
Domain-specific Visual Languages for
Model-driven Software Engineering

a thesis presented
by

John C. Grundy
PhD (1994, University of Auckland),
MSc (1991, University of Auckland),

BSc(Hons) (1989, University of Auckland)

in fulfillment of the requirements for the degree of
Doctor of Science

University of Auckland, Auckland, New Zealand
August 2021

Abstract

This thesis is a collectionofmyoriginal scholarlyworks published in peer reviewed journals
and conferences. The collection of articles investigate the intersectionof the fields ofDomain-SpecificVisual
Languages (DSVLs) and Model-driven Engineering (MDE). These combined allow software engineers –
and in limited circumstances end users of software systems – to specify complex software system models at
high levels of abstraction (using DSVLs), and then use these models to generate parts (or even all) of the
modelled target software system code, configurations, user interfaces, data formats, test cases, and/or other
implementation-level details (using MDE).
The first set of articles discuss the development of a range of novelDSVLandMDE supporting tools. The

second set of articles show how these can be used to support software engineers to conduct requirements
engineering and define software architectures for complex software systems. The third set of articles discuss
support for software engineers in designing, implementing and testing software systems using DSVLs and
MDE. The fourth set of articles present DSVL andMDE-based approaches to supporting software process
management. The fifth set of articles present a variety of “human-centric” and collaborative approaches to
supporting these tasks in DSVL-based tools. The sixth set of articles describe support for DSVL andMDE-
based tools targted to “end users”, allowing these non-technical end users to define and generate their own
software solutions. I conclude with a recent article describing future directions for the field.

iii

For Judith, Stephanie, Jessica, Joshua, Alexander andHannah.

iv

Acknowledgments

I would like to greatly thank my wife Judith for her many years of love for me and support for my
professional work, but also for my family life which gives my work meaning. My children Stephanie, Jessica,
Joshua, Alexander andHannah Iwould like to thank for their love and support, and also their understanding
whenwork demands, especially overseas and interstate travel, have takenme away from them and sometimes
important things happening in their lives.

Special appreciation goes to my PhD supervisor and mentor Professor JohnHosking, who I have contin-
ued to work and co-author with to this day, as evidenced by a number of co-authored works in this thesis.
There are a great many others I would like to thank for their support of my work and our valuable collab-
orations. These include, but are certainly not limited to, Rick Mugridge, Robert Amor, Mohamed Abdel-
razek, Iman Avazpour, Amani Ibrahim, Jean-Guy Schneider, EmiliaMendes, Hourieh Khalajzadeh, Tanjila
Kanij, Rashina Hoda, Qiang He, Yun Yang, Feifei Chen, Norsaremah Salleh, Massila Kamalrudin, Svetha
Venkatesh, Xin Xia, David Lo, Li Li, Scott Barnett, Rajesh Vasa, Ewan Tempero, and many others. Most
of the research I have advanced has been done in collaboration with the great many students I have been
fortunate enough to supervise, including most of the works collected here.

The significance of this body of work has been recognised by my award of a very prestigious Australian
Research Council Australian Laureate Fellowship in 2019 for the project “Human-centric, Model-driven
Software Engineering” – a direct result of this long programme of work onDSVLs andMDE. Prior recogni-
tion of my research leadership and contributions has included an Alfred Deakin Professorship (2017), and
Fellow of Automated Software Engineering (2012), awarded by the Steering Committee of the Automated
Software Engineering conference, where some of these works included in the thesis were published.

I would like thank the funding bodies for appreciating and supporting thework I do, including in particu-
lar the Foundation forResearch, Science andTechnology and theAustralianResearchCouncil, themajority
of the works in this thesis supported by these two funders. I greatly appreciate the many companies I have
workedwith on awide range of challenging, interesting and forward-lookingR&Dprojects, several ofwhich
are also reported in chapters in this thesis. This includes work with OrionHealth, XSOL, PRISM, CSIRO,
CA Labs, Peace Software, Thales, NICTA, Sofismo, and others.

Finally I thank the many supervisors I have had for supporting my research endeavours, sometimes when
they conflictedwith otherDepartment, Faculty andUniversity needs, includingMarkApperley, JohnHosk-
ing, Peter Brothers, Michael Davies, Leon Sterling, John Wilson, Peter Hodgson, Jon Whittle and Ann
Nicholson.

v

Contents

1 Introduction 3
1.1 Visual Modelling Languages in Software Engineering . 3
1.2 Domain-Specific Visual Languages in Software Engineering 4
1.3 Model-Driven Engineering of Software . 11
1.4 DSVLs andMDE for Software Engineering . 11
1.5 Overview of the papers in this Thesis . 19
1.6 Evidence of Impact . 26

References 33

2 DSVLModelling Tool Development 34
2.1 Constructing component-based software engineering environments: issues and experiences 34
2.2 InconsistencyManagement for Multi-view Software Development Environments 35
2.3 Pounamu: a meta-tool for exploratory domain-specific visual language tool development . 36
2.4 Generating Domain-Specific Visual Language Tools from Abstract Visual Specifications . . 37
2.5 VikiBuilder: end-user specification and generation of Visual Wikis 38

3 DSVLs andMDE for Software Requirements and Architectures 39
3.1 Aspect-oriented Requirements Engineering for

Component-based Software Systems . 39
3.2 MaramaAIC: Tool Support for ConsistencyManagement and Validation of Requirements 40
3.3 Adaptable, Model-driven Security Engineering for SaaS Cloud-based Applications 41
3.4 SoftArch: tool support for integrated software architecture development 42
3.5 A Visual Language for Design PatternModelling and Instantiation 43

4 Software Development and Testing using DSVLs andMDE 44
4.1 Supporting Multi-View Development for Mobile Applications 44
4.2 Specifying Model Transformations by Direct Manipulation using Concrete Visual Nota-

tions and Interactive Recommendations . 45
4.3 SoftArch/MTE: Generating Distributed System Test-beds from High-level Software Ar-

chitecture Descriptions . 46
4.4 Realistic Load Testing of Web Applications . 47
4.5 A Domain-Specific Visual Modeling Language for Testing Environment Emulation 48

5 Software ProcessManagementwith DSVLs andMDE 49
5.1 Serendipity: integrated environment support for process modelling, enactment and work

coordination . 49
5.2 A decentralized architecture for software process modeling and enactment 50
5.3 Collaboration-Based Cloud Computing Security Management Framework 51
5.4 DCTracVis: a system retrieving and visualizing traceability links between source code and

documentation . 52
5.5 An End-to-EndModel-based Approach to Support Big Data Analytics Development . . . 53

6 Human-centric DSVLModelling and Collaboration 54
6.1 Experiences developing architectures for realising thin-client diagram editing tools 54

1

6.2 Engineering plug-in software components to support collaborative work 55
6.3 A generic approach to supporting diagram differencing and merging for collaborative design 56
6.4 A 3D Business Metaphor for Program Visualization . 57
6.5 Supporting generic sketching-based input of diagrams in a domain-specific visual language

meta-tool . 58

7 End-User Applications of DSVLs andMDE 59
7.1 Domain-specific visual languages for specifying and generating data mapping systems . . . 59
7.2 A domain-specific visual language for report writing . 60
7.3 Supporting Scientists inRe-engineeringSequential Programs toParallelUsingModel-driven

Engineering . 61
7.4 A visual language and environment for enterprise systemmodelling and automation 62
7.5 A suite of visual languages for model-driven development of statistical surveys and services . 63
7.6 Engineering Complex Data Integration and Harmonization Systems 64

8 Future Directions 65
8.1 Towards Human-Centric Model-Driven Software Engineering 65

2

1
Introduction

Software engineering depends on models of varying levels of abstraction e.g. software processes, require-
ments, architecture, UI and database design, code, test cases etc. Because of their complexity, software en-
gineers have developed visual representations of these models, as diagrams, over the past several decades.
Many of these diagrammatic visual models are general-purpose and fit for modelling various aspects of most
software systems. Examples include flowdiagrams [13], state transition diagrams [62], entity relationship di-
agrams [21], state charts [42], data structure diagrams [9], and various object-orientedmodelling languages,
such as the UnifiedModelling Language [22]. While some of these techniques are limited to certain aspects
of software systemmodelling, in general they are designed tomodel “any” (or most) kinds of software appli-
cation for any (or most) kinds of software domains of application.

An alternative approach to these “general purpose” software visual modelling languages is to use what
I term “domain specific visual languages” – or “DSVLs” – models suited to a (sometimes very) limited do-
main of software systems and for (sometimes very) limitedmodelling tasks. TheseDSVLs sacrifice generality
but have one or more advantages over general purpose modelling languages for this specific domain. These
include using higher levels of abstraction, fitting more closely to the modeller’s cognitive model of their
domain and its software, and/or use of iconic or visual structures familiar to the modeller in the domain of
application. DifferentDSVLsmight be used by all software engineers or by those working on specific phases
of development or in specific problem domains. Theymight even be designed for use by non-technical “end
users” of software systems to allow them to – under constrained conditions – model their own software.

Softwaremodelsmust typically be translated byhand into implementations using programming language
source code and/or other implementation-level artefacts, such as data schema, user interface elements, busi-
ness logic and processing code, configuration files, and so on. An alternative approach is to use “Model-
Driven Engineering” – or “MDE” – where a tool automatically translates one or more high level models
into lower-level models and/or implementation-level artefacts. Advantages of such MDE approaches can
include much faster software implementation, improved quality of software, enabling less technically pro-
ficient developers to realise solutions, and even allowing end users to model and build their own software
solutions [66]. MDEmay use general-purposemodels, textual domain-specific languages, ormodels created
and visualised with domain-specific visual languages.

This thesis summarisesmy efforts overmany years to develop domain-specific visual language (DSVL) for
software engineering models and associated model-driven engineering (MDE) tools to turn these models
into software solutions.

1.1 Visual Modelling Languages in Software Engineering
Visual Languages have been used for thousands of years to communicate complex ideas, or “models” of the
world. They use a range of human capabilities and allow complex models to be presented and manipulated

3

using metaphors close to a user’s cognitive models. The idea is to provide a way to visualise and/or author
complex models using human visual capabilities, compared to textual representations [60, 68, 59]. These
include but are not limited to boxes and lines, information containment, colour and shading, formal or
informal annotations, sketchedor computer-constructeddiagrams, iconic representations, and textual labels
[12, 59].
Software Engineering has depended on using visual models to represent complex software system charac-

teristics even before software engineering as a discipline in its own right began [59, 55]. Even a non-trivial
software system is made up of many concepts, ranging from high level requirements describing the problem
space; architectural abstractions describing both software and hardware components in the solution space;
design-level data, interface, processing logic and other information about decisions made about implement-
ing the software; various information about testing and deployment; and are often used to aid in software
process implementation and project management. Such visual models can be constructed manually to aid
development, might be reverse-engineered from existing code and other implemented system artefacts, or
might be generated from other, higher level models [66, 6].

As software systems have grown ever more complex, new general-purpose visual modelling techniques
have been developed to help software engineers to manage this complexity and model a very diverse range
of systems. Entity-relationship diagrams are still a very commonly used approach to describe database struc-
tures [21]. Various forms of state transition diagrams and state charts model how software system state
changes over time [62, 42]. The Business Process Modelling Language (BPML) [70] has been widely used
to model general business processes, technical implementations of such processes as services, and service
communication. The Unified Modelling Language (UML) [22] has been used to model software require-
ments, systemdesigns, software designs, and various specialised aspects of systems. ComputerAidedDesign
(CAD) tools have been deployed in many engineering domains andmany share common representations of
models [43].

Key advantages of such general purpose visual modelling approaches include:
• standardised modelling constructs, semantics and notations;
• notations familiar to a wide range of users in the general domain;
• 2D (and sometimes 3D) layouts and visual elements allowing wide range of model representations;
• tool support tobuildmodels, reverse engineermodels fromcode, and support aspects ofmodel-driven
engineering; and

• useful for solving problems in a very wide variety of application domains.

1.2 Domain-Specific Visual Languages in Software Engineering
Such general-purpose modelling languages are not always the best choice to use to model a software system.
They do not leverage particular domain-specific concepts, leading often to overly-complexmodels, cluttered
visual formalisms, hard-to-read and hard-to-maintain diagrams [17, 67, 72, 37]. These problems are caused
by usingmodelling and notational concepts designed for a very wide range of purposes. In order to describe
a problem in a target domain, a large number of general-purpose abstractions may need to be assembled.
No domain-specific concepts are built into the modelling language and hence models need to be composed
to describe them. General purpose visual notations similarly need to be composed or augmented in often
cumbersome ways to express domain-specific concepts e.g. with UML profiles and BPMN annotations.
Usability can become a major problem of both the general purpose visual notation and its supporting tools
[59, 1, 64]. Even domain-specific extensions to the general purpose modelling language, such as UML pro-
files and BPMN annotations, do not solve these issues, and often further complicate the visual models used
[65, 64, 14].
Domain-specific Visual Languages (DSVLs) provide a powerful, human-centric approach to presenting

andmanipulating complex information [58, 41, 20, 51, 69]. DSVLs are designed for use in a specific domain
with a domain-specific set of modelling concepts and a domain-specific set of visual notational elements
[58, 51]. As domain concepts are built into the language, modelling problems in the domain – for which

4

the DSVL is targeted – typically requires much smaller models and visual notational elements. Ideally the
DSVL visual notation leverages both concepts and representations – “visual metaphors” – from its target
domain of use. Thismakes theDSVLbothmore efficient formodelling in the target domain, but also better
suits its target end users’ modelling needs than a general purpose modelling language.

1.2.1 What are DSVLs?
There is no specific, generally accepted definition for a “DSVL”. In fact, they go by a variety of names e.g. vi-
sual domain-specific language, domain-specific visual modelling language, or domain-specific visual model.
I define a Domain-specific Visual Language (DSVL) – for the purpose of this thesis and based on a defini-
tion John Hosking and I devised many years ago – to be:

“a visual modelling language where the model and notation are customised for a particular problem domain”

In DSVLs we make a trade off between generality of the language – i.e. the range of problems that are
able to be solved – and terseness of notation and closeness of mapping to the target problem domain – i.e.
how specialised the visual notation is for use in a particular domain. By this I mean that we have a specialised
visual modelling language only suitable for use in specific application domains, but which is optimised for
these domains.

The critical features of a DSVL are thus:
• an underlying model – or “meta-model” – with constructs for modelling only within the target do-
main, not very general problem domains;

• visual notations ideally familiar to the DSVL target users in the specific target domain;
• the use of visual metaphors specific to the target domain;
• only useful (usually) for solving problems in the target domain; and
• sometimes is an existing, preferred modelling language for its users in the target domain.

To give tangible examples of suchDSVLs, I briefly review a few below, with their key features, advantages
– and some key limitations. Enterprise Modelling Language [52], Horus-HPC [3] and Statistical Design
Language [50] are described in detailed chapters of their own later in this thesis.

EnterpriseModelling Language (EML)

EML (Enterprise Modelling Language) is a DSVL that we invented for modelling business processes and
process structures [52]. It uses a novel tree-basedmetaphor to structure services within an organisation into
a hierarchical form, similar to that used to group organisational structures. A novel overlaymetaphor is used
to describe process flow, linking services in the hierarchy together to form the process flow. Multiple overlays
correspond to different processes. Process branching can be visualised by diverging or converging overlaps.
Exceptions and error handling can be described with specialised overlays. A supporting tool, EMLTool [52],
provides an authoring tool with novel fish-eye viewer and other large-scale DSVL support.

Figure 1.1 shows a student enrolment system’s key services and processesmodelled in EML.This example
shows a tree structure being used to represent different components andwork tasks implemented as discrete
services in a studentmanagement system, overlaidwithmultiple “process flows”. The tool, EMLTool, allows
users to show and hide different process overlays, break large enterprise service hierarchies into multiple
views, and provides large scale service representation via fish-eye views and alternative views of processes
using a subset of BPML. Business Process Execution Language for Web Services (BPEL4WS) scripts are
generated from the EMLmodels to be “run” by a BPEL-based workflowmanagement system.
EML does not support general software application modelling and only a subset of service orchestration.

It is oriented towards knowledgeable domain expertswho are non-technical uses of complex service-oriented
applications andwant andneed the power to configure newprocess flowsusing pre-implemented andhosted
services. While EML supports flexible and scalable modelling of these services, services themselves can not

5

Figure 1.1: Enterprise Modelling Language (EML) showing a student enrolment process (from [52]).

be built, only aggregations and orchestrations. No data storage and user interface capabilities for the services
are provided by EML itself. The tree-and-overlay metaphor is natural for these target end users but may be
frustrating or counter-intuitive to others, including service implementers.

Horus-HPC

Horus-HPC (High Performance Computing) is a web-based IDE for developing parallel programs for com-
plex scientific tasks to be run onGPUs, CPU grids or cloud computing platforms [3]. The target end user is
a scientific programmer who is knowledgeable about the target scientific problem domain; has some coding
skills; and some limited HPC design and development skills. The idea is to use a set of DSVLs at differ-
ing levels of abstraction to model target problem domain (e.g. molecular simulation or pulsar discovery
algorithms), including scientific formulae; model sequential solutions; model - with the help of packaged
patterns - HPC parallelised solutions; describe deployment onto a target HPC platform; and generate parts
of a C or GPU kernel program code implementation; and then complete this code by hand. The tool is
not designed for complete code or script generation but to be a quality and productivity improvement sup-
port platform. The DSVLs have the added advantage that the higher level ones are aimed at mirroring how
scientific end users actually describe problems in their domain using whiteboards, formulae, pseudo-code,
schematics etc.

