
 Applying the Evolving Frameworks Pattern Language to Multi-View Software Design
Tools

J.G. Hosking Member IEEE, J.C. Grundy Member IEEE, W.B. Mugridge Member IEEE
Department of Computer Science

University of Auckland, New Zealand
{john,john-g,rick}@cs.auckland.ac.nz

Abstract

The Evolving Frameworks Pattern Language (EFPL) describes the development of software
frameworks over time. Based on our experience of the evolution of the JViews framework over
almost ten years, we verify in this paper the ability of the EFPL to describe the evolutionary
development process of our framework. JViews is a mature framework for constructing visual
and textual editing environments that support multiple views, notations and users.

We have found the EFPL patterns describe the evolution of our framework well. However,
as some of our experiences (and that of others) are not covered by the existing patterns, we
propose additions to the pattern language. We hope our experiences with the framework, and the
patterns, will be useful to developers of software design tools, frameworks and pattern languages.
Keywords: Patterns, Frameworks, Integrated Environments

1 Introduction

The Evolving Frameworks Pattern Language (EFPL) [1] is a collection of inter-related
patterns that describe the development of large-scale software frameworks over time. According
to the EFPL, a typical software framework is initially formed from three example applications,
whose commonalities are generalised into an initial white-box, reusable framework. Evolution of
the framework typically results in movement to a black-box approach (using aggregation rather
than inheritance to use the framework classes). Further enhancements usually include the
development of reusable component libraries, identification of reuse “hot spots”, and the use of
fine-grained objects in the framework. Visual builders and language tools to support generation
of classes using the framework may be longer-term developments. Each of these evolutionary
characteristics is captured in the EFPL as a related Design Pattern.

In this paper we describe the application of the EFPL to the evolution of our JViews
framework [2]. We developed JViews over many years as a framework for the construction of
multiple view, multiple user editing environments. It has undergone many extensions and
enhancements, and is now a large, mature framework. Hence it is an ideal candidate to calibrate
the EFPL against. Our aim here is to both validate that the EFPL captures well the evolution of
complex software frameworks, and to propose the addition of several new patterns to the EFPL
based on our experience with JViews.

The following section describes the Evolving Frameworks Pattern Language, including a
categorisation of its patterns. We then introduce the JViews framework, giving an overview of its
evolution. The bulk of the paper examines each of the patterns in EFPL and their applicability to
our experiences in evolving JViews. We then discuss areas where EFPL could be improved,
based on our own work with JViews and the reported results of others. This leads us to propose a
number of new patterns for inclusion into EFPL. We finish with conclusions and future work.

2 The Evolving Frameworks Pattern Language

Roberts and Johnson [1] introduce software frameworks as “reusable designs of all or part of
a software system described by a set of abstract classes and the way instances of those classes
collaborate”. They developed the Evolving Frameworks Pattern Language (EFPL) to describe the
possible evolution of such frameworks. The language describes “a common path that frameworks
take, but it is not necessary to follow the path to the end to have a viable framework”.

T im e

3 E x a m p le s

W h i te -b o x F r a m e w o r k B la c k -b o x F ra m e w o rk

C o m p o n e n t L ib r a r y

H o t S p o ts

P lu g g a b le O b je c t s

F in e - g r a in e d O b je c t s

V is u a l B u i ld e r

L a n g u a g e T o o ls

P la t f o r m M ig r a t io n

A p p l ic a t io n In t e g r a t io n

R e f le c t iv e F r a m e w o r k

O r ig in a l E v o lv in g
F r a m e w o r k s P a t te rn

L a n g u a g e
D e s ig n P a t te rn s

O u r P r o p o s e d
E x te n s io n s to th e

E F P L

S e l f - E x te n d in g F r a m e w o r k

Fig. 1: Patterns in the Evolving Frameworks Pattern Language.

Fig. 1 shows the patterns making up the EFPL plotted against time. Although not explicitly

described as such in the pattern language, this consists of four groups of patterns:
• An initiator pattern, called “Three examples”, which describes the genesis of a framework

via generalisation from an initial set of applications.
• Architecture patterns, “White Box Framework” and “Black Box Framework”, which

describe the overall architectural form of a framework at two points in its evolution.
• Transformation patterns, “Component Library”, “Hot Spots”, “Pluggable Objects”, and

“Fine Grained Objects”, which describe how the structure of a framework changes and
matures over time, improving the framework’s reusability, maintainability and generality.

• High level tool patterns, “Visual Builder” and “Language Tools”, describing evolution of
high level generation and debugging tools to simplify construction of applications.

• Our suggestions for EFPL extensions, including “Platform Migration”, “Application
Integration”, “Reflective Framework” and “Self-extending Framework”. These further
extend a framework’s capabilities and follow from our experience with JViews evolution.

To illustrate the pattern language, Roberts and Johnson use as a running example the
evolution of the Model-View-Controller (MVC) framework [3], supplemented by examples from
the Runtime Systems Expert framework [4].

3 The JViews Framework

The JViews framework has evolved over 10 years [2], [5], [6], [7]. It aims to support the
design and implementation of visual environments that support multiple views with different
representations and inter-view consistency. A typical example of such an environment might be a
CASE tool supporting various types of UML diagram. The framework provides support for
specification and implementation of:

• An underlying shared repository, for storing environment state.
• The information represented in the various views.
• Consistency management and mappings between views.
• Visual representation and manipulation of elements in the views.

The underlying abstraction of JViews is the Change Propagation and Response Graph

(CPRG) [6]. Each significant object in the environment is represented by a graph component.
Components have attributes representing state. Graph edges represent relationships between
components, and are themselves components. Changes to components or the graph structure are
captured as discrete change description objects, which are propagated along inter-object
relationships. Components may respond to, store, or re-propagate received change descriptions.

