
Pounamu Tutorial

Tutorial: Pounamu installation and configuration
Tutorial: Tips about using Pounamu
Tutorial: Using Pounamu to create a simple UML tool
Tutorial: Using the created UML tool to model a simple project
Tutorial: How to create an event handler

Tutorial: Pounamu installation and configuration
back to head

1. Install pounamu software:

 1) Make sure in your machine, JDK1.4.0 has been installed.

 2) Unzip the download pounamu.zip file to wherever in your machine.

 3) Move the "compile_and_run_pounamu.bat" file to the same folder where pounamu folder is in.

 4) Edit the "compile_and_run_pounamu.bat" file, change the path before "javac" and "java" to the right path
to "javac" and "java" in your machine.

2. Configure pouanmu:

 1) Run pounamu by executing "compile_and_run_pounamu.bat".

 2) In the tree panel, click the node "pouanmu".

 3) Click the menu "pounamu" in the menu bar, or right click anywhere on the tree panel, then in the menu
click the "confiure this tool" item.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

1 of 20 6/10/13 6:15 PM

 4) A dialog box will pop up. Input or "choose by browsing" the right full paths to the pounamu folder, Web
Browser and JDK in your machine.

 5) In the available tools area, the tools created and registered before are shown. Select them if you want to
use them or deselect them if you do not want to use them any more.

 6) Check the box "Do not show..." if you do not want to configure pounamu on your machine again.

 7) Click "save for later use" button if you want to save your configuration for later use. Click "for this time
only" button if you just want to make the configuration effective for this time only. Click "cancel" button to
cancel the configuration.

Tutorial: Tips about using Pounamu

back to head

Objects -- entities inside Pounamu

 Pounamu is a MetaCASE/CASE tool. You can use it to create your own tool, or you can use it to model a
real-world case. In both cases, you need to define lots of objects. These objects can be as "big" as a tool which
is what you want, a model which is the result of your modelling using your own created tool, or as "small" as a
visual component used to create a visual icon. Pounamu itself, as a whole, is an object.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

2 of 20 6/10/13 6:15 PM

 There are two kinds of objects in Pounamu. One kind are pre-defined objects, such as the tool project
manager, model project manager, shape creator, connector creator, handler definer, metamodel definer, view
type definer and pounamu itself; another kind are user-defined objects, such as shapes, connectors, handlers,
views, view types, entity types, association types, entities and associations.

Naming -- what you call your objects

 All pre-defined objects have a given name which begins with a lower case letter and is unchangeable.
For example "pounamu" for Pounamu itself, or "tool projects" for the tool project manager.

 All user-defined objects have a name given by user. However to manager the names well, Pounamu
automatically adds the object type to the user given name as a prefix, and changes the first letter of the user
given name to upper case. For example, if you want to create a new shape, you give a name "class" to this
shape, then Pounamu will change this name to "S_Class", "S_" is the object type for all shape objects. Please
note that when there is a dialog box asking you to input the name of an object, do not input the part
which will be automatically added, like "S-".

 The common types in Pounamu naming system is listed here:

Type Object
S shape
C connector
H Handler
ET entity type
AT association type

MMV metamodel view
VT view type
Tool tool

Model model

Tree -- the overall manager

 To manage all objects, Pounamu uses a tree, called the manager tree. It is located in the middle left panel
of the main user interface. Each object, predefined or user_defined, will have an entry in the this tree, where its
name will be showed as a node. The tree automatically expands, adding nodes, when a new object is created,
and shrinks, deleting nodes, when a object is removed.

Target -- choose a working object

 Before you do anything, you have to decide which object you want to work with. As the manager tree
has listed all existing objects, you may easily select an object by selecting the node on the tree which displays
the object name. The selected object will be the so-called "working object". At anytime, there is only one node
that can be selected, therefore there is only one working object. Once a working object is selected, the viewing
area, which is the main area located in the centre of the main interface, will show its visual icon (if it has any),
the property area, located in the middle right area of the main interface will show its properties (if it has any),
and the menu (and popup menu) will show all available functions that can be performed on this object.

Menu -- select available functions

 As there are so many types of objects inside Pounamu, and there are many functions can be applied to
each type of object, it is hard for a user to find the right functions which can be applied to the working object if
there is not a good way to arrange menus. Pounamu make it simple for user to select functions by using "smart
menu". In Pounamu interface, the menu area only has two menus. One is for help, another one is the so_called
"smart menu" named "pounamu". When you select a working object from the manager tree, all available
functions for this working object will be shown in the "smart menu". Its twin, a popup menu which has the
exactly the same list of menu items, is also available for users who like "right clicking" mouse.

