class, and the other for the methods of the class (Prograph only represents class
hierarchies in a graphical way, and there are only two views of the classes per
application, i.e. of each of the "root" classes and one of the class hierarchies for
one "root" class at a time. Features for each class are normally hidden and only
the feature name and an icon is displayed - not the type).

4. Menu option - select class to edit and use menu/command key. This will
probably be provided in conjunction with the second solution, and be evaluated
by testing.

Appendix A Specification of the Prolog Prototype Page 192

This concludes the initial specification of the first prototype of the Ispel programming
environment for Class Language. The next step is the discussion of this specification and
improvement to a rigourous specification for the first prototype. Then a design of an
implementation of Ispel will be required, with elements such as the database, the
prototype structure, the main classes to be used, and the graphical tools to be used. The
implementation will probably be in an object-oriented language using object-oriented
design techniques, in order to keep the prototype as extensible as possible, and to
evaluate the programming environment of an existing object-oriented language.
Prograph is the favoured language at this point in time, but more experimentation needs
to be conducted using the Prograph system before a final decision is made. Eiffel is ruled
out due to the poor implementation we have at our disposal.

During further specification and implementation of the prototype, the broader issues for
future prototypes will be considered. Also, various aspects of the environment will be
abstracted and examined to determine if they can be applied to other object-oriented
languages (specifically Eiffel). Features of the graphical programming environment that
require data from the compiler, or require the textual details of a class to be parsed will be
identified. Possible methods to obtain information will be examined and the prototype
will be written with not only extensibility in mind, but with an open-ended architecture to
allow for flexible approaches to gathering information about class details.

Appendix A Specification of the Prolog Prototype Page 193

Appendix B Prolog Prototype Implementation Page 195

Appendix B
Prolog Prototype Implementation

This appendix contains extra information on the Prolog prototype implementation. The
structure of the Prolog prototype is explained in more detail. The Prolog prototype’s
relational model is described, and the relational database and access predicates to this
database are discussed, along with some examples of their use. The save file format and
GDL pictures for boxes and lines for the prototype are also presented.

B.1 The Prototype Structure

The Prolog prototype is divided into a number of separate modules. These are
implemented as LPA code windows, and are used to assist maintenance and
understanding of the Prolog code. In addition, the code in these windows is incrementally
compiled by the LPA compiler. When a window is updated, all the code in the window is
re-compiled. The structuring of the code is designed to minimize the number of windows
that need re-compiling by keeping related code together in one window.

Figure B.1 shows the structure of the Prolog prototype, and the different components it is
divided into:

• Database provides access predicates to the relational database and implements
this database.

• Classes and Features updates class and feature relationships in the database.
• Class Text generates class text and allows the user to edit this text.

Ispel

DatabaseUser Interface

Classes & Features

LPA Specific

Class Text

Visual

Figure B.1 The structure of the Prolog prototype.

Appendix B Prolog Prototype Implementation Page 196

The LPA specific, user interface, and visual aspects are further divided. Figure B.2 shows
the LPA specific component:

• Defined contains default settings for the prototype.
• Files provides predicates to save and reload applications.
• Graphics constructs and displays box and line pictures in windows.
• Initialize sets up the prototype when it is invoked.

LPA
Specific

Files Graphics

Defined Initialize

Figure B.2 LPA specific component of the Prolog prototype.

Figure B.3 shows the user interface component:
• Menus provides pull-down menus to select operations.
• Tools provides palette tools to select operations.
• Dialogs provides dialogs to present and obtain information.

User Interface

Menus Tools Dialogs

Figure B.3 User interface component of the Prolog prototype.

Figure B.4 shows the visual component:
• Views provides predicates to manipulate and move between views.
• Windows creates and deletes windows.
• Boxes and Lines contains predicates to allow boxes and lines to be added,

removed, and double-clicked on.

Appendix B Prolog Prototype Implementation Page 197

Visual

Views

Windows

Boxes and Lines

Rename Boxes

Figure B.4 Visual component of the Prolog prototype.

B.2 The Relational Model

Table B.1 describes the entities, relationships, and attributes that comprise the Prolog
prototype’s relational database model. A diagram of the entities and their relationships is
contained in Section 4.4.