Figure 1.2 shows an example of three Horus-HPC diagrams modelling a parallel program. The left hand
side diagram shows a high level box-and-line representation of key HPC program components wired to-
gether. The top right formulae editor allows scientists to model mathematical aspects of their problems at
a high level and link these abstractions both to box-and-line component realisations and code implementa-
tions of (parts of) their scientific problem. The C code editor in the bottom right shows a generated pro-
gram from the component diagram with user additions of code. The message passing (OpenMPI) or GPU
(OpenCL) code is generated from lower-level component diagrams that map the algorithm components
onto HPC hardware implementation components for the chose implementation platform. Further views
include data visualisation and modelling to show results of complex calculations as charts, scatter plots, etc,

6

Figure 1.2: Horus‐HPC being used to model a parallel program (from [3]).

and tomodel complex input and output data formats used to produce the generatedC code implementation
data structures.

WhileHorus-HPCprovides a fully-fledged, cloud-based development environment for a very wide range
of HPC applications and HPC hardware platforms, removing the 3GL C code editor from the IDE leaves
it with special purpose modelling views that are not general purpose. These have been designed for scientist-
programmers to model several levels of abstractions of their HPC programs. While their models allow us
to generate significant amounts of HPC C code, they do not generate full implementations without direct
textual C code editing.

Statistical Survey Design Language (SDL)

SDL (Statistical Design Language) is a DSVL that we invented for designing and enacting statistical surveys.
It provides a suite of related visualmodelling languages addressingdifferent aspects of statistical surveydesign
and implementation using the R statistical analysis tool [50]. Survey diagrams are used to represent a high
level viewof a survey including purpose, key population sources and key outcomes. Survey data diagrams are
used to model the datasets used in the surveying including data sourcing and management. Task diagrams
are used tomodel the key steps involved in running the survey including pre-survey activities and post-survey
activities. Technique diagrams are used tomodel low-level statistical techniques to analyse parts of the survey
data. Technique diagrams are used to generate R scripts and web services providing remote access to the
encapsulated scripts. Services cane be orchestrated to realise the surveying.

Figure 1.3 shows an example of three SDL diagrams modelling a NZ Crime Victimisation Survey (from
[50]). After creating the overall survey structure a statistician creates SDL views to specify the survey process
and techniques to use in detail. Figure 1.3 (a) shows a hierarchical task diagram, specifying two data analysis
tasks to be carried out on the survey data. During data collection, the main concern is to specify sampling
techniques used in the survey process and types of statistical metadata related to collected data. Figure 1.3
(b) specifies the two sampling methods to be used in the survey. Here the sampling frame is stratified in
two stages by the modified area unit (1) then household visits planned using patterned clustering (2). Data
Frame and Sample data icons indicate data used in pre-testing and collection phases. Figure 1.3 (c) shows a
survey technique diagram describing the data analysis operations implementing the tasks in Figure 1.3 (a).
Two visualisation methods (boxplot and multivariate analysis) are used to assess whether there is evidence
of a statistical association between data variables. It generates textual R script implementations of aggregate
techniques and uses R scripts to implement its low-level technique components. Figure 1.3 (d) shows links

7

Figure 1.3: Statistical Design Language (SDL) being used to model (a) survey tasks; (b) survey sampling techniques; (c) an analytical technique;
and (d) links between diagrams (from [50]).

between diagrams and artefacts.
SDL provides a powerful range of multi-level abstractions for statistical survey designers, statisticians be-

ing the target end users. This includes high level design, data specification, process flow, low-level statistical
techniques, and a wide range of visualisations to show survey data analysis results. SDLTool also provides
capabilities to generate reusable aggregate services that implement complex processes and techniques for
reuse by other service-oriented applications. However, SDL can not express general purpose programming
concepts and constructs and nor is it designed for general purpose business intelligence applications.

1.2.2 Why use DSVLs
Sometimes it is not obvious that a DVSL-based solution either exists or is necessarily a better solution than
a textual Domain-Specific Language (DSL) or a general purpose modelling approach or programming lan-
guage. Some indicators I have found useful when exploring the use of DSVLs for application to a new
domain are outlined below. DSVLs are a useful modelling approach in situations where:

• a domain has a set of domain-specific concepts capturing rich properties about the domain that lend
themselves to being captured in a meta-model;

• experts in the target domain have a set of notations or representations of the domain concepts they
regularly use to describe aspects of the domain in designs, meetings, to explain models etc;

• models describing solutions in the domain can be readily constructed from these notations andunder-
lying concepts farmore readily and efficiently that if usingmore general purposemodelling languages
and tools;

• domain-specific models can be used to synthesize general models e.g. code or parts of general models
to realise solutions

• target end users find the domain specific modelling concepts, notations, tool support for authoring
themodels and support for generating solutions (or partial solutions) from themodels more effective
and efficient than using general-purpose modelling tools and approaches.

A good indication of a DSVL being potentially useful is when talking with software engineers or target
end users – and/or visiting their work spaces or observing them interacting in meetings – a set of informal

8

DSVLs and their related domain-specific concepts are frequently used. Business process designers and in-
deed many business process improvement activities for many years have adopted BPMN and EML-style
modelling constructs to design how the processes work, who enacts them, and related artefacts and data.

If a domain has a set of limited concepts that naturally provide an abstract description of a solution in that
domain, this can be indicative of potential for DSVL (or DSL or combination) solution. These concepts
are limited in scope i.e. are domain-specific, but provide powerful constructs for expressing complex ideas
simply, consistent and elegantly. For example, the process stage, process flow, split flow, join, flow, actor and
artefact concepts in business process modelling provide a very powerful, simple metaphor for describing a
wide range of solutions. This leads to DSVLs like EML being able to model complex business process prob-
lems farmorequickly and accurately andusefully than general-purpose approaches. The statistical surveying
domain does not have an agreed DSVL or set of DSVLs, but we identified when talking with statisticians it
does have well-defined concepts that we were able to map to SDLmodel concepts. From this we developed
a set of DSVL elements to represent these domain-specific concepts and their inter-relationships.

While 3GL computer programming languages are very flexible and powerful, and it may be argued APIs
and libraries provide sets of packaged abstractions for sub-domains, key disadvantages are the time it takes
to construct solutions, repetitiveness, and lack of higher level abstractions than code constructs. DSVLs de-
scribing higher level domain elements can be enriched with properties to enable generation of whole or part
3GL programming language solutions. Enrichment may also be by relating one DSVL element to another
e.g. a Horus-HPC parallel computation element in one view to a GPU grid compute element in another
view, indicating howOpenCL kernel code is to be generated from the combined model.

1.2.3 Designing DSVLs
DSVLmeta-models can be designed using conventional conceptual and datamodelling techniques [51, 20].
Design concepts are identified from various information sources: domain experts; existing partial models
(whether on paper or computer); existing 3GL or DSL solutions where meta-model elements and relation-
ships are abstracted; or from databases, CSV and XML files, or other domain artefacts that capture part of
the necessary modelling constructs for the domain. Often other solutions exist for the target domain, even
DSVL based solutions, that provide most if not all of the information needed to define and construct the
necessary meta-model for the new DSVL based solution [20].

For example, Horus-HPC’s low-level models and parallel programming patterns are derived from the
large body of work in this area over many years. However, its high level models we had to define after consid-
erable work with scientists who develop their own bespoke HPC solutions for different domains [3]. EML
uses BPMN and earlier business process modelling tool meta-model constructs to describe its overlay pro-
cesses. SDL provides ways to package R scripts for reuse related to survey implementation, and structure
data definitions and higher level survey process tasks and goals.

The most challenging – and often most creative – aspect of DSVL based solution design are the visual
notations that provide much of the power and advantage of DSVL-based solutions [59]. A range of drivers
influence how the visual notation is designed and how the overall solution will appear to target end users.
These include but are not limited to:

• Who are the target end users of the DSVL? Are they familiar with visual oriented modelling ap-
proaches and support tools? Are they technically knowledgeable software engineers or non-technical
domain experts or potentially both?

• What size and complexity of model will need to be represented?
• How big and complex will the resultant DSVL-based models get?
• ifmultipleDSVLswill be used to represent the problemdomain, howdowe link parts together across
diagrams?

• What visual metaphors do the target end users work with now? Can we reuse and build on these in
some way so the proposed DSVL-based solution will look familiar to them?

• Will DSVL models need to be shared amoung many people, live for a long time, be modified exten-

9

sively during their useful lifespan?
• Are there any existingDSVLs used for different problem domains that might translate well to the one
under consideration? Can we learn from the successes (or failures) of these DSVLs in those other
domains?

Practical considerations also need to be taken into account. Can the intended implementation platform
for theDSVL tool actually support the range and complexity of the visual notations? Are the target endusers
going to be able to effectively and efficiently understand anduse both the notations themselves and their edit-
ing tools? How do we handle challenges like version control, configuration management and collaborative
editing of DSVL-based representations? Is the DSVL-based solution really better than using a conventional
general purpose 3GL programming language (C, Java, Python etc), scripting language (R,Matlab, Perl etc).
Is a special purpose DSL (textual) language more useful than a visual form?
These approaches are not always incompatible e.g. EMLTool supports both the EML DSVL and gen-

eral purpose BPML; Horus-HPC includes a fully functional C code editor and extensive API library; and
including components and scripts implemented in textual R code is supported by SDLTool.
Users of DSVL-based modelling solutions can be software developers e.g. HorusHPC, domain experts

e.g. statisticians for SDL and business process experts for EML.Sometimes multiple user groups can be
supported by the same tool/DSVL or subsets of the DSVL. Scientists can specify high level physical model
principles in HorusHPC formula views and software developers translate these into detailed parallel code
level DSVLs. Survey designers can specify goals and high level process tasks in SDL process diagrams, and
expert statisticians and data scientists specify statistical technique details in Technique diagrams.

1.2.4 Realising DSVL-based Applications
Once a DSVL has been designed for a target domain we need to build a tool that supports the use of this
DSVL.Given the complexity of such a task, a number of platformshave beendeveloped to aid the creation of
DSVL-based tools e.g. MetaEDIT+ [71], Eclipse GMF [24] and Microsoft DSL tools [16]. As can be seen
from the representative DSVLs and their supporting tools in this chapter, a wide range of considerations
need to be taken into account when building such a tool [63]:

• How large and complexwith theDSVL tool likely be - howmanyDSVLdiagram types, elements, and
other features like code generation, data import or export, data visualisation etc? Different platforms
provide different ranges of solutions.

• Can the tool platform handle the range of visual abstractions, appearances, composites and intended
editing operations and interactions?

• Will complex data or code or scripts need to be imported? Generated and exported? Does the tool
platform have the necessary capabilities?

• Will the tool interface need to be provided through a web browser or mobile phone?
• Are there approaches provided to supporting DSVL versioning, diffing, shared editing, large scale
rendering etc?

• Will the DSVL-based tool need to be integrated closely with other tools / applications, and is there
support for such integration in the DSVL tool platform?

• Canwe impose various necessary constraints, checks and design critics on theDSVLs using theDSVL
tool, in order to ensure models are correct, consistent and complete?

One of my main contributions over many years to making DSVL concepts realisable is the development
of numerous supporting tools, both for the DSVL modelling and associated MDE-based support. These
include but are not limited to MViews [38], JViews [27], JComposer [35], Pounamu [73], Marama [37],
VikiBuilder [44], and Horus [3].

When developing prototypeDSVLs and their support tools for research and practice, wewant to evaluate
both the support tool and its DSVL solution using a range of criteria [59, 23]. Learning from the results of
these evaluations, we may want to refine the DSVL and/or its support tool to address issues our target end
users have encountered and reported to us or that we have observed.

10

1.3 Model-Driven Engineering of Software
Doug Schmidt in a widely read introduction to a COMPUTER special issue onModel-driven Engineering
describes MDE as:

“Model-driven engineering technologies offer a promising approach to address the inability of third-generation
languages to alleviate the complexity of platforms and express domain concepts effectively. ” [66]

Similarly to some of the drivers behindDomain-SpecificVisual Languages choice in some domains,MDE
approaches to software engineering attempt to address long standing issues including:

• textual programming languages (“3GLs”) are often too low-level to describe many abstractions in
software engineering

• SE models are often too disconnected from 3GLs (program code) e.g. traditional analysis and design
languages

• we often need high-level modelling languages to better express requirements, architectures, designs,
tests etc through software engineering processes

• such SE models can be used to “construct” software directly i.e. translate from design-level elements
to code-level elements via a “model transformation” approach – these models at various levels of ab-
straction can still be directly turned into/related to code constructs

• to do this we need to provide ways to build models, reason with models, translate models to(/from)
code

Note that working with textual 3GL code is often still very useful/necessary even in systems where a lot
of model-driven development support is used. Similarly, textual Domain-specific Languages (DSLs) can be
used with visual DSVLmodels in domains where textual representations are more useful some of the time.

Many early MDE approaches originally focused on code generation. Increasingly, rather than generating
just code from models, scripts or configurations or even other models are generated. For example, SDL-
Tool generates R scripts from its survey technique diagrams, some of whichmay contain prepackedR script
function calls themselves. EML generates BPEL4WS (Business Process Execution Language 4 Web Ser-
vices) models that themselves can be run (enacted) via a workflow engine to orchestrate business process-
implementing web services.

An example of suchmodel-driven engineering from a textual Domain Specific Language is RAPPT [11].
Figure 1.4 outlines its process. RAPPT takes a textual design-level mobile App Description – sometimes
called a Platform Independent Model (PIM) (it can also take a DSVL that represents limited, high-level
parts of the textual app model). It has a model transformer that transforms this abstract design-level PIM
App Description into a much more detailed code- and API-level Android Model for the Android platform
mobile apps – sometimes called a Platform Specific Model (PSM). It then uses a further Code Generator
component to translate the Android Model combined with a set of Code Templates into Android mobile
app implementation artefacts – source code but also scripts, manifest, directories, XMLand iconic elements.
These can then be built by an Android development environment to implement the modelled mobile app.
RAPPT allows generated Android code to be edited by the developer to add further features not supported
by its code generated or to refine the skeleton mobile app implementation into a fully-fledged app product.

1.4 DSVLs and MDE for Software Engineering
Bringing these two approaches together –modelling complex software systemswithDSVLs and using these
DSVL-visualised models in MDE processes –- has been a key focus of a large part of my research work to
date. Key requirements for such a combined approach, as outlined in Figure 1.5, include:

• a set of domain meta-model(s), model instances are used to model the problem domain;

11

Figure 1.4: Example of MDE‐based textual app model to android model to code generation process in RAPPT (from [11])

• a set of visualisation(s) of these domain model instances –- textual and graphical – allow software
engineers and/or end users to construct and refine problem domain solutions;

• mappings betweenmodels allow a tool to transform higher level models to lower level ones, including
to code, scripts, XML etc.;

• a high level model might be transformed into a lower level model e.g. a requirements-level problem
space model to a design-level solution space model, or a platform independent model enriched to
become a more detailed platform specific model;

• low-levelmodels are transformed to implementation-level code, scripts, configurations, etc that canbe
compiled to implement the system, or may be interpreted by an engine to realise the software desired;

• editing tools for DSVL-based model visualisations;
• transformation support i.e. model->model, model -> code transformers;
• visualisation support of models is sometimes useful e.g. code/data -> model -> DSVL represenation;
• reasoning support e.g. analysis of models –- completeness, correctness, consistency; and
• model management support e.g. version control, diffing/merging, team collaboration support etc.

To illustrate the variety of ways this DSVL+MDE approach can be used, in the following subsections I
illustrate a few example DSVL+MDE tools from my work. Some of these are targeted at supporting soft-
ware engineers performing specific tasks. Some are targeted at supporting domain experts (non-technical
end users). For each example I outline its problem domain; target user group(s); key meta-model elements;
DSVL(s) used; transformation approach used; and target generated artefacts.

1.4.1 Performance Test-bed Generation Tools
I have led research into numerous performance engineering tools using DSVLs andMDE approaches. The
initial ideas for this line of research came from my time in industry in the 1980s where I had to try and
improve performance of complex database systems. This required writing many testing scripts – or “perfor-
mance test-beds” – that was very tediouswork. However, many of these test-bed scripts had great similarities
and if a high level model of the target system structure could be defined, much if not all the performance
testing scripts could be automatically generated from these models. Figure 1.6 shows one such tool in use,

12

Figure 1.5: Outline of the DSVLs + MDE engineering process

Figure 1.6: Example of the MaramaMTE performance testbed generator in use (from [19])

13

MaramaMTE [19].
MaramaMTE has the following key features:
• Problem domain: generation of performance test bed code/scripts from high level modelling of soft-
ware architectures of distributed systems

• Target user group(s): performance engineers (typically highly experienced software engineers)
• Key meta-model elements: architectural elements of distributed systems – clients, servers, databases,
network connections, compute and data applications ; loading models for clients e.g. number users,
number transactions per second, types of transactions etc

• DSVL(s) used: (1) architecture model with detailed characteristics of each element (representing key
software components); and (2) stochastic form charts (representing probabilistic client loading mod-
els)

• Transformation approach used: XSLT scripts and Java code
• Target generated artefacts: client, server code, loading scripts, build scripts, deployment scripts

When using MaramaMTE, the performance engineer models their system’s software architecture using
architectural view DSVLs, as shown in Figure 1.6 (1). They model client loading models using stochastic
form charts, as shown in Figure 1.6 (2). The XSLT-based code generators synthesize from these two DSVL
models scripts e.g. for Apache JRunner (3) and Java client and server code e.g. Figure 1.6 (4). MaramaMTE
generates real code that is compiled and run for clients and servers. The loading scripts have the clients run
a very large number of transactions against the servers andMaramaMTE collects results for presentation to
the performance engineers.