Property -- what information the target contains

 Once an object is selected from the manager tree, if it has any properties "exported" to the user, the

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

3 of 20 6/10/13 6:15 PM

properties will be shown in the property area. The properties are arranged in a table. This table can be used to
both view and edit properties and hence configure the object. If the object has no property to be shown, the
property area will be empty.

Icon -- the viusal form of the target

 Pounamu is a kind of visual programming tool. Therefore most of objects in Pounamu have icons as
visual representations. Once an object is selected from the manager tree, if it has a visual icon, the icon will be
shown in the viewing area of the main interface. The viewing area is managed with a four_level structure. The
base level use a tabbed pane to hold each project pane. The second level uses a tabbed pane to hold all view
types in the project. The third level uses a tabbed pane to hold all views in this view type, and the fourth level
is a panel to show icons. For example, if you select a shape object "S_Class" in the tree panel, the node
"S_Class" has a parent node "shape creator" and parent-parent node "Tool-UML", then the viewing area will
show a tabbed pane which contains "Tool_UML" as its base pane, then inside this pane is the tabbed pane
"shape creator" which contains all created shapes, then in that tabbed pane, is displayed the panel which
contains shape "S_Class" and in that panel, the icon for "S_Class" is shown as selected. The levels of the
viewing area have been mapped to the levels of the tree node. So any change to either of them will cause a
corresponding change to the other one.

Information -- what is going on behind the interface

 When you have chosen a working object, and also have selected a function from the menu, if there is
nothing happening, do not panic! You will be told what is going on behind the interface. What you need to do
is move down to the lower part of the main interface, where there is a tabbed pane, clicking the "general" tab if
it is not currently shown, then read the information shown. Then you know what is happening, even what is
wrong.

Undo/redo -- oops! I made a mistake

 If you are using the tool you created to model a project, whenever there is something wrong, you may be
able to undo it. The undo / redo lists are nested in the same tabbed pane with general information. You may
undo/redo an operation at any time. Please note that, at most times, undoing the latest operation is safe, but
undo/redo of an operation deeper in the undo/redo history may cause errors. The undo / redo part works in
model project only currently.

Save/load -- do you want to reuse it

 Any user-defined objects can be saved into xml files and then reloaded whenever you want to reuse it.
The file name will be the same as it appears in the tree. All saved files will be automatically put into the "tools"
folder under pounamu folder except the handlers which go to "handler" folder. Please note that there are some
"conditions" to load some saved files, for example, if you try to load a "view" file, then the tool which create
this view must be the current tool. Trying to reload a view created by "Tool_UML" into a project using
"Tool_Architecture" will cause an error.

Inspect -- is this what I want

 At anytime, if you want to check what information is included in the objects you created, you have two
options to do so. One is clicking the corresponding node, then checking the property table shown in the
property area. As all properties are listed there, you may easily inspect available information. Another way is
by selecting the "view xml file" option from the menu, then in the popup xml pane, you may view the whole
xml file for this object.

Multiview -- An object can have different faces

 Pounamu supports both multiple view types and multiple views. Multiple view types means we can have
different view types in a model. For example, in a UML tool, we have "class diagram" view type, "Use cases"
view type and "sequence diagram" view type etc. Multiple views means we can have more than one window
(view) in each of the view types. This is extremely useful when a diagram is getting too big for a view -- we
can cut it into several windows thus make each window tidy and elegant.

 In Pounamu, an object can appear in different views of different view types. It can appear with a different
icon in the different view types, but it has the same icon in the views of the same type. All icons in the views of

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

4 of 20 6/10/13 6:15 PM

the different view types are "sharing" the same object. Pounamu has facilities to handle coordination among
them.

Tutorial: Using Pounamu to create a simple UML tool
back to head

 1) Click the "tool project" node in the manager tree, then in the menu (either the menu "pounamu" in the
menu bar or the popup menu accessed by right clicking anywhere in the tree panel) click the "new tool
project". In the popup new tool project dialog, enter "UML" for the name of this tool (pounamu will add
"Tool_" to it as prefix and change the first letter to upper case). You may enter a description in the description
area or leave it empty. You should now leave the location field unchanged (for now pounamu now uses it as
default folder to store any objects from tool creation or modelling). Click the "ok" button.