Appendix B Prolog Prototype Implementation Page 198

Entity Attributes/

Relationships
Type Values Description

application name
file_name
path_name

string
string
string

key

application name
file name for application
path name for application

class class
applic
primary_view
features
parents

string
link
link
list
list

key
application
view
feature
class

class name (also key)
application of class
primary view of class
list of class features
list of class generalizations

feature feature_id
applic
name
type
kind
visible

unique
link
string
link
enum
enum

key
application

class
S,L,P,F,PA
yes,no

feature primary key
application of feature
feature name
feature type (a class)
Simple,List,Procedure,
 Function or PArameter

window window_id
applic
name
current_view

unique
link
string
link

key
application

view

window primary key
application of window
name of window
current view in window

view view_id
applic
primary_class
sequence_no
window
pictures

unique
link
link
integer
link
list

key
application
class
1-9
window
box/line

view primary key
application of view
primary class for view
sequence number of class
window view is displayed in
list of boxes/lines for view

box box_id
view
represents
position

unique
link
link
(x,y)

key
view
class/
 feature

box primary key
view box is in
class or feature for box
x and y coordinate of box

line line_id
view
start_box
end_box
type
attributes

unique
link
link
link
enum
enum

key
view
box
box
F,G
S,B

box primary key
view line is in
start box for line
end box for line
Feature or Generalization
Side of Bottom of boxes

Table B.1 The entities, relationships, and attributes of the relational model.

Appendix B Prolog Prototype Implementation Page 199

B.3 Database Access Predicates and Examples

The database routines for the Prolog prototype use basic SQL (Structured Query
Language) names for access to the relational database. Each entity has its own set of
access predicates. The box entity access predicates are shown in Figure B.5.

insert_box(BoxId,View,Defaults)
 % Insert a box into the database, with the box owned by
 % the given View, and with its attributes initialised
 % to the given Defaults.

select_box(BoxId,Attributes)
 % Select the requested attributes for the given Box.
 %
 % Attributes is of the form
 % [Attribute|Attributes]
 % a list of attributes to select and return values for
 % view(View)
 % to select the view this class is contained in
 % represents(class(ClassName))
 % the box represents a class ClassName
 % represents(feature(FeatureId))
 % the box represents a feature given by FeatureId
 % position(X,Y)
 % to select the X and Y co-ordinates for a box.

select_boxes(BoxId,Attributes)
 % Select the requested attributes for one or more
Boxes.
 % Attributes is the same format as for select_box/2

update_box(BoxId,Attributes)
 % Update the attribute values for the given box.
 % Attributes is the same form as for select_box/2

delete_box(BoxId)
 % Delete the given box from the database.

Figure B.5 The database access predicates for the Prolog prototype.

These access predicates are used in other parts of the Prolog prototype to add, update,
retrieve, and delete information. The relational database is implemented as asserts and
retracts of Prolog predicates into the Prolog database. These access predicates isolate the
implementation of the database from the rest of the prototype code. This allows the

Appendix B Prolog Prototype Implementation Page 200

database to be implemented in a different way in future without having to change
anything else in the program.

Figure B.6 shows an example of the box database routines being used by another part of
the Prolog prototype. This code adds a new class box to a view.

Appendix B Prolog Prototype Implementation Page 201

/*
 * Add a class to the given window at position (X,Y).
 *
 */

add_class_to_window(Window,X,Y,NewBox) :-
 select_window(Window,current_view(View)),
 grid_box(X,Y,BX,BY),
 add_box(NewBox,View,[represents(class(none)),
 position(BX,BY)]),
 draw_box(Window,NewBox),
 % get the class name for the box
 (get_classbox_name('',ClassName) ->
 update_box(NewBox,
 represents(class(ClassName))),
 draw_box(Window,NewBox),
 make_selected(Window,[NewBox]),
 current_applic(Applic),
 % if the class doesn't exist, create it
 (select_class(ClassName,Applic,exists) -> true
 ; add_class(ClassName,
 [primary_view(View),
 features([]),
 parents([])])
)
 ; remove_box(NewBox)
).

/*
 * Delete a box from the window & database.
 *
 */

remove_box(BoxId) :-
 % remove from the window (if its currently displayed!)
 select_box(BoxId,view(View)),
 (select_window(Window,current_view(View)) ->
 undraw_box(Window,BoxId)
 ; true
),
 % remove from the database
 delete_box(BoxId).