1.4.2 Data Transformation Tools
Integrating complex distributed systemsby exchanging complexdata is a very commonneed inmany systems.
Originally Electronic Data Interchange messages were used and the writing of EDI encoding and decoding
software to support EDI message exchange between systems is a very challenging task. We developed a tool
with Orion Health in a collaborative R&D project to facilitate the modelling of complex EDI messages for
health system data exchange, the Orion Message Mapper [34], eventually commercialised as the Raphsody
message mapping engine suite. This approach used hierarchical tree-based message mappings to specify
correspondences between source EDI message elements and target EDI message elements, and formulae to
translate source data to target data formats. While suitable for software engineers to use, the original target
users of OrionMessage Mapper, they are not very suitable for non-technical domain experts.

This led to a new approach I invented, and supervised a Masters student to prototype and evaluate, the
Form-based Mapper [53]. This uses form visualisations of XML data models – meant to be analogous to
the business forms traditionally used to exchange data between businesses e.g. fill out an order form, send to
supplier, supplier copies data from form to another format, supplier processes order etc. Figure 1.7 shows
an example of the Form-basedMapper in use.

Key features of the Form-basedMapper include:
• Problem domain: data exchange between complex business systems
• Target user group(s): non-technical domain experts
• Key meta-model elements: business form structures – represented as XMLmodels
• DSVL(s) used: hierarchical “form” visualisation meant to resemble real-world paper and electronic
forms

• Transformation approach used: XSLT scripts
• Target generated artefacts: XSLT scripts

The domain end user e.g. someone who is knowledgeable about the data to be exchanged between busi-
nesses, imports an XML schema and has it visualised as a form like layout, as in Figure 1.7 (1). The user
may rearrange the format to look more like a real-world paper or electronic form. They then specify via
drag and drop “correspondences” between form elements, as shown in Figure 1.7 (1) and (2). Some of these,
like the correspondences in Figure 1.7 (1) can be simple one to one mappings with little or no data format

14

Figure 1.7: Example of the Form‐based mapping generator in use (from [53])

translation; some can be 1:many or many:many complex data transformations. A formulae builder is pro-
vided (examples shown bottom text field in Figure 1.7 (1) and (2)) allows specification of formula-based
data transformations, meant to be like spreadsheet-like formulae. The Form-based Mapper then generates
XSLT scripts to implement XML to XML data transformations based on the specified mappings, part of
one shown in Figure 1.7 (3). One issue we found when evaluating the format translation formulae is these
are difficult to end users to use, being themselves based on XSLT-based formulae.

1.4.3 Mobile App Generation Tools
Developingmobile apps has become very popular but is still predominantly limited to those with high devel-
opment expertise. Despite the availability of a range of low-code/no-code MDE-based app generation and
configuration tools, these have major limitations around flexibility, expressive power, and quality of gener-
atedmobile app [10]. Despite these limitations ofMDE-based app generation approaches, eHealth apps are
a promising area for modelling and generating fully functional apps. This is because eHealth apps in spe-
cific domains share many commonalities. We wanted to support public health clinicians in modelling and
generating eHealth apps for chronic disease management e.g. diabetes, obesity, etc. These all use a similarly-
structured “care plan” concept andmobile apps provide patients with self-management steps following a set
of exercise, diet, pharmacology and monitoring interventions. We developed a clinician-oriented chronic
disease management app modeller and generator for this domain [48]. An example of this in use is shown
in Figure 1.8.
Key features of this Visual Care Plan Modeling Language (VCPML)-based eHealth app generator in-

clude:
• Problem domain: eHealth apps for chronic disease management
• Target user group(s): clinicians model app care plans and tailor to individual patient needs, patients
use generated eHealth app

• Key meta-model elements: care plans and app interface components
• Visual Care PlanModelling Language (VCPML) and a visual interface specification language

15

Figure 1.8: Example of the Visual Care Plan Modelling Language eHealth app generator in use (from [48])

• Transformation approach used: C implemented code generators
• Target generated artefacts: OpenLaszlo code which itself is then translated into Flash or Microsoft
Mobile code to run on (old) phone platforms

Figure 1.8 (1) shows a VCPML diagram to support patients with obseity management. The idea for
VCPML came frommedical texts where these care plans were textually described, and we developed a meta-
model and visual model to describe them. These can be hierarchical, with Figure 1.8 (2) showing a more
detailed care plan relating to physical therapy after clicking on the icon in Figure 1.8(1). A further visual
language (not shown) is used to describe the details of how to present care plan elements in a mobile phone
GUI. An OpenLaszlo implementation of the mobile app is generated, itself then transformed into one or
more specific mobile app implementations. The one shown in Figure 1.8 (3) is a Flash-based implemen-
tation running on a handset with a Flash player embedded. This is a 1000% code generation approach -
unlike our RAPPT tool described previously, the generated code can not be changed. While in theory the
VCPML approach to chronic disease management app generation was good, a number of limitations were
encountered by users. These included confusing user interface specification language; lack of accounting for
diverse users of the mobile apps in the generated apps – a one size fits all approach; and inability to change
or augment generated app appearance and functionality.

1.4.4 DSVL Tool Generators – “DSVLMeta-tools”
As discussed previously, we need to implement sophisticated support tools in order to realise DSVL and
MDE based approaches. We have found that such DSVL-based tools themselves are amenable to using
DSVL+MDE approaches, given they have many commonalities, commonmeta-models and DSVLs can be
developed to describe them, and much of their functionality can be generated, as either code or configura-
tions. I have used DSVL andMDE techniques to specify and generate many DSVL-based tools - I call these
meta-tools or meta-DSVL tools [35, 37]. One such example is the Vikibuilder, a DSVL and MDE-based
tool for specifying Visual Wikis [44]. An example of VikiBuilder in use to specify a “Lost” TV series Visual

16

Figure 1.9: Example of the VikiBuilder Visual Wiki designer and generator in use (from [44])

Wiki is shown in Figure 1.9.
• Problem domain: Generating “visual wikis”
• Target user group(s): Visual wiki designers - not necessarily software engineers (unless they want to
author their own Java plug-ins to extend the platform – see below).

• Key meta-model elements: key visual wiki elements e.g. data sources, data filters, data transforma-
tions, various visual wiki screen elements

• DSVL(s) used: a simple box and line visual wiki element composer, itself realised as a Visual Wiki
(thus VikiBuilder is itself a “meta-Visual Wiki”)

• Transformation approach used: Java code creating database content
• Target generated artefacts: creates a database containing configuration information for the new visual
wiki, which is interpreted to create the newVisualWiki on theConfluence platform ; additional hand-
implemented Java code plug-ins can be added to enhance functionality

Figure 1.9 (1) shows part of the specification of a new Lostpedia Visual Wiki that is intended to provide
an interactive, visual way of exploring the Lostpedia site. Various details about data sources, filters, transfor-
mations, aggregations, and visualisations are specified using form-based information associated with each
visual wiki DSVL element, as shown Figure 1.9 (2). Note the VikiBuilder tool is itself a Visual Wiki built
on top of the Confluence Enterprise Wiki platform with a set of Java plug-ins. The new visual Wiki can be
tested and specifications, both DSVL elements and their properties updated interactively, shown in Figure
1.9 (3). Finally the complete Lostpedia Visual Wiki can be deployed for use, shown in Figure 1.9 (4).
The generator takes the specified visual wiki information and populates a database with essentially a set

of detailed configuration model information, rather than generating code to implement the Visual Wiki.
A single Visual Wiki code platform thus interprets different detailed specification models to produce quite
different Visual Wikis. The VikiBuilder is thus a good example of model to model transformation using
MDE, rather than model to code. In addition, software engineers can specify Java-based plugins to include
in the new visual wiki that use a set of APIs to extend the platform capabilities, to include functionality not
built into our original Visual Wiki platform. The VikiBuilder also thus illustrates semi-automated use of

17

Figure 1.10: Example of the DCTracVis traceability link reverse engineering tool in use (from [15])

MDE to produce solutions – the DSVL allows modelling of a wide range of concepts, but ones not catered
for it supports specifying Java plugins to use that are hand-coded by developers.

1.4.5 Reverse-engineering DSVLModels from Code
All of the examples I have shown so far of DSVLs and MDE use “forward engineering” – high level model
to lower level model to code/script/configurationmodel. Sometimes it is useful to use “reverse engineering”
where a high level DSVL-visualised model is extracted from lower level models, code, documentation, per-
formance logs, etc. An example of such a tool is DCTracVis, a tool that we developed to address the problem
of visualising a large number of reverse-engineered traceability links between code and documentation [15].
Figure 1.10 shows an example of DCTracVis in use.

Key features of DCTracVis include:
• Problem domain: want to visualise and explore interactively a large number of reverse-engineered
traceability links between source code and documentation

• Target user group(s): software engineers
• Key meta-model elements: code abstract syntax tree, document paragraphs and words, and links be-
tween code tree elements and document words/phrases.

• DSVL(s) used: a heat map and tree visualisation
• Transformation approachused: Java-based reverse engineering tool to extractmodels fromJava source
code and PDF documents

• Target generated artefacts: higher level model of tracelinks between code elements and documenta-
tion elements

Figure 1.10 shows a complex Java program that has been analysed and its Packages (collections of Java
classes) shown as group of heat map visualised items (left hand side “Packages” heat map). A set of PDF
documents and section headings within the PDFs are show in the right hand side heat map (“Documents”).
When the software engineer clicks on a node – a Java class – in the left hand side Packages heatmap, elements

18

Figure 1.11: Example of the SoftArch/MTE performance engineering tool showing augmented DSVL with reverse engineered data (from [26])

corresponding to sections in the documentation about this class are highlighted in the right hand side Doc-
uments heat map. A tree visualisation of links is also shown at the bottom, here showing a traceability link
from the selected javax.naming class to three sections in the jndspi.pdf documentation file explaining uses
of this Java class. The developer can then go into the PDF at each indicated section to see potentially useful
information about using this javax.naming class.

Tools that useDSVLs andMDE for forward-engineering can also use reverse-engineering and annotation
of their DSVL diagrams to show e.g. run-time reverse engineered information. An example of this is used
in our SoftArch/MTE,Marama/MTE and Cloud/MTE performance engineering tools [26, 19]. These ex-
tract low-level run-time performance data after running performance tests, abstract this data into high level
performance summaries, and visualise these summaries by highlighting DSVL diagram icons. Figure 1.11
shows an example of this in Softarch/MTE [26]. A software architecture DSVL model (1) is highlighted
with shading and line thickness to show – at a high architectural level – places in the architecture design
causing potential performance bottle-necks. The data is abstracted from run-time captured low-level per-
formance data, shown in (2), and can also be visualised in an alternative way using a bar chart, as shown in
(3).

1.5 Overview of the papers in this Thesis
Figure 1.12 shows a summary of many of the tools and approaches described in the papers that make up
this thesis, with an indicator to which part/chapter they appear in. Each tool/approach is briefly introduced
and summarised in the following subsections. At the top of Figure 1.12 are several DSVL-based meta-tools
and various extensions to support more human-centric and collaborative modelling with these DSVLs. A
range of software engineer-supporting tools are shown below the timeline in Figure 1.12 in blue, supporting
a range of requirements, architecture, design, coding, testing and process management tasks. A set of end-
user oriented tools are shown in red at the bottom of Figure 1.12.
The collection of papers I include in Part 1 describe ways in which DSVL-based MDE tools can be de-

scribed and implemented, including themselves using DSVL and MDE-based approaches. In Parts 2-4, a
collection of papers describe why DSVLs can be a good choice for various aspects of software engineering,
including requirements engineering, software architecture, design, testing and to support software process
modelling and enactment. InPart 5, the selectedpapers describe a bodyofmywork creating various “human-
centric” and collaborative support facilities that can aid the use of DSVL-basedMDE approaches in various

19

Figure 1.12: Approximate timeline of this thesis collected contributions

ways. In Part 6 I include several papers presenting reasons and examples of why DSVL-based MDE tools
can also be used to support non-technical software end users to model and build their own software, in a
wide variety of constrained domains. Finally, in Part 7 a recent paper outlines some future directions in
supporting more human-centric model-driven software engineering using DSVLs.

1.5.1 Part 1 – Modelling tools and their development
In order to realise the approach of DSVLs and MDE to produce software systems, we need tools to model
withDSVLs and generate othermodels/code/configurations etc. from thesemodels with theseDSVLs. The
papers in this part of the thesis describe selected examples of a range of solutions we have produced to realise
such tools. These examples include post-PhDwork on a numberMViews framework extensions, the JViews
framework, the JComposer DSVL- and MDE-based JViews modeller and code generator, the Pounamu
DSVL-basedmeta-tool, theMaramaEclipse IDE-basedmeta-tool, and theVikiBuilderVisualWikimodeller
and generator. Using these platforms my collaborators and I have realised dozens of innovative DSVL and
MDE-based tools for both software engineers and end users in diverse application domains. These results
have been published in well over 200 of my papers.

MViews (implemented in an OO Prolog) and JViews (implemented in Java) are Object-oriented (OO)
frameworks for building DSVL-based tools, and provide some code and model generation support using
MDE.However building DSVL-based tools with these frameworks requires textual-coding and specialising
complex framework classes, time- consuming and only suitable for expert programmers to do. “Construct-
ing component-based software engineering environments: issues and experiences” [35] describes JCom-
poser, itself a JViews-based DSVL andMDEmeta-tool for modelling and partially generating JViews-based
DSVL and MDE tools. We describe the need for DSVL-based meta-tools like JComposer, its capabilities
and evaluation of its support, including architectural support for distributed, collaborative work specify-
ing and partially generating DSVL-based tools. JComposer supports modelling of partial DSVL tools. It
then uses MDE to generate partial DSVL tool implementation code using the JViews Java class framework.
These partial tool implementations are then completed by tool developersmodifying and extending by hand
the generated Java class code to complete the tool. JComposer results in much quicker/easier DSVL-based
tool development in JViews than using JViews alone. JComposer, like JViews, was intended for software
engineers to use, as it requires quite a lot of coding knowledge for its Java framework class specialisation and

20

implementation.
Inconsistency between DSVL views frequently occurs when a designer modifies e.g. a high level process

model or requirements model using a DSVL, but it is unclear how this change can/should be translated
to a design-level DSVL model or code-level text. This becomes a more complex problem as more diagram
(view) types are added, collaborative work between multiple designers is supported, and various kinds of
models are integrated. “Inconsistency Management for Multi-view Software Development Environ-
ments” [32] describes a range of extensions made to the Prolog-based MViews platform (originally devel-
oped in my PhD) and its successor Java-based JViews framework to support inconsistency management in
DSVL-based tools. We show a range of inconsistencies that can result and novel ways tomanage themwhen
trying to keep various general-purpose and domain-specific graphical representations of software engineer-
ingmodels consistent. MViews and JViewswere both intended for software engineers to use, as they require
a lot of coding knowledge for their OO framework class specialisation and implementation.
Pounamu: a meta-tool for exploratory domain-specific visual language tool development [73] de-

scribes Pounamu, the successor DSVL meta-tool to JComposer/JViews. Pounamu is a stand-alone, Java-
implementedmeta-toolwith a greater range ofDSVL-basedmeta-tools, and it generatesDSVL tool specifica-
tion files which are interpreted by Pouanmu itself to realise the target DSVL-based tool. Pounamu supports
development of Java code-based plug-ins to extend the generated tool functionality in more seamless ways
than JViews. A number of extensions to Pounamu support collaborative work and web- and mobile-based
editing, described in later thesis chapters. We have used Pounamu to build a wide range of DSVL-based
tools for software engineers and end users. Pounamu was intended for software engineers to use, as it re-
quires some coding knowledge for its Java plug-ins, though we have also had some end users successfully use
it to develop their own DSVL-based tools in limited ways.
Generating Domain-Specific Visual Language Tools from Abstract Visual Specifications [37] de-

scribes Marama, the successor to Pounamu. Marama is a DSVL meta-tool realised by a set of Eclipse IDE-
based plug-ins, rather than a stand-alone tool like Pounamu. Marama provides much more sophisticated
DSVL-based tool specification than Pounamu or JComposer, andmanymore extensions via its own Eclipse
plug-ins and also via many third-party Eclipse IDE plug-ins. This includes Eclipse-based code development
IDEs, makingMarama-based tools much more closely integrated with other development tools than in our
previous meta-tool approaches. Marama even has a DSVL-based MDE code generator specification and
generation tool – a DSVL-based meta-MDE tool [45]. It also has a range of novel DSVL-based design critic
and constraintmodelling and generation tools, thesemaking complexDSVL-based tool functionalitymuch
easier to build than Pounamu and JViews/JComposer [2]. We have used Marama to build a wide range of
DSVL-based tools for software engineers and end users. Maramawas intended for software engineers to use,
but we have had non-technical end users successfully use it to build basic DSVL-based tools.

Finally in this part I describe VikiBuilder: end-user specification and generation of Visual Wikis
[44]. As previously summarised, VikiBuilder is a web-based, DSVL-based Visual Wiki specification and
generation tool. It is itself a Visual Wiki and generates Visual Wiki configuration data via MDE from its
DSVL-based models. Unlike the previous meta-tools, VikiBuilder was always intended for end user, non-
technical user specification and generation of Visual Wikis. It can also be used by software engineers who
can develop Java-based plug-ins to extend the Visual Wikis generated by VikiBuilder.