 2) Now in the manager tree you have a "Tool_UML" node with 5 child nodes. In the main viewing area you
have the tabbed pane for "Tool_UML" which contains 5 tabbed panes corresponding to the nodes.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

5 of 20 6/10/13 6:15 PM

 3) Click "meta_model_definer" node in the tree, and then in the menu select "open a new view". In the popup
name dialog, enter "1" ("MMV_" will be added to it). Click the "ok" button.

 4) In the tree, the node "MMV_1" is added and selected and the tabbed pane of "meta_model_views" is set to
be the current pane. In the menu, select "add an entity type", then in the popup dialog, select the "by given a
name to this entity type" radio button. Enter "class" (pounamu will make it "ET_Class"). Click the "ok" button.

 5) Nothing happens! Do not panic. As you are asked to specify the position of this entity type icon. So in the
viewing area, click where you want the icon to be. A icon appears where you clicked. and a property table is
shown in the property area.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

6 of 20 6/10/13 6:15 PM

 6) In the property table, we enter three attributes "name, String, key", "attribute, Multilinesinput, nonkey" and
"method, multilinesinput, nonkey". Click the "ok" button. (Please note that the properties will not be updated if
you do not click "ok"). In the icon, you will see these attributes. If you are not satisfied with what you have
entered, you may use the property table to reedit them.

 7) In the menu (you know where it is or how to bring it up:-)), select the "register this entity type" item. This

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

7 of 20 6/10/13 6:15 PM

entity type is created! You may also click corresponding items in the menu to view xml files, to save files. But
if you want to use this entity type later on, you must register it. Registering the entity type also saves it to
default folder.

 8) Repeat 4) - 7), but click "add an association type". Give the new association type a name "implement"
("AT_Implement" in pounamu). In the property table, input one attribue "label, String, Key". Then register it.

 9) If you want to reuse this meta model view later, then click "MMV_1" node, then click the "register this
view" button or the "save this view" button.

 10) We have an entity type "ET_Class" and an association type "AT_Implement". Now we will choose icons
for both. For any entity, we need a shape as icon, and for any association we need a connector as icon.

 11)Click the "shape creator" node in the tree. In the menu, click "Create a new shape". In the popup dialog,
input "class" ("S_Class" in pounamu).

 12) A shape icon appears in the viewing area and the node "S_Class" has been added to the tree with a

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

8 of 20 6/10/13 6:15 PM

subnode "S_Class_basepanel" which is selected. The base panel is the contaiing panel of the shape into which
we may add additional elements as we need. The property area shows the properties of the base panel.

 13) In the property table, we change the layout to "V-Flow" with the "vgap" 5. That means we are using
vertical flow layout to manager components in this base panel. We also change its size by width = 100, height
=120, click "ok" button.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

9 of 20 6/10/13 6:15 PM

 14) In the menu, click "add a label". In the property table change horizontal alignment to "center" and input
"name" in "text" field. Switch to the "exported tab" in the property table then click "text" radio button and input
"name" in the text field. Then Click ok.

 15) Select the base panel again and in the menu select "add a text area". In the property table input "attribute"
to the "MultilinesText" field. Switch to the "exported tab" in the property table then click the "MultilinesText"
radio button and input "attribute" in the text field. Then Click ok.

 16) Add another text area to the base panel. In its property table input "method" to the "MultilinesText" field.
Switch to the "exported tab" in the property table then click the "MultilinesText" radio button and input
"method" in the text field. Then Click ok.

 17) Select the "S_Class" node on the tree. In the property area, check if the exported properties are what you
want. If not, select the object to change it.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

10 of 20 6/10/13 6:15 PM

 18) Click "S_Class" node in the tree. And in the menu select "register this shape" if you want to use it later
on. You may also select "view xml file" to check the information saved in the shape xml file.

 19) Click "connector creator" node on the tree. In the menu, click "Create a new connector". In the popup
dialog, input "implement" ("C_Implement" in pounamu).

 20) In the property table, select an empty triangle shape for the endShape and input "label" in "middleLabel"
field. Switch to "exported tab" and select the "middleLabel" radio button and input "label" in the text field.
Click the "ok" button.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

11 of 20 6/10/13 6:15 PM

 21) Click "C_Implement" node on the tree. And in the menu select "register this connector" if you want to use
it later on. You may also select "view xml file" to check the information saved in the connector xml file.