Figure B.6 An example of box database access routines being used.

Appendix B Prolog Prototype Implementation Page 202

B.4 Prototype Save Files

The save file format used in the Prolog prototype is very simple. Programs are saved as a
text file, and entities from the Ispel relational database are saved as Prolog terms. These
can be read back into Ispel and inserted back into the database to restore a program. The
terms used to save entities are:

• applic(Name,FileName,PathName).

• feature(FeatureId,Name,Type,Attributes,Visible).
• class(Class,PrimaryView,Features,Parents).
• window(WindowId,CurrentView,Name,Data).
• view(ViewId,PrimaryClass,Window,SequenceNo,

 PreviousView,Pictures).
• box(BoxId,View,Represents,X,Y).
• line(LineId,View,StartBox,EndBox,Kind,Attributes).

Figure B.7 shows an example program that was constructed using the Prolog prototype.
Figure B.8 shows the save file for this program.

Figure B.7 An example Ispel program.

Appendix B Prolog Prototype Implementation Page 203

applic('Test',test,'blah:Grad:John G:Prolog:Ispel').
feature(feature0,'Wings','Wing',list,no).
feature(feature1,'Roof','Roof',simple,yes).
feature(feature2,'Sections','Section',list,yes).
class('Building',view0,[feature0],[]).
class('Roof',view0,[],[]).
class('Section',view0,[],[]).
class('Wing',view0,[feature1, feature2],[]).
window('Test-Test',view0,'Test',
 data(40, 1, 220, 381, 64, 1, 300, 100, -100, -300)).
box(cbox3,view0,feature(feature2),-70,65).
box(cbox2,view0,feature(feature1),-235,65).
box(cbox1,view0,feature(feature0),-155,-15).
box(cbox0,view0,class('Building'),-155,-70).
line(line0,view0,cbox0,cbox1,feature,bottom).
line(line1,view0,cbox1,cbox2,feature,bottom).
line(line2,view0,cbox1,cbox3,feature,bottom).
view(view0,'Building','Test-Test',1,none,
 [line2, cbox3, line1, cbox2, line0, cbox1, cbox0]).

Figure B.8 The save file for a sample Ispel program.

When programs are reloaded into the Prolog prototype, the unique keys for entities must
be re-allocated. These may be in use by another application in Ispel and so must be
reassigned when a program is reloaded.

Appendix B Prolog Prototype Implementation Page 204

Appendix C Weakest Precondition Notation Page 205

Appendix C
Weakest Precondition Notation

This appendix explains the weakest precondition notation used to formally describe Ispel
operations in Appendix D. It also discuses the notation used to define operations, which is
a variant on the weakest precondition notation.

C.1 Weakest Precondition Notation

Operations are defined using a weakest precondition notation often used for formal
program correctness analysis. The notation used in this appendix is derived from (Gries,
81), and a brief overview of the notation is given here. Gries (81) should be consulted for a
full definition of states, predicates, and the weakest precondition notation.

Definition

A program can be defined as {Q} S {R}, where Q is the precondition state, R is the
postcondition state, and S is a sequence of program statements. A program is correct if,
when execution of S begins in any state satisfying Q, the program will end in a finite
amount of time in a state satisfying R.

The weakest precondition for a program S is denoted as wp(S,R), where R is the predicate
to be satisfied. The value of wp(S,R) is a predicate describing the most general state that,
when execution of S begins in this state, S will terminate in a state satisfying R.

Definition

The null statement, ⊥, is defined as:

wp(⊥,R) = R

This means that any state that execution of ⊥ begins in, the statement will terminate, still
satisfying the initial state.

Ispel operations are described in terms of the {Q} S {R} notation, where Q = wp(S,R). An
operation is described as:

Appendix C Weakest Precondition Notation Page 206

operation_name(parameters) ⇐ {Q} S {R}

where parameters is an n-tuple <p1,p2,...,pn> of values used in S.

Refer to Gries (81) for a complete proof that the weakest precondition holds for multiple
statements and satisfies the laws of predicate calculus.

C.2 Assignment

Assignment is defined as a state change, where the value of a variable is exchanged for
the value of an expression.