1.5.2 Part 2 – Requirements and Design support with DSVLs and MDE
We have used our meta-tools from the previous section, and others, to develop a wide range of tools to sup-
port software engineers during requirements engineering and software architecting tasks for complex soft-
ware systems. An early example is a set of extensions to existingDSVLs – those of JComposer – described in
Aspect-oriented Requirements Engineering for Component-based Software Systems [25]. In this work,
I invented a set of novel requirements-level “aspect” annotations on high level components describing cross-
cutting problem space concerns. These augmented JComposer requirements-level specifications and allow a
software engineer to describe and reason about cross-cutting concerns in DSVL-based tools, as well as other

21

DSVL-described software requirements. We later added this concept to general purpose UML diagrams,
used them to augment design level models, and used them to describe implemented software component ca-
pabilities to support run-time dynamic integration of component-based systems. JComposer uses MDE to
take its aspect-augmented requirementsDSVLmodels and generate design-level detailed aspect information
(via model to model transformation).

MaramaAIC: Tool Support for Consistency Management and Validation of Requirements [46]
describes MaramaAIC, a tool supporting requirments engineering using Essential Use Case (EUC)-based
models and Essential User Interface (EUI) models. MaramaAIC provides a novel DSVL-based representa-
tion of these EUC based requirements models and uses MDE to generate EUCs from essential interaction
models extracted from natural language text. It also generates example user interface mockups using MDE
from its EUI basedDSVLmodels. MaramaAICwas, as the name suggests, implemented using ourMarama
meta-tools.

Software security engineering is challenging. Adaptable,Model-driven Security Engineering for SaaS
Cloud-based Applications [5] describes several DSVLs to support modelling different aspects of software
security, including requirements-level and design-level characteristics. MDE-based tool support enables re-
quirements level software security properties to be translated to solution space architecture and design level
choices to realise security requirements. Further MDE support assists developers in encoding these DSVL-
specified security solution decisions into software component code and configurations. This includes sup-
porting run-time security property management. Finally, low-level run-time security monitoring data can
be reverse-engineered and abstracted into design levelDSVL-visualised information for system securityman-
agers.

SoftArch is a tool I developed to model a range of complex software architecture abstractions. SoftArch:
tool support for integrated software architecture development [29] describes the DSVLs provided by
Softarch to support a range of software architecture modelling at various levels of abstraction. MDE tech-
niques are used to generate partial OO design models to exchange with other modelling tools. Reverse engi-
neering is used to provide dynamic visualisation of running systems based on thesemodels. SoftarchDSVLs
can be augmented by running system data to debug and understand how the systems work.

Design patterns are reusable solution approaches to tackling commondesign andprogrammingproblems.
They are often described with UML-based design models. A Visual Language for Design Pattern Mod-
elling and Instantiation [56] describes a novel DSVL, the Design Pattern Modelling Language (DPML),
used for describing design patterns, and MDE techniques for realising these in programming code. A sup-
porting tool, DPMLTool, was originally implemented with the JViews/JComposer meta-tool. A more ad-
vanced version, MaramaDPML, was subsequently reimplemented with the Marama meta-tool.

1.5.3 Part 3 – Development and Testing with DSVLs and MDE
We have invented many innovative DSVL- and MDE-based tools to support design, implementation and
testingof software systems. SupportingMulti-ViewDevelopment forMobileApplications [10] describes
RAPPT, aDSVL- andDSL-basedmobile app code generation tool. Describedpreviously,RAPPT supports
combined visual DSVLs for high level mobile app modelling combined with more detailed textual DSL
models to describe lower level app designs. These are then used to generate a fully functioning Android app
including code, manifest, configuration and build files. The generated code is intended to be further hand-
edited to polish and complete the app. RAPPT was intended for professional app developers to increase
their productivity.

I have described many uses of model transformation, used in our DSVL meta-tools and in several exam-
ple tools. Most of these are usually implemented as Java code, XSLT transformation scripts, or using other
textual DSL code generator scripting languages. Specifying Model Transformations by Direct Manip-
ulation using Concrete Visual Notations and Interactive Recommendations [7] describes CoNVErT,
a DSVL-based model-to-model and model-to-visualisation mapping and generation tool. This paper de-
scribes the visual model-to-model specification aspects of CoNVERT – its domain-specific DSVLs used to

22

visualise XML models, its model to model visual mapping specification DSVL, and its mapping generator
that uses MDE to transform its models to a detailed XML model transformation implementation. CoN-
VERTwas intended for non-technical end users, but can be used by software engineers too.

SoftArch/MTE: Generating Distributed System Test-beds from High-level Software Architecture
Descriptions [26] describes extensions to SoftArch including augmented software architecture DSVL dia-
grams and MDE to generate performance test-beds for these architectures to support large scale software
performance engineering. As discussed previously, testing whether a planned complex software system will
meet its performance targets is very challenging. In this paper we describe how we augmented the original
Softarch DSVL-based software architecture models to add detailed implementation platform and client,
server and database properties and templates to synthesize realistic client loading models and server and
database models. We describe how we generate these detailed models using XSLT-based model transforma-
tion approaches. We also describe the reverse engineering and abstraction of detailed run-time performance
data into summaries and display of these to the user by augmenting the architectral DSVL models. Soft-
Arch/MTE was implemented with our JViews/JComposer meta-tool.

Previously I described and illustrated MaramaMTE, a successor to Softarch/MTE for distributed sys-
tem test bed generation and performance engineering. Realistic Load Testing of Web Applications [19]
describes using novel DSVL-based models in MaramaMTE – augmented architecture diagrams and aug-
mented stochastic form charts – to model and generate via MDE web-based system performance test beds.
Unlike the JViews-based Softarch/MTE, MaramaMTE is fully integrated into the Eclipse IDE as a toolset
and makes use of third party Eclipse plug-ins to provide a much more integrated performance engineering
toolset for software engineers.

Finally in this part I describe TeeVML, a performance emulation environment generator. Softarch/MTE
andMaramaMTE described above generate fully functional models of complex distributed systems that are
compiled and run with associated environment software (database servers, web servers etc) to performance
test them. In contrast, TeeVML and its supporting tool generate “emulation environments” to test the be-
haviour and performance of real, very large scale software systems inmock emulation environments – essen-
tially the opposite of MaramaMTE and Softarch/MTE.A Domain-Specific Visual Modeling Language
for Testing Environment Emulation [54] describes this approach where a new DSVL-based high-level
model of “system endpoints” – basically models of complex software system interfaces – are used to model
and generate the complex environment a real-world software systemwould have to operate in. This software
system is then run in this generated emulation environment, instead of having to hand-construct a (very)
complex testing environment for it. TeeVML is implemented with the commercial MetaEDIT+meta-tool.

1.5.4 Part 4 – Process and Project Management with DSVLs and MDE
Software process models can be very complex. In the 1990s there was a lot of interest in (semi-)automated
tools to model and enact (run) process models to guide software development. Serendipity: integrated
environment support for process modelling, enactment and work coordination [39] describes Serendip-
ity, such a process-centred environment. A set of DSVLs are used by developers to model complex software
processes. Serendipity then uses MDE to generate detailed software process models from these DSVLs that
are then run – or enacted – to implement the specified software process and guide developers in following
it. Serendipity provides a range of high-level and detailed software process descriptions, including “agents”
that monitor software development tool activities to semi-automate complex software processes. Serendip-
ity users are software engineers, particularly project leaders. Serendipity was implemented with theMViews
meta-tool framework.
A decentralized architecture for software process modeling and enactment [36] describes the succes-

sor to Serendipity, Serendipity-II. This supports a more powerful visual editing tool, more advanced collab-
orative work and third party tool integration, and some improved DSVLs. Serendipity-II generates process
models usingMDE like Serendipity, but also generates Java code usingMDE to implement a variety of tool
integration support features. End users of Serendipity-II were originally intended to be software engineers,

23

but it can also be used by non-technical projectmanagers in other domains. Serendipity-II was implemented
with the JComposer meta-tool and JViews framework.

Specifying complex software security requirements and behaviours is challenging, especially for end users
whose security requirements may evolve over time. In Collaboration-Based Cloud Computing Security
Management Framework [4] we present a combined DSVL- and DSL-based framework to support the
process of specifying and enforcing end-to-end, complex, cloud-based Software as a Service (SaaS)-based
application security requirements. From these models we generate detailed security properties for the tar-
get system using MDE. These models are then used at run-time to configure a running cloud-based SaaS
application’s run-time security enforcement approaches. End users are SaaS application owners, often non-
technical end users. Software engineers can also use the toolset to model security requirements and have
them enforced at run-time. An early version of our web-based Horus meta-tool [6] and a set of web forms
are used to specify the security models.
DCTracVis: a system retrieving and visualizing traceability links between source code and docu-

mentation [15] describes the DCTracVis reverse engineering tool introduced previously. Unlike many of
the systems presented in this thesis, DCTracVis abstracts higher-level models from low-level code – docu-
mentation links, reverse engineered using text processing algorithms. It then usesHeatMap- andTree-based
DSVL representations of these models to allow software engineers to browse between high-level links be-
tween documentation and code elements.

BiDaML is a tool formodelling complex data analytics applications, described inAnEnd-to-EndModel-
based Approach to Support Big Data Analytics Development [47]. BiDaMLuses several DSVLs ranging
from high-level brainstorming diagrams to low-level technique diagrams to specify complex data analytics
applications fromvaryingperspectives. MDE-based generators produce detailed reports to guide data analyt-
ics teams, and partial Java and Python implementations of data analytics applications. End users are multi-
disciplinary data analytics team members – domain experts, business analysts, software engineers, project
managers and cloud platform experts. BiDaML is implemented with the commercial MetaEDIT+ meta-
tool.

1.5.5 Part 5 – Human-centric DSVLModelling and Collaboration
In this part of the thesis I describe several research works that look to support more “human-centric” mod-
elling with DSVL-based MDE tools. By this I mean approaches to make the tools easier to use, support
more “natural” modelling, and support multiple developers or end users working collaboratively together
on models.
Experiences developing architectures for realising thin-client diagram editing tools [31] describes a

variety of Pounamu extensions to enable users of Pounamu tools to editDSVLdiagrams using aweb brower,
mobile phone and even a3Dbrowser plug-in. The idea is that Pounamu is a Java-based application that needs
to be installed on each users machine and regularly updated. Similarly, due to Pounamu’s use of Java code
plug-ins for much DSVL-based tool implementation, this makes sharing new DSVL tools and developing
them collaboratively very challenging. Pounamu/Thin – the web/mobile-supporting extensions – instead
host a single Pounamu instance on a server and provide web browser/mobile phone editing interfaces. Some
of thewebbrowser editors are quite sophisticated, using SVGandECMAscript to provide highly interactive
diagramming very similar to the desktop Pouanu. Note also that this work was done in the mid-2000s, long
before today’smore powerful browser-based client capabilities were developed. Pounamu/Thin even allows
Pounamu meta-tool specifications to be edited and thus new Pounamu-based DSVL tools to be designed
using the browser-based interface.

In Engineering plug-in software components to support collaborative work [28] we describe a set of
JViews-based plug-ins that provide a range of collaborative work facilities to JViews-based DSVL editing
tools. A wide range of plug-ins are provided to support collaborative editing, awareness support, shared
repositories, process-centred environment control and annotation of change histories, and so on. These
plug-ins use the aspect-based extensions to JViews and JComposer to support very dynamic, run-time plug-

24

in support.
A generic approach to supporting diagram differencing and merging for collaborative design [57]

presents a set of Pounamu and early Marama plug-ins that support collaborative work via DSVL diagram
comparison and merging support. When working with other designers on a shared DSVL designs, such
support is essential to enable changes made simultaneously or asynrhconously to be compared, and selected
changes to be “committed” to a shared, unified model. The techniques described in this paper are generic
and work for any Pounamu orMarama DSVL-based tool.

DSVLs don’t have to be just two dimensional, box-and-line diagrams. A 3D Business Metaphor for
Program Visualization [61] proposes a highly novel DSVL for visualising project management informa-
tion using a 3D “city” metaphor of buildings, streets and various annotations. Like DCTracVis, we reverse
engineer detailed project management information, abstract it, then use the city metaphor to visualise the
project management data. Forward engineering from these project management visualisations using MDE
was proposed to allow restructuring of projects based on modifications made to the city-based DSVLs.

Finally, bringingmuch of the priorworks in this part together, we describe “sketching-based” interfaces to
DSVL tools in Supporting generic sketching-based input of diagrams in a domain-specific visual lan-
guage meta-tool [30]. This describes a set of Marama plug-ins enabling sketching-based input of sketched
designs, much as one would using a whiteboard or piece of paper. The sketched diagrams are automati-
cally formalised into underlying Marama DSVL models. These sketch-supporting plug-ins also work with
Maramaversionsof our collaborativework supportingplug-ins to support distributed, collaborative, sketched-
basedDSVLtools! The techniques described in this paper are generic andwork for anyMaramaDSVL-based
tool.

1.5.6 Part 6 – End user Applications of DSVLs and MDE
While many of the tools we have produced are for software engineers to help in their work, we have also
producedmanyDSVL- andMDE-basd tools for end users, usually focused on very specific domains ofwork.
In this part I overview several papers that support a diverse range of end users and diverse range of end user
application domains.
Domain-specific visual languages for specifying and generatingdatamapping systems [40]describes

several tools aimed at supporting complex data integration, most aimed at supporting end users in different
domains e.g. business analysts, construction engineers, and eHealth system integrators. Tools described
include the Orion Message Mapper and Form-based Mapper described previously. Some of the data inte-
gration tools described were designed and built with MViews and JViews frameworks.

InA domain-specific visual language for report writing [18], we describe a tool developed with an in-
dustrial partner, PRISM,whobuild sophisticated software solutions for the commercial print industry. One
of their software systems is aDSL-based report generation tool, to be used by print industry experts. This pa-
per describes aDSVL-based report writing designer and generator. ADSVL is used to specify complex print
industry report layout and content. MDE approaches are used to generate the textual DSL language, which
is then complied and run by PRISM’s existing software. The DSVL- and MDE-based approach makes au-
thoring, modifying and understanding these complex professional print industry reports easier, faster and
more maintainable. PRISM commercialised the prototype toolset. Our DSVL-based report designer was
implemented withMicrosoft Visual Studio’s DSVL-based designers and code generators.

HorusHPC, described previously, is aimed at scientists wanting to parallelise software for high perfor-
mance computing domains. Supporting Scientists in Re-engineering Sequential Programs to Parallel
Using Model-driven Engineering [3] describes its DSVLs and web-based toolset. It uses MDE to gener-
ate lower-level models and GPU C code skeletons. Scientists then complete these code skeletons by hand.
Partial HorusHPCmodels can also be reverse engineered from existing C code.
A visual language and environment for enterprise systemmodelling and automation [52] describes

Enterprise Modelling Langugae (EML) and its support tool, described earlier in this chapter. EML and
EMLTool were designed for enterprise service modelling and generation of service orchestration scripts.

25

EML is a DSVL using novel tree- and overlay-based metaphors. EMLTool supports creagting EMLmodels,
and uses these EMLmodels to generate BPML4WS service orchestrations using Eclipse model transformer
and code generation plug-ins. A third party BPEL analyser checks for problems in the specifications and
uses a DSVL to highlight these to the user. EMLTool was realised using our Marama meta-toolset.

Described previously, Statistical Design Language (SDL) and its supporting tool, SDLTool, are aimed
at professional and amateur statisticians, and provide multiple DSVLs for high-level to low-level statistical
survey designs. These are described in A suite of visual languages for model-driven development of
statistical surveys and services, Journal of Visual Languages and Computing [49]. MDE techniques
are used to generateR scripts andweb service implementations of specified survey technique descriptions for
reuse. SDLToolwas implemented using the Pounamumeta-tools, alongwith a number of specially designed
Pounamu plug-ins.

Finally in this part of the thesis I describe the use of CoNVERT for information integration and complex
visualisation, in the context of household travel data aggregation, harmonisation, integration and visualisa-
tion. The paper Engineering Complex Data Integration and Harmonization Systems [8] presents an
industry collaboration with the AURIN project andData61 to source, analyse, aggregate, harmonise, trans-
form, integrate, and visualise complex household travel survey data from several Australian states. End users
of the DSVL-based tool are domain experts in human geography-based survey data, government planning,
and use of diverse government planning data.

1.5.7 Part 7 – Future directions
The single paper in this part of the thesis, Towards Human-Centric Model-Driven Software Engineer-
ing [33], outlines a new research programme for more human-centric, model-driven software engineering.
This reseaerch includes integrating diverse human characteristics into requirements-level and design-level
DSVLs and using these human characteristics during model-driven engineering. The MDE generators ei-
ther generate different apps and web site pages tailored to different end users, or generate configuration data
that can be used by the apps/web sites at run-time to tailor them to diverse end user human characteristics.
This work builds heavily on the contributions of many of the papers presented earlier in the thesis. It at-
tempts to address some of the limitations of these works, specifically the lack of modelling diverse end user
characteristics, such as age, gender, language, culture, personality, emotions, etc in DSVLs, and the lack of
using this information duringMDE to produce software better suited to diverse end user needs.