The JViews framework supports the construction of three-layer applications based on
CPRGs. Fig. 2 shows the basic architecture. The display layer represents visual objects, which
can be manipulated by the end user. The view layer provides an abstraction of these as a
collection of CPRGs, one for each view. Inter-view relationship objects link the view layer
CPRGs with the base layer CPRG, which provides a shared repository of environment data.
Changes at the display level modify a view CPRG. The change is propagated to the base layer
CPRG via the inter-view relationship links and the base layer re-propagates the effects to other
view CPRGs. A later extension of the framework supports a fourth layer, which coordinates
activities between multiple base level CPRGs, allowing several JViews-based applications to
interact with one another in a relatively seamless fashion.

Base Layer

Display Layer

View Layer

Other User’s Environm ent

Other V iew s

Fig. 2: JViews 3 layer architecture

Fig. 3 shows an application that was developed using an early version of JViews [7]. This

integrates two tools, SPE and Serendipity. SPE is a CASE tool that supports editing of class
diagrams for the visual design of object oriented programs (1), together with textual class

implementations generated from, and kept consistent with, the visual designs (2). Serendipity is a
workflow and process modelling tool (3). This allows specification and implementation of
complex hierarchical process models, including the roles and artefacts that are applicable to
various stages in a process. In the combined environment, Serendipity process models can be
enacted. Changes made in SPE are then recorded against the currently active process stage (4).

Fig. 3: SPE/Serendipity integrated environment.

3 Examples

White-box Framework

Black-box Framework

Component Library

Hot Spots

Pluggable Objects

Fine-grained Objects

Visual Builder

Language Tools

Platform Migration

Application Integration

Reflective Framework

Self-extending
Framework

Aspect Objects; XML

SoftArch meta-model/GUI

White-box: APIs Black-box: Aspects

Prolog (Mviews) to Java (JViews)

JVisualise debugger

JComposer meta-CASE Tool

BuildByWire GUI Objects

Persistency/Distribution; Collaborative Work

Relationships; Command; Factory

Event filters/actions

Ispel; SPE; MViewsER

MViews

JViews

View editing; Event man.

Fig. 4. An overview of the evolution of the JViews framework.

In the following sections, we relate the evolution of JViews to the EFPL design patterns. We
have adapted the pattern writing pattern language of [8] to do this. In each section, we briefly
summarise an EFPL pattern (indented) and detail our relevant experience with the development
of JViews. For the complete description of the EFPL patterns, the reader is referred to [1].

To give a context for much of the discussion in the following sections, Fig. 4 outlines the
evolution over time of the JViews framework. It shows some of the evolutionary milestones of
JViews against the EFPL patterns (along with our additional four patterns) on the vertical axis.

4 Three examples pattern

This is the initiator pattern for EFPL.
The context is that you have decided to develop a framework for a particular problem domain and the

problem is how to start designing the framework?
A summary of the forces is:
• People develop abstractions by generalizing from concrete examples.
• Having an initial framework makes it easier to develop more examples.
• Projects that take a long time to deliver anything tend to get cancelled, so build something to deliver

from the start.
The solution is to develop three applications that you believe that the framework should help you build.

These applications should pay for their own development.

This pattern matches exactly the initial development of JViews. Initially we developed a
multiple view class-diagramming tool, Ispel [5]. From this we abstracted a general framework,
MViews (subsequently JViews). We used MViews to develop an early version of SPE,
combining diagrammatic and textual programming [5]. To demonstrate the generality of the
framework and to extend it further, we developed an entity-relationship modelling tool,
MviewsER. This supports visual ER diagrams and textual relation specifications, with
consistency maintained between the two types of view [9].

In the rationale for this pattern, EFPL argues that “the general rule is: build an application,
build a second application that is slightly different from the first, and finally build a third
application that is even more different than the first two”. The first two applications we
developed were both to support tools for object modelling, the second extending the first to
provide better textual modelling support. The third application (the ER tool) was different in
nature to the first two, supporting ER rather than object modelling. This allowed us to tease out
support for OO modelling environments from that required for other types of environment

EFPL argues that the initial three applications pay for the development of the framework.
The initial application, Ispel, was developed as a Masters thesis project. Tackling a larger
development would have been impossible in the time available. Each subsequent application
formed natural material for a research paper, a suitable payoff in the academic domain.

5 Architecture patterns

EFPL introduces two architectural patterns, the “White Box Framework” and the “Black
Box Framework”. The problem and forces are identical, but the differing contexts lead to
different solutions.

The problem is that some frameworks rely heavily on inheritance, while others relay on polymorphic
composition; which should you use?

The forces involved are:
• Inheritance results in strong coupling between components, but it lets you modify the components that

you are reusing, so you can change things that the original designer never imagined you would change.
• Making a new class involves programming.

• Polymorphic composition requires knowing what is going to change
• Composition is a powerful reuse technique, but it is difficult to understand by examining static program

text.
• Compositions can be changed at runtime.
• Inheritance is static and cannot be easily changed at runtime.

5.1 White Box Framework
For the White Box Framework, the context is that you have started to build your second application.
The solution in this case is to choose inheritance and build a white box framework [10] by generalizing

from the classes in the individual applications.

In our JViews development, we abstracted from the initial Ispel application, separating out
classes that provided general support for multiple view environments from those specific and
concrete classes related only to the Ispel CASE tool. The relationship between the abstract and
concrete classes was implemented as an inheritance hierarchy with method overriding and
abstract method implementation used to modify or implement behaviour. This formed our initial
white-box framework, MViews, implemented in an OO-Prolog [5].

In the rationale for this pattern in EFPL, the argument is made that “at this point in the life
cycle, you probably do not have enough information to make an informed decision as to which
parts of the framework will consistently change across applications and which parts will remain
constant”. This was quite correct in our case, as we had no clear idea of what the significant
building blocks were, and were continually adding new mechanisms to the framework (eg for
persistency, collaboration support). The APIs couldn’t readily be frozen. At this point, we used
the programming-by-difference approach of [10] to obtain a clearer idea of what classes were
changing with each new application and what could be abstracted into the framework. This is as
recommended in the implementation section of the White Box Framework pattern.

5.2 Black Box Framework

For the second architecture pattern, the Black Box Framework, the context is that you are developing

pluggable objects by encapsulating hot spots and making fine-grained objects. The latter are the transformational
patterns of EFPL, ie the framework has been applied for a while and the “building blocks” are better understood.