Definition

The weakest precondition for assignment is:

 wp(a← e,R) = domain(e)∧ Re
a

This means that when e is evaluated in a valid domain, a is replaced by the expression e in
predicate R.

C.3 Conditional Statement

The conditional statement is denoted as:

if B1 → S1
| B2 → S2
...
| Bn → Sn
fi

For abbreviation, the general command is referred to as IF, while BB denotes the
disjunction B1∨B2∨...∨Bn.

The weakest precondition for the conditional statement is:

wp(IF,R) = domain(BB)∧BB∧(B1⇒wp(S1,R))∧...∧(Bn⇒wp(Sn,R))

or to simplify:

wp(IF,R) = (∃i:1≤i≤n:Bi)∧(∀i:1≤i≤n:Bi⇒wp(Si,R))

C.4 Iteration

Iteration is denoted as:
do B1→S1
| B2→S2
|...

Appendix C Weakest Precondition Notation Page 207

|Bn→Sn
od

The general command is referred to as DO, and H0(R) is defined as the set of states in
which DO terminates in 0 iterations with R true:

H0(R) = ¬BB∧R

Hk is defined as the set of all states in which execution of DO terminates in k or fewer
iterations:

Hk(R) = H0(R)∨wp(IF,Hk-1(R)), for k>0

Definition

The weakest precondition of the iteration command is:

wp(DO,R) = (∃k:0≤k:Hk(R))

C.5 Execute

The execution of an Ispel operation results in a state change. This means that the
statements, S, of the operation are executed and the postcondition, R, is satisfied.
Execution of operations can only be performed when Ispel is in a state that satisfies the
precondition, Q, of the operation. All operations record the state change made so that the
operation can be reversed.

Definition

The execution of an operation is denoted by:

Execute[operation(Poperation)] <=
{Qoperation}
Soperation
{Roperation}

where:
• operation is the name that denotes state change(s)
• Poperation is the parameters to the operation
• Qoperation is the precondition for the operation
• Soperation is a sequence of transformations (state changes) for the operation
• Roperation is the postcondition for the operation

This results in the statements which comprise the operation being performed, and the
state change to the Ispel graphs defined by the operation is carried out. In order for

Appendix C Weakest Precondition Notation Page 208

Execute to be valid, prior to execution domain(Poperation)∧Qoperation must be true, and
after execution, Roperation must be true.

Execute can be viewed as a function with side effects which returns true or false,
depending on whether or not the operation can be performed. If the precondition is true,
the operation can be performed. If the precondition is not true, then the operation cannot
be performed.

C.6 Operation Parameters

Operations cause state changes of the Ispel graphs as they are applied. These state
changes can be reversed, and they are recorded by storing them in lists.

Definition

Every operation has three parameters associated with the execution of the operation:

Execute[operation(Poperation)]αβχ

where:
• α denotes the underlying representation graphs.
• β denotes the visual representation graphs.
• χ denotes the history operation list. This is a sequence of operations that has

been applied to the given underlying representation and visual representation
graphs.

All state changes that the operation performs change the two graph states in some way.
These changes are recorded in the third list. This allows the state changes to be reversed.

For example, to add a feature box and line:

Execute[add_feature(V,A{C(F)→T})]αβχ ⇐
{N{F(T)}∉β}
α←α∪{C(F)→T}
β(V)←β(V)∪{A{C(F)→T},N{F(T)}}
{C(F)→T∈α∧N{F(T)}∈β(V)∧A{C(F)→T}∈β(V)}

Execute[add_feature(V,A{C(F)→T})] will cause this operation to be performed, so long as
the precondition is true.

The parameters are changed by execution of the operation, and are passed to other
operations within the operation (see Section C.8). Thus Execute is procedural in operation
rather than functional.

Appendix C Weakest Precondition Notation Page 209

C.7 Undo

Operations can be reversed by executing the Undo of an operation.

Definition

The Undo of an operation is denoted by Undo[operation(Poperation)], and is defined as:

Execute[operation(Poperation)] ⇐
{Roperation}
¬Soperation
{Qoperation}

Where ¬Soperation is defined as the reverse of the state changes of Soperation. The effect of
Undo[operation(Poperation)] is to reverse the state change(s) performed by
Execute[operation(Poperation)].