1.6 Evidence of Impact

1.6.1 Citations
The research community has utilised the results from the papers in this thesis to informmany other research
projects by many leading groups internationally. These are illustrated by both number of citations to many
of the works, as well as citation of the works by many leading research teams. For example, several papers
have over 200 citations (Google Scholar), or the paper in this thesis and its earlier conference version hav-
ing together well over 200 citations. Examples include papers on Inconsistency management in MViews
and Views [32], collaborative cloud security modelling end enactment [4], design pattern modelling and
instantiation [56], collaborative DSVL diagram diffing andmerging [57], and aspect-oriented requirements
engineering [25]. Many other papers, or the papers in this thesis and earlier conference version, have well
over 100 citations. Examples include JViews/JComposer, Pounamu and Marama meta-tools papers and
their earlier conference versions [35, 73, 37], MaramaAIC essential use case DSVL-based tool [46], Mara-
maMTE web application testbed modeller and generator [19], Serendipity process-centred environment
[39], Serendipity-II workflow modelling and enactment toolset [36], City metaphor project management
information visualisation tool [61], and JViews-based collaborative editing plug-ins [28].

26

1.6.2 Industrial collaborations and Translation to practice
Manyof the researchworks in this thesis havebeen carriedout in collaborationwith awide rangeof industrial
partners. In addition, a number of the meta-tools have been used on follow-on projects with these or other
collaborators.

We have developed and used our data mapping tools, including the OrionMessage Mapper, Form-based
Mapper [40] and CoNVERT [7], with several companies interested in complex data integration problems.
These include Orion Health, Peace Software, XSOL, First Data Utilities, NICTA, VicRoads and AURIN.
The Orion Message mapper was a prototype for the very successful Raphsody message mapping and inte-
gration toolset produced and commercialised by Orion Heath.
Wehaveusedourprocess-modelling andworkflow-modelling tools, includingSerendipity andSerendipity-

II [39, 36] derivatives of these, or our meta-tools Pounamu andMarama [73, 37], to implement similar pro-
totype systems, for several domains. This includes modelling complex business process models with XSOL
and Peace Software. The city visualisation DSVL and prototype tool were developed in collaboration with
Peace Software’s R&D team [61]. A summer student used Serendipity-II ideas to prototype a workflow
tool with Peace Software tomodel and co-ordinate complex billing system processes. This was subsequently
commercialised by Peace development teams.

We used our performance engineering tools, including Softarch/MTE and MaramaMTE [26, 19], on
several industrial projects, several of them as confidential consulting projects on large scale enterprise system
performance analysis and improvement. Some projects we are able to talk about include performance engi-
neering of virtual database-based systems with XSOL, large scale clinical data repository engineering with
OrionHealth, and large scale database systems performance engineering with First Data Utilities. We collab-
orated with CSIRO on Softarch/MTE development [26]. This included using information from CSIRO
collaborations with a range of large Australian corporates with complex enterprise system performance en-
gineering needs. A patent for the principles underpinning Softarch/MTE was successfully applied for.

We collaborated with Swiss consulting company Sofismo AG to attempt a commercialisation of a deriva-
tive of the Marama meta-toolset [37]. This was to underpin Sofismo’s complex system modelling and anal-
ysis work, carried out with a wide range of predominantly European corporates.

TeeVML development [54] was informed by our collaboration with CA Labs on generating complex
enterprise system emulation environments. The idea was to augment CA Lab’s commercial toolsets with
support for very large scale testing environment modelling with TeeVML DSVL-based models, and then
generate test bed emulation environments from these models using MDE techniques.

Wehave collaboratedwith several scientific andmedical discovery teamsusing, amongothers,HorusHPC
[3] and BiDaML [47]. These included the astrophysics team at Swinburne University of Technology on
modelling complex radio telescope data process software for pulsar discovery, and themedical imaging team
at the Alfred Hospital onMRI image processing for disease identification.

We collaboratedwithThales on developing improved requirements engineering tools for complex air traf-
fic control and related systems. This included modelling and semi-formalising textual requirements using
DSVLmodels using MaramaAIC [46].
We have worked with several companies during the development and evaluation of BiDaML [47]. This

included real estate cost estimation algorithms with ANZ bank, predicting congestion forMelbourne CBD
using VicRoads data, and recently with eHealth application developers.

Our report writing DSVL-based tool was commercialised by PRISM [18]. This involved turning the
initial prototype into an “industrialised” version, supporting larger scale reports, multiple user editing, and
versioning.

For our Visual Wiki and VikiBuilder [44] work we successfully applied for a US patent for its underlying
principles. We then secured very significant venture capital funding to commercialise this as the Mohio
information visualisation platform.

27

1.6.3 Next Generation Education and Training
The impact I ammost proud of from this body of work is the number and range of students, post-doctoral
fellows and research assistants who I have worked with and educated in this domain. We used Pounamu
and Marama tools for several years in our undergraduate final year software engineering course, many un-
dergraduateHonors student projects, and in several graduate courses on domain-specific visual languages at
the University of Auckland. While not having precise number of student teams or individual projects, well
over 200 students used the tools to learn about DSVL andMDE principles and built their ownDSVL- and
MDE-tools.

Just contributing to the papers contained in this thesis alone, there are a total of 14 PhD students, 10
Masters by research students and 1 Honors student, and 10 post-doctoral fellows and 3 research assistants.
Most of these students, research assistants and post-doctoral fellows have gone into industry positions with
this knowledge and skills. Of the rest, 6 have academic positions and 4 have post-doctoral fellow positions as
I write this. Including the many other derivative works using JViews/JComposer, Pounamu, Marama, and
a few using third party frameworks and toolkits, there are a great many more students, research assistants
and post-doctoral fellows who have benefited from learning in the environment and with the techniques
and toolsets that we have created.

28

References

[1] Agarwal, R. & Sinha, A. P. (2003). Object-oriented modeling with uml: a study of developers’ per-
ceptions. Communications of the ACM, 46(9), 248–256.

[2] Ali, N. M. (2007). A generic visual critic authoring tool. In IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC 2007) (pp. 260–261).: IEEE.

[3] Almorsy, M. & Grundy, J. (2015). Supporting scientists in re-engineering sequential programs to
parallel using model-driven engineering. In Software Engineering for High Performance Computing
in Science (SE4HPCS), 2015 IEEE/ACM 1st InternationalWorkshop on (pp. 1–8).: IEEE.

[4] Almorsy, M., Grundy, J., & Ibrahim, A. S. (2011). Collaboration-based cloud computing security
management framework. In 2011 IEEE 4th International Conference on Cloud Computing (pp. 364–
371).: IEEE.

[5] Almorsy, M., Grundy, J., & Ibrahim, A. S. (2014a). Adaptable, model-driven security engineering
for saas cloud-based applications. Automated software engineering, 21(2), 187–224.

[6] Almorsy, M., Grundy, J., & Rüegg, U. (2014b). Horuscml: Context-aware domain-specific visual
languages designer. In 2014 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC) (pp. 133–136).: IEEE.

[7] Avazpour, I., Grundy, J., &Grunske, L. (2015). Specifyingmodel transformations by direct manipu-
lation using concrete visual notations and interactive recommendations. Journal of Visual Languages
& Computing, 28, 195–211.

[8] Avazpour, I., Grundy, J., & Zhu, L. (2019). Engineering complex data integration, harmonization
and visualization systems. Journal of Industrial Information Integration, 16, 100103.

[9] Bachman, C. W. (1969). Data structure diagrams. ACM SIGMIS Database: The DATABASE for
Advances in Information Systems, 1(2), 4–10.

[10] Barnett, S., Avazpour, I., Vasa, R., & Grundy, J. (2019). Supporting multi-view development for
mobile applications. Journal of Computer Languages, 51, 88–96.

[11] Barnett, S., Vasa, R., & Grundy, J. (2015). Bootstrapping mobile app development. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 2 (pp. 657–660).:
IEEE.

[12] Blackwell, A. F. (2001). Pictorial representation and metaphor in visual language design. Journal of
Visual Languages & Computing, 12(3), 223–252.

[13] Böhm, C. & Jacopini, G. (1966). Flow diagrams, turing machines and languages with only two for-
mation rules. Communications of the ACM, 9(5), 366–371.

[14] Chaudron,M. R., Heijstek, W., &Nugroho, A. (2012). How effective is uml modeling? Software &
SystemsModeling, 11(4), 571–580.

[15] Chen, X., Hosking, J., Grundy, J., & Amor, R. (2018). Dctracvis: a system retrieving and visualizing
traceability links between source code and documentation. Automated Software Engineering, 25(4),
703–741.

29

[16] Cook, S., Jones, G., Kent, S., & Wills, A. C. (2007). Domain-specific development with visual studio
dsl tools. Pearson Education.

[17] Cox, P. T., Giles, F., & Pietrzykowski, T. (1989). Prograph: a step towards liberating programming
from textual conditioning. InVisual Languages, 1989., IEEEWorkshop on (pp. 150–156).: IEEE.

[18] Dantra, R., Grundy, J., & Hosking, J. (2009). A domain-specific visual language for report writ-
ing using microsoft dsl tools. In 2009 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (pp. 15–22).: IEEE.

[19] Draheim, D., Grundy, J., Hosking, J., Lutteroth, C., & Weber, G. (2006). Realistic load testing of
web applications. In Conference on Software Maintenance and Reengineering (CSMR’06) (pp. 11–
pp).: IEEE.

[20] Esser, R. & Janneck, J. W. (2001). A framework for defining domain-specific visual languages. In
Workshop on Domain Specific Visual Languages, ACMConference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA-2001).

[21] File, P., Castell, A., Marshall, I., Walker, I., & Williams, L. (1970). From requirements specification
to entity-relationship diagrams using rules. WIT Transactions on Information and Communication
Technologies, 7.

[22] Fowler, M. (2004). UML distilled: a brief guide to the standard object modeling language. Addison-
Wesley Professional.

[23] Green, T. R. G. & Petre, M. (1996). Usability analysis of visual programming environments: a ?cog-
nitive dimensions? framework. Journal of Visual Languages & Computing, 7(2), 131–174.

[24] Gronback, R. C. (2009). Eclipse modeling project: a domain-specific language (DSL) toolkit. Pearson
Education.

[25] Grundy, J. (1999). Aspect-oriented requirements engineering for component-based software systems.
InProceedings IEEE International SymposiumonRequirementsEngineering (Cat.No. PR00188) (pp.
84–91).: IEEE.

[26] Grundy, J., Cai, Y., & Liu, A. (2005). Softarch/mte: Generating distributed system test-beds from
high-level software architecture descriptions. Automated Software Engineering, 12(1), 5–39.

[27] Grundy, J.&Hosking, J. (2002a). Developing adaptable user interfaces for component-based systems.
Interacting with computers, 14(3), 175–194.

[28] Grundy, J.&Hosking, J. (2002b). Engineeringplug-in software components to support collaborative
work. Software: Practice and Experience, 32(10), 983–1013.

[29] Grundy, J.&Hosking, J. (2003). Softarch: Tool support for integrated software architecture develop-
ment. International Journal of Software Engineering and Knowledge Engineering, 13(02), 125–151.

[30] Grundy, J. & Hosking, J. (2007). Supporting generic sketching-based input of diagrams in a
domain-specific visual languagemeta-tool. In 29th International Conference on Software Engineering
(ICSE’07) (pp. 282–291).: IEEE.

[31] Grundy, J., Hosking, J., Cao, S., Zhao, D., Zhu, N., Tempero, E., & Stoeckle, H. (2007). Experi-
ences developing architectures for realizing thin-client diagram editing tools. Software: Practice and
Experience, 37(12), 1245–1283.

30

[32] Grundy, J., Hosking, J., & Mugridge, W. B. (1998a). Inconsistency management for multiple-view
software development environments. IEEE Transactions on Software Engineering, 24(11), 960–981.

[33] Grundy, J., Khalajzadeh, H., &Mcintosh, J. (2020). Towards human-centric model-driven software
engineering. In ENASE (pp. 229–238).

[34] Grundy, J., Mugridge, R., Hosking, J., & Kendall, P. (2001). Generating edi message translations
from visual specifications. In Proceedings 16th Annual International Conference on Automated Soft-
ware Engineering (ASE 2001) (pp. 35–42).: IEEE.

[35] Grundy, J., Mugridge, W., &Hosking, J. (2000). Constructing component-based software engineer-
ing environments: issues and experiences. Information and Software Technology, 42(2), 103–114.

[36] Grundy, J. C., Apperley, M. D., Hosking, J. G., & Mugridge, W. B. (1998b). A decentralized archi-
tecture for software process modeling and enactment. IEEE Internet Computing, 2(5), 53–62.

[37] Grundy, J. C., Hosking, J., Li, K. N., Ali, N. M., Huh, J., & Li, R. L. (2012). Generating domain-
specific visual language tools from abstract visual specifications. IEEE Transactions on Software En-
gineering, 39(4), 487–515.

[38] Grundy, J. C.&Hosking, J.G. (1996). Constructing integrated software development environments
with mviews. International Journal of Applied Software Technology, 2(3-4), 133–160.

[39] Grundy, J. C. & Hosking, J. G. (1998). Serendipity: integrated environment support for process
modelling, enactment and work coordination. In Process Technology (pp. 27–60). Springer.

[40] Grundy, J. C., Hosking, J. G., Amor, R., Mugridge, W. B., & Li, Y. (2004). Domain-specific vi-
sual languages for specifying and generating data mapping systems. Journal of Visual Languages &
Computing, 15(3-4), 243–263.

[41] Guerra, E., de Lara, J., Malizia, A., & Díaz, P. (2009). Supporting user-oriented analysis for multi-
view domain-specific visual languages. Information and Software Technology, 51(4), 769–784.

[42] Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of computer program-
ming, 8(3), 231–274.

[43] Henderson, K. (1999). On line and on paper: Visual representations, visual culture, and computer
graphics in design engineering. JSTOR.

[44] Hirsch, C., Hosking, J., & Grundy, J. (2010). Vikibuilder: end-user specification and generation
of visual wikis. In Proceedings of the IEEE/ACM international conference on Automated software
engineering (pp. 13–22).

[45] Huh, J., Grundy, J., Hosking, J., Liu, K., &Amor, R. (2009). Integrated datamapping for a software
meta-tool. In 2009 Australian Software Engineering Conference (pp. 111–120).: IEEE.

[46] Kamalrudin, M., Hosking, J., & Grundy, J. (2017). Maramaaic: tool support for consistency man-
agement and validation of requirements. Automated software engineering, 24(1), 1–45.

[47] Khalajzadeh, H., Simmons, A. J., Abdelrazek, M., Grundy, J., Hosking, J., & He, Q. (2020). An
end-to-end model-based approach to support big data analytics development. Journal of Computer
Languages, 58, 100964.

[48] Khambati, A., Grundy, J., Warren, J., & Hosking, J. (2008). Model-driven development of mobile
personal health care applications. In 2008 23rd IEEE/ACM International Conference on Automated
Software Engineering (pp. 467–470).: IEEE.

31

[49] Kim, C. H., Grundy, J., & Hosking, J. (2015). A suite of visual languages for model-driven develop-
ment of statistical surveys and services. Journal of Visual Languages & Computing, 26, 99–125.

[50] Kim, C. H., Hosking, J., & Grundy, J. (2005). A suite of visual languages for statistical survey
specification. In 2005 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC’05) (pp. 19–26).: IEEE.

[51] Lédeczi, Á., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G. (2001).
Composing domain-specific design environments. Computer, 34(11), 44–51.

[52] Li, L., Grundy, J., & Hosking, J. (2014). A visual language and environment for enterprise system
modelling and automation. Journal of Visual Languages & Computing, 25(4), 253–277.

[53] Li, Y., Grundy, J., Amor, R., &Hosking, J. (2002). A data mapping specification environment using
a concrete business form-based metaphor. In Proceedings IEEE 2002 Symposia on Human Centric
Computing Languages and Environments (pp. 158–166).: IEEE.

[54] Liu, J., Grundy, J., Avazpour, I., & Abdelrazek, M. (2016). A domain-specific visual modeling
language for testing environment emulation. In 2016 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC) (pp. 143–151).: IEEE.

[55] Ludewig, J. (2003). Models in software engineering–an introduction. Software and SystemsModel-
ing, 2(1), 5–14.

[56] Maplesden, D., Hosking, J. G., & Grundy, J. C. (2001). A visual language for design pattern mod-
elling and instantiation. InHCC (pp. 338–339).: Citeseer.

[57] Mehra, A., Grundy, J., &Hosking, J. (2005). A generic approach to supporting diagram differencing
andmerging for collaborative design. InProceedings of the 20th IEEE/ACM international Conference
on Automated software engineering (pp. 204–213).

[58] Mernik, M., Heering, J., & Sloane, A. M. (2005). When and how to develop domain-specific lan-
guages. ACM computing surveys (CSUR), 37(4), 316–344.

[59] Moody, D. (2009). The “physics” of notations: Toward a scientific basis for constructing visual no-
tations in software engineering. IEEE Trans. Softw. Eng., 35(6), 756–779.

[60] Myers, B.A. (1990). Taxonomies of visual programming andprogramvisualization. Journal ofVisual
Languages & Computing, 1(1), 97–123.

[61] Panas, T., Berrigan, R., & Grundy, J. (2003). A 3d metaphor for software production visualization.
InProceedings on Seventh InternationalConference on InformationVisualization, 2003. IV 2003. (pp.
314–319).: IEEE.

[62] Parnas, D. L. (1969). On the use of transition diagrams in the design of a user interface for an inter-
active computer system. In Proceedings of the 1969 24th national conference (pp. 379–385).