 23) We have created one shape, one connector, one entity type and one association type. Now we move to the
handler creator to define a handler. On the tree, click the "handler_definer", and in the menu, click "create new
handler". Then in the popup dialog, input "print" ("H_Print" in pounamu) in the name field. Click "ok" button.

 24) for step 24-25, please see "Tutorial: How to create an event handler". In the handler definition panel, click
the "visual event" radio button, then select "NewShapeEvent". You may leave the description area empty at this
time and then input the code in the code area. This time, input "System.out.println("Welcome to Pounamu!");"

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

12 of 20 6/10/13 6:15 PM

 25) In the menu, you may choose "view xml" or "view java code" to check if this handler is what you want, or
"generate java code" or "save this handler" ets to save xml file or java code. Or you may click the "register this
handler" to perform all these with one go. if there is compilation failure information is displayed in the
message area. Just follow the message to debug your code then register the handler again.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

13 of 20 6/10/13 6:15 PM

26) Now it is time to define the view type which is a most important part in the tool creation. Click the
"view_type_definer" node on the tree. Then in the menu, click "define a new view type" item. In the popup
dialog, input "UML" ("VT_UML" in pounamu).

27) In the view type define panel, the available handlers, entity types and association types appear in the right
box. What you need to do is select the ones to be used in this tool. First, select "H_Print" from the available
box and "add to" allowed handlers box. Then select both "ET_Class" and "AT_Implement" in the available
model element box and "add to" allowed meta model element box.

28) Then in the icon mapping area, map "ET_Class" to "S_Class" and then map "AT_Implement" to
"C_Implement".

29) Then in the property mapping area, choose a pair from the icon/entity association/connector mappings. A
panel with two columns appears. On the left are properties of the model element in the selected pair, on the
right are properties of the icon in the selected pair. Choose one on the left and then select one on the right, these
two will be mapped to each other. Please note that you do not need to select all properties from the left column,
as some of them can be "invisible" to the user, which means they will not be shown in the icon.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

14 of 20 6/10/13 6:15 PM

30) After you have finished mapping properties for all the chosen pairs. You may click register this view type
in the menu. A view type has been defined. Now in "Tool_UML" we have a view type "VT_UML" in which
only one entity type, one association type and one handler are allowed.

31)It is time to register the whole tool! Click the "Tool_UML" on the tree, then in the menu, click the "register
this tool" option. Check the message window, if there is no error message, the tool is registered successfully
and can be later used.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

15 of 20 6/10/13 6:15 PM

Tutorial: Using the created UML tool to model a simple project
back to head

Please first go through the "Tutorial: Using Pounamu to create a simple UML tool" and create a UML tool with
Pounamu.

 1) Click the "model project" node in the manager tree and select "new model project" from the menu.

 2) In the popup new model project dialog, pull down the available tools combo box and check if there is a
tool "Tool_UML" in the list. If there is not such a tool, then click cancel. Click "tool project" node on the tree,
and then in the menu click "open existed tool project" item. Browse to "Tool_UML.xml" then click "ok". If you
have created the UML tool properly, there should be no problem with loading the tool. Click the the
"Tool_UML" node on the tree, then in the menu click "register this tool". Then back to 1).

 3) In the popup new model project dialog, pull down the available tools combo box and select "Tool_UML"
in the list. Then in the name field, input any name you like to name the project, such as "test". You may leave
the description empty and the location area unchanged. Click the "ok" button.

 4) Now a "Model_Test" has been added to the tree. Under this node, there is child node "VT_UML", meaning
that only this view type is allowed in the UML tool. In the viewing area is a tabbed pane named "VT_UML"
which will hold all "VT_UML" views.

 5) Click the "VT_UML" node and select "open a new VT_UML view" from the menu. In the popup dialog
input engter "1". You will see that a node named "VT_UML_1" is added to the tree and a panel with the same
name has been added to the tabbed pane.

 6) Click "VT_UML_1" node on the tree and then in the menu click "add an object of ET_Class". In the popup
dialog, select the first radio button and then input "person" in the text field. Click ok.

 7) Nothing will happenunti you click on the viewing panel where you want to add this object. Then you will
see an icon appear there and its property table appear in the property area.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

16 of 20 6/10/13 6:15 PM

 8) In the property fields, input "person" for NAME, and anything for ATTRIBUTE and METHOD. then click
ok.