Execute takes three parameters which are the states of the underlying and visual
representations, and a list of operations performed on these graphs. Undo also takes
these three parameters, and an additional parameter, δ, which is a list of operations to
reverse. The effect of executing Undo is to reverse the state changes that were performed
and record these in the history operation list.

Undo[operation(Poperation)]αβχδ ⇐
{Roperation}
do ε∈δ→
 Undo[ε(Pε)]αβχδε
od
{Qoperation}

Note that for each state change being reversed, the parameters α, β, and χ from the
operation being reversed are altered.

C.8 Complex Operations

Operations can be simple operations that perform one state change, or complex
operations that perform multiple state changes. Complex operations are comprised of
simple operations and other complex operations.

Definition

A complex operation is a list {o1,...,on} of operations.

Execute for a complex operation is defined as:

Execute[complex_op(Pcomplex_op)]αβχ ⇐
{Qcomplex_op}

Appendix C Weakest Precondition Notation Page 210

do oi∈complex_op→
 Execute[oi(Pi)]αβχ
od
{Rcomplex_op∧(∀i:1≤i≤n:oi(Pi)∈χ)}

Undo for a complex operation is defined as:

Undo[complex_op(Pcomplex_op)]αβχδ ⇐
{Rcomplex_op}
do o∈δ→
 Undo[o(Po)]αβχδo
od
{Qcomplex_op}

i.e. it is the same as Undo for simple operations.

Note that the wp(S1 S2,R) = wp(S1,wp(S2,R)). This means for {Q} S1 S2 {R}, Q =
wp(S1,wp(S2,R)) (Gries, 81). So, for a complex operation, Qcomplex_op =
wp(o1,wp(o2,...wp(on,Rcomplex_op)...)). This implies that all preconditions for sub-
operations of a complex operation must be valid in the order the sub-operations are
performed for the complex operation to be valid.

The result of Execute is defined as either a state change in Ispel from Q to R, or no state
change, depending on whether the operation was valid or not. For a complex operation, if
one of the simple operations that comprise the complex operation is invalid (precondition
violated), the state change cannot be performed. In this case, the precondition Qcomplex_op
will be invalid. Alternatively, as the history list for a complex operation is built as each
sub-operation is executed, if a sub-operation fails, the history list operations can be
undone to reverse the effects of the operation.

Appendix C Weakest Precondition Notation Page 211

Appendix D Ispel Formal Definition Page 213

Appendix D
Ispel Formal Definition

This appendix presents a formal definition of the visual and underlying representation
operations from Chapter 7. The operations in Table 7.1 are formally defined here as state
changes on the graphs defined in Chapter 7. The operations are expressed in the weakest
precondition notation described in Appendix C.

This notation can be used to prove a program is correct. Normally, it is not used in
programming, as it focuses on low-level detail and becomes cumbersome. However, due
to the abstract level of description provided by the formal definition of Ispel as graphs, it
is suitable for proving the operations on these graphs are correct.

Operations are categorized into addition, removal, and renaming. A distinction between
visual, underlying, and abstract operations is also made. Abstract operations are the
operations requested by a programmer using Ispel. They include both visual and
underlying representation operations. For example, adding a class box and inheritance
line to an existing class results in a new class box, new line, and possibly a new
generalization arc and class node.

D.1 Abbreviations

These are the abbreviations used in the following sections:
• α are the underlying representation graphs passed as a parameter.
• β are the visual representation graphs passed as a parameter.
• χ are the history operations passed as a parameter.
• V is a view.
• C is a class.
• F is a feature name.
• T is a feature type (i.e. a class).
• N is a node.
• A is an arc.

For every operation, the history operation list will be updated with all the state changes
performed by the operation. These additions to the history list are omitted for clarity.

Appendix D Ispel Formal Definition Page 214

D.2 Addition Operations

Class and feature boxes, and generalization and feature lines can be added to the visual
representation. These can result in changes to the underlying representation graphs.

D.2.1 Add a Class Box

Execute[add_class(V,C)]αβχ ⇐
{}
δ←∅∗
α←α∪{C}
δ←δ∪{α←α∪{C}}*
β(V)←β(V)∪{N{C}}
δ←δ∪{β(V)←β(V)∪{N{C}}}*
χ←χ∪{add_class(V,C)δ}*
{N{C}∈β(V)∧C∈α∧{add_class(V,C)δ}∈χ∗}

* These denote the history operations for the add_class operation. In the remainder of this
formal definition the updating of the history operation list is omitted for clarity.