[63] Pelechano, V., Albert, M., Muñoz, J., & Cetina, C. (2006). Building tools for model driven develop-
ment. comparing microsoft dsl tools and eclipse modeling plug-ins. InDSDM.

[64] Petre,M. (2013). Uml in practice. In 2013 35th international conference on software engineering (icse)
(pp. 722–731).: IEEE.

[65] Planas, E. & Cabot, J. (2020). How are uml class diagrams built in practice? a usability study of two
uml tools: Magicdraw and papyrus. Computer Standards & Interfaces, 67, 103363.

32

[66] Schmidt, D. C. (2006). Model-driven engineering. Computer-IEEE Computer Society-, 39(2), 25.

[67] Shneiderman, B. (1993). 1.1 direct manipulation: a step beyond programming languages. Sparks of
innovation in human-computer interaction, 17, 1993.

[68] Shu, N. C. (1988). Visual programming. Van Nostrand Reinhold New York.

[69] Sprinkle, J. & Karsai, G. (2004). A domain-specific visual language for domain model evolution.
Journal of Visual Languages & Computing, 15(3), 291–307.

[70] Thiagarajan, R. K., Srivastava, A. K., Pujari, A. K., & Bulusu, V. K. (2002). Bpml: a process model-
ing language for dynamic business models. In Advanced Issues of E-Commerce andWeb-Based Infor-
mation Systems, 2002.(WECWIS 2002). Proceedings. Fourth IEEE International Workshop on (pp.
222–224).: IEEE.

[71] Tolvanen, J.-P. & Rossi, M. (2003). Metaedit+: defining and using domain-specific modeling lan-
guages and code generators. InCompanion of the 18th annual ACMSIGPLAN conference on Object-
oriented programming, systems, languages, and applications (pp. 92–93).: ACM.

[72] Whitley, K. N. (1997). Visual programming languages and the empirical evidence for and against.
Journal of Visual Languages & Computing, 8(1), 109–142.

[73] Zhu, N., Grundy, J., Hosking, J., Liu, N., Cao, S., & Mehra, A. (2007). Pounamu: A meta-tool
for exploratory domain-specific visual language tool development. Journal of Systems and Software,
80(8), 1390–1407.

33

2
DSVLModelling Tool Development

2.1 Constructing component-based software engineering environments:
issues and experiences

Grundy, J.C., Mugridge, W.B. and Hosking, J.G. Constructing component-based software engineering en-
vironments: issues and experiences, Information and Software Technology, Vol 42, No. 2, Elsevier, January
2000, Pages 103-114.

DOI: 10.1016/S0950-5849(99)00084-1

Abstract:Developing software engineering tools is a difficult task, and the environments in which these
tools are deployed continually evolve as software developers’ processes, tools and tool sets evolve. To more
effectively develop such evolvable environments, we have been using component-based approaches to build
and integrate a range of software development tools, including CASE and workflow tools, file servers and
versioning systems, and a variety of reusable software agents. We describe the rationale for a component-
based approach to developing such tools, the architecture and support tools we have used some resultant
tools and tool facilities we have developed, and summarise the possible future research directions in this area.

My contribution: Developed initial ideas for the approach, co-led design of the approach, implemented
most of the software, led evaluation of the platform, co-authored substantial parts of the paper, investigator
for funding for the work from the Foundation for Research Science and Technology (FRST)

Author pre-print available at: PDF

34

https://doi.org/10.1016/S0950-5849(99)00084-1
https://nzjohng.github.io/publications/papers/ist2000.pdf

2.2 InconsistencyManagement forMulti-viewSoftwareDevelopment
Environments

Grundy, J.C., Hosking, J.G., Mugridge, W.B. Inconsistency Management for Multi-view Software Devel-
opment Environments, IEEE Transactions on Software Engineering, Vol. 24, No. 11, 1998, pp. 960 - 981.

DOI: 10.1109/32.730545

Abstract:Developers need tool support to help manage the wide range of inconsistencies that occur during
software development. Such tools need to provide developers with ways to define, detect, record, present,
interact with, monitor and resolve complex inconsistencies between different views of software artifacts,
different developers and different phases of software development. This paper describes our experience
with building complex multiple-view software development tools that support diverse inconsistency man-
agement facilities. We describe software architectures we have developed, user interface techniques used in
our multiple-view development tools, and discuss the effectiveness of our approaches compared to other
architectural and HCI techniques.

My contribution: Led development of the key ideas, co-designed the approach, implemented most of the
software, led evaluation of the platform, wrote most of the paper, one of the investigators on grant for fund-
ing for the work from the Foundation for Research Science and Technology (FRST)

Author pre-print available at: PDF

35

http://dx.doi.org/10.1109/32.730545
https://nzjohng.github.io/publications/papers/tse98.pdf

2.3 Pounamu: ameta-tool for exploratory domain-specific visual lan-
guage tool development

Zhu,N.,Grundy, J.C., Hosking, J.G., Liu,N., Cao, S. andMehra, A. Pounamu: ameta-tool for exploratory
domain-specific visual language tool development, Journal of Systems and Software, Elsevier, vol. 80, no. 8,
August 2007, Pages 1390-1407.

DOI: 10.1016/j.jss.2006.10.02

Abstract:Domain-specific visual language tools have become important in many domains of software engi-
neering and end user development.However building such tools is very challenging with a need for multiple
views of information and multi-user support, the ability for users to change tool diagram and meta-model
specifications while in use, and a need for an open architecture for tool integration.We describe Pounamu,
a meta-tool for realising such visual design environments. We describe the motivation for Pounamu, its ar-
chitecture and implementation and illustrate examples of domain-specific visual language tools that we have
developed with Pounamu.

My contribution: Co-developed initial ideas for the approach, co-led design of the approach, co-supervised
research assistant, 1 PhD and two Masters students working on software, led evaluation of the platform,
wrote substantial parts of the paper, co-lead investigator for funding for the work from Foundation for Re-
search Science and Technology

Author pre-print available at: PDF

36

https://doi.org/10.1016/j.jss.2006.10.028
https://nzjohng.github.io/publications/papers/jss2007.pdf

2.4 GeneratingDomain-SpecificVisual LanguageTools fromAbstract
Visual Specifications

Grundy, J.C.,Hosking, J.G., Li,N., Li, L., Ali,N.M.,Huh, J.GeneratingDomain-SpecificVisual Language
Tools fromAbstract Visual Specifications, IEEE Transactions on Software Engineering, vol. 39, no. 4, April
2013, pp. 487 - 515

DOI: 10.1109/TSE.2012.33

Abstract:Domain-specific visual languages support high-level modeling for a wide range of application do-
mains. However, building tools to support such languages is very challenging. We describe a set of key
conceptual requirements for such tools and our approach to addressing these requirements, a set of visual
language-based metatools. These support definition of metamodels, visual notations, views, modeling be-
haviors, design critics, and model transformations and provide a platform to realize target visual modeling
tools. Extensions support collaborative work, human-centric tool interaction, and multiplatform deploy-
ment. We illustrate application of the metatoolset on tools developed with our approach. We describe tool
developer and cognitive evaluations of our platform and our exemplar tools, and summarize key future re-
search directions.

My contribution: Co-developed initial ideas for the approach, co-led design of the approach, wrote initial
software for the approach, co-supervised research assistant and 3 PhD students working on project, oversaw
evaluation of the platform, wrote substantial amounts of the paper, co-lead investigator for funding for the
work from Foundation for Research Science and Technology

Author pre-print available at: PDF

37

https://doi.org/10.1109/TSE.2012.33
https://nzjohng.github.io/publications/papers/tse2013.pdf

2.5 VikiBuilder: end-user specification and generation ofVisualWikis
Hirsch, C., Hosking, J.G. and Grundy, J.C. VikiBuilder: end-user specification and generation of Visual
Wikis, In Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering,
Antwerp, Belgium, 20-24 Sept 2010, ACM, pp 13–22.

DOI: 10.1145/1858996.1859002

Abstract:With the need tomake sense out of large and constantly growing information spaces, tools to sup-
port information management are becoming increasingly valuable. In prior work we proposed the ”Visual
Wiki” concept to describe and implementweb-based informationmanagement applications. By focusing on
the integration of two promising approaches, visualizations and collaboration tools, our Visual Wiki work
explored synergies and demonstrated the value of the concept. Building on this, we introduce ”VikiBuilder”,
a Visual Wiki meta-tool, which provides end-user supported modeling and automatic generation of Visual
Wiki instances. We describe the design and implementation of the VikiBuilder including its architecture, a
domain specific visual language for modeling Visual Wikis, and automatic generation of those. To demon-
strate the utility of the tool, we have used it to construct a variety of different Visual Wikis. We describe the
construction of Visual Wikis and discuss the strengths and weaknesses of our meta-tool approach.

My contribution: Developed initial idea for the approach, co-designed the approach, co-supervised PhD
student working on project, co-authored significant amount of the paper, co-lead investigator for funding
for the work from Foundation for Research Science and Technology and BuildIT.

Author pre-print available at: PDF

38

https://doi.org/10.1145/1858996.1859002
https://nzjohng.github.io/publications/papers/ase2010_1.pdf

3
DSVLs andMDE for Software Requirements and

Architectures

3.1 Aspect-oriented Requirements Engineering for
Component-based Software Systems

Grundy, J.C. Aspect-oriented Requirements Engineering for Component-based Software Systems, 1999
IEEE Symposium on Requirements Engineering, Limmerick, Ireland, 7-11 June, 1999, IEEE, pp 84 - 91.

DOI: 10.1109/ISRE.1999.777988

Abstract:Developing requirements for software components, and ensuring these requirements are met by
component designs, is very challenging, as very often application domain and stakeholders are not fully
known during component development. The author introduces a new methodology, aspect-oriented com-
ponent engineering, that addresses somedifficult issues of component requirements engineeringby analysing
and characterising components based on different aspects of the overall application a component addresses.
He gives an overview of the aspect-oriented component requirements engineering process, focus on compo-
nent requirements analysis specification and reasoning, and briefly discuss tool support.

My contribution: Sole author ; developed all ideas, software, wrote whole paper.

Author pre-print available at: PDF

39

https://doi.org/10.1109/ISRE.1999.777988
https://nzjohng.github.io/publications/papers/re1999.pdf

3.2 MaramaAIC:Tool Support forConsistencyManagement andVal-
idation of Requirements

Kamalrudin, M., Grundy, J.C., Hosking, J.G., MaramaAIC: Tool Support for Consistency Management
and Validation of Requirements, Automated Software Engineering, Springer, 2017, vol 24, no 1, pp. 1-45.

DOI: 10.1007/s10515-016-0192-z

Abstract: Requirements captured by requirements engineers (REs) are commonly inconsistent with their
client’s intended requirements and are often error prone. There is limited tool support providing end-to-
end support between the REs and their client for the validation and improvement of these requirements.
We have developed an automated tool called MaramaAIC (Automated Inconsistency Checker) to address
these problems. MaramaAIC provides automated requirements traceability and visual support to identify
and highlight inconsistency, incorrectness and incompleteness in captured requirements. MaramaAIC pro-
vides an end-to-end rapid prototyping approach together with a patterns library that helps to capture re-
quirements and check the consistency of requirements that have been expressed in textual natural language
requirements and then extracted to semi-formal abstract interactions, essential use cases (EUCs) and user
interface prototype models. It helps engineers to validate the correctness and completeness of the EUCs
modelled requirements by comparing them to “best-practice” templates and generates an abstract proto-
type in the form of essential user interface prototype models and concrete User Interface views in the form
of HTML.We describe its design and implementation together with results of evaluating our tool’s efficacy
and performance, and user perception of the tool’s usability and its strengths and weaknesses via a substan-
tial usability study. We also present a qualitative study on the effectiveness of the tool’s end-to-end rapid
prototyping approach in improving dialogue between the RE and the client as well as improving the quality
of the requirements.

My contribution: Contribution: Co-developed main idea for the approach, co-developed tool design, co-
supervised PhD student, wrote substantial parts of paper, co-led investigator for funding for this project
from FRST

Author pre-print available at: PDF

40

https://doi.org/10.1007/s10515-016-0192-z
https://nzjohng.github.io/publications/papers/asej2017.pdf

3.3 Adaptable, Model-driven Security Engineering for SaaS Cloud-
based Applications

Almorsy, M., Grundy, J.C., Ibrahim, A., Adaptable, Model-driven Security Engineering for SaaS Cloud-
based Applications, Automated Software Engineering, vol. 21, no. 2, April 2014, Springer, pp. 187–224.

DOI: 10.1007/s10515-013-0133-z

Abstract: Software-as-a-service (SaaS) multi-tenancy in cloud-based applications helps service providers to
save cost, improve resource utilization, and reduce service customization and maintenance time. This is
achieved by sharing of resources and service instances among multiple “tenants” of the cloud-hosted appli-
cation. However, supportingmulti-tenancy addsmore complexity to SaaS applications required capabilities.
Security is one of these key requirements that must be addressed when engineering multi-tenant SaaS appli-
cations. The sharing of resources among tenants—i.e. multi-tenancy—increases tenants’ concerns about
the security of their cloud-hosted assets. Compounding this, existing traditional security engineering ap-
proaches do not fit well with the multi-tenancy application model where tenants and their security require-
ments often emerge after the applications and services were first developed. The resultant applications do
not usually support diverse security capabilities based on different tenants’ needs, some ofwhichmay change
at run-time i.e. after cloud application deployment. We introduce a novelmodel-driven security engineering
approach for multi-tenant, cloud-hosted SaaS applications. Our approach is based on externalizing security
from the underlying SaaS application, allowing both application/service and security to evolve at runtime.
Multiple security sets can be enforced on the same application instance based on different tenants’ security
requirements. We use abstract models to capture service provider and multiple tenants’ security require-
ments and then generate security integration and configurations at runtime. We use dependency injection
and dynamic weaving via Aspect-Oriented Programming (AOP) to integrate security within critical applica-
tion/service entities at runtime. We explain our approach, architecture and implementation details, discuss
a usage example, and present an evaluation of our approach on a set of open source web applications.

My contribution: Contribution: Developed initial ideas for the research, co-supervised the two PhD stu-
dents, co-authored significant parts of paper

Author pre-print available at: PDF

41

https://doi.org/10.1007/s10515-013-0133-z
https://nzjohng.github.io/publications/papers/asej2014.pdf

3.4 SoftArch: tool support for integrated software architecture de-
velopment

Grundy, J.C., and Hosking, J.G. SoftArch: tool support for integrated software architecture development,
International Journal of Software Engineering and Knowledge Engineering, vol 13, no 2, April 2003, World
Scientific, pp. 125-151.

DOI: 10.1142/S0218194003001238

Abstract: A good software architecture design is crucial in successfully realising an object-oriented analysis
(OOA) specification with an object-oriented design (OOD)model that meets the specification’s functional
and non-functional requirements. Most CASE tools and software architecture design notations do not ad-
equately support software architecture modelling and analysis, integration with OOA and OODmethods
and tools, and high-level, dynamic architectural visualisations of running systems. We describe SoftArch, an
environment that provides flexible software architecturemodelling using a concept of successive refinement
and an extensible architecture meta-model. SoftArch provides extensible analysis tools enabling developers
to analyse their architecture model properties. Run-time visualisation of systems uses dynamic annotation
and animation of high-level architectural modelling views. SoftArch is integrated with a component-based
CASE tool and run-timemonitoring tool, and has facilities for 3rd party tool integration through a common
exchange format. This paper discusses the motivation for SoftArch, its modelling, analysis and dynamic vi-
sualisation capabilities, and its integration with various analysis, design and implementation tools.

My contribution: Developed initial ideas for this research, co-designed approach, wrote the software the
approach based on, wrotemajority of the paper, co-lead investigator for funding for this project from FRST

Author pre-print available at: PDF

42

https://doi.org/10.1142/S0218194003001238
https://nzjohng.github.io/publications/papers/ijseke2003.pdf

3.5 A Visual Language for Design Pattern Modelling and Instantia-
tion

Maplesden, D., Hosking, J.G. and Grundy, J.C., A Visual Language for Design Pattern Modelling and
Instantiation, Chapter 2 in Design Patterns Formalization Techniques, Toufik Taibi (Ed), Idea Group Inc.,
Hershey, USA, March 2007, pp. 20-43. DOI: 10.4018/978-1-59904-219-0.ch002

Abstract: In this chapter we describe the Design pattern modeling language, a notation supporting the
specification of Design pattern solutions and their instantiation into UML design models. DPML uses a
simple set of visual abstractions and readily lends itself to tool support. DPML Design pattern solution
specifications are used to construct visual, formal specifications of Design patterns. DPML instantiation
diagrams are used to link a Design pattern solution specification to instances of a UML model, indicating
the roles played by different UML elements in the generic Design pattern solution. A prototype tool is de-
scribed, together with an evaluation of the language and tool.