The solution in this case is to choose to use inheritance to organize your component library but to use
composition to combine the components into applications.

In a black-box framework, composition of provided software components can reduce or

eliminate programming effort. Dynamic modification of an application based on such a
framework is enabled through adding or replugging such reusable components [10].
Categorisation can help organise components so that the right ones can be found. However, to
have an appropriate collection of reusable components at the right granularity requires a maturing
of the framework through application of the transformation patterns of the next section.

Our second-generation framework, JViews, has rapidly matured into a Black Box
framework [2]. Much of a JViews-based application can be constructed by composition of stable,
fine-grained components. We have obtained enormous benefits from adopting a component
approach. Most notably, we are able to dynamically modify and extend JViews-based
environments by end user addition of components. As a result, JViews-based environments are
highly configurable, and task automation agents can be rapidly constructed [2].

There are still parts of the system that require programming as opposed to composition; the
most common approach to implementing these is through inheritance. However, there is
considerable tool support to assist with this (see Section 7).

6 Transformation patterns

This collection of patterns in EFPL guides the evolution of the framework from the initial
White Box architecture to the more mature Black Box architecture. These patterns identify and
exploit code commonalities and shift the architecture basis from inheritance to composition.

6.1 Component library
The context for this pattern is that you are developing the second and subsequent examples based on the white

box framework.
The problem is that similar objects must be implemented for each problem the framework solves and so how do

you avoid writing similar objects for each instantiation of the framework.
The forces involved are:

• Bare-bones frameworks require much effort to reuse, while things that work out of the box are much easier. A
good library of concrete components makes a framework easier to use

• Its hard to tell initially what components will be reused. Some will be problem specific - some will be reused
most times

The solution is to start building a simple library of concrete components and add extra ones as you need them.
Add all components initially and later remove ones that never get reused. These are still useful as they give examples
of how to use the framework.

Many concrete classes were implemented in MViews for use in SPE, particularly for

graphical icons and event handling code. Many were adapted or generalised for use in
MViewsER, using programming by difference or other adaptation mechanisms. Gradually a
stable underlying collection of reusable classes developed. Classes that were successfully reused
from the initial concrete applications included those supporting event histories, view editing and
event representation and handling. At the time the framework was re-implemented in Java to
produce JViews, the opportunity was taken to trim out little used classes to avoid the overhead of
re-implementation. We also began developing a reusable library of event handling building
blocks (“filters and actions”) [2] to aid construction of common event-handling approaches.

6.2 Hot Spots
The context for this pattern is that you are adding components to the component library.
The problem is that as you develop applications similar code gets reused over and over again. These code

locations are called “hot spots”. How do you eliminate this similar code?
The forces are:

• If changeable code is scattered it’s difficult to trace and change
• If changeable code is in a common place flow of control can be obscure

The solution is to separate code that changes from code that doesn’t, encapsulating the changing code in
objects. Composition can then be used to select the appropriate behaviour rather than having to subclass.
Appropriate design patterns are used to encapsulate changes.

Hot spots were commonly found when using the initial MViews white box framework.

Identifying these caused a reorganisation of the code to localise impact of the hot spots. For
example, the Command pattern was used extensively to encapsulate menu interaction behaviour
and Factory Methods and Abstract Factories to encapsulate CPRG component generation.

Much of the code for managing event handling was originally distributed. We found that
much of this code could be moved into the relationship classes, which implement the edges in the

CPRGs. Common categories of behaviour were then observed, primarily related to change
description propagation. Refactoring led to several generic relationship classes, each representing
a common type of behaviour that was needed when linking CPRG nodes together. Relationship
specialisations for aggregation, inter-component attribute dependency, and multiple views (view-
of) were rapidly developed and added to the component library.

6.3 Pluggable Objects
The context for this pattern is that you are adding components to your component library.
The problem is that most of the subclasses differ in trivial ways (eg only one method overridden). How do you

avoid having to create trivial subclasses?
The forces involved are:

• New classes increase system complexity
• Complex sets of parameters make classes difficult to understand and use

The solution is to design adaptable subclasses that can be parameterised with messages to send, code to
evaluate, colours to display, buttons to hide, etc. Use state variables to represent differences between individual
instances.

This pattern was commonly applied in the early development of MViews. The relationship

classes, again, provide an example of this. Many of the generic relationship classes could be
reused directly, with initialisation parameters used to specify the individual usage differences.
For example the generic inter-component attribute dependency relationship was parameterised
with the names of the parent and child attributes that were to be kept consistent.

When MViews was re-implemented as JViews, using Java, many individual classes were
collapsed together and turned into JavaBean components with settable properties for
customisation. Other examples of pluggable objects include those for persistency support,
distributed system support, and view consistency management.

A more recent use of this pattern was in the development of plug-and-play collaborative
work components [11]. These were added to JViews to allow users to choose various
collaborative work facilities, collaborative editing, highlighting, view element locking, messaging
and shared versioning, to plug into a JViews-based system at run-time. This proved a successful
approach. It improved greatly on the earlier MViews-based equivalents, which were hard-coded
into MViews framework classes, included whether they were needed or not [12]

6.4 Fine-grained objects
The context for this pattern is that you are refactoring your component library to make it more usable.

The problem is how far should you go in dividing objects into smaller ones.
The forces involved are:

• The more objects in the system the harder it is to understand
• Small objects allow applications to be constructed by composing small objects together so little programming is

required
The solution is to keep breaking objects into smaller pieces until it doesn’t make sense to divide further - ie

decide on the “atomic” level for this domain. The rationale is that frameworks will ultimately be used by domain
experts so tools will be developed to compose objects automatically. Hence, it’s more important to avoid
programming than to avoid lots of objects.