D.2.2 Add a Feature Box and Line

Execute[add_feature(V,A{C(F)→T})]αβχ ⇐
{N{F(T)}∉β}
α←α∪{C(F)→T}
β(V)←β(V)∪{A{C(F)→T},N{F(T)}}
{C(F)→T∈α∧N{F(T)}∈β(V)∧A{C(F)→T}∈β(V)}

D.2.3 Add a Specialization Box and Line

Execute[add_specialization(V,N1{C1},N2{C2})]αβχ ⇐
{A{C1→C2}∉β∧Ν2{C2}∈β}
α←α∪{C1}
α←α∪{C1→C2}
β(V)←β(V)∪{N1(C1)}
β(V)←β(V)∪{A{C1→C2}}
{C1→C2∈α∧C1∈α∧A{C1→C2}∈β(V)∧N1{C1}∈β(V)}

D.3 Removal Operations

Inheritance lines, class boxes, and feature boxes can be removed from the visual
representation graphs. Boxes can be hidden (only the visual representation if affected) or
cut (both the visual and underlying representations are affected).

D.3.1 Cutting an Inheritance Line

Execute[cut_line(V,A{C1→C2})]αβχ ⇐
{A{C1→C2}∈β(V)}
α←α-{C1→C2}
β(V)←β(V)-{A{C1→C2}}

Appendix D Ispel Formal Definition Page 215

{A{C1→C2}∉β(V)∧C1→C2∉α}

D.3.2 Hiding a Class Box

Execute[hide_class_box(V,N{C})]αβχ ⇐
{N{C}∈β(V)}
β(V)←β(V)-{N{C}}-decendants(V,N{C})
{N{C}∉β(V)∧decendants(V,N{C})∉β(V)}

D.3.3 Hiding a Feature Box

Execute[hide_feature_box(V,N{F(C)})]αβχ ⇐
{N{F(C)}∈β(V)}
β(V)←β(V)-{N{F(C)}}-decendants(V,N{F(C)})
{N{F(C)}∉β(V)∧decendants(V,N{F(C)})∉β(V)}

D.3.4 Cutting a Class Box

Execute[cut_class_box(V,N{C})]αβχ ⇐
{N{C}∈β(V)}
do C→C1∈α→
 α←α-{C→C1}
 do A{C→C1}∈β(V1)→
 Execute[hide_class_box(V1,N1{C})]αβχ
 od
od
{N(C)∉β(V)∧¬(∃C1→C2:C1→C2∈α:C=C1)∧
 ¬(∃C1→C2:A{C1→C2}∈β:C=C1)}

D.3.5 Cutting a Feature Box

Execute[cut_class_box(V,N{F(C))}]αβχ ⇐
{N{F(C)}∈β(V)}
do C→C1∈α→
 α←α-{C→C1}
 do A{C→C1}∈β(V1)→
 Execute[hide_class_box(V1,N1{C})]αβχ
 od
od
do C1(F)→C∈α→
 α←α-{C1(F)→C}
 do N{F(C)}∈β(V1)→
 Execute[hide_feature_box(V1,N{F(C)}]αβχ
 od
od
{N{F(C)}∉β(V)∧¬∃(C1→C2:C1→C2∈α:C=C1)∧
 ¬(∃C1→C2:A{C1→C2}∈β:C=C1)}

D.4 Renaming Operations

Classes and features can be renamed. Both the underlying and visual representation
graphs are affected by these changes.

Appendix D Ispel Formal Definition Page 216

D.4.1 Renaming a Class

Execute[rename_class(C1,C2)]αβχ ⇐
{C2∉α}
α←α-{C1}∪{C2}
do C1→C3∈α→
 α←α-{C1→C3}∪{C2→C3}
od
do C1(F)→C3∈α→
 α←α-{C1(F)→C3}∪{C2(F)→C3}
od
do C3(F)→C1∈α→
 α←α-{C3(F)→C1}∪{C3(F)→C2}
od
{C1∉α∧N{C1}∉β}

D.4.2 Renaming a Feature

Execute[rename_feature(C,N{F1(C1)},F2)]αβχ ⇐
{C(F2)→C1∉α}
α←α-{C(F1)→C1}∪{C(F2)→C1}
{C(F1)→C1∉α}

D.5 Other Operations

Two complex operations are re-selecting a class and expanding a class. Re-selecting a class
affects both the underlying and visual representations, while expanding a class only
affects the visual representation.