My contribution: Co-designed approach, wrote some of the software the approach based on, co-supervised
Masters student, co-authored significant parts of the paper, co-lead investigator for funding for this project
from FRST

Author pre-print available at: PDF

43

https://doi.org/10.4018/978-1-59904-219-0.ch002
https://nzjohng.github.io/publications/papers/patterns2007.pdf

4
Software Development and Testing using DSVLs

andMDE

4.1 Supporting Multi-View Development for Mobile Applications
Barnett, S., Avazpour, I., Vasa, R.,Grundy, J.C. SupportingMulti-View Development for Mobile Applica-
tions, Journal of Computer Languages, Volume 51, April 2019, Elsevier, Pages 88-96

DOI: 10.1016/j.cola.2019.02.001

Abstract: Interest in mobile application development has significantly increased. The need for rapid, it-
erative development coupled with the diversity of platforms, technologies and frameworks impacts on the
productivity of developers. In this paper we propose a new approach and tool support, Rapid APPlication
Tool (RAPPT), that enables rapid development of mobile applications. It employs Domain Specific Visual
Languages andModeling techniques to help developers define the characteristics of their applications using
high level visual notations. Our approach also provides multiple views of the application to help developers
have a better understanding of the different aspects of their application. Our user evaluation of RAPPT
demonstrates positive feedback ranging from expert to novice developers.

My contribution: Co-developed main ideas for the research, co-supervised PhD student, wrote substan-
tial part of the paper

Author pre-print available at: PDF

44

https://doi.org/10.1016/j.cola.2019.02.001
https://nzjohng.github.io/publications/papers/jcl2019.pdf

4.2 Specifying Model Transformations by Direct Manipulation us-
ingConcreteVisualNotations and InteractiveRecommendations

Avazpour, I.,Grundy, J.C., Grunske, L. Specifying Model Transformations by Direct Manipulation using
ConcreteVisualNotations and InteractiveRecommendations, Journal ofVisualLanguages andComputing,
Volume 28, June 2015, Elsevier,pp 195–211.

DOI: 10.1016/j.jvlc.2015.02.005

Abstract: Model transformations are a crucial part of Model-Driven Engineering (MDE) technologies but
are usually hard to specify and maintain for many engineers. Most current approaches use meta-model-
driven transformation specification via textual scripting languages. These are often hard to specify, under-
stand andmaintain. We present a novel approach that instead allows domain experts to discover and specify
transformation correspondences using concrete visualizations of example source and target models. From
these example model correspondences, complex model transformation implementations are automatically
generated. We also introduce a recommender system that helps domain experts and novice users find pos-
sible correspondences between large source and target model visualization elements. Correspondences are
then specified by directly interacting with suggested recommendations or drag and drop of visual notational
elements of source and target visualizations. We have implemented this approach in our prototype tool-set,
CONVErT, and applied it to a variety of model transformation examples. Our evaluation of this approach
includes a detailed user study of our tool and a quantitative analysis of the recommender system.

My contribution: Developed initial ideas for this research, co-designed approach, co-supervised PhD stu-
dent, wrote substantial parts of paper, investigator for funding for this project from ARC

Author pre-print available at: PDF

45

https://doi.org/10.1016/j.jvlc.2015.02.005
https://nzjohng.github.io/publications/papers/jvlc2015_2.pdf

4.3 SoftArch/MTE: Generating Distributed System Test-beds from
High-level Software Architecture Descriptions

Grundy, J.C., Cai, Y. and Liu, A. SoftArch/MTE: Generating Distributed System Test-beds from High-
level Software Architecture Descriptions, Automated Software Engineering, Kluwer Academic Publishers,
vol. 12, no. 1, January 2005, pp. 5-39

DOI: 10.1023/B:AUSE.0000049207.62380.74

Abstract: Most distributed system specifications have performance benchmark requirements, for example
the number of particular kinds of transactions per second required to be supported by the system. However,
determining the likely eventual performance of complex distributed system architectures during their devel-
opment is very challenging. We describe SoftArch/MTE, a software tool that allows software architects to
sketch an outline of their proposed system architecture at a high level of abstraction. These descriptions
include client requests, servers, server objects and object services, database servers and tables, and particular
choices of middleware and database technologies. A fully-working implementation of this system is then
automatically generated from this high-level architectural description. This implementation is deployed on
multiple client and server machines and performance tests are then automatically run for this generated
code. Performance test results are recorded, sent back to the SoftArch/MTE environment and are then
displayed to the architect using graphs or by annotating the original high-level architectural diagrams. Ar-
chitects may change performance parameters and architecture characteristics, comparing multiple test run
results to determine themost suitable abstractions to refine to detailed designs for actual system implementa-
tion. Further tests may be run on refined architecture descriptions at any stage during system development.
We demonstrate the utility of our approach and prototype tool, and the accuracy of our generated perfor-
mance test-beds, for validating architectural choices during early system development.

My contribution: Developed initial ideas for this research, co-designed approach, wrote some of the soft-
ware the approach based on, co-supervisedMasters student, wrotemajority of the paper, co-lead investigator
for funding for this project from FRST

Author pre-print available at: PDF

46

https://doi.org/10.1023/B:AUSE.0000049207.62380.74
https://nzjohng.github.io/publications/papers/asej2004.pdf

4.4 Realistic Load Testing of Web Applications
Draheim, D., Grundy, J.C., Hosking, J.G., Lutteroth, C. and Weber, G. Realistic Load Testing of Web
Applications, In Proceedings of the 10th European Conference on SoftwareMaintenance and Re-engineering,
Berlin, 22-24March 2006, pp 57-70.

DOI: 10.1109/CSMR.2006.43

Abstract:Wepresent a new approach for performing load testing ofweb applications by simulating realistic
user behaviourwith stochastic form-oriented analysismodels. Realism in the simulation of user behaviour is
necessary in order to achieve valid testing results. In contrast tomany other user models, web site navigation
and time delay are modelled stochastically. The models can be constructed from sample data and can take
into account effects of session history on user behaviour and the existence of different categories of users.
The approach is implemented in an existing architecture modelling and performance evaluation tool and is
integrated with existing methods for forward and reverse engineering.

My contribution: Developed some of the key initial ideas for this research, co-designed approach, wrote
the software the approach based on, wrote substantial parts of the paper, co-lead investigator for funding
for this project from FRST

Author pre-print available at: PDF

47

https://doi.ieeecomputersociety.org/10.1109/CSMR.2006.43
https://nzjohng.github.io/publications/papers/csmr2006.pdf

4.5 A Domain-Specific Visual Modeling Language for Testing Envi-
ronment Emulation

Liu, J.,Grundy, J.C., Avazpour, I., Abdelrazek, M. ADomain-Specific VisualModeling Language for Test-
ing Environment Emulation, 2016 IEEE Symposium onVisual Languages andHuman-Centric Computing,
Cambridge, UK, Sept 4-8 2016, IEEE Press, pp. 143 - 151.

DOI: 10.1109/VLHCC.2016.7739677

Abstract: Software integration testing plays an increasingly important role as the software industry has
experienced amajor change from isolated applications to highly distributed computing environments. Con-
ducting integration testing is a challenging task because it is often very difficult to replicate a real enterprise
environment. Emulating testing environment is one of the key solutions to this problem. However, ex-
isting specification-based emulation techniques require manual coding of their message processing engines,
therefore incurring high development cost. In this paper, we present a suite of domain-specific visual mod-
eling languages to describe emulated testing enviroements at a high abstraction level. Our solution allows
domain experts to model a testing environment from abstract interface layers. These layer models are then
transformed to runtime environment for application testing. Our user study shows that our visual languages
are easy to use, yet with sufficient expressive power to model complex testing applications.

My contribution: Developed initial idea for the research, co-developed tool design, co-supervised PhD stu-
dent, wrote substantial parts of paper, investigator on funding of the project from the Australian Research
Council

Author pre-print available at: PDF

48

https://doi.org/10.1109/VLHCC.2016.7739677
https://nzjohng.github.io/publications/papers/vlhcc2016_1.pdf

5
Software Process Management with DSVLs and

MDE

5.1 Serendipity: integrated environment support for process mod-
elling, enactment and work coordination

Grundy, J.C. and Hosking, J.G. Serendipity: integrated environment support for process modelling, en-
actment and work coordination, Automated Software Engineering, Vol. 5, No. 1, January 1998, Kluwer
Academic Publishers, pp. 27-60.

DOI: 10.1023/A:1008606308460

Abstract: Large cooperative work systems require work coordination, context awareness and process mod-
elling and enactment mechanisms to be effective. Support for process modelling and work coordination
in such systems also needs to support informal aspects of work which are difficult to codify. Computer-
Supported Cooperative Work (CSCW) facilities, such as inter-person communication and collaborative
editing, also need to be well-integrated into both process-modelling tools and tools used to perform work.
Serendipity is an environment which provides high-level, visual process modelling and event-handling lan-
guages, and diverse CSCW capabilities, and which can be integrated with a range of tools to coordinate
cooperative work. This paper describes Serendipity’s visual languages, support environment, architecture,
and implementation, together with experience using the environment and integrating it with other environ-
ments.

My contribution: Developed initial ideas for the research, did majority of tool design, implemented and
evaluated tool, wrote majority of the paper, investigator for funding for the project from FRST

Author pre-print available at: PDF

49

https://doi.org/10.1023/A:1008606308460
https://nzjohng.github.io/publications/papers/ase1998.pdf

5.2 A decentralized architecture for software process modeling and
enactment

Grundy, J.C. Hosking, J.G., Mugridge, W.B., Apperley, M.D. A decentralised architecture for software
process modelling and enactment, IEEE Internet Computing, Vol. 2, No. 5, September/October 1998,
IEEE CS Press, pp. 53-62.

DOI: 10.1109/4236.722231

Abstract: Many development teams, especially distributed teams, require process support to adequately
coordinate their complex, distributed work practices. Process modeling and enactment tools have been de-
veloped tomeet this requirement. The authors discuss the Serendipity-II processmanagement environment
which supports distributed process modeling and enactment for distributed software development projects.
Serendipity-II is based on a decentralized architecture and uses Internet communication facilities.

My contribution: Developed initial ideas for the research, did majority of tool design, implemented and
evaluated tool, wrote majority of the paper, investigator for funding for the project from FRST

Author pre-print available at: PDF

50

https://doi.org/10.1109/4236.722231
https://nzjohng.github.io/publications/papers/ic1998.pdf

5.3 Collaboration-BasedCloudComputing SecurityManagement Frame-
work

Almorsy,M.,Grundy, J.C. and Ibrahim, A. Collaboration-BasedCloudComputing SecurityManagement
Framework, In Proceedings of 2011 IEEE International Conference on Cloud Computing (CLOUD 2011),
Washington DC, USA on 4 July – 9 July, 2011, IEEE, pp. 364-371.

DOI: 10.1109/CLOUD.2011.9

Abstract: Although the cloud computing model is considered to be a very promising internet-based com-
puting platform, it results in a loss of security control over the cloud-hosted assets. This is due to the out-
sourcing of enterprise IT assets hosted on third-party cloud computing platforms. Moreover, the lack of
security constraints in the Service Level Agreements between the cloud providers and consumers results in
a loss of trust as well. Obtaining a security certificate such as ISO 27000 or NIST-FISMAwould help cloud
providers improve consumers trust in their cloud platforms’ security. However, such standards are still far
from covering the full complexity of the cloud computing model. We introduce a new cloud security man-
agement framework based on aligning the FISMA standard to fitwith the cloud computingmodel, enabling
cloud providers and consumers to be security certified. Our framework is based on improving collaboration
between cloud providers, service providers and service consumers inmanaging the security of the cloud plat-
form and the hosted services. It is built on top of a number of security standards that assist in automating
the security management process. We have developed a proof of concept of our framework using. NET
and deployed it on a test bed cloud platform. We evaluated the framework by managing the security of a
multi-tenant SaaS application exemplar.

My contribution: Developed initial ideas for the research, co-supervised the two PhD students, wrote sub-
stantial parts of paper

Author pre-print available at: PDF

51

https://doi.org/10.1109/CLOUD.2011.9
https://nzjohng.github.io/publications/papers/cloud2011.pdf

5.4 DCTracVis: a system retrieving and visualizing traceability links
between source code and documentation

Chen, X., Hosking, J.G., Grundy, J.C., Amor, R., DCTracVis: a system retrieving and visualizing trace-
ability links between source code and documentation,Automated Software Engineering, vol 25, no 4, 2018,
Springer, pp. 703–741

DOI: 10.1007/s10515-018-0243-8

Abstract: It is well recognized that traceability links between software artifacts provide crucial support in
comprehension, efficient development, and effective management of a software system. However, auto-
mated traceability systems to date have been faced with two major open research challenges: how to extract
traceability links with both high precision and high recall, and how to efficiently visualize links for complex
systems because of scalability and visual clutter issues. To overcome the two challenges, we designed and
developed a traceability system, DCTracVis. This system employs an approach that combines three sup-
porting techniques, regular expressions, key phrases, and clustering, with information retrieval (IR) models
to improve the performance of automated traceability recovery between documents and source code. This
combination approach takes advantage of the strengths of the three techniques to ameliorate limitations of
IR models. Our experimental results show that our approach improves the performance of IR models, in-
creases the precision of retrieved links, and recovers more correct links than IR alone. After having retrieved
high-quality traceability links, DCTracVis then utilizes a new approach that combines treemap and hierar-
chical tree techniques to reduce visual clutter and to allow the visualization of the global structure of traces
and a detailed overview of each trace, while still being highly scalable and interactive. Usability evaluation
results show that our approach can effectively and efficiently help software developers comprehend, browse,
and maintain large numbers of links.

My contribution: Developed initial ideas for this research, co-designed approach, co-supervised PhD stu-
dent, co-authored significant parts of paper, co-lead investigator for funding for this project from FRST

Author pre-print available at: PDF

52

https://doi.org/10.1007/s10515-018-0243-8
https://nzjohng.github.io/publications/papers/asej2018-1.pdf

5.5 An End-to-EndModel-based Approach to Support Big Data An-
alytics Development

Khalajzadeh, H., Simmons, A., Abdelrazek, M., Grundy, J.C., Hosking, J.G., He, Q., An End-to-End
Model-based Approach to Support Big Data Analytics Development, Journal of Computer Languages, Vol-
ume 58, June 2020, Elsevier

DOI: 10.1016/j.cola.2020.100964

Abstract: We present BiDaML 2.0, an integrated suite of visual languages and supporting tool to help
multidisciplinary teams with the design of big data analytics solutions. BiDaML tool support provides a
platform for efficiently producing BiDaML diagrams and facilitating their design, creation, report and code
generation. We evaluated BiDaML using two types of evaluations, a theoretical analysis using the “physics
of notations”, and an empirical study with 1) a group of 12 target end-users and 2) five individual end-users.
Participants mostly agreed that BiDaML was straightforward to understand/learn, and prefer BiDaML for
supporting complex data analytics solution modeling than other modeling languages.

My contribution: Developed initial ideas for this research, co-designed approach, co-supervised the two
post-doctoral fellows, co-authored significant parts of paper, lead investigator for funding for this project
from ARC

Author pre-print available at: PDF

53

https://doi.org/10.1016/j.cola.2020.100964
https://nzjohng.github.io/publications/papers/jcl2020_2.pdf

6
Human-centric DSVLModelling and

Collaboration

6.1 Experiences developing architectures for realising thin-client di-
agram editing tools

Grundy, J.C., Hosking, J.G., Cao, S., Zhao, D., Zhu,N., Tempero, E. and Stoeckle, H. Experiences develop-
ing architectures for realising thin-client diagram editing tools, Software – Practice and Experience, vol. 37,
no.12, Wiley, October 2007, pp. 1245-1283

DOI: 10.1002/spe.803

Abstract: Diagram-centric applications such as software design tools, project planning tools and business
process modelling tools are usually ‘thick-client’ applications running as stand-alone desktop applications.
There are several advantages to providing such design tools as Web-based or even PDA- and mobile-phone-
based applications. These include ease of access and upgrade, provision of collaborative work support and
Web-based integration with other applications. However, building such thin-client diagram editing tools is
very challenging. We have developed several thin-client diagram editing applications realized as a set of plug-
in extensions to a meta-tool for visual design environment development. In this paper, we discuss key user
interaction and software architecture issues, illustrate examples of interacting with our thin-client diagram
editing tools, describe our design and implementation approaches, and present the results of several different
evaluations of the resultant applications. Our experiences will be useful for those interested in developing
their own thin-client diagram editing architectures and applications.

My contribution: Co-developed key ideas for this research, co-designed approach, co-supervised the two
Masters students and the research assistant, wrotemajority of paper, co-lead investigator for funding for this
project from FRST

Author pre-print available at: PDF

54

https://doi.org/10.1002/spe.803
https://nzjohng.github.io/publications/papers/SPE2007.pdf

6.2 Engineering plug-in software components to support collabora-
tive work

Grundy, J.C. and Hosking, J.G. Engineering plug-in software components to support collaborative work,
Software - Practice and Experience, Vol. 32, No. 10, August 2002, Wiley, 983-1013

DOI: 10.1002/spe.472

Abstract: Many software applications require co-operative work support, including collaborative editing,
group awareness, versioning, messaging and automated notification and co-ordination agents. Most ap-
proaches hard-code such facilities into applications, with fixed functionality and limited ability to reuse
groupware implementations. Wedescribeour recentwork in seamlessly adding such capabilities to component-
based applications via a set of collaborative work-supporting plug-in software components. We describe a
variety of applications of this technique, along with descriptions of the novel architecture, user interface
adaptation and implementation techniques for the collaborativework-supporting components that we have
developed. We report on our experiences to date with this method of supporting collaborative work en-
hancement of component-based systems, and discuss the advantages of our approach over conventional
techniques.