In MViews, graphics components were initially “large”, representing, say, an entire class

icon. These were extensively decomposed when developing JViews so that more generic
components for individual lines, boxes, text boxes, and, more interestingly, various types of
positional constraint, etc were developed. These supported the design of new types of GUI
element by composition. However, this level of refinement necessarily went hand in hand with

the development of BuildByWire [13], a GUI element construction tool that could be used to
visually compose GUI elements together, and supported libraries of pre-composed elements.
Without this tool the level of granularity would have been too fine as the code needed to program
the composition, and the complexity caused by the shear numbers of component used would have
outweighed any advantage gained by adopting the pure composition approach.

7 High–level tool patterns

The following two patterns describe the evolution of tools to support rapid use of the
framework. One type of tool supports the composition of applications using the fine grained
components in the, now, black box framework. Another type of tools supports understanding of
the execution behaviour of applications constructed using the framework.

7.1 Visual builder
The context is that you have a black box framework and applications are constructed by composing objects.

Behaviour is now determined entirely by interconnection of components. Application is now in two parts:
• Script to connect parts and turn them on
• Behaviour of parts (provided by framework)

The problem is that the connection script is very similar between applications. How do you simplify its
construction?

The forces involved are:
• Compositions are complex and difficult to understand
• Building tools is costly, but domain experts don’t want to be programmers

The solution is to construct a visual language and environment to construct the script. This generates the code
for the application.

For JViews we have developed a number of visual tools for JViews, to assist in composing

components and generating applications, as illustrated in Fig. 4. JComposer is a tool that allows
high level specification and generation of CPRG components [14]. It comprises several visual
languages. One is for specifying components and relationships, similar in approach to UML class
diagrams. A data flow based visual language is used for specifying dynamic behaviour, by
composing CPRG components and prepackaged filter and action components. These are linked
together by event flows, where the events are encapsulated as CPRG change descriptions.

JComposer enables the visual specification and generation of the bulk of the base and view
layers of a JViews application. Further programming is needed, however, to compete the
application. This is handled by the generation of two classes for each component. The first,
abstract class contains the bulk of the generated code and is not altered by the programmer. The
second inherits from the first class and contains method stubs; once modified, it is not
regenerated. This separation allows regeneration of parts of the environment, while retaining the
hand coded modifications, another application of the Hot Spot pattern.

BuildByWire is a tool for visually composing elements used in the display layer of a JViews
application [2], [13]. This adopts a composition metaphor, with discrete user interface elements
being composed using constraints as the “glue”. The resulting visual elements are constructed as
reusable JavaBean components, suitable for the CPRG API. This allows them to be integrated
with the JComposer views, permitting display and view layers to be visually composed together.
The tool generates view editors, which allow end users to instantiate and manipulate instances of
the visual components. Composite property sheets are constructed for composite user interface
elements (allowing attributes of aggregated elements to be exposed or hidden, renamed, etc).

Fig. 4: JComposer tool specifying components of a CPRG (left top) and a task automation
agent (left bottom), BuildByWire specifying a UML Actor icon (right top), and SoftArch specifying

a high level architectural view (right bottom)

Recently, we have developed another visual tool, SoftArch, which allows high level

architectural specification of JViews based environments [15]. This supports refinement to
JComposer-based CPRG component specifications.

Development of these visual tools, particularly BuildByWire, went hand in hand with
application of the transformation patterns, particularly Fine Grained Objects and Pluggable
Objects. Without the motivation of construction of the visual tools, the decomposition of
components into fine-grained objects would not have occurred. The complexity of scripting was
definitely the motivation for development of JComposer. Much of the work in connecting
together elements of a CPRG is repetitive and mundane, but sufficiently different each time that
parameterisation approaches were inadequate and a more generative approach was required.

7.2 Language Tools
The context for this pattern is that you have created a builder
The problem is that visual builders create complex composites. How do you inspect and debug these
The forces that exist are:

• Existing tools are inadequate as they don’t provide information at the right abstraction level
• Building good tools takes time

The solution is to create specialised debugging and inspection tools.
The rationale here is that because the atomic building blocks of your application are now the pluggable

objects and fine-grained components of your black box framework, you need tools that allow you to visualise
application behaviour in terms of these abstractions.

We have aggressively applied this pattern in all of our visual language work. Our strong

feeling is that as you are applying the Visual Builder pattern, you should concurrently apply the
Language Tools pattern to construct visualisation tools to match your visual construction tools. In
our case, we have found that a desirable approach in constructing such language tools is to
attempt as much as possible to reuse the visual abstractions adopted in the corresponding visual
builder. Our JVisualiser tool (Fig. 5, left) uses a similar notation to the JComposer CPRG
specification tool, replacing generic component icons with actual instances.

Fig. 5: JVisualiser used to visualise and extend a JViews application (left) and SoftArch

visualising execution behaviour of an application at an abstract level (right)

One advantage of developing pluggable objects is that our visualisation tools can often also

be used to dynamically extend an environment by “plugging in” precomposed components. The
event flow notation is used to link these new components with existing ones, allowing dynamic
generation of new software agents. These may be used to monitor behaviour (eg compile
statistics, record certain types of changes, etc) or to extend the environment with new user-
specified task automation agents. The SoftArch tool also has a visualisation tool that uses the
design refinement links to allow high level architecture components to capture and visualise in
appropriate ways, eg using colour to indicate frequency of method calls, events associated with
components implementing them (Fig. 5 right).

8 Critique and Extension of Evolving Frameworks

It is clear from the previous sections that EFPL describes the development of the JViews
framework well. All patterns were applicable and the contexts, forces, solutions and rationale
appropriate. However, some of our experiences were not captured by the pattern language. From
our experience with the development of JViews and our understanding of the development of
other frameworks, we believe that additions to the EFPL can be made that others may find useful.
We note that Ruping [16] has developed a pattern language for developing a framework in
parallel with the first application. This can also be considered a variant or extension of EFPL.

We propose the addition of four new patterns to EFPL:
• “Platform migration”, an extra transformation pattern
• “Integrating applications”, for composing several applications developed with the

framework
• “Reflective Framework”, an architecture pattern allowing framework components to

be self-describing
• “Self-extending Framework”, where the framework itself can be run-time extended

with new abstractions.