 9) Repeat 6)-8), but entering "student" for NAME and anything for ATTRIBUTE and METHOD.

10) Click "VT_UML_1" node on the tree and then in the menu click "add an object of AT_Implement". In the
popup dialog, select the first radio button and then input "implements" in the text field. Click ok.

11) All added entity objects will have been selected. Click on one handle of the object which you think is a
"child" hold the mouse down and drag to the "parent" object and release on one of its handes. A connector will
appear to connect those two shapes and the property table of that association object would be showed in the
property area.

12) In the property table, input "implement" in the label field.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

17 of 20 6/10/13 6:15 PM

13) Here we finished a simple model. If you are not satisfied with the visual appearance, Click "VT_UML_1"
node on the tree and then in the menu click "enter select state", now you are able to move or resize each shape
on the panel.

Tutorial: How to create an event handler
back to head

1) Overview

Pounmau defines two kinds of events, one is visual event, another is model event. Whenever there is an
operation which causes any visual changes, such as add or deleted a shape or connector, move or resize a
shape, and change a property of a shape or connector, the corresponding visual event will be generated.
Similarly, whenever there is an operation which cause any change in model, such as create or delete an
entity or association object, change a property of an entity object or association object, the corresponding
model event will be generated.
Pouanmu has facilities to listen to and catch events and then pass them to any registered handlers.
Each handler has been predefined to respond to some particular events. And if the passed-in event is one
of its "waiting" events, it will perform some predefined actions.
Pounamu has interface, which is so-called handler definer, to allow use to define their own handlers, or
more accurately, to define what type of events the handler will respond to, and how to respond.
The predefined handlers are then registered to a particular view of a particular tool. To achieve this, the
user should: A) registered the defined handler to the tool which is being created. B) In the view type
definer winder, make this handler an allowed handler to this view type.
The handlers will work for model project only. The instances of the handlers will be automatically added
to the new window (view) of the particular view type which the handler is allowed. And then listen to the
events. Once a proper event is caught, they will "act" in the way which has been predefined by user.

2) An example

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

18 of 20 6/10/13 6:15 PM

 Here is the interface and contents for a handler definition.

Select the event category and event type. Please not that you may select more than one event types.

 In this example, select "Visual event" from the radio button, and then select "NewShapeEvent" tick box.

In the "import classes" area, input the java code to import any classes which will be used in your own
code. Please note that if you use any classes inside pounamu, you do not need to import them. As all
classes in all packages of Pounamu have been imported as default. You may click "View Java code" menu
item to view the java code.

 In this example, input "import java.awt.*;" and " import java.util.*;".

In the "action code", input the code which define the actions this handler will take. Please note that the
input code here is just a part of a method. Please see the java code by click the "View Java code" menu
item.

 In this example, input the code which will make all shapes in this panel move right_down.

In the "helper method code" area, input any helper method code you used in the action code. Please
notice that the methods are whole, not only "a part". Please see the java code by click the "View Java
code" menu item.

 In this example, one method "showInfo" has been used in the action code, so in "helper method code"
area, this whole method has been written.

After finish definition, you may compile the code, save the code etc, and you may do it in one go by
registering it. During the registering, the java code is generated and saved, and then compiled and than
registered.
After registering this handler to the tool, you may go to any "view type" definition window, and you may
find that the handler is there as available handler, you may select it and make it allowed handler to this
view type if you want. If you did so, the handler would be registered to the view type. So in a model

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

19 of 20 6/10/13 6:15 PM

project, whenever a new window of this view type is created, the instance of this handler will be add to
the new window and listen to the events there.

3) Some useful points

The following object can be referred to directly in your action code:

 pounamu ----- getPounamu(), the pounamu working instance

 manager ----- getManager(), the manager of the pounamu instance

 tool ---- getTool(), the tool this model project uses

 project ---- getProject(), the model project

In the method eventReceived, there is parameter event e, from "e", you may access its source, normally a
modellerpanel, and target, normally the shape or connector, or entity or association.
From these objects you may access to almost all objects you created in a model project as well as the tool
it used and pounamu itself.
Check the pounamu api, then you know what functions can be performed to those objects. Thus you may
finish the action code.
To make your code elegance and flexible, you may even use helper methods as those in the example.

New Page 1 file:///Users/jgrundy/Documents/Code/PounamuTutorial.html

20 of 20 6/10/13 6:15 PM