D.5.1 Re-selecting a Class

Re-selecting a class can be done on a feature or class box.

D.5.1.1 Class Box

Execute[reselect_class(V,N{C1},C2)]αβχ ⇐
{C1≠C2}
/* add C2 if necessary */
α←α∪{C2}
/* change the inheritance relationships in view */
do A{C3→C1}∈β(V)→
 α←α-{C3→C1}∪{C3→C2}
od
/* delete the decendants of C1 from view */
do D∈decendants(V,N{C1})→
 if D=N1{F(C)}→
 Execute[hide_feature_box(V,N{F(C)})]αβχ
 | D=N2{C}→Execute[hide_class_box(V,N2{C})]αβχ
 | D=A{C3→C4}∨D=A{C3(F)→C4}→⊥
od
/* change C1 to C2 in view */
β(V)←β(V)-{N{C1}}∪{N{C2}}

Appendix D Ispel Formal Definition Page 217

{N{C1}∉β(V)∧N{C2}∈β(V)}

D.5.1.2 Feature Box

Execute[reselect_feature(V,C3(F)→C1,C2)]αβχ ⇐
{C1≠C2}
/* add C2 if necessary */
α←α∪{C2}
/* change the inheritance relationships in view */
do A{C4→C1}∈β(V)→
 α←α-{C4→C1}∪{C4→C2}
od
/* hide decendants of F(C1) in all views that use it */
do N{F(C1)}∈V1
 do D∈decendants(V,N{F(C1)})→
 if D=N{F(C)}→
 Execute[hide_feature_box(V1,
 N{F(C)})]αβχ
 | D=N{C}→
 Execute[hide_class_box(V1,N{C})]αβχ
 | D=A{C3→C4}∨D=A{C3(F)→C4}→⊥
 fi
 od
od
/* change feature relationships */
α←α-{C3(F)→C1}∪{C3(F)→C2}
{N{F(C1)}∉β(V)∧Ν{F(C2)}∈β(V)}

D.5.2 Expanding a Class

A class can have its parents, children, or features expanded in a view. P, C, and F indicate
whether or not the parents, children, and features should be expanded:

Execute[expand_class(V,N1{C1},P,C,F)]αβχ ⇐
{N1{C1}∈β(V)}
if P→
 β(V)←β(V)∪parents(V,N1{C1})
| ¬P→⊥
fi
if C→
 β(V)←β(V)∪children(V,N1{C1})
| ¬C→⊥
fi
if F→
 β(V)←β(V)∪features(V,N1{C1})
| ¬F→⊥
fi
{(¬P∨parents(V,N1{C1})∈β(V))∧
 (¬C∨children(V,N1{C1})∈β(V))∧
 (¬F∨features(V,N1{C1})∈β(V))}

where:

Appendix D Ispel Formal Definition Page 218

parents(V,N1{C1}) = {N2{C2},A{C2→ C1}}

{C2→C1|C2→C1∈α∧ A{C2→C1}∉β(V)}
U

children(V,N1{C1}) = {N2{C2},A{C1→ C2}}

{C1→C2|C1→C 2∈α∧A{C1→C2}∉β (V)}
U

features(V,N1{C1}) = {N{F (C2)},A{C1(F)→ C2}}

{C1(F)→C2|C1(F)→C2∈α∧A{C1(F)→C2}∉β (V)}
U

D.6 Future Extensions

This formalism can be extended to define more visual programming facilities of Ispel. For
example, sets which contain the public and parameter features for classes could be added
to the underlying and visual representations. In addition, some of the additional
operations described in Table 7.1 could be defined in a formal manner. Other object-
oriented features, like generic classes and classification in Class Language, should be
described formally if Ispel is to support them. A formal definition how other environment
tools interact with this formalism may be required to define this process.

Appendix D Ispel Formal Definition Page 219