The existing EFPL “Visual builder” and “Language tools” patterns can be used with the
third and fourth of these new patterns to provide greater framework reuse support.

8.1 Platform migration

The context for this pattern is that you have constructed a white box framework and have
been applying the transformation patterns to partially develop a black box framework.

The problem is that the framework is implemented using a software platform (ie
implementation language, set of application libraries, and/or operating system API) that is either
unacceptable to a large fraction of potential end users or constrains further development of the
framework due to performance or technology limitations.

The forces are:
• As it takes time for a platform to mature, an appropriate choice of implementation platform

when you commence may no longer be fashionable or appropriate as the framework matures.
• Significant new languages/platforms with advantageous technology features arise on a 7-10

year cycle. Frameworks may take many years to mature meaning the chances of a fashionable
new platform arising as a framework matures are high.

• A language or platform suitable for rapid prototyping may have been used to develop the
initial framework implementation. This may cause performance or accessibility problems as
the framework matures.

• Another platform may have technology or ideas that would be desirable to leverage off in
further development of the framework.

• By this stage of development the software architecture of the framework has, to a large
extent, stabilised and is becoming well understood.

• Re-implementing a framework on another platform is extremely expensive.
• Supporting multiple implementation platforms is expensive.

The solution is to re-implement the framework on a more appropriate or accessible platform
retaining as much of the underlying design architecture of the original implementation as is
possible while using the technology advantages offered by the new platform to improve
performance or capability of the framework.

The rationale is that a framework needs to be used to make the cost of development
worthwhile. If a large fraction of potential framework users (ie software developers using the
framework to construct partial or complete applications) consider the platform to be
inappropriate, the framework will die through lack of adoption, or its growth may be severely
limited. In addition, unpopular or inaccessible platforms are unlikely themselves to be growing
and incorporating new technological features thus making the task of extending the framework
increasingly more difficult. If this is the case, the relative cost of shifting platforms must be
weighed against the opportunity cost of not shifting. As the architecture of the framework has
now stabilised, the important structures and mechanisms are well understood at an abstract
platform independent level. This means that re-implementation costs can be minimised through
reuse of this abstract architecture together with appropriate parts of the framework design.

Although this pattern may on the face of it seem somewhat trite, it encapsulates one of the
most important choice points that can be faced in the development of a framework. The decision
to re-implement comes about when a number of the forces described above coalesce together and
overcome the strong emotional and cost inertia against redevelopment.

Implementation of this pattern can be a time consuming and expensive operation. Reusing
as much of the existing architecture and design as possible minimises the redevelopment cost. A
possible preliminary step that eases the redevelopment is to refactor the original framework to
separate platform specific and platform independent components, using patterns such as Bridge to
achieve this. Implementation also provides an opportunity and strong motivation to concurrently

apply many of the other transformation patterns, as the cost of implementing them is amortised
into the cost of re-coding the framework as a whole, and may reduce that cost. For example,
weeding unused components out of the component library, finding appropriate solutions for Hot
Spots, and creating pluggable components may all reduce the overall cost of re-coding the
framework by reducing the amount of code to translate. The need to migrate platforms may well
overcome past inertia against making these changes. Facilities available in the new platform,
notably graphics support, may spur the development of Fine Grained Objects. Application of
these concurrent changes can lead to a period of accelerated evolution of the framework.

One of the most significant liabilities in using this pattern is that framework users may be
forced to migrate existing code investment to the new platform. This may involve considerable
investment on their part and may thus be used as an excuse to stop using the framework.

Examples
JViews was originally developed (as MViews) using a bespoke OO Prolog developed by

ourselves and limited to Macintosh OS. This platform was convenient for rapid prototyping, but
clearly limited the potential audience for our framework. As we scaled up the size of application
using the framework, the platform caused performance problems. For this reason, we re-
implemented the framework in C++ and then Java. The time cost of implementing the C++
version meant this never completed. At the time the Java implementation was done, we took the
opportunity to make many changes to minimise the amount of code that required translating. We
also exploited the, at that time, new JavaBeans technology to create large numbers of pluggable
components. Following conversion to Java the original implementation was no longer supported.

Brad Myers’ group developed Garnet, a user interface development framework,
implemented in Common Lisp [17]. This platform caused similar, though less severe, benefits
and problems to those we faced with our initial implementation platform. For this reason,
Amulet, a C++ framework that “incorporates the best ideas of Garnet” was developed [18]. As
part of this development, code associated with individual windowing platforms was isolated and
a portable graphic events manager (GEM) developed [18]. Similarly commands were
reformulated as Command Objects. Both are examples of Hot Spot application during migration.

The Standard Template Library (STL) is a C++ framework for data structures [19]. With the
advent of Java, there was strong pull from the Java community for an equivalent framework in
Java. This led to the development of the Java Generic Library (JGL) [20], a translation of STL
into Java. At the time of translation, changes were made to STL to leverage off new technology
in Java, such as the built-in iterator classes. A further Java-based example is the listener model,
which is a conversion and adaptation of the SmallTalk MVC framework into the Java platform.

Related patterns are all of the EFPL transformation patterns and White Box and Black Box
Framework patterns.

8.2 Integrating applications

The context for this pattern is that you have developed a white box framework and have
started applying transformation patterns to develop a black box framework. You have developed
a variety of applications using the framework.

The problem is that you wish to integrate together two or more applications developed using
the framework, or integrate third-party applications with an application developed with the
framework.

The forces involved are:

• Applications take time to develop, so reusing them by integrating simple applications into
more complex ones makes sense.

• From a user perspective, an apparently tight integration, with shared user interface and
common look and feel is desirable.

• Architectural choices in the early development of the framework will probably mean that
tight integration is difficult due to name space conflicts, inadequate componentisation of the
user interface, etc.

• The framework has been designed to produce stand-alone applications without thought to
integrating other tools.
The solution is to modify the framework architecture to allow multiple applications, both

those developed using the framework and third-party applications, to interact with one another,
via suitable APIs or other abstractions. This involves developing data, control flow, and user
interface integration strategies that were not obvious when the framework was initially developed
to allow this integration to be performed in a seamless fashion. There is a tension in design here
between providing an open API that allows for tight integration and complex interaction between
the applications versus the need to ensure integrity of the framework.