My contribution: Developed initial ideas for this research, co-designed approach, wrote and evaluated the
software, wrote majority of paper, co-lead investigator for funding for this project from FRST

Author pre-print available at: PDF

55

https://doi.org/10.1002/spe.472
https://nzjohng.github.io/publications/papers/spe2002.pdf

6.3 Ageneric approach to supporting diagramdifferencing andmerg-
ing for collaborative design

Mehra, A., Grundy, J.C. and Hosking, J.G. A generic approach to supporting diagram differencing and
merging for collaborative design, In Proceedings of the 2005 ACM/IEEE International Conference on Auto-
mated Software Engineering, Long Beach, California, Nov 7-11 2005, IEEE Press, pp. 204-213

DOI: 10.1145/1101908.1101940

Abstract: Differentiation tools enable team members to compare two or more text files, e.g. code or docu-
mentation, after change. Although a number of general-purpose differentiation tools exist for comparing
text documents very few tools exist for comparing diagrams. We describe a new approach for realising vi-
sual differentiation in CASE tools via a set of plug-in components. We have added diagram version control,
visual differentiation and merging support as component-based plug-ins to the Pounamu meta-CASE tool.
The approach is generic across awide variety of diagram types and has also been deployedwith an Eclipse dia-
grammingplug-in. Wedescribe our approach’s architecture, key design and implementation issues, illustrate
feasibility of our approach via implementation of it as plug-in components and evaluate its effectiveness.

My contribution: Co-developed key ideas for this research, co-designed approach, co-supervised Masters
student, wrote substantial parts of paper, co-lead investigator for funding for this project from FRST

Author pre-print available at: PDF

56

https://doi.org/10.1145/1101908.1101940
https://nzjohng.github.io/publications/papers/ase2005_1.pdf

6.4 A 3D Business Metaphor for Program Visualization
Panas, T., Berrigan,R. andGrundy, J.C.A3DBusinessMetaphor for ProgramVisualization, InProceedings
of the 2003 Conference on Information Visualisation, London, 16-18 July 2003, IEEE, pp. 314-319.

DOI: 10.1109/IV.2003.1217996

Abstract: Software development is difficult because software is complex, the software production process
is complex and understanding of software systems is a challenge. We propose a 3D visual approach to depict
software production cost related program information to support software maintenance. The information
helps us to reduce software maintenance costs, to plan the use of personnel wisely, to appoint experts effi-
ciently and to detect system problems early.

My contribution: Co-designed approach, supervised the visiting PhD student, wrote substantial parts of
paper, co-lead investigator for funding for this project from FRST

Author pre-print available at: PDF

57

https://doi.org/10.1109/IV.2003.1217996
https://nzjohng.github.io/publications/papers/iv2003.pdf

6.5 Supporting generic sketching-based input of diagrams in a domain-
specific visual language meta-tool

Grundy, J.C. andHosking, J.G. Supporting generic sketching-based input of diagrams in a domain-specific
visual language meta-tool, In Proceedings of the 2007 IEEE/ACM International Conference on Software En-
gineering (ICSE’07), Minneapolis, USA, May 2007, IEEE CS Press, pp. 282-291.
DOI: 10.1109/ICSE.2007.81

Abstract: Software engineers often use hand-drawn diagrams as preliminary design artefacts and as anno-
tations during reviews. We describe the addition of sketching support to a domain-specific visual language
meta-tool enabling a wide range of diagram-based design tools to leverage this human-centric interaction
support. Our approach allows visual design tools generated from high-level specifications to incorporate a
range of sketching-based functionality including both eager and lazy recognition, moving from sketch to
formalized content and back and using sketches for secondary annotation and collaborative design review.
We illustrate the use of our sketching extension for an example domain-specific visual design tool and de-
scribe the architecture and implementation of the extension as a plug-in for our Eclipse-based meta-tool.

My contribution: Developed initial ideas for this research, co-designed approach, wrote and evaluated the
software, wrote majority of paper, co-lead investigator for funding for this project from FRST

Author pre-print available at: PDF

58

https://doi.org/10.1109/ICSE.2007.81
https://nzjohng.github.io/publications/papers/icse2007.pdf

7
End-User Applications of DSVLs andMDE

7.1 Domain-specific visual languages for specifying and generating
data mapping systems

Grundy, J.C., Hosking, J.G., Amor, R., Mugridge, W.B., Li, M. Domain-specific visual languages for spec-
ifying and generating data mapping systems, Journal of Visual Languages and Computing, vol. 15, no. 3-4,
June-August 2004, Elsevier, pp 243-263,

DOI: 10.1016/j.jvlc.2004.01.003

Abstract: Many application domains, including enterprise systems integration, health informatics and con-
struction IT, require complex data to be transformed fromone format to another. Wehave developed several
tools to support specification and generation of such data mappings using domain-specific visual languages.
We describe motivation for this work, challenges in developing visual mapping metaphors for different tar-
get users and problem domains, and illustrate using examples from several of our developed systems. We
compare cognitive dimension-based evaluations of the different approaches and summarise the lessons we
have learned.

My contribution: Co-developed initial ideas for much of this research, co-designed approaches, developed
and evaluated some of the software, co-supervisedMasters student, wrote substantial parts of paper, co-lead
investigator for funding for this project from FRST

Author pre-print available at: PDF

59

https://doi.org/10.1016/j.jvlc.2004.01.003
https://nzjohng.github.io/publications/papers/jvlc2004.pdf

7.2 A domain-specific visual language for report writing
Dantra, R., Grundy, J.C. and Hosking, J.G. A domain-specific visual language for report writing, In Pro-
ceedings of the 2009 IEEE Symposium on Visual Languages and Human-Centric Computing, Cornwallis,
Oregon, USA, Sept 20-24 2009, IEEE CS Press, pp 15-22.

DOI: 10.1109/VLHCC.2009.5295308

Abstract: Many domain specific textual languages have been developed for generating complex reports.
These are challenging for novice users to learn, understand and use. We describe our work developing the
prototype of a new visual language tool for a company to augment their textual report writing language. We
describe key motivations for our visual language tool solution, its architecture, design and development us-
ing Microsoft DSL tools, and its evaluation by end-users.

My contribution: Co-developed key ideas for this research, co-designed approach, co-supervised Masters
student, wrote substantial parts of paper, co-lead investigator for funding for this project from FRST and
Technology NZ

Author pre-print available at: PDF

60

https://doi.org/10.1109/VLHCC.2009.5295308
https://nzjohng.github.io/publications/papers/vlhcc2009_2.pdf

7.3 Supporting Scientists in Re-engineering Sequential Programs to
Parallel Using Model-driven Engineering

Almorsy, M. and Grundy, J.C. Supporting Scientists in Re-engineering Sequential Programs to Parallel
Using Model-driven Engineering, 1st ICSEWorkshop on Software Engineering for High Performance Com-
puting in Science (SE4HPCS 2015), Florence, Italy, May 19 2015, pp. 1-8.

DOI: 10.1109/SE4HPCS.2015.8

Abstract: Developing complex computational-intensive and data-intensive scientific applications requires
effectiveutilizationof the computational powerof the available computingplatforms including grids, clouds,
clusters, multi-core and many-core processors, and graphical processing units (GPUs). However, scientists
who need to leverage such platforms are usually not parallel or distributed programming experts. Thus,
they face numerous challenges when implementing and porting their software-based experimental tools to
such platforms. In this paper, we introduce a sequential-to-parallel engineering approach to help scientists
in engineering their scientific applications. Our approach is based on capturing sequential program details,
planned parallelization aspects, and program deployment details using a set of domain-specific visual lan-
guages (DSVLs). Then, using code generation, we generate the corresponding parallel program using neces-
sary parallel and distributed programmingmodels (MPI, OpenCL, orOpenMP).We summarize three case
studies (matrix multiplication, N-Body simulation, and digital signal processing) to evaluate our approach.

My contribution: Came up with initial ideas for the research, co-designed the solution, supervised the
post-doc who implemented solution, lead investigator on grant funding the project from the ARC

Author pre-print available at: PDF

61

https://doi.org/10.1109/SE4HPCS.2015.8
https://nzjohng.github.io/publications/papers/se4hpcs2015.pdf

7.4 A visual language and environment for enterprise system mod-
elling and automation

Li, L,Grundy, J.C., Hosking, J.G. A visual language and environment for enterprise systemmodelling and
automation,Journal of Visual Languages and Computing, vol. 25, no. 4, April 2014, Elsevier, pp. 253-277

DOI: 10.1016/j.jvlc.2014.03.004

Abstract: Objective: We want to support enterprise service modelling and generation using a more end
user-friendly metaphor than current approaches, which fail to scale to large organisations with key issues of
“cobweb” and “labyrinth” problems and large numbers of hidden dependencies. Method: We present and
evaluate an integrated visual approach for business process modelling using a novel tree-based overlay struc-
ture that effectively mitigate complexity problems. A tree-overlay based visual notation (EML) and its in-
tegrated support environment (MaramaEML) supplement and integrate with existing solutions. Complex
business architectures are represented as service trees and business processes are modelled as process overlay
sequences on the service trees. Results: MaramaEML integrates EML and BPMN to provide complemen-
tary, high-level business servicemodelling and supports automatic BPEL code generation from the graphical
representations to realise web services implementing the specified processes. It facilitates generated service
validation using an integrated LTSA checker and provides a distortion-based fisheye and zooming function
to enhance complex diagram navigation. Evaluations of EML show its effectiveness. Conclusions: We have
successfully developed and evaluated a novel tree-based metaphor for business process modelling and enter-
prise service generation. Practice implications: a more user-friendly modelling approach and support tool
for business end users.

My contribution: Co-developed key ideas for this research, co-designed approach, co-supervised PhD stu-
dent, wrote substantial parts of paper, co-lead investigator for funding for this project from FRST

Author pre-print available at: PDF

62

https://doi.org/10.1016/j.jvlc.2014.03.004
https://nzjohng.github.io/publications/papers/jvlc2014.pdf

7.5 A suite of visual languages for model-driven development of sta-
tistical surveys and services

Kim, C.H., Grundy, J.C., Hosking, J.G. A suite of visual languages for model-driven development of sta-
tistical surveys and services, Journal of Visual Languages and Computing, Elsevier, Vol 26, Feb 2015, pp
99–125

DOI: 10.1016/j.jvlc.2014.11.005

Abstract: Objective: To provide statistician end users with a visual language environment for complex sta-
tistical survey design and implementation. Methods: We have developed, in conjunction with professional
statisticians, the Statistical Design Language (SDL), an integrated suite of visual languages aimed at support-
ing the process of designing statistical surveys, and its support environment, SDLTool. SDL comprises five
diagrammatic notations: survey diagrams, data diagrams, technique diagrams, task diagrams and process
diagrams. SDLTool provides an integrated environment supporting design, coordination, execution, shar-
ing and publication of complex statistical survey techniques as web services. SDLTool allows association
of model components with survey artefacts, including data sets, metadata, and statistical package analysis
scripts, with the ability to execute elements of the survey design model to implement survey analysis. Re-
sults: We describe three evaluations of SDL and SDLTool: use of the notation by expert statistician to design
and execute surveys; useability evaluation of the environment; and assessment of several generated statistical
analysis web services. Conclusion: We have shown the effectiveness of SDLTool for supporting statistical
survey design and implementation. Practice implications: We have developed a more effective approach to
supporting statisticians in their survey design work.

My contribution: Co-developed key ideas for this research, co-designed approach, co-supervised Masters
student, wrote substantial parts of paper, co-lead investigator for funding for this project from FRST

Author pre-print available at: PDF

63

https://doi.org/10.1016/j.jvlc.2014.11.005
https://nzjohng.github.io/publications/papers/jvlc2015.pdf

7.6 Engineering Complex Data Integration and Harmonization Sys-
tems

Avazpour, I., Grundy, J.C., Zhu, L., Engineering Complex Data Integration and Harmonization Systems,
Journal of Industrial Information Integration, vol 16, Elsevier, Dec 2019

DOI: 10.1016/j.jii.2019.08.001

Abstract: Complex data transformation, aggregation and visualization problems are becoming increasingly
common. These are needed in order to support improved business intelligence and end-user access to data.
However, most such applications present very challenging software engineering problems including noisy
data, diverse data formats and APIs, challenging data modeling and increasing demand for sophisticated vi-
sualization support. This paper describes a data integration, harmonization and visualization process and
framework that we have been developing. We discuss our approach used to tackle complex data aggregation
and harmonization problems and we demonstrate a set of information visualizations that can be developed
from the harmonized data to make it usable for its target audience. We use a case study of Household Travel
Survey data mapping, harmonization, aggregation and visualization to illustrate our approach. We summa-
rize a set of lessons that we have learned from this industry-based software engineering experience. We hope
these will be useful for others embarking on challenging data harmonization and integration problems. We
also identify several key directions and needs for future research and practical support in this area.

My contribution: Developed many of the key research ideas, co-authored significant parts of the paper,
co-investigator for funding for this project from ARC and co-investigator for funding from AURIN

Author pre-print available at: PDF

64

https://doi.org/10.1016/j.jii.2019.08.001
https://nzjohng.github.io/publications/papers/jiii2019.pdf

8
Future Directions

8.1 Towards Human-Centric Model-Driven Software Engineering
Grundy J.C., Khalajzadeh, H., McIntosh, J., Towards Human-Centric Model-Driven Software Engineer-
ing, 15th InternationalConference onEvaluation ofNovelApproaches to SoftwareEngineering (ENASE2020),
5-6 May 2020, Prague, Chez Republic, SitePress, pp. 229-238.

DOI: 10.5220/0009806002290238

Abstract: Many current software systems suffer from a lack of consideration of the human differences
between end users. This includes age, gender, language, culture, emotions, personality, education, phys-
ical and mental challenges, and so on. We describe our work looking to consider these characteristics by
incorporation of human centric-issues throughout the model-driven engineering process lifecycle. We pro-
pose the use of the co-creational ”living lab” model to better collect human-centric issues in the software
requirements. We focus on modelling these human-centric factors using domain-specific visual languages,
themselves human-centric modelling artefacts. We describe work to incorporate these human-centric issues
into model-driven engineering design models, and to support both code generation and run-time adapta-
tion to different user human factors. We discuss continuous evaluation of such human-centric issues in the
produced software and feedback of user reported defects to requirements a nd model refinement.

My contribution: Developed all of the key research ideas, wrote majority of the paper, sole investigator
for funding for this project from the ARC

Author pre-print available at: PDF

65

http://dx.doi.org/10.5220/0009806002290238
https://nzjohng.github.io/publications/papers/enase2020_2.pdf

This thesis was typeset using
LATEX, originally developed by Leslie
Lamport and based on Donald

Knuth’s TEX. The body text is set in
11 point Egenolff-Berner Garamond, a
revival of Claude Garamont’s humanist
typeface.A template that can be used to
format a PhD dissertation with this look
& feel has been released under the per-
missive agpl license, and can be found
online at github.com/suchow/Dissertate
or from its lead author, Jordan Suchow, at
suchow@post.harvard.edu.

66

https://github.com/suchow/Dissertate
mailto:suchow@post.harvard.edu

	Introduction
	Visual Modelling Languages in Software Engineering
	Domain-Specific Visual Languages in Software Engineering
	Model-Driven Engineering of Software
	DSVLs and MDE for Software Engineering
	Overview of the papers in this Thesis
	Evidence of Impact

	References
	DSVL Modelling Tool Development
	Constructing component-based software engineering environments: issues and experiences
	Inconsistency Management for Multi-view Software Development Environments
	Pounamu: a meta-tool for exploratory domain-specific visual language tool development
	Generating Domain-Specific Visual Language Tools from Abstract Visual Specifications
	VikiBuilder: end-user specification and generation of Visual Wikis

	DSVLs and MDE for Software Requirements and Architectures
	Aspect-oriented Requirements Engineering for Component-based Software Systems
	MaramaAIC: Tool Support for Consistency Management and Validation of Requirements
	Adaptable, Model-driven Security Engineering for SaaS Cloud-based Applications
	SoftArch: tool support for integrated software architecture development
	A Visual Language for Design Pattern Modelling and Instantiation

	Software Development and Testing using DSVLs and MDE
	Supporting Multi-View Development for Mobile Applications
	Specifying Model Transformations by Direct Manipulation using Concrete Visual Notations and Interactive Recommendations
	SoftArch/MTE: Generating Distributed System Test-beds from High-level Software Architecture Descriptions
	Realistic Load Testing of Web Applications
	A Domain-Specific Visual Modeling Language for Testing Environment Emulation

	Software Process Management with DSVLs and MDE
	Serendipity: integrated environment support for process modelling, enactment and work coordination
	A decentralized architecture for software process modeling and enactment
	Collaboration-Based Cloud Computing Security Management Framework
	DCTracVis: a system retrieving and visualizing traceability links between source code and documentation
	An End-to-End Model-based Approach to Support Big Data Analytics Development

	Human-centric DSVL Modelling and Collaboration
	Experiences developing architectures for realising thin-client diagram editing tools
	Engineering plug-in software components to support collaborative work
	A generic approach to supporting diagram differencing and merging for collaborative design
	A 3D Business Metaphor for Program Visualization
	Supporting generic sketching-based input of diagrams in a domain-specific visual language meta-tool

	End-User Applications of DSVLs and MDE
	Domain-specific visual languages for specifying and generating data mapping systems
	A domain-specific visual language for report writing
	Supporting Scientists in Re-engineering Sequential Programs to Parallel Using Model-driven Engineering
	A visual language and environment for enterprise system modelling and automation
	A suite of visual languages for model-driven development of statistical surveys and services
	Engineering Complex Data Integration and Harmonization Systems

	Future Directions
	Towards Human-Centric Model-Driven Software Engineering