The rationale is that when initially developing a framework it is difficult enough to consider
the abstractions required for managing one application, let alone factoring in the need for
supporting multiple interacting applications in a seamless manner. However, the need to do so
rapidly becomes compelling, so architectural changes are required to make integration possible.

Implementation of this pattern may involve considerable rework. In combining several
distinct applications developed with a framework, persistency and user interface integration are
often needed. Integration of persistency or object indexing mechanisms (ie mechanisms for low
level object access, particularly associated with persistent or distributed objects), may require
multiple name space support. For user interface integration, the development of Pluggable
Objects and the application of the Hot Spot and Fine Grained Object patterns may be needed to
address code redundancy and to combine interface functionality. A common approach is to use
the Wrapper pattern to develop an API.

Component technology has made it common to construct applications developed within the
framework as components. External tools can also be wrapped as components, using standard
component interaction mechanisms to mediate integration. Schmidt et al [21] discuss a number of
patterns, such as Component Configurator, Interceptor and Extension Interface that can be
applied in these cases. Refactoring is often an essential first step in order to identify useful
Shearing Layers and to avoid construction of a Big Ball of Mud [22].

Examples
Having developed the SPE and MViewsER applications, we immediately saw benefit in

combining these to form an integrated environment supporting multiple modelling paradigms. To
do this, however, required changes to the object persistency mechanism, which had a single name
space, and also the development of a fourth, coordination layer to the framework. The latter
allowed change descriptions to be routed between separate CPRGs. Extension of the change
response mechanism to allow change descriptions to be intercepted both before and after taking
affect allowed sophisticated control integration to be simply effected [7]. This approach was
developed considerably as the framework matured; for example we have developed pluggable
objects that support collaborative work activities in a seamless and transparent fashion [12].

The MetaMOOSE framework for CASE tool construction, similar in application domain to
JViews, originally supported only one application, Subsequent development added a shared

repository to allow multiple applications generated by the framework to interact with one another
[23]. The C2 development framework, which supports distributed inter-application messaging
support, was an evolution of the Chiron-1 framework which lacked such support [24].

After developing several stand-alone applications using JViews, we realised that interaction
with third party tools, such as word processors, spreadsheets, etc, was desirable. We used
Wrappers to implement and convert change descriptions into event messages sent via OS
scripting and messaging architecture to the external tools. When converting JViews to Java, we
exploited JavaBeans technology to turn JViews applications into JavaBeans. Exposing the
JViews event management system as part of this approach allowed for powerful interaction and
control, but caused occasional problems with “rogue” third party applications. Field [25],
developed from Pecan [26] used wrappers, together with a proprietary message bus to integrate
tools together. Oz [27], developed from Marvel [28], also used Wrappers to integrate other tools.

Related patterns are all of the EFPL transformation patterns and White Box and Black Box
Framework patterns. Pluggable Objects is a pattern commonly used to implement this integration,
using Wrapper patterns.

8.3 Reflective framework

The context is that you have a mature black box framework.
The problem is that you want applications developed using the framework to be extensible

at run-time i.e. new components can be plugged in to extend the application’s functionality. You
may want third-party application integration to be similarly dynamic.

The forces are:
• Extending an application’s functionality dynamically is hard
• In order to do this automatically, components must be self-describing
• Newly added components should appropriately share user interface, distribution,

persistency and other related services of components already in use
• Behaviour of newly-added or re-configured objects must be validated
The solution is to provide a reflection mechanism for the framework components which

allow run-time discovery of component characteristics and run-time plug-and-play and
configuration of components.

The implementation of this pattern is difficult and the framework needs to be designed with
support for it in mind. A mechanism for representing component knowledge is required, along
with abstractions to query this data, configure components and validate component compositions.

Examples
We extended the JViews framework with “aspect objects”, where “aspects” cross-cut the

functional and non-functional behaviour of components to support the description of complex
component properties [11]. We have used aspect objects to describe the functional and non-
functional properties of a range of JViews-implemented components. Within JViews, support is
provided to query component aspects and to configure components by standardised aspect-based
interfaces. This is used to support dynamic plug-and-play of collaborative work components [11],
which dynamically modify and utilise the user interface, persistency and distribution mechanisms
of other components. Others have developed mechanisms for component description [29], [30]
and run-time composition [31], [32], in order to support similar aims to this pattern.

8.4 Self-extending Framework

The context is that you have a mature black box framework. A Visual Builder and Language
Tools have been developed.

The problem is that while constructing applications using the framework is fast, due to the
visual builder and language tools, extending the framework is slow as it involves static code
changes that are typically done by developers. The plug-and-play composition of black-box
components can only produce limited framework extensibility on its own and programming is
needed to extend the framework’s main abstractions.

The forces are:
• Static coding to change the framework takes time.
• Because the framework has many fine-grained objects, extension of the framework is often

by composition or parameter setting.
• Pluggable Objects can be used, but only to a limited degree as their configurability is limited
• Users of an application developed with the framework want to extend the application's set of

modeling abstractions and constraints, rather than rely on application developers to do this.
The solution is to provide a user-editable meta-model and user-tailorable interface

components that can be used to dynamically extend the framework. This is a specialisation of the
User-Defined Product (UDP) framework [33]. Users can specify new types for the meta-model
and new user interfaces for their extended application, as they require, via interface tools rather
than programming. This implies a need to understand the ways in which the user will want to use
and extend a system; Domain Analysis may assist with this [34].

The rationale is that the pressures here are very similar to those that led to constructing a
Visual Builder, for applications generated using the framework. However, here the framework
itself (and related tools) is to be modified. It’s natural in this case to develop a Knowledge level–
Operational level split, as outlined by Fowler [35] and construct a meta model to describe the
framework and its environment. By allowing this meta model to be visualised and edited, using a
visual tool, new modelling abstractions and their properties can be defined. As composition of
pluggable objects is by now the most common way of extending or modifying the framework, the
changes can be effected dynamically. In addition to new modelling abstractions, users may want
to tailor their application interfaces for these extended meta-model abstractions, and should be
provided with a mechanism to do this. Some limited interface extension can be realised by
automatically incorporating new meta-model types and derived instances in property sheets, but
iconic editors and complex dialogues and reports require a user-extensible interface specification.

Implementation can be by a variety of means, but the Dynamic Object Model pattern [36]
and User-Defined Product Framework are useful approaches to take. These in turn build on
Fowler’s Analysis Patterns. Key to the success of this approach is to adequately abstract out a
meta-model representation, linking application model components to these meta-model types,
specifying user interfaces in terms of (extensible) model elements, and providing sufficiently
flexible and tailorable user interface building blocks.

There are a number of liabilities associated with use of this pattern. The framework becomes
more complex, and hence potentially more difficult to maintain. If the meta level is interpreted,
performance problems may result. Implementation may well require application of the Visual
Builder pattern to provide necessary meta modelling tools, involving considerable programming.

Examples
The SoftArch modelling tool, which we have developed as one of the Visual Builders for our

framework, has a visually editable meta-model and user-tailorable icons [15]. This allows the

architecture modeling abstractions and constraints to be modified dynamically. For example, the
left-hand example in Fig. 6 shows the visual meta-model editor used to extend and modify the
SoftArch framework components. The framework has only the fundamental abstractions of
“Component”, “Association” and “Annotation”. Users create instances of these fundamental
“meta-types” for use as types in the SoftArch modelling tool, enabling new architecture
abstractions to be dynamically added without programming. Properties of these fundamental
abstractions are viewed and edited in an extensible dialogue.

Our other JViews environments are like most conventional CASE tools in that they have
fixed meta-models (generated by JComposer) which can only be modified by code re-generation
and recompilation. SoftArch also provides a set of tailorable visual abstractions, as shown in the
right-hand example in Fig. 6, which users can dynamically tailor to represent new abstractions.

Fig. 6: User editable meta model for SoftArch. Links in the diagram correspond to

specialisation (dotted) or relationship (solid).
The SimplyObjects CASE tool [37] provides an extensible meta-model and tailorable iconic

shapes that tool users can extend without need to reprogram the tool. MetaEDIT+ [38] also
provides a set of meta-model definition tools, iconic editor tools and tabular report tools allowing
it to be tailored without recourse to black-box composition or programming. Rhiele et al [36]
describe several other examples when describing the Dynamic Object Model pattern, including
the business model of Argo, the framework used in Dynamo 1 and 2 and the EbXML framework.

9 Summary and conclusions

This paper has verified the usefulness and effectiveness of the Evolving Frameworks Pattern
Language, by calibrating it against our experience in developing the JViews framework over
many years. As a result of this experience we have proposed a number of extensions to EFPL that
capture other common activities that occur in framework development. We have introduced four
new patterns, describing additional evolutionary steps in framework development.

This paper is unusual in the patterns community being an experience paper, both critiquing
and extending an existing pattern language. We feel that it would be appropriate for the patterns
community to develop a pattern language describing an appropriate structure for such a paper.
This paper could usefully be used as an example in abstracting that pattern language. In writing
the paper, we drew on the pattern writing pattern language of [8]. We adapted this by

summarising the running example in more depth, but abbreviating the descriptions of each of the
patterns in the pattern language. An additional activity critiqued the pattern language and
proposed extension patterns in a standard pattern manner.

Acknowledgements

Support for parts of this work came from the University of Auckland Research Committee
and the New Zealand Public Good Science Fund. The excellent shepherding of Neil Harrison and
the assistance of the KoalaPlop 2001 group who workshopped the initial form of the new patterns
proposed in this paper are gratefully acknowledged.

References
[1] Roberts, D., Johnson, R., Evolving Frameworks A Pattern Language for Developing

Object-Oriented Frameworks, http://st-www.cs.uiuc.edu/users/droberts/evolve.html
[2] Grundy, J.C., Mugridge, W.B. and Hosking, J.G. Constructing component-based software

engineering environments: issues and experiences, Journal of Information and Software
Technology: Special Issue on Constructing Software Engineering Tools, Vol. 42, No. 2,
January 2000, pp. 117-128.

[3] Beck K. Smalltalk Best Practice Patterns — Volume 1: Coding. Prentice-Hall, 1996.
[4] Durham A., Johnson R. A Framework for Run-time Systems and its Visual Programming

Language. In Proceedings of OOPSLA ’96, Object-Oriented Programming Systems,
Languages, and Applications. San Jose, CA. October 1996.

[5] Grundy, J.C., and Hosking, J.G., The MViews Framework for Constructing Multi-view
Editing Environments, New Zealand Journal of Computing, Vol. 4, No. 2, 1993, 31-40.

[6] Grundy, J.C., and Hosking, J.G., Mugridge, W.B., Supporting flexible consistency
management via discrete change description propagation, Software - Practice and
Experience, Vol. 26, No. 9, September 1996, Wiley, 1053-1083.

[7] Grundy, J.C., and Hosking, J.G., Mugridge, W.B., Inconsistency management for
multiple view software development environments, IEEE Transactions on Software
Engineering: Special Issue on Inconsistency management in software development, Vol.
24, No. 11, November 1998, IEEE CS Press, pp. 960-981.

[8] Meszaros G., and Doble, J., A Pattern Language for Pattern Writing,
http://hillside.net/patterns/Writing/pattern_index.html

[9] Grundy, J.C., Venable, J. Providing Integrated Support for Multiple Development
Notations, in Proceedings of CAiSE ‘95, Finland, June 1995, Lecture Notes in Computer
Science 932, Springer-Verlag, pp. 255-268.

[10] Johnson R, Foote B. Designing Reusable classes. Journal of Object-Oriented
Programming, 1(2):22–35, June/July 1988.

[11] Grundy, J.C. and Hosking, J.G. Engineering plug-in software components to support
collaborative work, Software – Practice and Experience, vol. 32, Wiley, pp. 983-1013,
2002.

[12] Grundy, J.C., Hosking, J.G., Mugridge, W.B., Apperley, M.D. A decentralised
architecture for software process modelling and enactment, IEEE Internet Computing:
Special Issue on Software Engineering via the Internet, Vol. 2, No. 5, IEEE CS Press,
September/November, 1998, pp. 53-62.

[13] Mugridge, W.B., Hosking, J.G. and Grundy, J.C. Drag-throughs and attachment regions
in BuildByWire, In Proceedings of OZCHI'98, Adelaide, Australia, Dec 1-4 1998, IEEE
CS Press, pp. 320-327.

[14] Grundy, J.C. and Hosking, J.G. High-level Static and Dynamic Visualisation of Software
Architectures, In Proceedings of the 2000 IEEE Symposium on Visual Languages,
Seattle, Washington, Sept. 14-18 2000, IEEE CS Press.

[15] Grundy, J.C. and Hosking, J.G. SoftArch: Tool support for integrated software
architecture development, International Journal of Software Engineering and Knowledge
Engineering, Vol. 13, No. 2, April 2003, World Scientific, pp. 125-152.

[16] Rüping, A. Building Frameworks and Applications Simultaneously, Proceedings PLOP
2000, Washington University Technical Report number: wucs-00-29.

[17] Myers, B.A. Giuse, D., Dannenberg, R.B., Zanden, B.V., Kosbie, D., Pervin, E., Mickish,
A., and Marchal, P. Garnet: Comprehensive Support for Graphical, Highly-Interactive
User Interfaces. IEEE Computer, Vol. 23, No. 11, November, 1990.

[18] Myers, B.A., McDaniel, R.G., Miller, R.C., Ferrency, A.S., Faulring, A., Kyle, B.D.,
Mickish, A., Klimovitski, A. and Doane. P. The Amulet Environment: New Models for
Effective User Interface Software Development, IEEE Transactions on Software
Engineering, Vol. 23, no. 6. June, 1997. pp. 347-365.

[19] Ammeraal, L. STL for C++ Programmers, by. John Wiley, 1996. ISBN 0-471-97181-2.
[20] ObjectSpace Inc. http://www.objectspace.com/products/voyager/libraries.asp
[21] Schmidt, D.C., Stal, M., Rohnert, H., and Buschmann, F., “Pattern-Oriented Software

Architecture: Patterns for Concurrent and Networked Objects”, Wiley, 2000.
[22] Foote, B and Yoder, J, Big Ball of Mud, Chapter 29 of Harrison, N., Foote, B., and

Rohnert, H., Pattern Languages of Programme Design 4, Addison Wesley 2000.
[23] Furguson, R.I., Parrington, N.F., Dunne, P., Archibald, J.M. and Thompson, J.B.

MetaMOOSE an Object-oriented Framework for the Construction of CASE Tools,
Proceedings of CoSET’99, Los Angeles, 17-18 May 1999, University of South Australia,
pp. 19-32.

[24] Taylor, R.N. Medvidovic, N., Anderson, K.M. Whitehead, E.J. and Robbins, J.E. A
Component- and Message-Based Architectural Style for GUI Software, In Proceedings of
the Seventeenth International Conference on Software Engineering (ICSE17), Seattle
WA, April 24-28, 1995. pages 295-304.

[25] Reiss, S.P., “Connecting Tools Using Message Passing in the Field Environment,” IEEE
Software, vol. 7, no. 7, 57-66, July 1990.

[26] Reiss, S.P., “PECAN: Program Development Systems that Support Multiple Views,”
IEEE Transactions on Software Engineering, vol. 11, no. 3, 276-285, 1985.

[27] Ben-Shaul, I.Z., Heineman, G.T., Popovich, S.S., Skopp, P.D. amd Tong, A.Z., and
Valetto, G., “Integrating Groupware and Process Technologies in the Oz Environment,”
in 9th International Software Process Workshop:The Role of Humans in the Process,
IEEE CS Press, Airlie, VA, October 1994, pp. 114-116.

[28] Barghouti, N.S. 1992. Supporting Cooperation in the Marvel Process-Centred SDE. In
Proceedings of the 1992 ACM Symposium on Software Development Environments,
ACM Press, 1992, pp. 21-31.

[29] Beugnard, A., Jezequel, J.-M., Plouzeau, N., Watkins, D., Making components contract
aware, IEEE Computer, vol.32, no.7, July 1999, pp.38-45.

[30] Khan, K.M. Han, J., Composing security-aware software, IEEE Software, vol.19, no.1,
Jan.-Feb. 2002, pp.34-41.

[31] C. Shuckman, L. Kirchner, J. Schummer and J.M. Haake, Designing object-oriented
synchronous groupware with COAST. In Proceedings of the ACM Conference on
Computer Supported Cooperative Work, ACM Press, November 1996, pp. 21-29.

[32] M. Mezini and K. Lieberherr, Adaptive Plug-and-Play Components for Evolutionary
Software Development. In Proceedings of OOPSLA’98, Vancouver, WA (October 1998),
ACM Press, pp. 97-116.

[33] Johnson, R and Oakes, J The User-Defined Product Framework, http://st-
www.cs.uiuc.edu/users/johnson/papers/udp/UDP.html

[34] Coplien, J., Multi-Paradigm Design for C++, Addison Wesley, 1999.
[35] Fowler, M, 1997, Analysis Patterns: Reusable Object Models, Addison Wesley.
[36] Riehle, D., Tilman, M. Johnson, R.: Dynamic Object Model, Proceedings PLOP 2000,

Washington University Technical Report number: wucs-00-29
[37] Adaptive Arts, SimplyObjects CASE Tool, adaptive-arts.com.
[38] Kelly, S., Lyytinen, K., and Rossi, M., “Meta Edit+: A Fully configurable Multi-User and

Multi-Tool CASE Environment,” In Proceedings of CAiSE'96, Lecture Notes in
Computer Science 1080, Springer-Verlag, Heraklion, Crete, Greece, May 1996, pp. 1-21.

